JP2005009994A - Liquid sample injection device - Google Patents

Liquid sample injection device Download PDF

Info

Publication number
JP2005009994A
JP2005009994A JP2003173890A JP2003173890A JP2005009994A JP 2005009994 A JP2005009994 A JP 2005009994A JP 2003173890 A JP2003173890 A JP 2003173890A JP 2003173890 A JP2003173890 A JP 2003173890A JP 2005009994 A JP2005009994 A JP 2005009994A
Authority
JP
Japan
Prior art keywords
stator
rotor seal
liquid sample
contact surface
sliding contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003173890A
Other languages
Japanese (ja)
Other versions
JP4019372B2 (en
Inventor
Akio Karigome
昭夫 刈米
Ryuzo Hayashi
隆造 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP2003173890A priority Critical patent/JP4019372B2/en
Publication of JP2005009994A publication Critical patent/JP2005009994A/en
Application granted granted Critical
Publication of JP4019372B2 publication Critical patent/JP4019372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid sample injection device used in an analyzer, which meters a very small amount of a liquid sample to inject the same in a measuring system, hardly causes clogging of flow channels, is made small-sized, is superior in durability, and reduces the cost, labor and time required in maintenance. <P>SOLUTION: This liquid sample injection device is equipped with: a stator body 11, having flow channels A-D; the face member 5 fixed to the stator main body 11 in an adhesion state; and a rotor seal 2, brought into slide contact with the face member 5 in an adhesion state and constituted so that a metering space 3 is formed between the stator body 11 and the face member 5. The slide contact surface parts 5b and 2a of the face member 5 and the rotor seal 2 comprise a resin material, based on the same kind of resin, with the resin material only one of both slide contact surface parts 5b and 2a contains a filler; and the liquid sample supplied to the metering space 4 is injected in the measuring system by the switching of flow channel connection accompanied by the rotational displacement of the rotor seal 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、液体試料を高速液体クロマトグラフやフローインジェクション装置等の分析装置の測定系に注入するのに用いる液体試料注入装置に関する。
【0002】
【従来の技術】
近年、工業分析や臨床分析等において、液体に溶解した測定対象物質の分析手段として、高速液体クロマトグラフやフローインジェクション装置が広く採用されている。しかして、これら機器による分析方法では、送液機構、分離もしくは反応機構、検出機構と並んで、試料の注入方法が非常に重要である。
【0003】
例えば、高速液体クロマトグラフィーによる分析法においては、試料に一定量の内部標準物質を添加して測定対象物質と内部標準物質の検出値を比較する相対検量線法が用いられることもあるが、この相対検量線法では内部標準物質の添加精度により分析精度が左右されるため、標準物質を単独で注入して予め物質量と検出値の関係を求め、この関係に基づいて未知試料中の濃度を求める絶対検量線法が多用される。また、フローインジェクション分析法では、分離機能を有さないために原則として絶対検量線法が用いられる。そして、これらの分析法においては、当然ながら、測定系に大量の試料を注入すると検出値は大きくなって感度が一般的に高くなるが、逆に微量を注入することによって高濃度まで定量を実施したいという要望も多い。また、大量に試料を注入した場合、高速液体クロマトグラフでは分離能が低下する一方、フローインジェクション分析法では試料の流出までの時間が長くなって分析速度の低下を招くという問題もある。従って、これら分析速度や分析精度を向上させるためには、可能な限り微量の試料注入による方法が望ましい。
【0004】
液体試料を分析系に注入する装置としては、すでに多くのものが提案され、また利用されている。例えば、最も汎用される装置として、連続して流れる配管の一部をシリコンゴムなどの柔らかい樹脂で構成し、そこに注射針を差し込んで試料を導入するいわゆるセプタム型インジェクターがある。しかるに、この装置は簡単な構造で安価ではあるが、液漏れを起こしやすく、試料を注入した際に分析系の内部圧力を変動させることが多く、分析精度の低下を招きやすいうえ、注射器にかかる配管内の圧力によって注入操作が難しく、さらに注射器で試料を計量するために個人的誤差が入り込みやすいという欠点がある。
【0005】
次に多用されるのが、6方バルブである。これは、外部に繋がる複数の流路を有するステーター部、ステーター部の流路接続を変えるローターシール部、およびステーター部とローターシール部をつなぐステーターフェイス部からなり、一般的には、ステーター部の2ポートにサンプルループとしてステンレスなどからなる一定容積の管の両端を接続し、この管内に試料液を充填してローターシール部を回転させることにより、該管内の試料液を分析系に導入するようになっている。この6方バルブ方式では、比較的高圧力に耐える装置を小型に構成できるという利点があるが、試料注入量がサンプルループの内容積で定まるから、注入量を少なくするために細い管を用いた場合、試料中の微細な汚れによって閉塞が起きやすいという難点があった。例えば、サンプルループとして外付けする管の長さを10cmとすると、内容積は管内径0.5mmの場合に約20μLとなるが、この内容積を1μLとするには管内径を0.1mm近くまで細くする必要があり、このような細い管では試料中から沈殿物等を徹底的に除いても閉塞を防止することは困難である。
【0006】
そこで、近年において、前記のローターシール部のステーターフェイス部に対する摺接面に、試料を計量するインナーキャビティとしての溝部を形成し、この溝部を満たす微量の液体試料をローターシール部の回転変位に伴う流路切替えによって分析系に注入する方式が試みられている。しかるに、この方式では、ローターシール部を回転変位させる際、ステーターフェイス部との摺接部に大きな摩擦抵抗が発生するため、その回転に大きな力を必要として装置が大型になることに加え、ローターシール部が早期に摩滅して交換を余儀なくされ、それだけ保全コストが嵩むと共に交換のための手間と時間を費やすという難点があった。
【0007】
すなわち、この種の注入バルブでは、試料や分析に用いる緩衝液などによる侵食を防止して且つ液漏れを防止する上で、ステーター部側をステンレス鋼製として、これに対する密着性を高めるためにローターシール部側をフッ素樹脂などの比較的柔らかい樹脂製とする場合が多いが、前記のようにサンプルループとして計量用の管を外付けする通常の方式ではあまり問題を生じないのに対し、ステーター部側に計量用の溝を設ける方式では流路切替えに伴う抵抗が大きい上にローターシール部の損耗が著しい。これは、前者の方式では相互の摺接界面部に微小な孔が開いているだけであるのに対し、後者の方式では摺接界面部に長い溝が存在するため、ローターシール部が回転変位する際に該溝の両側縁で大きな摩擦抵抗を生じることに加え、これら両側縁が長いエッジとして摺接するローターシール部を削り込むように作用することが原因であると考えられる。
【0008】
【発明が解決しようとする課題】
本発明は、高速液体クロマトグラフやフローインジェクション装置等の分析装置に用いる液体試料注入装置として、微量の液体試料を高精度で計量して測定系へ注入でき、試料中の懸濁物質などによる流路の詰まりを生じにくく、しかも小型に構成できる上、耐久性に非常に優れ、保全に要するコストと手間および時間を軽減でき、もって汎用性の高いものを提供することを目的としている。
【0009】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明に係る液体試料注入装置は、図1,図8,図9の参照符号を付して示せば、外部に繋がる複数の流路A〜Dを有するステーター1と、該ステーター1に軸方向で対向して密着状態で摺接するローターシール2とを備え、ステーター1側の摺接面部1aに各流路A〜Dの接続孔A1〜D1および計量凹部(計量溝4)が形成される一方、ローターシール2側の摺接面部2aに前記接続孔A1〜D1と計量凹部(計量溝4)ならびに接続孔A1〜D1同士を連通させる複数の連通用凹部22が設けられ、これらステーター1とローターシール2の相互の摺接面部1a,2aが同種の樹脂を主成分とする樹脂材料からなると共に、両摺接面部1a,2aのいずれか一方のみの樹脂材料に少なくとも一種のフィラーが含有され、計量凹部(計量溝4)に供給した一定量の液体試料をローターシール2の周方向回転変位に伴う流路接続の切替えによって測定系Sへ注入するように構成されてなるものとしている。
【0010】
そして、請求項2の発明は、上記請求項1の液体試料注入装置において、前記ステーター1側の摺接面部1aがフィラーを含有する樹脂材料からなる構成としている。
【0011】
また、請求項3の発明に係る液体試料注入装置は、図1〜図7の参照符号を付して示せば、外部に繋がる複数の流路A〜Dを有するステーター本体11と、このステーター本体11に一端面(中央凹面部5a)を密着して固定されたフェイス部材5と、該フェイス部材5の他端面(摺接面部5b)に軸方向で対向して密着状態で摺接するローターシール2とを備え、ステーター本体11とフェイス部材5との密着した界面部の間に計量空間(計量溝3)が形成されると共に、該界面部のステーター本体11側に前記各流路A〜Dの接続孔A1〜D1が開口し、フェイス部材5には、前記接続孔A1〜D1および計量空間(計量溝3)の各々に一端を連通し、且つ他端をローターシール2との摺接面部5bに開口した複数の貫通孔50…が設けられ、ローターシール2側の摺接面部(2a)に前記貫通孔50,50同士を連通させる複数の連通用凹部22が設けられ、これらフェイス部材5とローターシール2の相互の摺接面部5b,2aが同種の樹脂を主成分とするる樹脂材料からなると共に、両摺接面部5b,2aのいずれか一方のみの樹脂材料に少なくとも一種のフィラーが含有され、計量空間(計量溝3)に供給した一定量の液体試料をローターシール2の周方向回転変位に伴う流路接続の切替えによって測定系へ注入するように構成されてなるものとしている。
【0012】
そして、請求項4の発明は、上記請求項3の液体試料注入装置において、前記フェイス部材5側の摺接面部5bがフィラーを含有する樹脂材料からなる構成としている。
【0013】
更に、請求項5の発明は、上記請求項1〜4のいずれかの液体試料注入装置において、前記フィラーが炭素系フィラーである構成としている。また、請求項6の発明は、上記請求項1〜4のいずれかの液体試料注入装置において、前記樹脂がポリエーテルエーテルケトンとフッ素樹脂の一方もしくは両者の混合物である構成としている。
【0014】
【発明の実施の形態】
以下、本発明に係る液体試料注入装置を4ポート流路切替えバルブに適用した実施形態について、図面を参照して具体的に説明する。図1〜図7は第一実施形態、図8および図9は第二実施形態のそれぞれ液体試料注入装置を示す。
【0015】
第一実施形態の液体試料注入装置は、図1および図2に示すように、円盤状のステーター1と、リング状のケーススペーサー6と、円筒状のバルブボディ7とを、ステーター1側から周方向3箇所に螺挿したボルト8で連結してバルブケーシング10を構成しており、このケーシング10内にステーター1側から順次、円板状のローターシール2、支持シャフト9、複数枚の皿ばね13、スラストベアリング14が同心状に配置している。そして、ステーター1は、バルブヘッドをなすステーター本体11と、このステーター本体11の内端側に固定された円板状のフェイス部材5とで構成されている。
【0016】
しかして、ステーター本体11は、ステンレス鋼製であり、その内部には試料導入流路A、排出流路B、測定系注入流路C、圧送流路Dの互いに分離した4本の流路が設けられ、これら流路A〜Dの接続ポートA1〜D1が前面中央側に開口している。なお、接続ポートA1は液体試料の導入手段Iに、同B1は排液タンクTに、同C2には高速液体クロマトグラフやフローインジェクション装置等の分析装置の測定系Mに、同D2には送液ポンプPの吐出側に、それぞれ繋がる配管Lを接続するようになっている。
【0017】
図3および図4に示すように、ステーター本体11の内端側には、合成ゴム等よりなるシールリング15を嵌装した環状溝11aを有しており、この環状溝11aで囲まれた円形の内端凸面部11bに、径方向に沿う計量溝3が設けられると共に、この計量溝3の両側に各2つずつの配置で流路A〜Dの接続孔A2〜D2が開口している。しかして、これら接続孔A2〜D2と計量溝3の両端部とは、ステーター本体11と同心の円周上に60度の位相差で配置するように設定されている。また、環状溝11aの内底には各3個のピン孔11cとねじ孔11dが交互に配置する形で周方向に等配形成されており、これらピン孔11cおよびねじ孔11dの各々に、シールリング15に設けた透孔15a,15bが臨んでいる。なお、ステーター本体11の周縁部には、ボルト部材8を通す3つのボルト挿通孔11eと、ケーススペーサー6に突設された位置決めピン6a(図1参照)を挿嵌させる1つのピン孔11fとが穿設されている。
【0018】
フェイス部材5は、フィラーを含有する合成樹脂の成形物からなり、図3および図5に示すように、中央側にステーター本体11の接続孔A2〜D2および計量溝3の両端部の計6箇所に対応した6本の貫通孔50a〜50f(以下、総称して貫通孔50という)を有しており、周辺側に埋め込み形成した3本の位置決めピン51を、それぞれシールリング15の透孔15aを通してステーター本体11のピン孔11cに挿嵌すると共に、位置決めピン51と交互の配置で設けた3つのねじ挿通孔52に挿通した固定ねじ16を、それぞれシールリング15の透孔15bを通してステーター本体11のねじ孔11cに螺挿して締め付けることにより、一端側の中央凹面部5aがステーター本体11の内端凸面部11bに密着し、且つ6本の貫通孔50がステーター本体11の接続孔A1〜D1および計量溝3の両端部に各々連通した状態として、当該ステーター本体11に固定されている。
【0019】
ローターシール2は、図3および図6に示すように、ステンレス鋼製リングからなる金属外周部20の内側に、フェイス部材5と同種の樹脂を主成分として且つフィラーを含まない樹脂材料からなる中央樹脂部21が一体化され、一端側で中央樹脂部21が金属外周部20よりも突出した摺接面部2aを構成しており、この摺接面部2aに、同一円周に沿う弧状の3つの連通用凹部22a〜22c(以下、総称して連通用凹部22という)が等配形成されている。また、金属外周部20には、2つのピン孔23と2つのねじ孔24とが穿設されるとともに、周面の一箇所に回転操作用ピン25が突設されている。
【0020】
このローターシール2は、支持シャフト9の前端円板部9aに突設された2つの位置決めピン91,91をそれぞれ各ピン孔23に挿通した状態で、該支持シャフト9の軸部9bに外嵌させた皿ばね13の付勢により、ステーター1のフェイス部材5に対して同心状態で押接され、その摺接面部2aがフェイス部材5の凹面状をなす摺接面部5bに密着しており、バルブボディ7の前縁に設けた切欠部7aに配置する回転操作用ピン25を介して、外部の駆動機構(図示省略)によって周方向に60度の角度範囲を自動的に回転変位できるようになっている。しかして、このローターシール2の停止状態において、各連通用凹部22が両端部でフェイス部材5の隣接する2つの貫通孔50,50に連通するように設定されており、もって該ローターシール2の角度60度の回転変位によって連通用凹部22を介して連通する貫通孔50,50が切り換わることになる。
【0021】
上記構成の液体試料注入装置において、内部へ液体試料を導入する際には、例えば図7(A)で示すように、試料導入流路Aがフェイス部材5の貫通孔50a,50bとローターシール2の連通用凹部22aを介して計量溝3の一端に連通排出流路Dに接続すると共に、該計量溝3の他端が同様に貫通孔50e,50fと連通用凹部22cを介して排出流路Bに接続する一方、圧送流路Dが同様に貫通孔50c,50dと連通用凹部22bを介して測定系注入流路Cに接続している。従って、接続ポートA1より試料導入流路Aに導入された液体試料は、前記貫通孔50a,50bと連通用凹部22aを通って計量溝3に流入し、この計量溝3を満たして余剰の一部が貫通孔50e,50fと連通用凹部22cを通って排出流路Bに入り込む。しかして、この間、送液ポンプPを介して連続的に送られる緩衝液が、圧送流路Dから貫通孔50c,50dは連通用凹部22bを経て測定系注入流路Cへ継続的に送出されている。
【0022】
しかして、液体試料が計量溝3を完全に満たした段階でローターシール2を例えば反時計回り方向に60度回転変位させると、図7(B)で示すように、試料導入流路Aおよび排出流路Bが計量溝3から遮断されて貫通孔50a,50fと連通用凹部22cを介して直接に接続する一方、圧送流路Dが貫通孔50b,50cと連通用凹部22aを介して計量溝3の一端に接続すると共に、測定系注入流路Cも貫通孔50d,50eと連通用凹部22bを介して計量溝3の他端に接続する。従って、計量溝3を満たす液体試料と、先に計量溝3の両端に接続していた2本の貫通孔50b,50cを満たす液体試料とが、圧送流路Dから流入する緩衝液の圧力によって測定系注入流路Cへ送られ、高速液体クロマトグラフやフローインジェクション装置等の分析装置の測定系Mへ注入されて所定の測定が行われる。なお、この間、計量溝3を経ずに連通している試料導入流路Aおよび排出流路Bと貫通孔50a,50fとに残る余剰の液体試料は、排出流路Bに接続する外部配管L側からの吸引によって排液タンクTへ排出される。また、次の測定を行う前に、ローターシール2は逆方向に60度回転変位して図7(A)に示す元の状態に復帰させることになる。
【0023】
第二実施形態の液体試料注入装置は、図8および図9に示すように、ステーター1側に前記第一実施形態におけるフェイス部材5を用いない代わりに、ステーター本体11の内端側に設けた円形凹部11gにフィラーを含有する樹脂成形物からなる円形樹脂板17を嵌め込み、その周辺3箇所を固定ねじ18によりステーター本体11のねじ孔11hに螺挿して固定している。また、ケーシング10は、前記第一実施形態におけるケーススペーサー6を用いず、ステーター1とバルブボディ7とをボルト8によって直接に連結して構成している。他の部材構成は第一実施形態と同様である。
【0024】
しかして、ステーター1は、内部に前記第一実施形態と同様の4つの流路A〜Dがステーター本体11および円形樹脂板17を連通して設けてあり、これら流路A〜Dの接続ポートA1〜D1が前面中央側に開口すると共に、内端面つまり円形樹脂板17の端面の中央部には円形の凹面状をなす摺接面部1aを有している。そして、この摺接面部1aに流路A〜Dの接続孔A2〜D2が開口すると共に、径方向に沿う計量溝4が設けられており、これら接続孔A2〜D2と計量溝4の両端部とは、ステーター本体11と同心の円周上に60度の位相差で配置するように設定されている。なお、図9における17aは円形樹脂板17に設けた3箇所のボルト挿通孔である。
【0025】
ローターシール2は、前記第一実施形態のものと同一構成であり、その中央樹脂部21が円形樹脂板17と同種の樹脂を主成分として且つフィラーを含まない樹脂材料からなっており、支持シャフト9の軸部9bに外嵌させた皿ばね13の付勢により、3つの連通用凹部22a〜22c(図6参照)を設けた摺接面部2aがステーター1側の摺接面部1aに対して同心状態で押接密着し、外部の駆動機構によって周方向に60度の角度範囲を自動的に回転変位できるようになっている。そして、ローターシール2の停止状態において、各連通用凹部22はステーター1側の接続孔A2〜D2の二つ同士、もしくはこれら接続孔A2〜D2の一つと計量溝4の一端とを連通している。
【0026】
この第二実施形態の液体試料注入装置では、内部へ液体試料を導入する際には、例えば、試料導入流路Aがローターシール2の連通用凹部22aを介して計量溝3の一端に連通排出流路Dに接続すると共に、該計量溝3の他端が同様に連通用凹部22cを介して排出流路Bに接続する一方、圧送流路Dが同様に連通用凹部22bを介して測定系注入流路Cに接続している。従って、接続ポートA1より試料導入流路Aに導入された液体試料は、前記連通用凹部22aを通って計量溝3に流入し、この計量溝4を満たして余剰の一部が連通用凹部22cを通って排出流路Bに入り込む。また、送液ポンプPを介して連続的に送られる緩衝液が、圧送流路Dから連通用凹部22bを経て測定系注入流路Cへ継続的に送出されている。しかして、液体試料が計量溝4を完全に満たした段階でローターシール2を例えば反時計回り方向に60度回転変位させると、試料導入流路Aおよび排出流路Bが計量溝4から遮断されて連通用凹部22cを介して直接に接続する一方、圧送流路Dが連通用凹部22aを介して計量溝3の一端に接続すると共に、測定系注入流路Cも連通用凹部22bを介して計量溝3の他端に接続するから、計量溝4を満たす液体試料が圧送流路Dから流入する緩衝液の圧力によって測定系注入流路Cへ送られ、高速液体クロマトグラフやフローインジェクション装置等の分析装置の測定系Mへ注入されて所定の測定が行われる。
【0027】
これら第一および第二実施形態の液体試料注入装置にあっては、ローターシール2の回転変位による流路切換えの都度に、当該ローターシール2の摺接面部2aがステーター1側の摺接面部5b(第一実施形態)あるいは1a(第二実施形態)と摺接するため、この摺接部での液密封止性および対摩滅特性と摩擦抵抗が問題になる。しかるに、これら実施形態の構成では、ステーター1側の摺接面部5bあるいは1aとローターシール2の摺接面部2aとを同種の樹脂を主成分とする樹脂材料にて形成し、且つステーター1側の摺接面部5b,1aをフィラー含有樹脂として、ローターシール2側の摺接面部2a側をフィラー不含樹脂としていることから、摺接部が樹脂材料同士の密着によって高い液密封止性を示す上、摺接部の対摩滅特性が非常に良好であり、それだけローターシール2とステーター1側のフェイス部材5あるいは円形樹脂板17が長寿命となり、保全のためのコストと手間および労力が軽減され、しかも摺接部での摩擦抵抗が小さく、該ローターシール2を小さい力で回転変位できるから、その駆動機構を含めた装置全体を小型化できる。
【0028】
これに対し、ステーター1側の摺接面部5b,1aをステンレス鋼製として、これに対する密着性を高めるためにローターシール2側の摺接面部2aをフッ素樹脂などの比較的柔らかい樹脂製とした場合や、逆に摺接面部5b,1aをフッ素樹脂などの樹脂製として摺接面部2aをステンレス鋼製とした場合は、摺接部で大きな摩擦抵抗が発生すると共に、樹脂製とした側が早期に摩滅して交換を余儀なくされる。一方、ステーター1側の摺接面部5b,1aとローターシール2側の摺接面部2aとが共に同種の樹脂を主成分とする樹脂材料であっても、どちらの側もフィラーを含まない樹脂材料の場合は摺接部での摩擦抵抗が極めて大きくなり、逆にどちらの側もフィラーを含む樹脂材料からなる場合は摺接部でのシール性が不充分になって液漏れを生じることになる。なお、ステーター1側の摺接面部5b,1aとローターシール2側の摺接面部2aをアルミナセラミックにて構成して密着状態とすれば、摺接部での損耗を僅少にできるが、アルミナセラミックは高価である上に切削加工が困難で、形状を変更するには金型を変更する必要があるため、製造コスト上の問題がある。
【0029】
ここで、前記第一および第二実施形態のように、ステーター1側の摺接面部5bあるいは1aとローターシール2の摺接面部2aに同種の樹脂を主成分とする樹脂材料を用い、且つステーター1側をフィラー含有樹脂材料、ローターシール2側をフィラー不含樹脂材料とした場合に、既述のように摺接部の対摩滅特性が非常に良好になることは非常に特異な現象であると言える。
【0030】
すなわち、摺接部の一方がフィラー含有樹脂材料で他方がフィラー不含樹脂材料であれば、常識的には摺接によってフィラー不含樹脂材料の側で摩耗が激しくなるから、ローターシール2は早期に摩滅して頻繁な交換が必要になると想定されるが、実際にはそうならず、後述する液漏れ試験で示すようにローターシール2は往復1万回以上の回転変位、ステーター1側との樹脂材料の組み合わせによっては5万回以上の回転変位にも耐えるという結果が得られている。その理由については、明確ではないが、樹脂材料同士の摺接面では摩耗によって分離した樹脂成分が界面間で相互に転移して付着し、相手側が異種の樹脂を主成分とする場合には更に付着物が剥がれて傷となるが、同じ樹脂を主成分とする場合は転移した樹脂成分が欠損部を埋めて補完する形になる結果、常に摺接に伴う傷が補修されて摺接界面の密着性を維持するものと考えられる。
【0031】
なお、上記の第一及び第二実施形態とは逆に、ステーター1側の摺接面部5b,1aをフィラー不含樹脂材料、ローターシール2側をフィラー含有樹脂材料としても、同様に摺接部での良好な耐摩滅特性と低い摺接抵抗が得られる。しかるに、フィラー不含樹脂材料の方が先に摩滅して寿命に達することを考慮すれば、厳密な寸法設定を要する計量溝3,4のあるステーター1側よりもローターシール2側の交換頻度を高くする方が経済的であり、もってローターシール2側をフィラー不含樹脂材料とすることが望ましい。
【0032】
ステーター1側の摺接面部5b,1aおよびローターシール2の摺接面部2aの樹脂材料の主成分となる樹脂としては、ポリフルオロエチレンなどのフッ素樹脂、高密度ポリエチレン、ポリイミド、ポリエーテルエーテルケトン、ポリオキシメチレン、ポリメチルメタクリレート、ナイロン、ポリアセタール、ポリフェニレンサルファイドなどが挙げられる。中でもフッ素樹脂は摩擦抵抗が低い点で有利であるし、ポリエーテルエーテルケトンは対摩擦耐性が大きいために好適である。同様にポリアセタールおよびポリフェニレンサルファイドも対摩擦耐性が大きいが、フィラーを混合する際に高温を必要とするため、製造の容易さではポリエーテルエーテルケトンの方が優れている。
【0033】
さらにポリエーテルエーテルケトンとフッ素樹脂を混合した樹脂も両者の特性を併せ持つという利点から好適に用いられる。なお、この混合樹脂では、ポリエーテルエーテルケトンの配合比率を多くするのがよく、フッ素樹脂の配合比率を0.5〜45重量%の範囲に設定することが望ましく、特にフッ素樹脂を1 〜10重量%とすることが推奨される。また、このようなポリエーテルエーテルケトンとフッ素樹脂の混合樹脂は、ステーター1側とローターシール2側の両方に用い得るが、特にフィラーを含有させないローターシール2側の樹脂に用いることが好ましい。これは、より耐摩擦耐性が低い側の摩擦抵抗を下げるためと、製造上で混合が簡単になるためである。
【0034】
また、このような樹脂に含有させるフィラーとしては、特に制約はないが、ガラス繊維やガラスビーズの如きガラス材、酸化チタンの如き金属酸化物、グラファイト粉末、非晶質カーボン粉末、炭素繊維の如き炭素系フィラーなどが挙げられる。中でも炭素系フィラーは樹脂との混合が比較的容易であるという利点があり、とりわけ繊維状のものは樹脂材料の強度を向上させる点で好適である。なお、炭素繊維は各種原材料から製造されたものを用いることができる。
【0035】
また、フィラーの配合量は、樹脂材料中の1〜40重量%を占める範囲がよく、より望ましくは同2〜30重量%の範囲であり、少な過ぎては充分な効果が得られず、逆に多過ぎては樹脂としての本来の性状が損なわれて密着性の低下やフィラーの脱落などを生じ易くなる。なお、これらのフィラーを樹脂に含有させるには、成形用の樹脂組成物にフィラーを均一に混合する方法のほか、成形後の樹脂表面にフィラーを圧入する方法も採用できる。
【0036】
なお、第一および第二実施形態では液体試料を計量する部分を計量溝3,4としているが、この計量部分は溝形に限らず、楕円形や菱形その他の種々の形状に設定できる。また、ステーター1をステーター本体1とフェイス部材5とで形成する場合、その両者の界面部間に設ける計量空間は、前記第一実施形態のようにステーター1側を凹形にするのとは逆にフェイス部材5側を凹形にして構成してもよいし、ステーター1側とフェイス部材5側の両側に設けた凹形部分にて構成してもよい。一方、第二実施形態の円形樹脂板17のように、液体試料の計量部をステーター本体11から独立した部材に形成すれば、計量部の大きさが異なる該部材をステーター本体11に対して着脱交換することにより、試料液体の種類や性状、分析目的、分析精度等に応じて分析に供する液体試料の設定量を変更できるという利点がある。
【0037】
さらに、ローターシール2は、前記の第一および第二実施形態では金属外周部20と中央樹脂部21とで構成されるものを例示したが、全体が樹脂成形物からなるものや、摺接面部2aを含む領域のみが樹脂層からなるものなども使用可能である。その他、本発明の液体試料注入装置の細部構成については、例示した第一および第二実施形態以外に種々設計変更可能である。
【0038】
〔液漏れ試験〕
前記第一実施形態と同様の装置構造において、ステーター側(フェイス部材21)の材質とローターシール側(中央樹脂部21)の樹脂材料とが種々異なる液体試料注入装置を用い、各装置の圧送流路Dと測定系注入流路Cを通して100mMリン酸ナトリウム緩衝液(pH 7.0)を1.0mL/分の流速で測定系へ連続的に供給しながら、5秒に1回ローターシール2を60度の角度範囲で往復回転させ、液漏れの有無を確認しつつ、5000回、10000回、20000回、50000回の各往復回転後にそれぞれ装置を2.0kg/cmの背圧がかかった状態で12時間停止し、その間に漏れた液量を計測した。この漏れた液量を1時間あたりの漏れ量(μL/時間)に換算した結果を後記表1に示す。なお、試験に用いた各装置は次のとおりである。
【0039】
装置1・・・ステーター側が全量中20重量%の炭素繊維を分散させたポリエーテルエーテルケトン、ローターシール側が全量中5重量%のフッ素樹脂を分散させたポリエーテルエーテルケトンからなる。
装置2・・・ステーター側が全量中20重量%の炭素繊維を分散させたポリテトラフルオロエチレン、ローターシール側がポリテトラフルオロエチレン単独からなる。
装置3・・・ステーター側がステンレス鋼、ローターシール側が装置1と同じフッ素樹脂含有ポリエーテルエーテルケトンからなる。
装置4・・・ステーター側とローターシール側とが共に、全量中5重量%のフッ素樹脂を分散させたポリエーテルエーテルケトンからなる。
装置5・・・ステーター側がステンレス鋼、ローターシール側がポリイミド樹脂単独からなる。
装置6・・・ステーター側がステンレス鋼、ローターシール側が全量中20重量%の炭素繊維を分散させたポリエーテルエーテルケトンからなる。
【0040】
【表1】

Figure 2005009994
【0041】
上表に示すように、本発明を適用した装置1,2ではローターシールの往復回転を1万回行っても殆ど液漏れを生じず、特にステーター側に炭素繊維含有ポリエーテルエーテルケトン、ローターシール2側にフッ素樹脂含有ポリエーテルエーテルケトンを用いた装置1では、5万回以上の往復回転にも充分に耐えることが明らかである。これに対し、ステーター側をステンレス鋼としてローターシール側を樹脂材料とした装置3,5,6、ならびにステーター側及びローターシール側を共に樹脂材料とした装置4は、いずれも5千回の往復回転でかなりの液漏れを生じ、20000回の往復回転で液漏れが1mL/時間以上に達することが判る。なお、装置3については、5千回以降の往復回転で外部まで液が漏れ出したため、1万回以降の液漏れ試験を中止した。
【0042】
また、装置3については、試験後に分解してステーター側及びローターシール側の摺接面部を観察したところ、両方の表面に傷が認められた。この結果から、ステーター側及びローターシール側が共に柔らかい樹脂材料では不適であることが判る。更に、装置6の結果から、フィラーにより強化された樹脂が性能向上に直接作用するのではなく、ローターシール側とステーター側の両者の材質の組み合わせが重要であることが示唆される。
【0043】
なお、上記の例示した装置1〜6以外に、前記第一実施形態と同様の装置構造においてステーター側がステンレス鋼でローターシール側がポリフルオロエチレンやポリオキシメチレンなどの樹脂単独とした装置、ならびに前記第一実施形態と同様の装置構造においてステーター側がステンレス鋼でローターシール側が種々の樹脂単独とした装置についても、同様の液漏れ試験を行ったが、全てローターシールの1千回から1万回程度の往復回転でかなりの液漏れが認められている。しかるに、例えば通常1 日に100検体の試料を分析すると仮定すると、年間2万〜3万回の往復回転を行うことになるから、装置のメンテナンスの手間を考慮して少なくとも2万回程度の往復回転に耐える性能が望ましいが、このような性能は本発明以外の構成では得られないことが明らかである。
【0044】
【発明の効果】
請求項1の発明によれば、液体試料を高速液体クロマトグラフやフローインジェクション装置等の分析装置の測定系に注入する装置として、外部に繋がる複数の流路を有するステーターと、該ステーターに密着状態で摺接するローターシールとを備え、ステーター側の摺接面部に各流路の接続孔および計量凹部が形成され、ローターシール側の摺接面部に前記接続孔と計量凹部ならびに接続孔同士を連通させる複数の連通用凹部が設けられ、計量凹部に供給した一定量の液体試料をローターシールの周方向回転変位に伴う流路接続の切替えによって測定系へ注入する構成において、ステーターとローターシールの相互の摺接面部が同種の樹脂を主成分とする樹脂材料からなると共に、両摺接面部のいずれか一方のみの樹脂材料にフィラーが含有されることから、微量の液体試料を高精度で計量して測定系へ注入でき、試料中の懸濁物質などによる流路の詰まりを生じにくく、しかも小型に構成できる上、耐久性に非常に優れ、保全に要するコストと手間および時間を軽減でき、もって汎用性の高いものが提供される。
【0045】
請求項2の発明によれば、上記の液体試料注入装置において、ステーター側の摺接面部がフィラーを含有する樹脂材料からなる構成としているから、安価に製作できるローターシール側がステーター側よりも早く寿命に達し、このローターシール側の交換によって保全コストを低く抑えることができる。
【0046】
請求項3の発明によれば、上記同様の液体試料注入装置として、複数の流路を有するステーター本体と、このステーター本体に一端面を密着して固定されたフェイス部材と、該フェイス部材の他端面に軸方向で対向して密着状態で摺接するローターシールとを備え、ステーター本体とフェイス部材との密着した界面部の間に計量空間が形成されると共に、該界面部のステーター本体側に前記各流路の接続孔が開口し、フェイス部材には、前記接続孔および計量空間の各々に一端を連通し、且つ他端をローターシールとの摺接面部に開口した複数の貫通孔が設けられ、ローターシール側の摺接面部に前記貫通孔同士を連通させる複数の連通用凹部が設けられ、計量空間に供給した一定量の液体試料をローターシールの周方向回転変位に伴う流路接続の切替えによって測定系へ注入する構成において、フェイス部材とローターシールの相互の摺接面部が同種の樹脂を主成分とする樹脂材料からなると共に、両摺接面部のいずれか一方のみの樹脂材料に少なくとも一種のフィラーが含有されることから、微量の液体試料を高精度で計量して測定系へ注入でき、試料中の懸濁物質などによる流路の詰まりを生じにくく、しかも小型に構成できる上、耐久性に非常に優れ、保全に要するコストと手間および時間を軽減でき、もって汎用性の高いものが提供される。
【0047】
請求項4の発明によれば、上記のフェイス部材を備える液体試料注入装置において、フェイス部材側の摺接面部がフィラーを含有する樹脂材料からなる構成としているから、安価に製作できてステーター側よりも早く寿命に達するローターシール側の交換によって保全コストを低く抑えることができる。
【0048】
請求項5の発明によれば、前記フィラーとして炭素系フィラーを用いることから、耐久性がより向上するという利点がある。
【0049】
請求項6の発明によれば、前記樹脂がポリエーテルエーテルケトンとフッ素樹脂の一方もしくは両者の混合物であることから、耐久性がより向上すると共に、ローターシールの回転変位に要する力をより小さくできるという利点がある。
【図面の簡単な説明】
【図1】本発明の第一実施形態に係る液体試料注入装置の全体の斜視図である。
【図2】同注入装置の分解斜視図である。
【図3】同注入装置の要部の縦断面図である。
【図4】同注入装置のステーター本体の底面図である。
【図5】同注入装置のフェイス部材の底面図である。
【図6】同注入装置のローターシールの平面図である。
【図7】同注入装置におけるステーター側の摺接面部を示し、(A)は試料導入時の流路接続を表す正面図、(B)は測定系への試料注入時の流路接続を表す正面図である。
【図8】本発明の第二実施形態に係る液体試料注入装置の要部の縦断面図である。
【図9】同同注入装置のステーターの底面図である。
【符号の説明】
1 ・・・ステーター
1a ・・・摺接面部
11 ・・・ステーター本体
11b・・・内端凸面部(界面部のステーター本体側)
2 ・・・ローターシール
2a ・・・摺接面部
22,22a〜22c・・・連通用凹部
3 ・・・計量溝(計量空間)
4 ・・・計量溝(計量凹部)
5 ・・・フェイス部材
5a ・・・中央凹面部(一端面)
5b ・・・摺接面部
50 ・・・貫通孔
A ・・・試料導入流路
B ・・・排出流路
C ・・・測定系注入流路
D ・・・圧送流路
A2〜D2・・・接続口[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid sample injection device used for injecting a liquid sample into a measurement system of an analyzer such as a high performance liquid chromatograph or a flow injection device.
[0002]
[Prior art]
In recent years, high-speed liquid chromatographs and flow injection apparatuses have been widely adopted as means for analyzing substances to be measured dissolved in liquids in industrial analysis and clinical analysis. Therefore, in the analysis method using these instruments, the sample injection method is very important along with the liquid feeding mechanism, separation or reaction mechanism, and detection mechanism.
[0003]
For example, in the analysis method using high performance liquid chromatography, a relative calibration curve method may be used in which a certain amount of an internal standard substance is added to a sample and the detection values of the measurement target substance and the internal standard substance are compared. In the relative calibration curve method, the accuracy of analysis depends on the accuracy of internal standard substance addition, so the standard substance is injected alone to obtain the relationship between the amount of the substance and the detected value in advance, and the concentration in the unknown sample is calculated based on this relationship. The required absolute calibration curve method is often used. In addition, in the flow injection analysis method, an absolute calibration curve method is used in principle because it does not have a separation function. Of course, in these analytical methods, when a large amount of sample is injected into the measurement system, the detection value increases and the sensitivity generally increases, but conversely, quantification is performed to a high concentration by injecting a small amount. There are many requests to do it. In addition, when a large amount of sample is injected, the resolution is reduced in the high-performance liquid chromatograph, while in the flow injection analysis method, there is a problem that the time until the sample flows out becomes long and the analysis speed is lowered. Therefore, in order to improve the analysis speed and the analysis accuracy, it is desirable to use a method of injecting as little sample as possible.
[0004]
Many devices for injecting a liquid sample into an analysis system have already been proposed and used. For example, as a most widely used apparatus, there is a so-called septum type injector in which a part of a continuously flowing pipe is made of a soft resin such as silicone rubber, and a sample is introduced by inserting an injection needle there. However, this device has a simple structure and is inexpensive, but it is liable to cause liquid leakage, often causes the internal pressure of the analysis system to fluctuate when a sample is injected, and tends to cause a decrease in analysis accuracy, and is applied to the syringe. The injection operation is difficult due to the pressure in the pipe, and further, there is a drawback that personal errors are easily introduced because the sample is measured with a syringe.
[0005]
Next, the 6-way valve is frequently used. This consists of a stator part having a plurality of flow paths connected to the outside, a rotor seal part that changes the flow path connection of the stator part, and a stator face part that connects the stator part and the rotor seal part. By connecting both ends of a tube of a constant volume made of stainless steel or the like as a sample loop to the 2 ports, filling the sample solution in this tube and rotating the rotor seal part, the sample solution in the tube is introduced into the analysis system. It has become. This 6-way valve system has an advantage that a device that can withstand a relatively high pressure can be configured in a small size. However, since the sample injection amount is determined by the internal volume of the sample loop, a thin tube is used to reduce the injection amount. In this case, there is a problem that the sample is likely to be clogged with fine dirt in the sample. For example, if the length of a tube externally attached as a sample loop is 10 cm, the inner volume is about 20 μL when the inner diameter of the tube is 0.5 mm. To make this inner volume 1 μL, the inner diameter of the tube is close to 0.1 mm. In such a thin tube, it is difficult to prevent clogging even if precipitates are thoroughly removed from the sample.
[0006]
Therefore, in recent years, a groove portion as an inner cavity for measuring a sample is formed on the sliding surface of the rotor seal portion with respect to the stator face portion, and a small amount of liquid sample filling the groove portion is accompanied by rotational displacement of the rotor seal portion. Attempts have been made to inject into the analysis system by switching the flow path. However, in this method, when the rotor seal portion is rotationally displaced, a large frictional resistance is generated at the sliding contact portion with the stator face portion. Therefore, a large force is required for the rotation, and the apparatus becomes large in size. The seal part was worn out at an early stage and was forced to be replaced. This increased the maintenance cost and spent time and labor for replacement.
[0007]
That is, in this type of injection valve, in order to prevent erosion due to a sample or a buffer solution used for analysis and to prevent liquid leakage, the rotor is made of stainless steel on the stator side so as to improve adhesion to the rotor. In many cases, the seal side is made of a relatively soft resin such as fluororesin, but the conventional method of attaching a measuring tube as a sample loop as described above does not cause much problems, whereas the stator part In the system in which the measuring groove is provided on the side, the resistance due to the switching of the flow path is large and the wear of the rotor seal portion is remarkable. This is because the former method only has a small hole at the sliding contact interface portion, whereas the latter method has a long groove at the sliding contact interface portion, so the rotor seal portion is rotationally displaced. It is considered that this is because, in addition to generating large frictional resistance at both side edges of the groove, the both side edges act so as to scrape the rotor seal portion that is in sliding contact as long edges.
[0008]
[Problems to be solved by the invention]
The present invention is a liquid sample injection device used in an analyzer such as a high performance liquid chromatograph or a flow injection device, and can measure a small amount of liquid sample with high accuracy and inject it into a measurement system. The purpose of the present invention is to provide a highly versatile one that is less likely to be clogged and that can be configured in a small size and that is extremely durable and that can reduce costs, labor, and time required for maintenance.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a liquid sample injection device according to the invention of claim 1 is provided with a plurality of flow paths A to D connected to the outside if shown with the reference numerals of FIGS. A stator seal 1 and a rotor seal 2 slidably in contact with the stator 1 in the axial direction. The contact holes A1 to D1 of the flow paths A to D and the metering are provided on the slidable contact surface portion 1a on the stator 1 side. While the recess (metering groove 4) is formed, the connecting holes A1 to D1 and the measuring recess (metering groove 4) and the connection holes A1 to D1 are connected to the sliding contact surface portion 2a on the rotor seal 2 side. A concave portion 22 is provided, and the sliding contact surface portions 1a and 2a of the stator 1 and the rotor seal 2 are made of a resin material mainly composed of the same kind of resin, and only one of the sliding contact surface portions 1a and 2a is provided. At least one kind of resin material A liquid sample containing a filler and configured to inject a predetermined amount of liquid sample supplied to the measuring recess (metering groove 4) into the measuring system S by switching the flow path connection in accordance with the circumferential rotational displacement of the rotor seal 2. It is said.
[0010]
According to a second aspect of the invention, in the liquid sample injection device of the first aspect, the sliding contact surface portion 1a on the stator 1 side is made of a resin material containing a filler.
[0011]
In addition, the liquid sample injection device according to the invention of claim 3 is a stator main body 11 having a plurality of flow paths A to D connected to the outside, and the stator main body, if the reference numerals in FIGS. 11, the face member 5 having one end surface (center concave surface portion 5a) adhered and fixed thereto, and the rotor seal 2 slidably contacting the other end surface (sliding contact surface portion 5b) of the face member 5 in the axial direction. A measuring space (measuring groove 3) is formed between the intimate interface between the stator body 11 and the face member 5, and the flow paths A to D are formed on the stator body 11 side of the interface. The connection holes A1 to D1 are opened, and the face member 5 has one end communicating with each of the connection holes A1 to D1 and the measurement space (measurement groove 3) and the other end slidably contacting the surface portion 5b with the rotor seal 2. Provided with a plurality of through-holes 50. A plurality of recesses 22 for communicating the through holes 50 and 50 are provided in the sliding contact surface portion (2a) on the rotor seal 2 side, and the mutual sliding contact surface portions 5b of the face member 5 and the rotor seal 2 are provided. 2a is made of a resin material whose main component is the same kind of resin, and at least one filler is contained in only one of the sliding contact surface portions 5b and 2a, and is supplied to the measurement space (measurement groove 3). It is assumed that a certain amount of the liquid sample is injected into the measurement system by switching the flow path connection accompanying the circumferential rotational displacement of the rotor seal 2.
[0012]
According to a fourth aspect of the present invention, in the liquid sample injection device according to the third aspect, the sliding contact surface portion 5b on the face member 5 side is made of a resin material containing a filler.
[0013]
Furthermore, the invention of claim 5 is the liquid sample injection device according to any one of claims 1 to 4, wherein the filler is a carbon-based filler. According to a sixth aspect of the present invention, in the liquid sample injection device according to any of the first to fourth aspects, the resin is one or a mixture of polyetheretherketone and fluororesin.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment in which a liquid sample injection device according to the present invention is applied to a four-port flow path switching valve will be specifically described with reference to the drawings. 1 to 7 show the liquid sample injection device of the first embodiment, and FIGS. 8 and 9 show the liquid sample injection device of the second embodiment, respectively.
[0015]
As shown in FIGS. 1 and 2, the liquid sample injection device according to the first embodiment includes a disk-shaped stator 1, a ring-shaped case spacer 6, and a cylindrical valve body 7 that surround the stator 1 side. A valve casing 10 is formed by connecting with bolts 8 screwed in three directions, and a disk-shaped rotor seal 2, a support shaft 9, and a plurality of disc springs are sequentially provided in the casing 10 from the stator 1 side. 13. Thrust bearings 14 are arranged concentrically. The stator 1 includes a stator body 11 that forms a valve head, and a disk-like face member 5 that is fixed to the inner end side of the stator body 11.
[0016]
Thus, the stator body 11 is made of stainless steel, and there are four separated flow paths, a sample introduction flow path A, a discharge flow path B, a measurement system injection flow path C, and a pressure feed flow path D. Provided, the connection ports A1 to D1 of these flow paths A to D are open to the front center side. The connection port A1 is sent to the liquid sample introduction means I, the same B1 is sent to the drainage tank T, the second C2 is sent to the measurement system M of an analyzer such as a high-speed liquid chromatograph or a flow injection device, and the second D2 is sent to the same D2. Pipes L connected to the discharge side of the liquid pump P are connected to each other.
[0017]
As shown in FIGS. 3 and 4, the stator body 11 has an annular groove 11a fitted with a seal ring 15 made of synthetic rubber or the like on the inner end side of the stator body 11, and a circular shape surrounded by the annular groove 11a. The inner end convex surface portion 11b is provided with the measuring groove 3 along the radial direction, and the connection holes A2 to D2 of the flow paths A to D are opened on each side of the measuring groove 3 by two each. . Thus, these connection holes A2 to D2 and both end portions of the measuring groove 3 are set so as to be arranged on the circumference concentric with the stator body 11 with a phase difference of 60 degrees. In addition, three pin holes 11c and screw holes 11d are alternately arranged on the inner bottom of the annular groove 11a in the circumferential direction, and in each of these pin holes 11c and screw holes 11d, Through holes 15 a and 15 b provided in the seal ring 15 are facing. In addition, three bolt insertion holes 11e through which the bolt member 8 is passed and one pin hole 11f into which a positioning pin 6a (see FIG. 1) protruding from the case spacer 6 is inserted and inserted into the peripheral portion of the stator body 11. Is drilled.
[0018]
The face member 5 is made of a synthetic resin molded product containing a filler. As shown in FIGS. 3 and 5, a total of six locations including the connection holes A <b> 2 to D <b> 2 of the stator body 11 and both ends of the measuring groove 3 at the center side. 6 through holes 50a to 50f (hereinafter collectively referred to as through holes 50), and three positioning pins 51 embedded and formed on the peripheral side are respectively inserted into the through holes 15a of the seal ring 15. The fixing screws 16 inserted through the three screw insertion holes 52 provided alternately with the positioning pins 51 are inserted into the pin holes 11 c of the stator main body 11 through the stator holes 11 through the through holes 15 b of the seal ring 15. The central concave surface portion 5a on one end side comes into close contact with the inner convex surface portion 11b of the stator body 11 and is screwed into the six screw holes 11c. In a state where the hole 50 is passed through each communicating at both ends of the connection hole A1~D1 and metering grooves 3 of the stator body 11 is fixed to the stator body 11.
[0019]
As shown in FIGS. 3 and 6, the rotor seal 2 has a central portion made of a resin material containing the same kind of resin as that of the face member 5 and containing no filler inside the metal outer peripheral portion 20 made of a stainless steel ring. The resin part 21 is integrated, and the central resin part 21 constitutes a sliding contact surface part 2a protruding from the metal outer peripheral part 20 on one end side. The sliding contact surface part 2a has three arc-shaped portions along the same circumference. Communication recesses 22a to 22c (hereinafter collectively referred to as communication recesses 22) are equally formed. In addition, the metal outer peripheral portion 20 is provided with two pin holes 23 and two screw holes 24, and a rotation operation pin 25 is projected at one place on the peripheral surface.
[0020]
The rotor seal 2 is externally fitted to the shaft portion 9b of the support shaft 9 with the two positioning pins 91 and 91 projecting from the front end disk portion 9a of the support shaft 9 inserted through the pin holes 23, respectively. Due to the biased disc spring 13, the face member 5 of the stator 1 is pressed in a concentric state, and the sliding contact surface portion 2a is in close contact with the concave sliding surface portion 5b of the face member 5, An angular range of 60 degrees can be automatically rotated and displaced in the circumferential direction by an external drive mechanism (not shown) via a rotation operation pin 25 disposed in a notch 7a provided at the front edge of the valve body 7. It has become. Thus, when the rotor seal 2 is stopped, each communication recess 22 is set to communicate with the two adjacent through holes 50, 50 of the face member 5 at both ends. The through holes 50 and 50 communicating through the communication recess 22 are switched by the rotational displacement of the angle of 60 degrees.
[0021]
In the liquid sample injection device having the above-described configuration, when a liquid sample is introduced into the inside, for example, as shown in FIG. 7A, the sample introduction flow path A includes the through holes 50a and 50b of the face member 5 and the rotor seal 2. The other end of the measuring groove 3 is connected to the one end of the measuring groove 3 through the through-holes 50e and 50f and the connecting recess 22c. On the other hand, the pumping flow path D is connected to the measurement system injection flow path C through the through holes 50c and 50d and the communication recess 22b. Therefore, the liquid sample introduced into the sample introduction flow path A from the connection port A1 flows into the measurement groove 3 through the through holes 50a and 50b and the communication recess 22a, and fills the measurement groove 3 to make one surplus. The part enters the discharge channel B through the through holes 50e and 50f and the communication recess 22c. During this time, the buffer solution continuously fed through the liquid feed pump P is continuously sent from the pressure feed channel D to the measurement system injection channel C through the through holes 50c and 50d through the communication recess 22b. ing.
[0022]
Then, when the rotor seal 2 is rotated and displaced by 60 degrees counterclockwise, for example, when the liquid sample completely fills the measurement groove 3, as shown in FIG. The flow path B is cut off from the measuring groove 3 and directly connected to the through holes 50a and 50f via the communication recess 22c, while the pumping flow path D is connected to the measurement holes 22a and 22c via the communication recess 22a. 3 is connected to the other end of the measuring groove 3 through the through holes 50d and 50e and the communication recess 22b. Therefore, the liquid sample that fills the measuring groove 3 and the liquid sample that fills the two through holes 50b and 50c previously connected to both ends of the measuring groove 3 are caused by the pressure of the buffer solution flowing in from the pumping flow path D. It is sent to the measurement system injection channel C and injected into the measurement system M of an analyzer such as a high performance liquid chromatograph or a flow injection device to perform a predetermined measurement. During this time, the excess liquid sample remaining in the sample introduction flow path A and the discharge flow path B and the through holes 50a and 50f communicated without passing through the measuring groove 3 is external pipe L connected to the discharge flow path B. The liquid is discharged to the drainage tank T by suction from the side. Further, before the next measurement is performed, the rotor seal 2 is rotationally displaced by 60 degrees in the reverse direction and returned to the original state shown in FIG.
[0023]
As shown in FIGS. 8 and 9, the liquid sample injection device of the second embodiment is provided on the inner end side of the stator main body 11 instead of using the face member 5 in the first embodiment on the stator 1 side. A circular resin plate 17 made of a resin-molded product containing a filler is fitted into the circular recess 11g, and three peripheral portions thereof are screwed and fixed into the screw holes 11h of the stator body 11 with fixing screws 18. The casing 10 is configured by directly connecting the stator 1 and the valve body 7 with bolts 8 without using the case spacer 6 in the first embodiment. Other member configurations are the same as in the first embodiment.
[0024]
Therefore, the stator 1 has four flow paths A to D similar to those of the first embodiment provided in communication with the stator main body 11 and the circular resin plate 17, and connection ports of these flow paths A to D are provided. A1 to D1 open to the front center side, and the inner end surface, that is, the center portion of the end surface of the circular resin plate 17 has a slidable contact surface portion 1a having a circular concave shape. Then, the contact holes A2 to D2 of the flow paths A to D are opened in the sliding contact surface portion 1a, and the measuring grooves 4 along the radial direction are provided. Both end portions of the connecting holes A2 to D2 and the measuring grooves 4 are provided. Is set to be arranged with a phase difference of 60 degrees on the circumference concentric with the stator body 11. In FIG. 9, 17 a are three bolt insertion holes provided in the circular resin plate 17.
[0025]
The rotor seal 2 has the same configuration as that of the first embodiment, and the central resin portion 21 is made of a resin material mainly composed of the same kind of resin as that of the circular resin plate 17 and does not contain a filler. The slidable contact surface portion 2a provided with the three communication recesses 22a to 22c (see FIG. 6) is urged against the slidable contact surface portion 1a on the stator 1 side by the bias of the disc spring 13 fitted to the shaft portion 9b. In a concentric state, they are pressed against each other and can be automatically rotated and displaced within an angular range of 60 degrees in the circumferential direction by an external drive mechanism. In the stopped state of the rotor seal 2, each communication recess 22 communicates between the connection holes A <b> 2 to D <b> 2 on the stator 1 side or one of these connection holes A <b> 2 to D <b> 2 and one end of the measuring groove 4. Yes.
[0026]
In the liquid sample injection device of the second embodiment, when a liquid sample is introduced into the interior, for example, the sample introduction channel A communicates and discharges to one end of the measuring groove 3 via the communication recess 22a of the rotor seal 2. While being connected to the flow path D, the other end of the measuring groove 3 is similarly connected to the discharge flow path B via the communication recess 22c, while the pressure feed flow path D is similarly connected to the measurement system via the communication recess 22b. It is connected to the injection channel C. Therefore, the liquid sample introduced into the sample introduction flow path A from the connection port A1 flows into the measuring groove 3 through the communication recess 22a, and the surplus part of the liquid sample fills the measurement groove 4 and is connected to the communication recess 22c. And enters the discharge channel B. Further, the buffer solution continuously fed through the liquid feed pump P is continuously sent from the pressure feed flow path D to the measurement system injection flow path C through the communication recess 22b. If the rotor seal 2 is rotated and displaced by 60 degrees, for example, counterclockwise when the liquid sample completely fills the measuring groove 4, the sample introduction channel A and the discharge channel B are blocked from the measuring groove 4. The pressure feed channel D is connected to one end of the measuring groove 3 via the communication recess 22a, and the measurement system injection channel C is also connected via the communication recess 22b. Since it is connected to the other end of the measuring groove 3, the liquid sample filling the measuring groove 4 is sent to the measurement system injection channel C by the pressure of the buffer solution flowing in from the pumping channel D, and a high-speed liquid chromatograph, a flow injection device or the like Is injected into the measurement system M of the analyzer and a predetermined measurement is performed.
[0027]
In the liquid sample injection devices of the first and second embodiments, the sliding contact surface portion 2a of the rotor seal 2 is changed to the sliding contact surface portion 5b on the stator 1 side every time the flow path is switched by the rotational displacement of the rotor seal 2. Since it is in sliding contact with (first embodiment) or 1a (second embodiment), the liquid-tight sealing property, anti-abrasion property and frictional resistance at this sliding contact portion become problems. However, in the configuration of these embodiments, the slidable contact surface portion 5b or 1a on the stator 1 side and the slidable contact surface portion 2a of the rotor seal 2 are formed of a resin material whose main component is the same kind of resin, and the stator 1 side Since the sliding contact surface portions 5b and 1a are made of filler-containing resin and the sliding contact surface portion 2a side on the rotor seal 2 side is made of filler-free resin, the sliding contact portion shows a high liquid-tight sealing property due to adhesion between the resin materials. The anti-abrasion property of the sliding contact portion is very good, and the rotor seal 2 and the face member 5 or the circular resin plate 17 on the stator 1 side have a long life, and the cost, labor and labor for maintenance are reduced, Moreover, since the frictional resistance at the sliding contact portion is small and the rotor seal 2 can be rotationally displaced with a small force, the entire apparatus including the drive mechanism can be downsized.
[0028]
On the other hand, when the slidable contact surface portions 5b and 1a on the stator 1 side are made of stainless steel, and the slidable contact surface portion 2a on the rotor seal 2 side is made of a relatively soft resin such as a fluororesin in order to improve the adhesion to this. On the contrary, when the sliding contact surface portions 5b and 1a are made of a resin such as a fluororesin and the sliding contact surface portion 2a is made of stainless steel, a large frictional resistance is generated at the sliding contact portion, and the side made of the resin is early. It is worn out and replaced. On the other hand, even if both of the sliding contact surface portions 5b, 1a on the stator 1 side and the sliding contact surface portion 2a on the rotor seal 2 side are resin materials mainly containing the same kind of resin, neither side contains a filler. In this case, the frictional resistance at the sliding contact portion becomes extremely large, and conversely, when both sides are made of a resin material containing a filler, the sealing performance at the sliding contact portion is insufficient and liquid leakage occurs. . Note that if the sliding contact surface portions 5b, 1a on the stator 1 side and the sliding contact surface portion 2a on the rotor seal 2 side are made of alumina ceramic and brought into close contact with each other, the wear at the sliding contact portion can be minimized. Is expensive and difficult to cut, and there is a problem in manufacturing cost because it is necessary to change the mold in order to change the shape.
[0029]
Here, as in the first and second embodiments, a resin material mainly composed of the same kind of resin is used for the sliding contact surface portion 5b or 1a on the stator 1 side and the sliding contact surface portion 2a of the rotor seal 2, and the stator It is a very unique phenomenon that the anti-abrasion property of the sliding contact portion becomes very good as described above when the filler resin resin material is used on one side and the resin material containing no filler is used on the rotor seal 2 side. It can be said.
[0030]
That is, if one of the sliding contact portions is a filler-containing resin material and the other is a filler-free resin material, the wear on the filler-free resin material side becomes common due to the sliding contact, so that the rotor seal 2 can However, in reality, this is not the case, and as shown in the liquid leak test described later, the rotor seal 2 has a rotational displacement of 10,000 times or more in the reciprocating direction. Depending on the combination of resin materials, a result that it can withstand rotational displacement of 50,000 times or more has been obtained. The reason for this is not clear, but the resin components separated by abrasion on the sliding contact surfaces between the resin materials are transferred and adhered to each other between the interfaces. If the same resin is the main component, the transferred resin component fills the defect and complements it, so that the damage caused by the sliding contact is always repaired and the surface of the sliding contact is repaired. It is considered that the adhesion is maintained.
[0031]
Contrary to the first and second embodiments described above, the sliding contact surface portions 5b, 1a on the stator 1 side are made of a filler-free resin material, and the rotor seal 2 side is made of a filler-containing resin material. Good wear resistance and low sliding contact resistance can be obtained. However, considering that the filler-free resin material wears out first and reaches the end of its service life, the replacement frequency on the rotor seal 2 side is higher than that on the stator 1 side having the measuring grooves 3 and 4 requiring strict dimension setting. It is more economical to make it higher, and therefore it is desirable to use a filler-free resin material on the rotor seal 2 side.
[0032]
As the resin that is the main component of the resin material of the sliding contact surface portions 5b, 1a on the stator 1 side and the sliding contact surface portion 2a of the rotor seal 2, fluororesin such as polyfluoroethylene, high density polyethylene, polyimide, polyetheretherketone, Polyoxymethylene, polymethyl methacrylate, nylon, polyacetal, polyphenylene sulfide and the like can be mentioned. Of these, a fluororesin is advantageous in that it has a low frictional resistance, and a polyetheretherketone is suitable because of its high resistance to friction. Similarly, polyacetal and polyphenylene sulfide have a high resistance to friction, but since a high temperature is required when the filler is mixed, polyether ether ketone is superior in terms of ease of production.
[0033]
Further, a resin obtained by mixing polyether ether ketone and a fluororesin is also preferably used because of the advantage of having both characteristics. In this mixed resin, it is preferable to increase the blending ratio of the polyether ether ketone, and it is desirable to set the blending ratio of the fluororesin in the range of 0.5 to 45% by weight. It is recommended to use% by weight. Such a mixed resin of polyether ether ketone and fluororesin can be used for both the stator 1 side and the rotor seal 2 side, but it is particularly preferable to use it for the resin on the rotor seal 2 side that does not contain a filler. This is because the frictional resistance on the side having lower frictional resistance is lowered and mixing is simplified in production.
[0034]
Further, the filler contained in such a resin is not particularly limited, but glass materials such as glass fibers and glass beads, metal oxides such as titanium oxide, graphite powder, amorphous carbon powder, and carbon fibers. A carbon-type filler etc. are mentioned. Among them, the carbon-based filler has an advantage that it can be relatively easily mixed with the resin, and the fibrous filler is particularly preferable in terms of improving the strength of the resin material. Carbon fibers manufactured from various raw materials can be used.
[0035]
Further, the blending amount of the filler is preferably in the range of 1 to 40% by weight in the resin material, more preferably in the range of 2 to 30% by weight. If the amount is too large, the original properties as a resin are impaired, and the adhesiveness is lowered and the filler is easily dropped. In order to contain these fillers in the resin, in addition to a method in which the filler is uniformly mixed in the molding resin composition, a method in which the filler is press-fitted into the molded resin surface can be employed.
[0036]
In the first and second embodiments, the portion for measuring the liquid sample is set as the measuring grooves 3 and 4. However, the measuring portion is not limited to the groove shape, and can be set to an elliptical shape, a diamond shape, or other various shapes. Further, when the stator 1 is formed by the stator body 1 and the face member 5, the measuring space provided between the interface portions of the stator 1 and the face member 5 is opposite to the case where the stator 1 side is concave as in the first embodiment. The face member 5 side may be formed in a concave shape, or may be formed by concave portions provided on both sides of the stator 1 side and the face member 5 side. On the other hand, when the liquid sample measuring portion is formed on a member independent of the stator body 11 as in the circular resin plate 17 of the second embodiment, the members having different measuring portions are attached to and detached from the stator body 11. By exchanging, there is an advantage that the set amount of the liquid sample to be subjected to the analysis can be changed according to the type and properties of the sample liquid, the purpose of analysis, the analysis accuracy, and the like.
[0037]
Furthermore, although the rotor seal 2 is exemplified by the metal outer peripheral portion 20 and the central resin portion 21 in the first and second embodiments, the rotor seal 2 is entirely made of a resin molded product, or a sliding contact surface portion. It is also possible to use a material in which only the region including 2a is made of a resin layer. In addition, the detailed configuration of the liquid sample injection device of the present invention can be variously modified in addition to the illustrated first and second embodiments.
[0038]
(Liquid leak test)
In the same device structure as that of the first embodiment, a liquid sample injection device in which the material on the stator side (face member 21) and the resin material on the rotor seal side (central resin portion 21) are different is used. While continuously supplying 100 mM sodium phosphate buffer (pH 7.0) to the measurement system at a flow rate of 1.0 mL / min through channel D and measurement system injection channel C, the rotor seal 2 is moved once every 5 seconds. While reciprocating in an angle range of 60 degrees, and confirming the presence or absence of liquid leakage, the device was set to 2.0 kg / cm after each reciprocating rotation 5000 times, 10000 times, 20000 times, and 50000 times. 2 The sample was stopped for 12 hours with the back pressure applied, and the amount of liquid leaked during that time was measured. The result of converting this leaked liquid amount into a leak amount per hour (μL / hour) is shown in Table 1 below. In addition, each apparatus used for the test is as follows.
[0039]
Device 1... The stator side is made of polyetheretherketone in which 20% by weight of carbon fibers are dispersed, and the rotor seal side is made of polyetheretherketone in which 5% by weight of fluororesin is dispersed.
Device 2... The stator side is made of polytetrafluoroethylene in which 20% by weight of carbon fibers in the total amount are dispersed, and the rotor seal side is made of polytetrafluoroethylene alone.
Device 3... The stator side is made of stainless steel, and the rotor seal side is made of the same fluororesin-containing polyether ether ketone as device 1.
Device 4 ... Both the stator side and the rotor seal side are made of polyetheretherketone in which 5% by weight of fluororesin is dispersed in the total amount.
Apparatus 5: The stator side is made of stainless steel, and the rotor seal side is made of polyimide resin alone.
Apparatus 6: The stator side is made of stainless steel, and the rotor seal side is made of polyetheretherketone in which 20% by weight of carbon fibers are dispersed.
[0040]
[Table 1]
Figure 2005009994
[0041]
As shown in the above table, in the apparatuses 1 and 2 to which the present invention is applied, even if the rotor seal is reciprocated 10,000 times, almost no liquid leakage occurs, and in particular, the polyether ether ketone containing carbon fiber on the stator side, the rotor seal It is clear that the apparatus 1 using the fluororesin-containing polyether ether ketone on the two sides can sufficiently withstand the reciprocating rotation of 50,000 times or more. On the other hand, the devices 3, 5, and 6 that use stainless steel for the stator side and the resin material for the rotor seal side, and the device 4 that uses the resin material for both the stator side and the rotor seal side, both rotate 5,000 times. It can be seen that a considerable liquid leakage occurs and the liquid leakage reaches 1 mL / hour or more after 20000 reciprocating rotations. In addition, about the apparatus 3, since the liquid leaked outside by the reciprocating rotation after 5,000 times, the liquid leak test after 10,000 times was stopped.
[0042]
Moreover, about the apparatus 3, when it decompose | disassembled after a test and the sliding contact surface part of a stator side and a rotor seal | sticker side was observed, the damage | wound was recognized by both surfaces. From this result, it can be seen that a soft resin material is not suitable for both the stator side and the rotor seal side. Furthermore, the result of the apparatus 6 suggests that the resin reinforced with the filler does not directly affect the performance improvement, but the combination of the material on both the rotor seal side and the stator side is important.
[0043]
In addition to the devices 1 to 6 exemplified above, in the same device structure as in the first embodiment, a device in which the stator side is stainless steel and the rotor seal side is a resin alone such as polyfluoroethylene or polyoxymethylene, and the first In a device structure similar to that of the embodiment, a similar liquid leakage test was performed on a device in which the stator side was made of stainless steel and the rotor seal side was made of various resins alone, but all of the rotor seals were about 1,000 to 10,000 times. A considerable liquid leak is recognized by reciprocating rotation. However, assuming that, for example, 100 samples are usually analyzed per day, 20,000 to 30,000 reciprocating rotations are performed per year. Therefore, in consideration of the maintenance work of the apparatus, at least about 20,000 reciprocating rotations are performed. Although performance that resists rotation is desirable, it is clear that such performance is not obtainable with configurations other than the present invention.
[0044]
【The invention's effect】
According to the invention of claim 1, as a device for injecting a liquid sample into a measurement system of an analyzer such as a high-performance liquid chromatograph or a flow injection device, a stator having a plurality of channels connected to the outside, and a state of being in close contact with the stator A rotor seal that is in sliding contact with each other, a connection hole and a measurement recess for each flow path are formed in the sliding contact surface portion on the stator side, and the connection hole, the measurement recess and the connection hole are communicated with each other on the sliding contact surface portion on the rotor seal side. In a configuration in which a plurality of communication recesses are provided and a fixed amount of liquid sample supplied to the measurement recess is injected into the measurement system by switching the flow path connection in accordance with the circumferential rotational displacement of the rotor seal, the mutual connection between the stator and the rotor seal The sliding contact portion is made of a resin material mainly composed of the same kind of resin, and a filler is contained in only one of the sliding contact portions. Therefore, a very small amount of liquid sample can be weighed with high accuracy and injected into the measurement system, the flow path is not clogged with suspended substances in the sample, and it can be configured in a small size and is extremely durable. It is excellent and can reduce the cost, labor and time required for maintenance, so that it is highly versatile.
[0045]
According to the second aspect of the present invention, in the liquid sample injection device described above, since the sliding contact surface portion on the stator side is made of a resin material containing a filler, the rotor seal side that can be manufactured at low cost has a shorter life than the stator side. The maintenance cost can be kept low by replacing the rotor seal.
[0046]
According to the invention of claim 3, as a liquid sample injection device similar to the above, a stator main body having a plurality of flow paths, a face member having one end face adhered and fixed to the stator main body, and the other face member A rotor seal that is opposed to the end face in the axial direction and is in sliding contact with the end face, and a measuring space is formed between the intimate interface portion between the stator body and the face member, and the stator body side of the interface portion is A connection hole of each flow path is opened, and the face member is provided with a plurality of through-holes having one end communicating with each of the connection hole and the measurement space and the other end opened in a sliding contact portion with the rotor seal. A plurality of communication recesses that allow the through holes to communicate with each other on the slidable contact surface portion on the rotor seal side, and a flow path according to the rotational rotation of the rotor seal in the circumferential direction by supplying a certain amount of liquid sample supplied to the measurement space In the structure in which the injection is made to the measurement system by switching the connection, the sliding contact surfaces of the face member and the rotor seal are made of a resin material mainly composed of the same kind of resin, and only one of the both sliding contact surfaces is used. Since at least one kind of filler is contained in the sample, a very small amount of liquid sample can be measured with high accuracy and injected into the measurement system, and it is difficult to cause clogging of the flow path due to suspended substances in the sample, and it can be made compact. In addition, it has excellent durability, can reduce the cost, labor, and time required for maintenance, and provides a highly versatile one.
[0047]
According to the invention of claim 4, in the liquid sample injection device provided with the above face member, since the sliding contact surface portion on the face member side is made of a resin material containing a filler, it can be manufactured at low cost and from the stator side. Maintenance costs can be kept low by replacing the rotor seal that reaches the end of its life as soon as possible.
[0048]
According to invention of Claim 5, since a carbon-type filler is used as said filler, there exists an advantage that durability improves more.
[0049]
According to the invention of claim 6, since the resin is one or a mixture of polyetheretherketone and fluororesin, the durability is further improved and the force required for the rotational displacement of the rotor seal can be further reduced. There is an advantage.
[Brief description of the drawings]
FIG. 1 is an overall perspective view of a liquid sample injection device according to a first embodiment of the present invention.
FIG. 2 is an exploded perspective view of the injection device.
FIG. 3 is a longitudinal sectional view of a main part of the injection device.
FIG. 4 is a bottom view of the stator body of the injection device.
FIG. 5 is a bottom view of a face member of the injection device.
FIG. 6 is a plan view of a rotor seal of the injection device.
7A and 7B show a slidable contact surface portion on the stator side in the injection apparatus, FIG. 7A is a front view showing flow path connection at the time of sample introduction, and FIG. 7B shows flow path connection at the time of sample injection into a measurement system. It is a front view.
FIG. 8 is a longitudinal sectional view of a main part of a liquid sample injection device according to a second embodiment of the present invention.
FIG. 9 is a bottom view of the stator of the same injection device.
[Explanation of symbols]
1 ... Stator
1a slidable contact surface
11 ... Stator body
11b ... Inner end convex surface part (stator body side of interface part)
2 ... Rotor seal
2a ・ ・ ・ Sliding surface part
22, 22a-22c .. Communication recess
3 ・ ・ ・ Measuring groove (measuring space)
4 ・ ・ ・ Measuring groove (measuring recess)
5 ... Face member
5a ... Central concave surface (one end surface)
5b ・ ・ ・ Sliding surface part
50 ... through-hole
A: Sample introduction flow path
B: Discharge flow path
C: Measurement system injection flow path
D ・ ・ ・ Pressurization flow path
A2 to D2 ... Connection port

Claims (6)

外部に繋がる複数の流路を有するステーターと、該ステーターに軸方向で対向して密着状態で摺接するローターシールとを備え、
ステーター側の摺接面部に各流路の接続孔および計量凹部が形成される一方、ローターシール側の摺接面部に前記接続孔と計量凹部ならびに接続孔同士を連通させる複数の連通用凹部が設けられ、
これらステーターとローターシールの相互の摺接面部が同種の樹脂を主成分とする樹脂材料からなると共に、両摺接面部のいずれか一方のみの樹脂材料に少なくとも一種のフィラーが含有され、
計量凹部に供給した一定量の液体試料をローターシールの周方向回転変位に伴う流路接続の切替えによって測定系へ注入するように構成されてなる液体試料注入装置。
A stator having a plurality of flow paths connected to the outside, and a rotor seal that is opposed to the stator in the axial direction and is in sliding contact with the stator in a close contact state;
On the slidable contact surface portion on the stator side, connection holes and measuring recesses for each flow path are formed, and on the slidable contact surface portion on the rotor seal side, a plurality of communication recesses for connecting the connecting holes, the measuring recesses and the connection holes are provided. And
The mutual sliding contact surface portions of the stator and the rotor seal are made of a resin material containing the same kind of resin as a main component, and at least one filler is contained in only one of the sliding contact surface portions.
A liquid sample injection device configured to inject a predetermined amount of a liquid sample supplied to a measurement recess into a measurement system by switching a flow path connection accompanying a circumferential rotational displacement of a rotor seal.
前記ステーター側の摺接面部がフィラーを含有する樹脂材料からなる請求項1記載の液体試料注入装置。The liquid sample injection device according to claim 1, wherein the slidable contact surface portion on the stator side is made of a resin material containing a filler. 外部に繋がる複数の流路を有するステーター本体と、このステーター本体に一端面を密着して固定されたフェイス部材と、該フェイス部材の他端面に軸方向で対向して密着状態で摺接するローターシールとを備え、
ステーター本体とフェイス部材との密着した界面部の間に計量空間が形成されると共に、該界面部のステーター本体側に前記各流路の接続孔が開口し、
フェイス部材には、前記接続孔および計量空間の各々に一端を連通し、且つ他端をローターシールとの摺接面部に開口した複数の貫通孔が設けられ、
ローターシール側の摺接面部に前記貫通孔同士を連通させる複数の連通用凹部が設けられ、
これらフェイス部材とローターシールの相互の摺接面部が同種の樹脂を主成分とする樹脂材料からなると共に、両摺接面部のいずれか一方のみの樹脂材料に少なくとも一種のフィラーが含有され、
計量空間に供給した一定量の液体試料をローターシールの周方向回転変位に伴う流路接続の切替えによって測定系へ注入するように構成されてなる液体試料注入装置。
A stator body having a plurality of channels connected to the outside, a face member fixed to the stator body with one end face in close contact with it, and a rotor seal that is in sliding contact with the other end face of the face member in an axial direction. And
A metering space is formed between the intimate interface between the stator body and the face member, and the connection holes of the respective channels are opened on the stator body side of the interface,
The face member is provided with a plurality of through-holes that communicate with one end of each of the connection hole and the measurement space and that open at the other end to a sliding contact surface portion with the rotor seal.
A plurality of communication recesses that allow the through holes to communicate with each other on the slidable contact surface portion on the rotor seal side are provided,
The mutual sliding surface portion of the face member and the rotor seal is made of a resin material containing the same kind of resin as a main component, and at least one filler is contained in only one of the sliding contact surface portions.
A liquid sample injection device configured to inject a predetermined amount of a liquid sample supplied to a measurement space into a measurement system by switching a flow path connection accompanying a circumferential rotational displacement of a rotor seal.
前記フェイス部材側の摺接面部がフィラーを含有する樹脂材料からなる請求項3記載の液体試料注入装置。4. The liquid sample injection device according to claim 3, wherein the sliding contact surface portion on the face member side is made of a resin material containing a filler. 前記フィラーが炭素系フィラーである請求項1〜4のいずれかに記載の液体試料注入装置。The liquid sample injection device according to claim 1, wherein the filler is a carbon-based filler. 前記樹脂がポリエーテルエーテルケトンとフッ素樹脂の一方もしくは両方の混合物である請求項1〜5のいずれかに記載の液体試料注入装置。The liquid sample injection device according to claim 1, wherein the resin is one or a mixture of polyetheretherketone and fluororesin.
JP2003173890A 2003-06-18 2003-06-18 Liquid sample injection device Expired - Fee Related JP4019372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003173890A JP4019372B2 (en) 2003-06-18 2003-06-18 Liquid sample injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003173890A JP4019372B2 (en) 2003-06-18 2003-06-18 Liquid sample injection device

Publications (2)

Publication Number Publication Date
JP2005009994A true JP2005009994A (en) 2005-01-13
JP4019372B2 JP4019372B2 (en) 2007-12-12

Family

ID=34097584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003173890A Expired - Fee Related JP4019372B2 (en) 2003-06-18 2003-06-18 Liquid sample injection device

Country Status (1)

Country Link
JP (1) JP4019372B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294005A (en) * 2008-06-04 2009-12-17 Shimadzu Corp Reaction vessel plate and reaction processing method
JP2012026938A (en) * 2010-07-26 2012-02-09 Arkray Inc Liquid chromatography apparatus and injection valve
JP2012159460A (en) * 2011-02-02 2012-08-23 Gl Sciences Inc Switching valve
JP2013047695A (en) * 2012-12-05 2013-03-07 Tosoh Corp Sample injection system for chromatograph analyzer
JP2013536443A (en) * 2010-08-27 2013-09-19 ウオーターズ・テクノロジーズ・コーポレイシヨン Variable capacity injection valve
JP2014178002A (en) * 2013-03-15 2014-09-25 Shimadzu Corp Flow channel diversion valve
JP2014178237A (en) * 2013-03-15 2014-09-25 Shimadzu Corp Flow channel changeover valve
WO2019188011A1 (en) * 2018-03-27 2019-10-03 株式会社島津製作所 Multiport valve for water quality analyzer
WO2020039521A1 (en) * 2018-08-22 2020-02-27 株式会社島津製作所 Flow channel switching valve
EP4047362A4 (en) * 2019-10-17 2023-11-08 Hitachi High-Tech Corporation Flow path switch valve, flow path switch valve system, and liquid chromatograph

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294005A (en) * 2008-06-04 2009-12-17 Shimadzu Corp Reaction vessel plate and reaction processing method
JP2012026938A (en) * 2010-07-26 2012-02-09 Arkray Inc Liquid chromatography apparatus and injection valve
JP2013536443A (en) * 2010-08-27 2013-09-19 ウオーターズ・テクノロジーズ・コーポレイシヨン Variable capacity injection valve
US9115815B2 (en) 2010-08-27 2015-08-25 Waters Technologies Corporation Variable-volume injection valve
JP2012159460A (en) * 2011-02-02 2012-08-23 Gl Sciences Inc Switching valve
JP2013047695A (en) * 2012-12-05 2013-03-07 Tosoh Corp Sample injection system for chromatograph analyzer
JP2014178237A (en) * 2013-03-15 2014-09-25 Shimadzu Corp Flow channel changeover valve
JP2014178002A (en) * 2013-03-15 2014-09-25 Shimadzu Corp Flow channel diversion valve
WO2019188011A1 (en) * 2018-03-27 2019-10-03 株式会社島津製作所 Multiport valve for water quality analyzer
WO2019186690A1 (en) * 2018-03-27 2019-10-03 株式会社島津製作所 Multiport valve for water quality analyzer
JPWO2019188011A1 (en) * 2018-03-27 2021-02-12 株式会社島津製作所 Multi-port valve for water quality analyzer
TWI746931B (en) * 2018-03-27 2021-11-21 日商島津製作所股份有限公司 Multi-port valve for water quality analyzer
US11781660B2 (en) 2018-03-27 2023-10-10 Shimadzu Corporation Multiport valve for water quality analyzer
WO2020039521A1 (en) * 2018-08-22 2020-02-27 株式会社島津製作所 Flow channel switching valve
EP4047362A4 (en) * 2019-10-17 2023-11-08 Hitachi High-Tech Corporation Flow path switch valve, flow path switch valve system, and liquid chromatograph

Also Published As

Publication number Publication date
JP4019372B2 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
JP4019372B2 (en) Liquid sample injection device
US6453946B2 (en) Long lifetime fluid switching valve
US10520477B2 (en) High pressure valve with multi-piece stator assembly
JP3763132B2 (en) Cover seal
AU584491B2 (en) Liquid sampling valve
US4948565A (en) Analytical system
US8322374B2 (en) Channel switching valve
US5010921A (en) Nonsymmetrical valve
US9194504B2 (en) Rotating valve
US11484813B2 (en) High pressure valve with two-piece stator assembly
US20130112604A1 (en) Valve For High Pressure Analytical System
EP0508749A2 (en) Sampling valve
US20160025690A1 (en) Flow path switching valve
CA1178086A (en) Fluid handling apparatus having a fluid metering volume therein
WO2021119125A1 (en) Syringe pump
EP0591449B1 (en) Apparatus for calibrating a multiple port pump
US20100000619A1 (en) Slurry valve
CN110259673B (en) Ball type peristaltic pump
JPH02238363A (en) Column and its mounting device in biochemical analyzer
JPWO2019188011A1 (en) Multi-port valve for water quality analyzer
JP4485305B2 (en) Small volume constant volume injection valve structure
JPH0217335Y2 (en)
CN201521436U (en) Oxygen-adding plunger pump for biochemical analyzers
JPS61174957A (en) High speed rotary joint for liquid transfer
US20200363379A1 (en) Non-sticking rotary valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4019372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141005

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees