JPH0217335Y2 - - Google Patents

Info

Publication number
JPH0217335Y2
JPH0217335Y2 JP1983181699U JP18169983U JPH0217335Y2 JP H0217335 Y2 JPH0217335 Y2 JP H0217335Y2 JP 1983181699 U JP1983181699 U JP 1983181699U JP 18169983 U JP18169983 U JP 18169983U JP H0217335 Y2 JPH0217335 Y2 JP H0217335Y2
Authority
JP
Japan
Prior art keywords
rotor
stator
sample
sample storage
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983181699U
Other languages
Japanese (ja)
Other versions
JPS6088267U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18169983U priority Critical patent/JPS6088267U/en
Publication of JPS6088267U publication Critical patent/JPS6088267U/en
Application granted granted Critical
Publication of JPH0217335Y2 publication Critical patent/JPH0217335Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は高速液体クロマトグラフイ用サンプリ
ングバルブに関し、特に試料注入路及び溶液流路
を有する第1ステータと溶液流路及び廃液路を有
する第2ステータとの間にサンプル貯留孔を有す
るロータを回動自在に配設し、該ロータを所定量
だけ回動することにより流路を切り換えサンプリ
ングすることのできる高速液体クロマトグラフイ
用サンプリングバルブに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a sampling valve for high performance liquid chromatography, and in particular a first stator having a sample injection path and a solution flow path, and a first stator having a solution flow path and a waste liquid path. 2. A sampling valve for high performance liquid chromatography, in which a rotor having a sample storage hole is rotatably disposed between two stators, and the flow path can be switched and sampling can be performed by rotating the rotor by a predetermined amount. It is something.

〔従来の技術〕[Conventional technology]

近時高速液体クロマトグラフイに用いられるサ
ンプリングバルブは一般に、試料注入路及び溶液
流路を有する第1ステータと、溶液流路及び廃液
路を有する第2ステータが軸に固定され、該両ス
テータの中間に1個のサンプルループ及び平時に
は溶媒が流れているサンプル貯留孔が設けられた
ロータが回動自在に設けられており、分析を行な
うには例えば前記サンプルループにマイクロシリ
ンジを用いて試料を注入した後ロータを回し、試
料が注入されたサンプルループを溶媒槽、溶媒供
給ポンプからカラムへのラインに直結せしめてカ
ラムに試料を導入して行なうものとなつている。
そして通常一定量の試料を注入する際はマイクロ
シリンジにて計量し、サンプルループの一部に注
入するが、この場合は試料を無駄にしない点優れ
ているが、反面マイクロシリンジでの計量誤差に
より再現性が若干悪いという欠点を有しており、
再現性を一層向上させるためには、サンプル貯留
孔やサンプルループ(以下サンプル貯留孔等とい
う)の容量を所望のものに形成し、試料をサンプ
ル貯留孔等のみならず前記両ステータの試料注入
路及び癈液路まで注入してサンプル貯留孔等を完
全に満たした後ロータを回動して摺り切ることに
よりサンプル貯留孔等側で計量することが行なわ
れている。
In general, sampling valves used in recent high-performance liquid chromatography have a first stator having a sample injection path and a solution flow path, and a second stator having a solution flow path and a waste liquid path, which are fixed to a shaft. A rotor is rotatably provided in the middle with one sample loop and a sample storage hole through which a solvent flows during normal times.To perform analysis, for example, a sample is inserted into the sample loop using a microsyringe. After injection, the rotor is rotated, and the sample loop into which the sample has been injected is directly connected to the line from the solvent tank and solvent supply pump to the column, and the sample is introduced into the column.
Normally, when injecting a certain amount of sample, it is measured with a microsyringe and injected into a part of the sample loop, but in this case, it is advantageous in that it does not waste the sample, but on the other hand, there is a risk of measurement error with the microsyringe. It has the disadvantage of slightly poor reproducibility,
In order to further improve reproducibility, the capacity of the sample storage holes and sample loops (hereinafter referred to as sample storage holes, etc.) is formed to a desired value, and the sample is inserted not only into the sample storage holes, but also through the sample injection paths of both stators. After filling the sample storage hole, etc. completely by injecting the liquid up to the tube, the rotor is rotated to scrape off the liquid, thereby measuring the amount at the sample storage hole, etc. side.

〔考案が解決しようとする課題〕 ところが従来の如く、サンプル貯留孔を同一径
に形成したサンプリングバルブにおいては容量の
設定がサンプルループ及びサンプル貯留孔により
2通りしか行ない得ず実益の少ないものとなつて
しまう。
[Problem to be solved by the invention] However, in conventional sampling valves in which the sample storage holes are formed with the same diameter, the capacity can only be set in two ways depending on the sample loop and the sample storage hole, resulting in little practical benefit. It ends up.

また従来のものでは、ロータを貫通するボルト
等の中心軸により両ステータを固着してロータを
挟持しているため、ロータの中心軸貫通孔の周囲
にサンプル貯留孔を複数形成すると、その分ロー
タ径を大きくしなければならず、したがつて両ス
テータとロータとの摺動面積が広くなり、高圧に
よる分析に対応するように両ステータを強固に固
着するとロータの回動に支障を来たすことがあつ
た。
In addition, in conventional systems, both stators are fixed by a central shaft such as a bolt that passes through the rotor, and the rotor is held between them. Therefore, if multiple sample storage holes are formed around the rotor's central shaft through hole, the rotor The diameter must be increased, and therefore the sliding area between both stators and the rotor becomes larger, and if both stators are firmly fixed to support high-pressure analysis, rotation of the rotor may be hindered. It was hot.

本考案は上述の如くサンプル貯留孔を満たし摺
り切ることによつて試料を計量する方が正確性、
再現性に優れている点に着目してなされたもの
で、一台のサンプリングバルブで、数種類の容量
を設定して試料の分析を正確で、再現性良く、し
かも迅速に行ない得る高速液体クロマトグラフイ
用サンプリングバルブを提供することを目的とし
ている。
As mentioned above, the present invention is more accurate and accurate in measuring the sample by filling and scraping the sample storage hole.
This high-performance liquid chromatograph was developed with a focus on its excellent reproducibility.It is a high-performance liquid chromatograph that enables accurate, reproducible, and rapid analysis of samples by setting several different volumes using a single sampling valve. The purpose is to provide sampling valves for

〔課題を解決するための手段〕[Means to solve the problem]

本考案は上記目的を達成するためなされたもの
で、試料注入路及び溶液流路を有する第1ステー
タと溶液流路及び廃液路を有する第2ステータと
の間にサンプル貯留孔を有するロータを回動自在
に配設し、該ロータを所定量だけ回動することに
より流路を切り換えサンプリングする高速液体ク
ロマトグラフイ用サンプリングバルブにおいて、
前記第1ステータと第2ステータとをロータを遊
挿する筒体を介して固着し、両ステータによりロ
ータを回動自在に挟持するとともに、前記ロータ
に複数個の異径のサンプル貯留孔を形成し、さら
に該ロータの外周面に夫々のサンプル貯留孔に対
応する回動レバーの取付孔を穿設し、前記筒体に
該ロータの取付孔に着脱可能に取着される回動レ
バーの円周方向への移動量を規制する貫通長孔を
穿設したことを特徴としている。
The present invention was made to achieve the above object, and includes a rotor having a sample storage hole between a first stator having a sample injection path and a solution flow path and a second stator having a solution flow path and a waste liquid path. A sampling valve for high-performance liquid chromatography that is movably arranged and switches the flow path for sampling by rotating the rotor by a predetermined amount,
The first stator and the second stator are fixed to each other via a cylinder into which the rotor is loosely inserted, the rotor is rotatably held between the two stators, and a plurality of sample storage holes of different diameters are formed in the rotor. Further, mounting holes for rotating levers corresponding to the respective sample storage holes are formed on the outer circumferential surface of the rotor, and a circular lever for rotating levers that is removably attached to the mounting holes of the rotor is formed in the cylinder body. It is characterized by having an elongated through hole that restricts the amount of movement in the circumferential direction.

〔実施例〕〔Example〕

以下本考案を図面に示す一実施例に基づいて詳
細に説明する。
The present invention will be described in detail below based on an embodiment shown in the drawings.

本考案に係るサンプリングバルブは、第1図及
び第2図に示す如くフランジ体A1、及びステー
タ本体A2とから成る第1ステータAと、前記フ
ランジ体A1と同一径を有する略円柱状の第2ス
テータBとを、フランジ体A1と同一の外径を有
する筒体Cを介してネジ1,1により固着し、該
筒体Cの内側で、前記ステータ本体A2と第2ス
テータBとの間に両者夫々に固着された合成樹脂
等より成るパツキン2,2′を介してロータDが
液密かつ回動自在に挟持された構成となつてい
る。
As shown in FIGS. 1 and 2, the sampling valve according to the present invention includes a first stator A consisting of a flange body A 1 and a stator body A 2 , and a substantially cylindrical shape having the same diameter as the flange body A 1 . The stator body A 2 and the second stator B are fixed by screws 1, 1 through a cylindrical body C having the same outer diameter as the flange body A 1 , and the stator body A 2 and the second stator The rotor D is fluid-tightly and rotatably held between the rotor B and the rotor D through packings 2 and 2' made of synthetic resin or the like which are fixed to both of them, respectively.

そして前記第1ステータAのステータ本体A2
には、試料注入路3及び溶液流路4(第3図参
照)が形成されるとともにその上端面にはフラン
ジ体A1の中央孔5の内側面に形成した一対の係
合凹部6,6′に夫々係合してステータ本体A2
回動を阻止するための係合突部7,7′が突設さ
れている。更に第1ステータAの上部には、ステ
ータカバー8及びマイクロシリンジEまたはチユ
ーブ(図示せず)と接続可能なニードルガイド部
9が付設されている。
and a stator body A 2 of the first stator A;
A sample injection path 3 and a solution flow path 4 (see Fig. 3) are formed in the upper end surface of the flange body A1, and a pair of engaging recesses 6, 6 formed on the inner surface of the central hole 5 of the flange body A1 are formed on the upper end surface. Engaging protrusions 7 and 7' are provided in a protruding manner to engage with the stator body A2, respectively, to prevent rotation of the stator main body A2 . Furthermore, a stator cover 8 and a needle guide section 9 connectable to a microsyringe E or a tube (not shown) are attached to the upper part of the first stator A.

またロータDは、ロータ本体D1と、第1ステ
ータAの周囲を囲む略円筒状の回動レバー取付体
D2とから成り、両者はネジ21で固着されてい
る。そして、ロータ本体D1には、夫々異なる径
を有する複数の、例えば6個のサンプル貯留孔1
1a,11b,11c,11d,11e,11f
が形成され、一方回動レバー取付体D2には、サ
ンプル貯留孔11の数だけ回動レバー10の取付
孔D2が設けられており、更に該取付体D2の周胴
部には、例えばサンプル貯留孔11の容量等
(0.1μl,0.2μl,0.4μl,0.5μl,1μl)が表示され

いる。
Furthermore, the rotor D includes a rotor main body D1 and a substantially cylindrical rotating lever mounting body surrounding the first stator A.
D 2 and both are fixed with screws 21. The rotor body D 1 has a plurality of sample storage holes 1, for example, six sample storage holes, each having a different diameter.
1a, 11b, 11c, 11d, 11e, 11f
On the other hand, the rotating lever mounting body D 2 is provided with mounting holes D 2 for the rotating levers 10 in the same number as the sample storage holes 11, and furthermore, the circumferential body of the mounting body D 2 is provided with mounting holes D 2 for mounting the rotating lever 10, for example, as there are sample storage holes 11. The capacity of the storage hole 11 (0.1 μl, 0.2 μl, 0.4 μl, 0.5 μl, 1 μl) is displayed.

第2ステータBには前記第1ステータAに形成
した試料注入路3及び溶液流路4と夫々連結する
廃液路12及び一対の溶液流路13,13′が形
成されている。
The second stator B is formed with a waste liquid passage 12 and a pair of solution passages 13, 13' which are connected to the sample injection passage 3 and the solution passage 4 formed in the first stator A, respectively.

一方筒体Cには、該筒体Cを貫通して前記取付
体D2に螺着される回動レバー10の円周方向へ
の移動量を一定距離に規制する貫通長孔14が穿
設されており、その距離は前記ロータ本体D1
形成された隣接するサンプル貯留孔11相互の距
離となつている。また、筒体Cには、前記ロータ
Dの容量等の表示を確認するための窓17が開設
されている。
On the other hand, the cylindrical body C is provided with a long through hole 14 for regulating the amount of movement in the circumferential direction of the rotary lever 10, which passes through the cylindrical body C and is screwed onto the mounting body D2 , to a certain distance. The distance is the distance between adjacent sample storage holes 11 formed in the rotor body D1 . Further, a window 17 is provided in the cylinder C for checking the display of the capacity of the rotor D, etc.

尚、皿バネ15は前記第1ステータAを第2ス
テータB方向へ付勢してパツキン2,2′とロー
タ本体D1との液密度を向上させ、高圧による分
析に対処するものであり、ステータ本体A2の肩
部16とフランジ体A1との間に縮設されている。
Incidentally, the disc spring 15 urges the first stator A toward the second stator B to improve the liquid density between the gaskets 2, 2' and the rotor body D1 , and to cope with high-pressure analysis. It is compressed between the shoulder portion 16 of the stator body A2 and the flange body A1 .

上述の如きサンプリングバルブを用いて分析を
行なうには、筒体Cの窓17から所望のサンプル
貯留孔(例えば11a)の容量を示す表示を確認
し、該表示に対応して前記貫通長孔14の一方の
規制端14a側に露出した回動レバー10の取付
孔D2´に回動レバー10を取り付ける。この時、
第3図の流路概略図に示す如く、前記所望のサン
プル貯留孔11aの一端は、第1ステータAの試
料注入路3に、他端は第2ステータBの廃液路1
2に連結され、また、一方ポンプ18によつて溶
媒槽19からの溶媒は、第2ステータBの溶液流
路13に流入し、該溶液流路13に連結するロー
タDのサンプル貯留孔11c、第1ステータAの
溶液流路4及びロータDの他のサンプル貯留孔1
1bを経て第2ステータBの他の溶液流路13′
を通り、カラム20へと導入される。
To perform analysis using the sampling valve as described above, check the display indicating the capacity of the desired sample storage hole (for example, 11a) through the window 17 of the cylinder C, and open the through hole 14 in accordance with the display. The rotary lever 10 is attached to the mounting hole D 2 ' of the rotary lever 10 exposed on the one regulating end 14a side. At this time,
As shown in the flow path schematic diagram of FIG. 3, one end of the desired sample storage hole 11a is connected to the sample injection path 3 of the first stator A, and the other end is connected to the waste liquid path 1 of the second stator B.
2, and one pump 18 causes the solvent from the solvent tank 19 to flow into the solution flow path 13 of the second stator B, and the sample storage hole 11c of the rotor D connected to the solution flow path 13; Solution channel 4 of first stator A and other sample storage hole 1 of rotor D
1b to the other solution flow path 13' of the second stator B.
and is introduced into column 20.

次に試料注入路3からマイクロシリンジEを用
いて試料を注入し、前記サンプル貯留孔11aを
満たした後、前記回動レバー10を筒体Cの貫通
長孔14内を他方の規制端14bまで移動させて
ロータDを回動させる。この回動によつてサンプ
ル貯留孔11a内の試料は摺り切り計量され、サ
ンプル貯留孔11aが第1ステータAの溶液流路
4及び第2ステータBの溶液流路13′に直結す
るとともにサンプル貯留孔11bは、第1ステー
タAの溶液流路4及び第2ステータBの溶液流路
13に直結し、サンプル貯留孔11a内の試料は
溶媒とともにカラム20へと導入される。そして
サンプル貯留孔11は多数異径に穿設されている
ことから、上記と同様に順次試料を注入しロータ
Dを回動することにより次々と異なつた容量の試
料を分析することができることとなる。
Next, a sample is injected from the sample injection path 3 using the microsyringe E to fill the sample storage hole 11a, and then the rotary lever 10 is moved inside the long through hole 14 of the cylinder C to the other regulating end 14b. Move it to rotate the rotor D. By this rotation, the sample in the sample storage hole 11a is measured by cutting, and the sample storage hole 11a is directly connected to the solution flow path 4 of the first stator A and the solution flow path 13' of the second stator B, and the sample storage hole 11a is directly connected to the solution flow path 4 of the first stator A and the solution flow path 13' of the second stator B. The hole 11b is directly connected to the solution flow path 4 of the first stator A and the solution flow path 13 of the second stator B, and the sample in the sample storage hole 11a is introduced into the column 20 together with the solvent. Since a large number of sample storage holes 11 are formed with different diameters, it is possible to sequentially inject samples and rotate the rotor D in the same manner as described above, thereby making it possible to analyze samples of different volumes one after another. .

尚、マイクロシリンジでの計量とサンプル貯留
孔での計量を併用すれば、所定量より極く僅か多
量の試料を注入してサンプル貯留孔を完全に満た
すことができ、計量の確実性と試料の無駄をなく
すという両者の利点を備えることとなる。
In addition, if you use both microsyringe measurement and sample storage hole measurement, you can completely fill the sample storage hole by injecting a slightly larger amount of sample than the predetermined amount, which improves measurement accuracy and sample retention. This provides the best of both worlds: eliminating waste.

〔考案の効果〕[Effect of idea]

本考案は上記の如き構成により、試料をロータ
の回動により摺り切つて計量するため、極めて正
確で再現性の良い分析結果が得られ、異径のサン
プル貯留孔を有するため種々の容量の試料による
分析が迅速かつ容易に行ない得、貫通長孔の一方
規制端から他方規制端まで回動レバーを次々と移
動させるのみで、所望のサンプル貯留孔を溶媒槽
からカラムへのラインに直結せしめ得るため極め
て簡単に分析作業を行なうことができる。
With the above-mentioned configuration, the present invention measures the sample by cutting it off with the rotation of the rotor, so extremely accurate and highly reproducible analysis results can be obtained. The desired sample storage hole can be directly connected to the line from the solvent tank to the column by simply moving the rotary lever from one restricting end of the through hole to the other restricting end one after another. Therefore, analysis work can be performed extremely easily.

又、筒体内にロータを回動可能に遊挿したか
ら、ロータに貫通する中心軸でロータを回動可能
に支持するものに比べて、ロータの径を小さくし
てもサンプル貯留孔を多数形成できるから、ロー
タと両ステータとの摺動面積を大幅に縮小でき、
高圧による分析に応じるためロータと両ステータ
との接合を強固にしても、ロータを小さいトルク
で回動することができ操作性が向上する。
Additionally, since the rotor is rotatably inserted loosely within the cylinder, a large number of sample storage holes can be formed even if the diameter of the rotor is reduced, compared to a system in which the rotor is rotatably supported by a central shaft that passes through the rotor. Therefore, the sliding area between the rotor and both stators can be significantly reduced.
Even if the connection between the rotor and both stators is strengthened in order to respond to high-pressure analysis, the rotor can be rotated with a small torque, improving operability.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本考案の一実施例を示すもので、第1図は
縦断面図、第2図は分解斜視図、第3図は流路の
概略図である。 A……第1ステータ、A1……フランジ体、A2
……ステータ本体、B……第2ステータ、C……
筒体、D……ロータ、D1……ロータ本体、D2
…回動レバー取付体、D2′……取付孔、E……マ
イクロシリンジ、3……試料注入路、4……溶液
流路、10……回動レバー、11……サンプル貯
留孔、12……廃液路、13……溶液流路、14
……貫通長孔、17……窓。
The drawings show an embodiment of the present invention, in which Fig. 1 is a longitudinal sectional view, Fig. 2 is an exploded perspective view, and Fig. 3 is a schematic diagram of a flow path. A...First stator, A1 ...Flange body, A2
...Stator main body, B...Second stator, C...
Cylindrical body, D...Rotor, D1 ...Rotor body, D2 ...
... Rotating lever attachment body, D 2 '... Mounting hole, E... Micro syringe, 3... Sample injection path, 4... Solution flow path, 10... Rotating lever, 11... Sample storage hole, 12 ... Waste liquid path, 13 ... Solution flow path, 14
...through hole, 17...window.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 試料注入路及び溶液流路を有する第1ステータ
と溶液流路及び廃液路を有する第2ステータとの
間にサンプル貯留孔を有するロータを回動自在に
配設し、該ロータを所定量だけ回動することによ
り流路を切り換えサンプリングする高速液体クロ
マトグラフイ用サンプリングバルブにおいて、前
記第1ステータと第2ステータとをロータを遊挿
する筒体を介して固着し、両ステータによりロー
タを回動自在に挟持するとともに、前記ロータに
複数個の異径のサンプル貯留孔を形成し、さらに
該ロータの外周面に夫々のサンプル貯留孔に対応
する回動レバーの取付孔を穿設し、前記筒体に該
ロータの取付孔に着脱可能に取着される回動レバ
ーの円周方向への移動量を規制する貫通長孔を穿
設したことを特徴とする高速液体クロマトグラフ
イ用サンプリングバルブ。
A rotor having a sample storage hole is rotatably disposed between a first stator having a sample injection path and a solution flow path and a second stator having a solution flow path and a waste liquid path, and the rotor is rotated by a predetermined amount. In a sampling valve for high performance liquid chromatography that switches a flow path and samples by moving, the first stator and the second stator are fixed via a cylinder into which a rotor is loosely inserted, and the rotor is rotated by both stators. A plurality of sample storage holes of different diameters are formed in the rotor, and mounting holes for rotating levers corresponding to the respective sample storage holes are drilled in the outer peripheral surface of the rotor, and the cylinder 1. A sampling valve for high-performance liquid chromatography, characterized in that a long through hole is formed in the body to regulate the amount of movement in the circumferential direction of a rotary lever that is detachably attached to an attachment hole of the rotor.
JP18169983U 1983-11-25 1983-11-25 Sampling valve for high performance liquid chromatography Granted JPS6088267U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18169983U JPS6088267U (en) 1983-11-25 1983-11-25 Sampling valve for high performance liquid chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18169983U JPS6088267U (en) 1983-11-25 1983-11-25 Sampling valve for high performance liquid chromatography

Publications (2)

Publication Number Publication Date
JPS6088267U JPS6088267U (en) 1985-06-17
JPH0217335Y2 true JPH0217335Y2 (en) 1990-05-15

Family

ID=30393675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18169983U Granted JPS6088267U (en) 1983-11-25 1983-11-25 Sampling valve for high performance liquid chromatography

Country Status (1)

Country Link
JP (1) JPS6088267U (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2519488B2 (en) * 1987-11-25 1996-07-31 東亜医用電子株式会社 Sample metering valve
FR2924804B1 (en) * 2007-12-07 2012-03-02 Horiba Abx Sas MULTI-POSITION SAMPLING VALVE.
JP2013047695A (en) * 2012-12-05 2013-03-07 Tosoh Corp Sample injection system for chromatograph analyzer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS491291A (en) * 1972-04-17 1974-01-08
JPS604955B2 (en) * 1977-01-21 1985-02-07 海上電機株式会社 Acoustic exploration device for sludge dredging

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604955U (en) * 1983-06-22 1985-01-14 東京理化器械株式会社 Sampling valve for high performance liquid chromatography

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS491291A (en) * 1972-04-17 1974-01-08
JPS604955B2 (en) * 1977-01-21 1985-02-07 海上電機株式会社 Acoustic exploration device for sludge dredging

Also Published As

Publication number Publication date
JPS6088267U (en) 1985-06-17

Similar Documents

Publication Publication Date Title
US5010921A (en) Nonsymmetrical valve
US4182184A (en) Sample injector
Ambrose et al. Creatinine determined by" high-performance" liquid chromatography.
CN105223264A (en) Mark method, device and application in a kind of simulation of mass spectrum quantitative test
Schlotterbeck et al. Direct on-line coupling of capillary HPLC with 1H NMR spectroscopy for the structural determination of retinyl acetate dimers: 2D NMR spectroscopy in the nanoliter scale
JPH0217335Y2 (en)
Gu et al. Capillary array reversed-phase liquid chromatography-based multidimensional separation system coupled with MALDI-TOF-TOF− MS detection for high-throughput proteome analysis
US2972888A (en) Fluid sampling and injection valve
US4346610A (en) Device for introducing micro amount of sample into an analyzing apparatus
KR20110102235A (en) Sample injector
McGuffin et al. Nanoliter injection system for microcolumn liquid chromatography
JP2013047695A (en) Sample injection system for chromatograph analyzer
Trinklein et al. Determination of the signal-to-noise ratio enhancement in comprehensive three-dimensional gas chromatography
CN207123513U (en) A kind of liquid sampling device for gas chromatograph
CN212964169U (en) Sampler for medical examination
JPH0217334Y2 (en)
US3393551A (en) Gas chromatograph valve
US3668935A (en) Gas and liquid inlet system for chromatography
JPH04204156A (en) Sample injecting apparatus
JPS6227873Y2 (en)
RU2027180C1 (en) Assembly for supplying samples into gas chromatograph
SU832468A1 (en) Device for introducing samples into liquid chromatograph
JP3080458U (en) Sampling system
Ahmadi et al. High-performance liquid chromatographic detrmination of naproxen in plasma after extraction by a novel in-tube solid phase-liquid liquid liquid extraction method
Kubáň et al. Sampling and quantitative analysis in capillary electrophoresis