JP2005008936A - Electroless plating film forming method, substitution catalyst solution used for the method, heat-radiating plated member and base material for electronic component - Google Patents

Electroless plating film forming method, substitution catalyst solution used for the method, heat-radiating plated member and base material for electronic component Download PDF

Info

Publication number
JP2005008936A
JP2005008936A JP2003173450A JP2003173450A JP2005008936A JP 2005008936 A JP2005008936 A JP 2005008936A JP 2003173450 A JP2003173450 A JP 2003173450A JP 2003173450 A JP2003173450 A JP 2003173450A JP 2005008936 A JP2005008936 A JP 2005008936A
Authority
JP
Japan
Prior art keywords
catalyst
electroless plating
solution
plating film
electroless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003173450A
Other languages
Japanese (ja)
Other versions
JP4081576B2 (en
Inventor
Teruya Oka
照也 岡
Hisamitsu Yamamoto
久光 山本
Shigeru Nishida
茂 西田
Miyako Kawakami
美也子 河上
Hideyuki Tsubokura
英行 坪倉
Toshihiro Kawase
智弘 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C Uyemura and Co Ltd
Original Assignee
C Uyemura and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C Uyemura and Co Ltd filed Critical C Uyemura and Co Ltd
Priority to JP2003173450A priority Critical patent/JP4081576B2/en
Publication of JP2005008936A publication Critical patent/JP2005008936A/en
Application granted granted Critical
Publication of JP4081576B2 publication Critical patent/JP4081576B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroless plating film forming method capable of forming an electroless plating film of excellent adhesiveness on a composite base material with a plated surface comprising a metallic material part and a non-conductive material part without non-plating phenomenon, and suitable for a heat-radiating plated member, printed circuit board or the like, a substitution catalyst solution used for the method, the heat-radiating plated member, and the base material for electronic components. <P>SOLUTION: In the electroless plating film forming method for a base material having a metallic material part and a non-conductive material part for a surface to be plated comprises a first catalyst step of providing catalyst metal on the metallic material part by using the substitution catalyst solution, a second catalyst step of providing catalyst metal on the non-conductive material part by using the catalyst solution, and an electroless plating step of forming an electroless plating film by using an electroless plating liquid. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、プリント基板やAl−SiC複合素材などの被めっき面として金属材料部と非導電性材料部とを有する基材の非導電性材料部上に無電解めっき皮膜を形成する方法、その方法に用いるのに好適な置換触媒溶液、及び上記無電解めっき皮膜の形成方法を用いて作製された放熱めっき部材に関し、また、特に非アミン系化合物を錯化剤に用いた無電解めっき皮膜を形成する場合に好適な無電解めっき皮膜の形成方法並びに電子部品用基材に関する。
【0002】
【従来の技術】
近年、電子部品分野など様々な分野において、被めっき面が金属材料部と非導電性材料部とからなる基材上への無電解めっき皮膜を形成することが行われている。
【0003】
例えば、電子部品分野で使用されるプリント基板は、回路となる銅と基板素材である樹脂とで構成されており、この基板上に、無電解銅めっきなどの無電解めっき皮膜を形成する。
【0004】
また、ヒートシンク等の放熱板となる放熱めっき部材も、近年では、SiC等の非導電性材料からなる多孔体に、銅やアルミニウムが含浸されたような基材が用いられており、当該基材上に、はんだ濡れ性付与を目的として、無電解ニッケルめっき皮膜を形成する。
【0005】
上記のような基材上へ無電解めっき皮膜を形成する場合、基材の被めっき面に非導電性材料部が存在しているため、触媒金属を付与することが必要であり、従来からセンシタイジング−アクチベーティング法、キャタリスト法、アルカリキャタリスト法、キャタリスティング−アクセレレーティング法などが用いられている。
【0006】
しかし、近年、形成される無電解めっき皮膜に要求される様々な皮膜特性は更に厳しさを増しており、上述したような従来の触媒金属を付与する方法を単に用いただけでは、その要求を満たすことができなかった。
【0007】
その理由は、基材の被めっき面が非導電性材料部と金属材料部とが混在した状態となっているためであると考えられる。つまり、異なる材料上へ触媒付与処理や無電解めっき処理を施すが、非導電性材料部と金属材料部とでは、各処理の反応性等が異なり、それぞれの材料部上へ形成される触媒層や無電解めっき皮膜に微妙な差が生じ、これが原因となって皮膜特性が悪くなると考えられる。
【0008】
例えば、上述したヒートシンク部材を作製する場合においては、形成された無電解ニッケルめっき皮膜にボイドが発生したり、均一性が悪かったりするため、はんだ濡れ性が悪くなるという欠点や耐熱性が悪いという欠点を有している。
【0009】
また、電子部品分野のプリント基板においては、スルホールやビアホール壁に無めっきが生じるという欠点を有している。更には、形成した回路の電気抵抗が悪い、皮膜外観にムラが生じる、最終的に形成される厚付用の電気銅めっき皮膜と無電解銅めっき皮膜間の密着性が悪いという欠点を有する。
【0010】
【特許文献1】
特開2001−131760号公報
【0011】
【発明が解決しようとする課題】
本発明は、上記事情に鑑みなされたもので、被めっき面が金属材料部と非導電性材料部とから構成されている複合基材に対して、無めっき現象もなく、密着性の良好な無電解めっき皮膜を形成でき、放熱めっき部材、プリント配線基板等の作製に好適な無電解めっき皮膜の形成方法、それに用いる置換触媒溶液、放熱めっき部材、及び電子部品用基材を提供することを目的とする。
【0012】
【課題を解決するための手段及び発明の実施の形態】
本発明者らは、上記目的を達成するため鋭意検討した結果、被めっき面が金属材料部と非導電性材料部とで構成される基材に対して、上記金属材料部、非導電性材料部それぞれに対して、触媒付与処理を別途行い、かつ両材料部上に対して同時に(両材料部上への触媒金属付与をコントロールした基材を、無電解めっき浴に浸漬して、両材料上へ一括で)無電解めっき皮膜を形成することが有効であると着想し、置換触媒溶液という上記金属材料部へ触媒付与をすることを目的とする触媒付与工程と、従来からの非導電性材料部上への触媒付与をすることを目的とした触媒付与工程とを組み合わせることで、容易に各種特性に優れた無電解めっき皮膜を形成できることを知見した。
【0013】
また、特に、プリント配線基板を作製するにあたり、上記両触媒付与工程によって銅(金属材料部)上に付与される触媒金属量をある一定範囲内とすることで、電子部品という特に要求の高い分野においても、高い要求を満たすことができることを知見し、本発明をなすに至った。
【0014】
従って、本発明は下記の無電解めっき皮膜の形成方法、それに用いる置換触媒溶液、並びに放熱めっき部材及び電子部品用基材を提供する。
請求項1:
被めっき面として金属材料部及び非導電性材料部を有する基材に対し、上記金属材料部上に置換触媒溶液を用いて触媒金属を付与する第1触媒工程を行い、続いて上記非導電性材料部に触媒溶液を用いて触媒金属を付与する第2触媒工程を行い、その後無電解めっき液を用いて無電解めっき皮膜を形成する無電解めっき工程を行うことを特徴とする無電解めっき皮膜の形成方法。
請求項2:
前記第2触媒工程は、アルカリ性触媒金属イオン溶液で処理した後に還元剤液で処理するか、又は酸性触媒金属コロイド溶液を用いて処理した後に酸溶液で処理することを特徴とする請求項1記載の無電解めっき皮膜の形成方法。
請求項3:
被めっき面として金属材料部及び樹脂材料部を有する基材に対し、上記金属材料部上に置換触媒溶液を用いて触媒金属を付与する第1触媒工程を行い、続いて上記非導電性材料部にアルカリ性触媒金属イオン溶液を用いて触媒金属を付与する第2触媒工程を行い、その後還元剤液を用いて処理する還元工程を行い、上記還元工程後に無電解めっき液を用いて無電解めっき皮膜を形成する無電解めっき工程を行うことを特徴とする無電解めっき皮膜の形成方法。
請求項4:
前記還元工程後に、界面活性剤及び還元剤を含有する活性化溶液で処理する活性化工程を行い、その後前記無電解めっき工程を行うことを特徴とする請求項3記載の無電解めっき皮膜の形成方法。
請求項5:
前記基材が、プリント基板であることを特徴とする請求項3又は4記載の無電解めっき皮膜の形成方法。
請求項6:
前記無電解めっき工程が、無電解銅めっき液を用いて無電解銅めっき皮膜を形成することを特徴とする請求項5記載の無電解めっき皮膜の形成方法。
請求項7:
前記無電解めっき工程が、錯化剤としてロッシェル塩を含有する無電解銅めっき液を用いて無電解銅めっき皮膜を形成することを特徴とする請求項6記載の無電解めっき皮膜の形成方法。
請求項8:
金属材料及びセラミック材料からなる複合材料に、上記金属材料部上に置換触媒溶液を用いて触媒金属を付与する第1触媒工程を行い、続いて上記非導電性材料部に触媒溶液を用いて触媒金属を付与する第2触媒工程を行い、その後無電解めっき液を用いて無電解めっき皮膜を形成する無電解めっき工程を行うことを特徴とする無電解めっき皮膜の形成方法。
請求項9:
前記第2触媒工程が、アルカリ性触媒金属イオン溶液で処理した後に還元剤液で処理するか、又は酸性触媒金属コロイド溶液を用いて処理した後に酸溶液で処理することを特徴とする請求項8記載の無電解めっき皮膜の形成方法。
請求項10:
前記金属材料がCu又はAlであることを特徴とする請求項9記載の無電解めっき皮膜の形成方法。
請求項11:
前記金属材料がAlであり、前記第1触媒工程の置換触媒溶液はZn置換溶液であることを特徴とする請求項9記載の無電解めっき皮膜の形成方法。
請求項12:
前記無電解めっき工程が、無電解ニッケルめっき液を用いて無電解ニッケルめっき皮膜を形成することを特徴とする請求項11記載の無電解めっき皮膜の形成方法。
請求項13:
請求項1乃至12のいずれか1項に記載の無電解めっき皮膜の形成方法に用いる置換触媒溶液であって、アミン化合物を含有しないことを特徴とする置換触媒溶液。
請求項14:
請求項8乃至12のいずれか1項に記載の無電解めっき皮膜の形成方法を用いて作製されたことを特徴とする放熱めっき部材。
請求項15:
基材の銅表面上に、Sn不含触媒溶液を用いて触媒金属を10〜120μg/dmで付与した後、錯化剤として非アミン系化合物を含有する無電解銅めっき液を用いて処理することを特徴とする請求項3乃至7のいずれか1項に記載の無電解めっき皮膜の形成方法。
請求項16:
前記基材が、電子部品用基材であることを特徴とする請求項15記載の無電解めっき皮膜の形成方法。
請求項17:
請求項3又は4記載の方法によって得られ、基材の銅表面上に、非アミン系化合物を錯化剤として含有する無電解銅めっき皮膜を形成するための触媒層を有する電子部品用基材であって、上記触媒層は、Snを実質的に含有せず、かつ、触媒金属が10〜120μg/dmであることを特徴とする電子部品用基材。
【0015】
この場合、特に、プリント基板の無電解めっき方法については、銅張りプリント基板→銅面上にPd置換→スルホール(樹脂部)にアルカリ性のPdイオン溶液でPd付与→還元剤液での処理→ロッシェル塩を錯化剤とする無電解銅めっきという工程、方法が好適に採用し得、放熱部材の無電解めっき方法については、Al−SiC複合素材の基体→Al上にZn置換→SiC上にアルカリ性のPdイオン溶液でPd付与→還元剤液での処理→無電解ニッケルめっきという工程、方法が好適に採用し得る。
【0016】
以下、本発明につき更に詳しく説明する。
本発明の無電解めっき皮膜の形成方法は、金属材料部及び非導電性材料部とを有する基材に、必要により適宜な前処理を行った後、第1触媒工程、第2触媒工程、必要により還元剤液処理工程を順次行い、最後に無電解めっき工程を行うものである。
【0017】
(I)基材
基材としては、被めっき面が、非導電性材料部と金属材料部とからなる基材であれば特に制限はなく、非導電性材料部が樹脂、セラミック等で形成されたもの、金属材料部が各種金属で形成されたものが挙げられるが、本発明は、金属材料部が例えばCuやAl等の空気中で酸化し易い金属で形成されたものが有効に用いられる。また、形状も制限はなく、板状、シート状、粉粒状、成形品などが挙げられる。
【0018】
この場合、基材としては、ヒートシンク等の放熱部材、プリント配線基板などが好適なものとして挙げられる。
【0019】
ここで、ヒートシンク等の放熱部材において、非導電性材料としては、SiCなどのガラスセラミックや樹脂が採用できる。金属としては、AlやCuなどが挙げられるが、これに制限されない。特には、ガラスセラミックの多孔体又は網状構造体に、AlやCuを含浸させたものを好適に採用できる。形状としては、板状、シート状、粉粒体等、制限はない。
【0020】
一方、プリント配線基板を作製する場合、被めっき面に、銅部分を有する基材が挙げられる。基材は、樹脂製(エポキシ樹脂、ポリイミド樹脂など)、セラミック製などであり、被めっき面は、上記樹脂部分/セラミック部分と銅部分の2種が混在しても、銅部分が、表面の全面であってもよい。この場合、樹脂部分はスルホールやビアホール部分である。形状は、板状、シート状等であってもよい。
【0021】
なお、上記銅部分は、無電解めっきや電気めっきやスパッタリング等の乾式めっきで形成されていてもよく、銅箔を貼って形成されていてもよい。
【0022】
具体的には、特にスルホールやビアホールを有する銅張りプリント基板(両面板、多層板、ビルドアップ基板など)を挙げることができる。
【0023】
(II)前処理
上記基材の前処理としては、脱脂、表面調整工程などがあり、基材の種類、使用目的等に応じた公知の前処理法を採用し得る。ヒートシンク等の放熱めっき部材を作製するための基材の洗浄には、超音波洗浄を行うことが好ましい。
【0024】
(III)第1触媒工程
第1触媒工程は、上記基材の金属材料部上に触媒となる金属の水溶性塩を含有する置換触媒溶液を用いて触媒金属を付与する工程であって、本工程は基本的に複合基材中の金属に触媒を付与することを目的としており、非導電性材料へは触媒が付与されない。上記置換触媒溶液は、置換法により基材の金属材料部上に触媒金属を付与するもので、当該置換触媒溶液は、アミン化合物を含有しないことが好ましい。アミン化合物を含有していると、触媒溶液の持ち込みや基材表面に付着するなどして、次の第2触媒溶液中にアミン化合物が混入し、第2触媒工程での触媒溶液中の触媒金属をアミン化合物が錯化してしまい、非導電性材料部に触媒が付与されないおそれがあり、その結果形成される無電解めっき皮膜にボイドや無めっきが生じるおそれがある。触媒となる金属としては、Au、Pt、Pd、Ag、Ni、Co、Cu、Znなどが挙げられ、当該触媒となる金属は、上記基材の金属材料部の金属種に応じて、適宜置換析出するものを選択する。また、1種であっても、2種以上であってもよい。
【0025】
例えば、放熱めっき部材を形成する場合、その複合基材の金属部がAlである場合はZn、Cuである場合はPdが好適なものとして選ばれる。
この場合、Al金属部に対するZn置換触媒溶液としては、アルミニウムに対してめっきを行う場合に従来から用いられている亜鉛置換めっき液を使用することができる。なお、本発明において、このZn置換触媒溶液の組成としては、Znイオン100mg/L〜100g/L、好ましくは5〜20g/L、pH8以上、好ましくは10以上(NaOH等で調整)であり、pH14の強アルカリであってもよい。Zn塩としては、硝酸亜鉛、酸化亜鉛、硫酸亜鉛等公知のものが採用できる。また処理条件は10〜30℃で数秒〜1分間であることが好ましい。
【0026】
一方、Cu金属部に対するPd置換触媒溶液としては、Pdイオン10mg/L〜10g/L、好ましくは100〜500mg/L、pH8以上であり、Pd塩としては、硫酸塩、硝酸塩、酸化物、塩化物及びそれらの無機複合物、無機酸としては、硫酸、硝酸、塩酸等が使用でき、界面活性剤を添加してもよい。処理条件は20〜50℃で1〜10分間であることが好ましい。
なお、上記Zn置換触媒溶液、Pd置換触媒溶液としては、市販品を使用することができる。
【0027】
また、プリント配線基板を作製する場合の第1触媒工程において、触媒金属としては、Pd、Pt、Au、Ni、Coなどの1種又は2種以上が挙げられ、置換触媒溶液は、上記触媒金属の水溶性塩と無機酸を基本組成とする。また、上述したように、上記置換触媒溶液は、アミン系化合物を含有しないことが好ましく、アミン系化合物は、錯化力が強いため、次工程のアルカリキャタリスト法で触媒を付与する場合に、触媒金属の吸着が生じないおそれがあり、スルホールなどの樹脂部に無めっきが生じるおそれがある。その他、界面活性剤や各種添加剤を添加してもよい。
【0028】
具体的には、この場合の置換触媒溶液の組成としては、公知のアルカリ性Pd触媒溶液を用いることができる。Pd塩としては、硫酸塩、硝酸塩、酸化物、塩化物及びそれらの無機複合物、無機酸としては、硫酸、硝酸、塩酸等が使用でき、界面活性剤を添加してもよい。Pdイオンとしては、例えばPdイオン10mg/L〜10g/Lが好ましく、またpH8以上であることが好ましい。処理条件は通常の処理条件を採用できるが、第1、第2触媒工程終了後の銅上のPd置換量を10〜120μg/dm、好ましくは20〜90μg/dmとなるように処理することが好ましい。
【0029】
なお、この第1触媒工程は、次の第2触媒工程より先に行うことが重要である。例えば、放熱めっき部材を作製する場合に、第2触媒工程は吸着現象での触媒付与であるため、第1触媒工程が後であると吸着した触媒が流失してしまい、ボイドが発生し易い、皮膜の平滑性が悪くなる、放熱性用途の利用度が悪くなる、はんだ濡れ性が悪くなるという問題が生じる。
【0030】
また、プリント配線基板を作製する場合も、第1触媒工程を第2触媒工程のアルカリキャタリスト法の後で行うと、第2触媒工程でスルホール等の樹脂部やセラミック部に付与された触媒金属が流失し、樹脂部やセラミック部に無めっきが生じたりするおそれがある。
【0031】
(IV)第2触媒工程
この第2触媒工程は、水溶性金属塩を含有する触媒溶液を用いて、吸着現象によって基材の非導電性材料部に触媒金属を付与する工程である。この場合、この触媒金属は、上記金属材料部にも付着してよい。
【0032】
本第2触媒工程としては、次の3方法を採用できる。
(1)酸性Pd−Snコロイド溶液で処理する方法。
(2)酸性Pd−Snコロイド溶液で処理した後、酸溶液で処理する方法。
(3)アルカリ性の触媒金属イオン溶液で処理した後、還元剤液で処理する方法。
上記3つの方法のうち、どれを利用するかはそれぞれが持つ特徴をもとに、例えば、基材への侵食や形成される無電解めっき皮膜に要求される特性などへの影響を考慮して選択すればよい。この場合、上記方法は以下の特徴を有する。
(1)と(2)の方法は、(3)の方法に比較して、非導電性材料部上、金属材料部上へ付与される触媒金属量が多い。
(1)と(2)の方法は、Snが付着する。
(2)の方法は、(1)の方法に比較して、Snの付着量が少ない。
(3)の方法は、金属材料部上へ付着する触媒金属量が少ない。
(3)の方法は、Snが付着しない。
この第2触媒工程としては、ヒートシンク等の放熱めっき部材を作製する際は、下記の方法が挙げられる。
(2)酸性Pd−Snコロイド溶液で処理した後、酸溶液で処理する方法。
(3)アルカリ性の触媒金属イオン溶液で処理した後、還元剤液で処理する方法。
特に、(3)の方法が好ましい。
一方、プリント配線基板を作製する際は、第2触媒工程は、アルカリ性の触媒金属イオン溶液での処理が好ましい。
【0033】
ここで、上記(1)、(2)の酸性Pd−Snコロイド溶液としては、公知の酸性Pd−Snコロイドキャタリスト溶液が使用し得、市販品を用いてもよい。また、(2)の方法における酸溶液としては、塩酸溶液、硫酸溶液等の公知のアクセレレーター酸溶液が使用し得る。更に、(1)、(2)の方法を行う場合の処理条件としては、公知の方法が採用し得る。
【0034】
一方、(3)の方法において、触媒金属としては、Pd、Ag、Pt、Au、Ni、Coなどが挙げられ、これらの1種又は2種以上を使用することができる。
【0035】
この場合、このアルカリ性触媒金属イオン溶液としては、上記触媒金属水溶性塩を金属、特にパラジウムとして0.01〜10g/L、特にプリント基板を処理する場合には50〜500mg/L、好ましくは100〜300mg/L含有し、pHが8〜11であるものを使用することができる。この溶液は公知のものでよく、市販品を使用することができる。また、処理条件は公知の条件を採用でき、通常20〜65℃で1〜10分の浸漬条件とすることができる。
【0036】
なお、特にプリント配線基板を作製する際、第1及び第2触媒工程が終了した時点で、基材の銅部分上に付着した触媒金属量は、10〜120μg/dm(特には20〜90μg/dm)とすることが好ましい。この触媒金属量は、第1触媒工程で付与された触媒金属+第2触媒工程で付与された触媒金属の合計である。
【0037】
10μg/dm未満であると、基材の銅部分上に無電解銅めっき皮膜が形成されないおそれがあり、スルホール等の樹脂部に無めっきが発生する、銅皮膜が変色するなどが生じるおそれがある。一方、120μg/dmより多いと、回路の短絡が発生するおそれがある。また、無電解銅めっき皮膜の密着性が悪くなるおそれがある。
【0038】
(V)還元剤液での処理工程
この工程は、上記第2触媒付与工程において、(3)のアルカリ性触媒金属イオン溶液で処理した場合に、その後工程として行うもので、主として付与された触媒の金属化を目的として行うものである。また、場合によっては、複合基材中の金属材料に形成された酸化皮膜を除去する役割を果たしたり、基材の銅部分を活性化する役割を果たす。
【0039】
還元剤液での処理は、次の3方法を採用できる。
(1)還元剤液で処理する。
(2)還元剤液で処理した後、特開2001−131760号公報記載の還元剤と界面活性剤とを含み、pH調整剤によりpHを1〜7に調整した活性化溶液で、活性化処理を行う。
(3)上記活性化溶液で処理する。
上記のうち、(1)、(2)の工程が好ましく、特にプリント配線基板を作製する場合は、銅部分上により確実に無電解銅めっき皮膜を形成できるため、無電解銅めっき皮膜が形成されない又は形成されるまでに時間がかかるのを防止でき、銅の変色、樹脂部の無めっきを防止することができる点から(2)の工程が好ましい。
【0040】
なお、上記(1)、(2)の還元剤液は、公知の還元剤を含有する溶液であればよい。
【0041】
還元剤としては、ジメチルアミンボラン(DMAB)や水素化ホウ素化合物等のボラン系還元剤、ヒドラジン、ホルムアルデヒド等が挙げられる。なお、還元剤の濃度は0.1〜10g/L、特に1〜3g/Lで、pHは3〜12、特に3〜5であることが好ましい。また、この還元剤液での処理条件は、20〜40℃で1〜10分の浸漬条件とすることができる。また、上記活性化溶液も同様の処理条件とすることができる。
【0042】
(VI)無電解めっき工程
無電解めっき工程では、無電解めっき皮膜を形成する。
無電解めっきの種類は、特に制限はなく、無電解Ni−P、無電解Ni−B、無電解Co、無電解Cu、無電解Ag、無電解Au、無電解Sn、各種合金めっき、無電解複合めっき等が挙げられ、公知の組成のめっき液を用いて公知の条件でめっきを行うことができる。
【0043】
この場合、放熱板やヒートシンク等を作製する場合には、通常無電解ニッケル−リンめっき液で処理した後、無電解ニッケル−ボロンめっき液で処理することが好ましい。
【0044】
また、プリント配線基板を作製する場合には、無電解銅めっきが好ましい。この場合、この無電解めっき液としては、錯化剤としてロッシェル塩等の非アミン系錯化剤を用い、アミン系錯化剤を使用していないホルムアルデヒドを還元剤とするタイプのものが好ましい。
【0045】
なお、上記無電解めっき皮膜は、厚さ0.1〜2.0μm、特に0.3〜1.0μmとすることができるが、これに制限されるものではない。
【0046】
本発明によれば、被めっき面に非導電性材料と金属材料が混在していても、密着性や均一性などの皮膜特性に優れた無電解めっき皮膜を形成することができる。
【0047】
例えば、基材が複合素材からなる複合基材であっても、密着性がよく、ボイドの発生がなく、均一な無電解めっき皮膜を形成することができ、特に、電子部品が実装される放熱板のような放熱めっき部材を作製する上で好適に用いることができ、はんだ濡れ性が良好であり、放熱特性に優れた放熱めっき部材を得ることができる。
【0048】
また、特に、プリント基板を処理する場合において、被めっき面の銅部分、スルホール等の樹脂部分両方に良好な無電解銅めっき皮膜を形成できる上、回路形成においても絶縁樹脂中にPdなどが混入することを防げ、信頼性の高い回路基板を作製することができる。
【0049】
更に、アミン系錯化剤を用いずに無電解銅めっき皮膜を形成するときに、めっき反応が瞬時に開始し、無めっきの発生を防止できる。また、基材の銅部分が長時間空気に晒されても、めっき反応が開始するため、使用する生産ライン(装置)に制限が少ない。しかも、アミン類の廃液処理が必要なく、工業上の利用に有利である上、コスト面でも有利である。また、ロッシェル塩のような錯化力の弱い錯化剤を使用した無電解銅めっき液を用いても、上記利点が得られる。
【0050】
更には、置換触媒溶液処理の諸条件を変更することで、容易に被めっき面の銅部分に付着する触媒金属量を制御できる。
【0051】
本発明において、置換触媒溶液は、アルカリキャタリスト法での触媒付与に悪影響を及ぼさず、被めっき面に樹脂部やセラミック部がある場合にも、本発明の無電解めっき皮膜の形成方法を用いたときの効果を確実に得ることができる。
【0052】
更に、本発明の方法によりプリント基板を得る場合、例えば、ロッシェル塩などの非アミン系錯化剤を使用した無電解銅めっき液を用いて無電解銅めっき皮膜を形成する場合に、プリント基板が長時間空気中に晒されても確実にめっき反応を開始することができる、そのため、生産に使用されるラインや装置への制限が少ない。また、電子回路を形成する場合に、回路の短絡や電気抵抗の悪化を招くことがない上、電気銅めっき皮膜と無電解銅めっき皮膜との密着性を向上させることができるため、高密度化しても信頼性の高い回路基板を得ることができる。
【0053】
【実施例】
以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
【0054】
[実施例1]
複合基材としてAl−SiC複合基材を用い、下記工程に従って無電解めっきを行った。形成された無電解めっき皮膜のボイドの有無、はんだ濡れ性、密着性について評価を行った。結果を表1に示す。

Figure 2005008936
【0055】
[実施例2]
実施例1において、(6)亜鉛置換の工程後、下記工程を行い、その後(7)アルカリキャタリスト工程を行ったこと以外は、実施例1と同様に処理した。得られた無電解めっき皮膜のボイドの有無、はんだ濡れ性、密着性について評価を行った。結果を表1に示す。
Figure 2005008936
【0056】
[比較例1]
実施例1において、(7)アルカリキャタリスト工程と(8)レデューサー工程を行わなかったこと以外は、実施例1と同様に処理した。得られた無電解めっき皮膜のボイドの有無、はんだ濡れ性、密着性について評価を行った。結果を表1に示す。
【0057】
[比較例2]
実施例1において、(6)亜鉛置換工程を行わなかったこと以外は、実施例1と同様に処理した。得られた無電解めっき皮膜のボイドの有無、はんだ濡れ性、密着性について評価を行った。結果を表1に示す。
【0058】
【表1】
Figure 2005008936
【0059】
[実施例3]
190mm×140mm×3mmに研削加工されたSiC多孔体にAlを含浸させたAl−SiC複合基材(SiC;40体積%)を、実施例1と同様に処理し、IGBT用放熱基板を作製した。得られた放熱基板表面にはんだペーストをスクリーン印刷し、当該はんだペースト上にSiからなるセラミック基板を載置し、300℃のリフロー炉で5分間加熱処理してセラミック基板を接合させた。
【0060】
このセラミック基板を接合した放熱基板を、厚さ20mmのAl板にボルトにより固定し、−40℃〜+125℃を1サイクルとして1,000サイクルの冷熱サイクル試験を行った。試験後、はんだ層の破壊、熱流路の遮断はみられなかった。
【0061】
[実施例4,5、比較例3〜8]
基材として銅箔を使用し、銅箔をエッチング液によって銅を数μm溶解し、水洗後、酸による洗浄を行い、水洗後、25℃で2分間酸濃度0.1NとしたPd置換触媒溶液(PdCl:表2に示す濃度,HCl:0.1N)に浸漬し、水洗後、60℃で5分間アルカリ性Pdイオン触媒溶液(Pdイオン0.2g/L,キレート剤0.01M,pH11)に浸漬し、水洗を行い、35℃で3分間還元剤液(DMAB2g/L)に浸漬し、水洗を行い、25℃で1分間活性化溶液(特開2001−131760号公報に記載の活性化溶液)に浸漬し、ロッシェル塩タイプのホルムアルデヒドを還元剤とした無電解銅めっき液(上村工業(株)製スルカップPEA)中に浸漬する工程を標準工程とし、表2に示すように実施した。
【0062】
無電解銅めっき浴中において、析出電位測定を行い、銅上のめっき反応性の差異を確認した。なお、析出電位評価方法としては、Ag/AgCl参照電極を使用したとき、銅箔を無電解銅めっき浴に浸漬した後、瞬時に−800mV以上に達した場合を合格(○)とし、それ未満を不合格(×)とした。
【0063】
【表2】
Figure 2005008936
【0064】
以上から、実施例4,5のようにPd置換析出を行った場合、180秒間銅箔が空気中に晒されても、瞬時に銅箔上に無電解銅のめっき反応が開始することがわかる。
一方、比較例3〜7のようにPd置換析出を行わない場合、活性化処理を行うと、銅箔が空気中に晒される時間が増えてもめっき反応が開始するが、60秒間銅箔が空気中に晒されると、めっき反応が瞬時に開始しなくなることがわかる。
上記から、本発明の処理方法によれば、EDTA等のアミン系錯化剤を用いなくとも、長時間空気に晒された銅上で瞬時に無電解めっき反応が開始するので、生産性が高くなる。また、装置を非酸化性雰囲気下においたりするなどの必要がなく、経済的である。更には、アミン化合物の廃液処理も必要ないので、コスト面でも有利である。
【0065】
[実施例6〜15、比較例9,10]
基材として市販のFR−4銅張り積層板を使用し、該基板を公知のエッチング液を用いて銅を数μm溶解した。その後、水洗し、Pd置換析出を表3に示す条件で行った以外は、実施例4,5と同様の前処理を行った。この処理後の基板の銅上のPd付着量を測定した。これら基板を36℃で30分間ロッシェル塩タイプのホルムアルデヒドを還元剤とした無電解銅めっき液(上村工業(株)製スルカップPEA)中に浸漬して、無電解銅めっき皮膜を基板の銅上及びスルホール壁に形成した。その後、公知の硫酸銅電気めっき液を用いて30μmの銅めっき皮膜を形成し、150℃で1時間熱処理を施した。無めっきの有無、無電解銅めっき皮膜と電気銅めっき皮膜間の密着性を確認した。結果を表3に示す。
【0066】
また、無めっきの有無は、スルホール断面をSEMにより確認し、無めっき部がある場合を不合格(×)、無めっき部がない場合を合格(○)とした。
無電解銅めっき皮膜と電気銅めっき皮膜間の密着性の評価は、上記基板から引き剥がした銅箔(FR−4銅張り積層基板の表面層の銅、無電解銅めっき皮膜及び電気銅めっき皮膜がめっき処理により重なったもの)にバーナー熱衝撃試験法を用いて、該銅箔が炎により赤くなった時点で炎から該銅箔を離し、放置冷却後、銅箔にふくれが生じた場合を不合格(×)、ふくれが生じない場合を合格(○)とした。
【0067】
【表3】
Figure 2005008936
【0068】
以上から、本発明の方法を用いてプリント配線基板を作製した場合、その信頼性が高いことがわかる。また、被めっき面の銅部分上のPd付着量が少なすぎると無めっきの発生が生じることがわかる。更には、被めっき面の銅部分上のPd付着量が多すぎると無電解銅めっき皮膜自体の形成には何ら問題はないが、その後の電気銅めっき皮膜との密着性が悪くなることがわかる
【0069】
【発明の効果】
本発明によれば、被めっき面が金属材料部と非導電性材料部とから構成されている複合基材に対して、無めっき現象もなく、密着性の良好な無電解めっき皮膜を形成できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming an electroless plating film on a non-conductive material portion of a substrate having a metal material portion and a non-conductive material portion as a surface to be plated such as a printed circuit board or an Al-SiC composite material, The present invention relates to a displacement catalyst solution suitable for use in a method, and a heat-dissipating plating member produced by using the above-mentioned electroless plating film forming method, and more particularly to an electroless plating film using a non-amine compound as a complexing agent. The present invention relates to a method for forming an electroless plating film and an electronic component base material suitable for the formation.
[0002]
[Prior art]
In recent years, in various fields such as an electronic component field, an electroless plating film is formed on a substrate whose surface to be plated is composed of a metal material portion and a non-conductive material portion.
[0003]
For example, a printed circuit board used in the electronic component field is composed of copper as a circuit and resin as a substrate material, and an electroless plating film such as electroless copper plating is formed on the substrate.
[0004]
In addition, a heat-dissipating plated member serving as a heat-dissipating plate such as a heat sink has recently been used as a base material in which a porous body made of a non-conductive material such as SiC is impregnated with copper or aluminum. On top of this, an electroless nickel plating film is formed for the purpose of imparting solder wettability.
[0005]
When an electroless plating film is formed on a substrate as described above, a non-conductive material portion is present on the surface of the substrate to be plated, so it is necessary to apply a catalytic metal. The tapping-activating method, the catalyst method, the alkaline catalyst method, the catalysting-accelrating method and the like are used.
[0006]
However, in recent years, various film properties required for the electroless plating film to be formed have become more severe, and the above-described conventional method of applying a catalytic metal can be used simply to satisfy the requirement. I couldn't.
[0007]
The reason is considered to be because the surface to be plated of the base material is in a state where the non-conductive material portion and the metal material portion are mixed. In other words, a catalyst application process or an electroless plating process is performed on different materials, but the reactivity of each process is different between the non-conductive material part and the metal material part, and the catalyst layer formed on each material part. It is thought that subtle differences occur in the electroless plating film and the film characteristics deteriorate due to this.
[0008]
For example, in the case of producing the heat sink member described above, voids are generated in the formed electroless nickel plating film or the uniformity is poor, so that the solder wettability is poor and the heat resistance is bad. Has drawbacks.
[0009]
Moreover, printed circuit boards in the field of electronic components have the disadvantage that no plating occurs on the through hole and via hole walls. Furthermore, there are drawbacks in that the formed circuit has poor electrical resistance, unevenness in the appearance of the film, and poor adhesion between the finally formed thick electrolytic copper plating film and the electroless copper plating film.
[0010]
[Patent Document 1]
JP 2001-131760 A
[0011]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and there is no non-plating phenomenon and good adhesion to a composite substrate whose surface to be plated is composed of a metal material portion and a non-conductive material portion. To provide a method for forming an electroless plating film that can form an electroless plating film and is suitable for producing a heat-dissipating plating member, a printed wiring board, etc., a replacement catalyst solution used therefor, a heat-dissipating plating member, and a substrate for electronic parts Objective.
[0012]
Means for Solving the Problem and Embodiment of the Invention
As a result of intensive studies to achieve the above object, the present inventors have found that the metal material part and the nonconductive material are compared with a base material whose surface to be plated is composed of a metal material part and a nonconductive material part. For each part, a catalyst application treatment is performed separately, and on both material parts at the same time (both materials are immersed in an electroless plating bath with a controlled catalyst metal addition on both material parts. Inspired by the fact that it is effective to form an electroless plating film (in a lump up), a catalyst application step for applying a catalyst to the metal material part, which is a substitution catalyst solution, and conventional non-conductivity It has been found that an electroless plating film excellent in various properties can be easily formed by combining with a catalyst application step for applying a catalyst on the material part.
[0013]
In particular, in the production of a printed wiring board, the amount of catalyst metal applied on copper (metal material part) by both the catalyst application processes is within a certain range, so that there is a particularly high demand for electronic components. However, the present inventors have found that high demands can be satisfied, and have made the present invention.
[0014]
Accordingly, the present invention provides the following method for forming an electroless plating film, a replacement catalyst solution used therefor, a heat-dissipating plating member, and an electronic component substrate.
Claim 1:
A first catalyst step of applying a catalytic metal to the base material having a metal material portion and a non-conductive material portion as a surface to be plated using a substitution catalyst solution on the metal material portion is performed, and then the non-conductive property is obtained. An electroless plating film characterized by performing a second catalyst step of applying a catalytic metal to a material part using a catalyst solution and then performing an electroless plating step of forming an electroless plating film using an electroless plating solution Forming method.
Claim 2:
The said 2nd catalyst process is processed with an acid solution after processing with a reducing agent liquid after processing with an alkaline catalyst metal ion solution, or treating with an acidic catalyst metal colloid solution. Of forming an electroless plating film.
Claim 3:
A first catalyst step of applying a catalytic metal to the base material having a metal material portion and a resin material portion as a surface to be plated using a replacement catalyst solution on the metal material portion is performed, and then the non-conductive material portion A second catalyst step of applying a catalytic metal to the substrate using an alkaline catalyst metal ion solution, followed by a reduction step of treatment using a reducing agent solution, and an electroless plating film using an electroless plating solution after the reduction step A method of forming an electroless plating film, comprising performing an electroless plating step for forming a film.
Claim 4:
4. The electroless plating film according to claim 3, wherein after the reduction step, an activation step of treating with an activation solution containing a surfactant and a reducing agent is performed, and then the electroless plating step is performed. Method.
Claim 5:
The method for forming an electroless plating film according to claim 3 or 4, wherein the base material is a printed circuit board.
Claim 6:
6. The method of forming an electroless plating film according to claim 5, wherein the electroless plating step forms an electroless copper plating film using an electroless copper plating solution.
Claim 7:
The method of forming an electroless plating film according to claim 6, wherein the electroless plating step forms an electroless copper plating film using an electroless copper plating solution containing Rochelle salt as a complexing agent.
Claim 8:
A first catalyst step of applying a catalytic metal to the composite material composed of a metal material and a ceramic material using a replacement catalyst solution on the metal material portion is performed, and then a catalyst is used using the catalyst solution for the non-conductive material portion. A method for forming an electroless plating film, comprising performing a second catalyst step for imparting metal, and then performing an electroless plating step for forming an electroless plating film using an electroless plating solution.
Claim 9:
The said 2nd catalyst process is processed with a reducing agent liquid after processing with an alkaline catalyst metal ion solution, or is processed with an acidic catalyst metal colloid solution, and is then processed with an acid solution. Of forming an electroless plating film.
Claim 10:
The method for forming an electroless plating film according to claim 9, wherein the metal material is Cu or Al.
Claim 11:
The method for forming an electroless plating film according to claim 9, wherein the metal material is Al, and the substitution catalyst solution in the first catalyst step is a Zn substitution solution.
Claim 12:
12. The method of forming an electroless plating film according to claim 11, wherein the electroless plating step forms an electroless nickel plating film using an electroless nickel plating solution.
Claim 13:
A substitution catalyst solution for use in the method of forming an electroless plating film according to any one of claims 1 to 12, wherein the substitution catalyst solution does not contain an amine compound.
Claim 14:
A heat dissipating plated member produced by using the electroless plating film forming method according to any one of claims 8 to 12.
Claim 15:
10 to 120 μg / dm of catalyst metal on the copper surface of the base material using a Sn-free catalyst solution. 2 The electroless plating film according to claim 3, wherein the electroless plating film is treated with an electroless copper plating solution containing a non-amine compound as a complexing agent. Method.
Claim 16:
The method of forming an electroless plating film according to claim 15, wherein the base material is a base material for an electronic component.
Claim 17:
A base material for electronic parts, which is obtained by the method according to claim 3 or 4 and has a catalyst layer for forming an electroless copper plating film containing a non-amine compound as a complexing agent on the copper surface of the base material. The catalyst layer does not substantially contain Sn, and the catalyst metal is 10 to 120 μg / dm. 2 The base material for electronic components characterized by the above-mentioned.
[0015]
In this case, in particular, for the electroless plating method of the printed board, copper-clad printed board → Pd substitution on the copper surface → Pd application with alkaline Pd ion solution to the through hole (resin part) → Treatment with reducing agent solution → Rochelle The process and method of electroless copper plating using a salt as a complexing agent can be suitably adopted. Regarding the electroless plating method of the heat radiating member, Al—SiC composite material base → Zn substitution on Al → Alkaline on SiC The process and method of Pd application with a Pd ion solution, treatment with a reducing agent solution, and electroless nickel plating can be suitably employed.
[0016]
Hereinafter, the present invention will be described in more detail.
The method for forming an electroless plating film according to the present invention includes a first catalyst step, a second catalyst step, and a necessary step after performing an appropriate pretreatment on a base material having a metal material portion and a non-conductive material portion if necessary. Thus, the reducing agent solution treatment step is sequentially performed, and finally the electroless plating step is performed.
[0017]
(I) Substrate
The substrate is not particularly limited as long as the surface to be plated is a substrate composed of a non-conductive material portion and a metal material portion, and the non-conductive material portion is formed of resin, ceramic, etc., metal material Although the part formed with various metals is mentioned, what formed the metal material part with the metal which is easy to oxidize in air, such as Cu and Al, for example is used effectively. Moreover, there is no restriction | limiting also in a shape, A plate shape, a sheet form, a granular form, a molded article etc. are mentioned.
[0018]
In this case, preferred examples of the base material include a heat radiating member such as a heat sink, and a printed wiring board.
[0019]
Here, in a heat dissipation member such as a heat sink, a glass ceramic such as SiC or a resin can be employed as the non-conductive material. Examples of the metal include Al and Cu, but are not limited thereto. In particular, a glass ceramic porous body or network structure impregnated with Al or Cu can be suitably employed. The shape is not limited, such as a plate shape, a sheet shape, and a granular material.
[0020]
On the other hand, when producing a printed wiring board, the base material which has a copper part in the to-be-plated surface is mentioned. The base material is made of resin (epoxy resin, polyimide resin, etc.), ceramic, etc., and the plated surface is the surface of the copper part even if the resin part / ceramic part and the copper part are mixed. The whole surface may be sufficient. In this case, the resin portion is a through hole or a via hole portion. The shape may be a plate shape, a sheet shape, or the like.
[0021]
In addition, the said copper part may be formed by dry plating, such as electroless plating, electroplating, and sputtering, and may be formed by sticking copper foil.
[0022]
Specifically, a copper-clad printed board (such as a double-sided board, a multilayer board, and a build-up board) having a through hole or a via hole can be given.
[0023]
(II) Pretreatment
Examples of the pretreatment of the substrate include degreasing and a surface adjustment step, and a known pretreatment method corresponding to the type of the substrate, the purpose of use, and the like can be adopted. It is preferable to perform ultrasonic cleaning for cleaning the base material for producing a heat radiating plating member such as a heat sink.
[0024]
(III) First catalyst step
The first catalyst step is a step of applying a catalyst metal using a substitution catalyst solution containing a water-soluble salt of a metal serving as a catalyst on the metal material portion of the base material, and this step is basically a composite group. The purpose is to impart a catalyst to the metal in the material, and no catalyst is imparted to the non-conductive material. The said substitution catalyst solution provides a catalyst metal on the metal material part of a base material by a substitution method, and it is preferable that the said substitution catalyst solution does not contain an amine compound. If it contains an amine compound, the amine compound is mixed into the next second catalyst solution due to bringing in the catalyst solution or adhering to the surface of the substrate, and the catalyst metal in the catalyst solution in the second catalyst step. As a result, the amine compound may be complexed and the catalyst may not be imparted to the non-conductive material portion, and as a result, voids or non-plating may occur in the electroless plating film formed. Examples of the metal serving as a catalyst include Au, Pt, Pd, Ag, Ni, Co, Cu, and Zn, and the metal serving as the catalyst is appropriately substituted depending on the metal type of the metal material portion of the base material. Select what to deposit. Moreover, it may be one type or two or more types.
[0025]
For example, when forming a heat-dissipating plated member, Zn is selected when the metal part of the composite substrate is Al, and Pd is selected when Cu is Cu.
In this case, as the Zn substitution catalyst solution for the Al metal part, a zinc substitution plating solution which has been conventionally used when plating on aluminum can be used. In the present invention, the composition of the Zn substitution catalyst solution is Zn ion 100 mg / L to 100 g / L, preferably 5 to 20 g / L, pH 8 or more, preferably 10 or more (adjusted with NaOH or the like), It may be a strong alkali having a pH of 14. As the Zn salt, known ones such as zinc nitrate, zinc oxide and zinc sulfate can be employed. The treatment conditions are preferably 10 to 30 ° C. and several seconds to 1 minute.
[0026]
On the other hand, as a Pd substitution catalyst solution for Cu metal part, Pd ions are 10 mg / L to 10 g / L, preferably 100 to 500 mg / L, pH 8 or more, and Pd salts include sulfate, nitrate, oxide, chloride. As materials, their inorganic composites, and inorganic acids, sulfuric acid, nitric acid, hydrochloric acid and the like can be used, and a surfactant may be added. The treatment conditions are preferably 20 to 50 ° C. and 1 to 10 minutes.
In addition, a commercial item can be used as said Zn substitution catalyst solution and Pd substitution catalyst solution.
[0027]
Further, in the first catalyst step in the production of a printed wiring board, examples of the catalyst metal include one or more of Pd, Pt, Au, Ni, Co, etc. The basic composition is a water-soluble salt and an inorganic acid. Further, as described above, the substitution catalyst solution preferably does not contain an amine compound, and the amine compound has a strong complexing power. Therefore, when the catalyst is imparted by the alkaline catalyst method in the next step, There is a possibility that the catalyst metal does not adsorb, and there is a possibility that no plating will occur in the resin part such as a through hole. In addition, surfactants and various additives may be added.
[0028]
Specifically, a known alkaline Pd catalyst solution can be used as the composition of the substitution catalyst solution in this case. As the Pd salt, sulfates, nitrates, oxides, chlorides and their inorganic composites can be used, and as the inorganic acid, sulfuric acid, nitric acid, hydrochloric acid and the like can be used, and a surfactant may be added. Pd ions are preferably, for example, 10 mg / L to 10 g / L of Pd ions, and preferably have a pH of 8 or more. Although normal processing conditions can be adopted as processing conditions, the amount of Pd substitution on copper after the completion of the first and second catalytic steps is 10 to 120 μg / dm. 2 , Preferably 20 to 90 μg / dm 2 It is preferable to process so that it may become.
[0029]
It is important that this first catalyst step is performed before the next second catalyst step. For example, when producing a heat-dissipating plated member, since the second catalyst step is catalyst application by an adsorption phenomenon, if the first catalyst step is later, the adsorbed catalyst is washed away, and voids are likely to occur. There arises a problem that the smoothness of the film is deteriorated, the utilization of the heat dissipation application is deteriorated, and the solder wettability is deteriorated.
[0030]
Also, in the case of producing a printed wiring board, if the first catalyst step is performed after the alkaline catalyst method of the second catalyst step, the catalyst metal applied to the resin portion such as a through hole or the ceramic portion in the second catalyst step May be lost, and no plating may occur in the resin part or the ceramic part.
[0031]
(IV) Second catalyst step
This 2nd catalyst process is a process of providing a catalyst metal to the nonelectroconductive material part of a base material by an adsorption phenomenon using the catalyst solution containing a water-soluble metal salt. In this case, the catalyst metal may adhere to the metal material portion.
[0032]
The following three methods can be adopted as the second catalyst step.
(1) A method of treating with an acidic Pd—Sn colloidal solution.
(2) A method of treating with an acid solution after treating with an acidic Pd—Sn colloidal solution.
(3) A method of treating with a reducing agent solution after treating with an alkaline catalyst metal ion solution.
Which of the above three methods is used depends on the characteristics of each method, for example, considering the influence on the characteristics required for the erosion of the base material and the electroless plating film to be formed. Just choose. In this case, the method has the following characteristics.
Compared with the method (3), the methods (1) and (2) have a larger amount of catalytic metal applied to the non-conductive material part and the metal material part.
In the methods (1) and (2), Sn adheres.
The method (2) has a smaller amount of deposited Sn than the method (1).
In the method (3), the amount of catalytic metal adhering to the metal material portion is small.
In the method (3), Sn does not adhere.
As this 2nd catalyst process, the following method is mentioned when producing heat-radiation plating members, such as a heat sink.
(2) A method of treating with an acid solution after treating with an acidic Pd—Sn colloidal solution.
(3) A method of treating with a reducing agent solution after treating with an alkaline catalyst metal ion solution.
In particular, the method (3) is preferable.
On the other hand, when producing a printed wiring board, the second catalyst step is preferably treated with an alkaline catalytic metal ion solution.
[0033]
Here, as the acidic Pd—Sn colloid solution of (1) and (2) above, known acidic Pd—Sn colloid catalyst solutions can be used, and commercially available products may be used. In addition, as the acid solution in the method (2), a known accelerator acid solution such as a hydrochloric acid solution or a sulfuric acid solution can be used. Furthermore, a known method can be adopted as a processing condition when the methods (1) and (2) are performed.
[0034]
On the other hand, in the method (3), examples of the catalytic metal include Pd, Ag, Pt, Au, Ni, Co, and the like, and one or more of these can be used.
[0035]
In this case, the alkaline catalytic metal ion solution is 0.01 to 10 g / L of the above catalytic metal water-soluble salt as a metal, particularly palladium, particularly 50 to 500 mg / L, preferably 100 when processing a printed circuit board. The one containing ~ 300 mg / L and having a pH of 8-11 can be used. This solution may be a known one, and a commercially available product can be used. Moreover, well-known conditions can be employ | adopted for process conditions, and it can be normally set as immersion conditions for 1 to 10 minutes at 20-65 degreeC.
[0036]
In particular, when producing a printed wiring board, the amount of catalyst metal adhering to the copper portion of the base material at the time when the first and second catalyst steps are completed is 10 to 120 μg / dm. 2 (Especially 20 to 90 μg / dm 2 ) Is preferable. This amount of catalyst metal is the sum of the catalyst metal applied in the first catalyst step + the catalyst metal applied in the second catalyst step.
[0037]
10 μg / dm 2 If it is less than the range, the electroless copper plating film may not be formed on the copper portion of the substrate, and there is a possibility that non-plating will occur in the resin part such as through-hole, or the copper film may be discolored. On the other hand, 120 μg / dm 2 If it is more, a short circuit may occur. Moreover, there exists a possibility that the adhesiveness of an electroless copper plating film may worsen.
[0038]
(V) Treatment process with reducing agent solution
This step is performed as a subsequent step in the second catalyst application step when treated with the alkaline catalyst metal ion solution of (3), and is mainly performed for the purpose of metallization of the applied catalyst. Moreover, depending on the case, it plays the role which removes the oxide film formed in the metal material in a composite base material, or the role which activates the copper part of a base material.
[0039]
The following three methods can be adopted for the treatment with the reducing agent solution.
(1) Treat with a reducing agent solution.
(2) After treatment with a reducing agent solution, an activation treatment is performed with an activation solution containing a reducing agent and a surfactant described in JP-A-2001-131760 and having a pH adjusted to 1 to 7 with a pH adjusting agent. I do.
(3) Treat with the activation solution.
Among the above, the steps (1) and (2) are preferable, and in particular, when a printed wiring board is produced, the electroless copper plating film can be more reliably formed on the copper portion, so the electroless copper plating film is not formed. Alternatively, the step (2) is preferable because it can prevent time from being formed and can prevent copper discoloration and non-plating of the resin part.
[0040]
In addition, the reducing agent liquid of said (1) and (2) should just be a solution containing a well-known reducing agent.
[0041]
Examples of the reducing agent include borane-based reducing agents such as dimethylamine borane (DMAB) and borohydride compounds, hydrazine, and formaldehyde. In addition, it is preferable that the density | concentration of a reducing agent is 0.1-10 g / L, especially 1-3 g / L, and pH is 3-12, especially 3-5. Moreover, the process conditions with this reducing agent liquid can be made into the immersion conditions for 1 to 10 minutes at 20-40 degreeC. Also, the activation solution can be set to the same processing conditions.
[0042]
(VI) Electroless plating process
In the electroless plating process, an electroless plating film is formed.
The type of electroless plating is not particularly limited. Electroless Ni-P, electroless Ni-B, electroless Co, electroless Cu, electroless Ag, electroless Au, electroless Sn, various alloy platings, electroless Composite plating etc. are mentioned, It can plate on well-known conditions using the plating solution of a well-known composition.
[0043]
In this case, when producing a heat sink, a heat sink or the like, it is preferable to treat with an electroless nickel-boron plating solution after treatment with an electroless nickel-phosphorus plating solution.
[0044]
Moreover, when producing a printed wiring board, electroless copper plating is preferable. In this case, the electroless plating solution is preferably of a type in which a non-amine complexing agent such as Rochelle salt is used as a complexing agent and formaldehyde that does not use an amine complexing agent is used as a reducing agent.
[0045]
The electroless plating film may have a thickness of 0.1 to 2.0 μm, particularly 0.3 to 1.0 μm, but is not limited thereto.
[0046]
According to the present invention, an electroless plating film excellent in film characteristics such as adhesion and uniformity can be formed even if a non-conductive material and a metal material are mixed on the surface to be plated.
[0047]
For example, even if the base material is a composite base material, it has good adhesion, does not generate voids, and can form a uniform electroless plating film. It can be suitably used for producing a heat radiating plated member such as a plate, and a heat radiating plated member having good solder wettability and excellent heat radiating properties can be obtained.
[0048]
In particular, when processing a printed circuit board, it is possible to form a good electroless copper plating film on both the copper part of the surface to be plated and the resin part such as through hole, and also in the formation of the circuit, Pd and the like are mixed in the insulating resin. Therefore, a highly reliable circuit board can be manufactured.
[0049]
Furthermore, when an electroless copper plating film is formed without using an amine complexing agent, the plating reaction starts instantly, and the occurrence of no plating can be prevented. Moreover, even if the copper part of a base material is exposed to air for a long time, since a plating reaction starts, there are few restrictions on the production line (apparatus) to be used. Moreover, there is no need for waste liquid treatment of amines, which is advantageous for industrial use and advantageous in terms of cost. Further, the above advantages can be obtained even when an electroless copper plating solution using a complexing agent having a weak complexing power such as Rochelle salt is used.
[0050]
Furthermore, the amount of catalytic metal adhering to the copper portion of the surface to be plated can be easily controlled by changing various conditions of the replacement catalyst solution treatment.
[0051]
In the present invention, the substitution catalyst solution does not adversely affect the catalyst application by the alkali catalyst method, and the method for forming an electroless plating film of the present invention is used even when the surface to be plated has a resin part or a ceramic part. It is possible to reliably obtain the effect of being there.
[0052]
Further, when a printed circuit board is obtained by the method of the present invention, for example, when an electroless copper plating film is formed using an electroless copper plating solution using a non-amine complexing agent such as Rochelle salt, the printed circuit board is Even if it is exposed to the air for a long time, the plating reaction can be surely started, so there are few restrictions on the lines and equipment used for production. In addition, when forming an electronic circuit, the circuit is not short-circuited and the electrical resistance is not deteriorated, and the adhesion between the electrolytic copper plating film and the electroless copper plating film can be improved. However, a highly reliable circuit board can be obtained.
[0053]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
[0054]
[Example 1]
An Al—SiC composite substrate was used as the composite substrate, and electroless plating was performed according to the following steps. The formed electroless plating film was evaluated for the presence of voids, solder wettability, and adhesion. The results are shown in Table 1.
Figure 2005008936
[0055]
[Example 2]
In Example 1, it processed like Example 1 except having performed the following process after the process of (6) zinc substitution, and having performed the alkali catalyst process after that (7). The obtained electroless plating film was evaluated for the presence of voids, solder wettability, and adhesion. The results are shown in Table 1.
Figure 2005008936
[0056]
[Comparative Example 1]
In Example 1, it processed like Example 1 except not having performed the (7) alkali catalyst process and the (8) reducer process. The obtained electroless plating film was evaluated for the presence of voids, solder wettability, and adhesion. The results are shown in Table 1.
[0057]
[Comparative Example 2]
In Example 1, it processed like Example 1 except not having performed the (6) zinc substitution process. The obtained electroless plating film was evaluated for the presence of voids, solder wettability, and adhesion. The results are shown in Table 1.
[0058]
[Table 1]
Figure 2005008936
[0059]
[Example 3]
An Al—SiC composite base material (SiC; 40% by volume) impregnated with Al in an SiC porous body ground to 190 mm × 140 mm × 3 mm was treated in the same manner as in Example 1 to produce an IGBT heat dissipation substrate. . A solder paste is screen-printed on the surface of the obtained heat dissipation substrate, and Si is placed on the solder paste. 3 N 4 The ceramic substrate which consists of this was mounted, and it heat-processed for 5 minutes in a 300 degreeC reflow furnace, and joined the ceramic substrate.
[0060]
The heat dissipation substrate to which this ceramic substrate was bonded was fixed to an Al plate having a thickness of 20 mm with a bolt, and 1,000 cycles of a thermal cycle test were performed with −40 ° C. to + 125 ° C. as one cycle. After the test, the solder layer was not broken and the heat flow path was not blocked.
[0061]
[Examples 4 and 5, Comparative Examples 3 to 8]
A copper foil is used as a base material, a copper foil is dissolved by several μm with an etching solution, washed with water, washed with an acid, washed with water, and a Pd-substituted catalyst solution with an acid concentration of 0.1 N at 25 ° C. for 2 minutes. (PdCl 2 : Concentration shown in Table 2, HCl: 0.1N), washed with water, and then immersed in an alkaline Pd ion catalyst solution (Pd ion 0.2g / L, chelating agent 0.01M, pH 11) at 60 ° C for 5 minutes. , Washed with water, immersed in a reducing agent solution (DMAB 2 g / L) at 35 ° C. for 3 minutes, washed with water, and activated at 25 ° C. for 1 minute (activation solution described in JP-A-2001-131760). The step of dipping and dipping in an electroless copper plating solution (Uemura Kogyo Sulcup PEA) using Rochelle salt formaldehyde as a reducing agent was a standard step, and was carried out as shown in Table 2.
[0062]
In the electroless copper plating bath, the deposition potential was measured to confirm the difference in plating reactivity on copper. In addition, as a deposition potential evaluation method, when an Ag / AgCl reference electrode is used, the case where it reaches −800 mV or more instantaneously after immersing the copper foil in an electroless copper plating bath is regarded as acceptable (◯), and less than that Was rejected (x).
[0063]
[Table 2]
Figure 2005008936
[0064]
From the above, when Pd substitution deposition is performed as in Examples 4 and 5, even when the copper foil is exposed to the air for 180 seconds, the electroless copper plating reaction instantly starts on the copper foil. .
On the other hand, when the Pd substitution deposition is not performed as in Comparative Examples 3 to 7, when the activation treatment is performed, the plating reaction starts even if the time during which the copper foil is exposed to the air is increased, It can be seen that when exposed to air, the plating reaction does not start instantaneously.
From the above, according to the treatment method of the present invention, since an electroless plating reaction starts instantaneously on copper exposed to air for a long time without using an amine complexing agent such as EDTA, the productivity is high. Become. Moreover, there is no need to place the apparatus in a non-oxidizing atmosphere, which is economical. Furthermore, since the waste liquid treatment of the amine compound is not necessary, it is advantageous in terms of cost.
[0065]
[Examples 6 to 15, Comparative Examples 9 and 10]
A commercially available FR-4 copper-clad laminate was used as a base material, and copper was dissolved by several μm using a known etching solution. Thereafter, the same pretreatment as in Examples 4 and 5 was performed, except that the substrate was washed with water and Pd substitution deposition was performed under the conditions shown in Table 3. The adhesion amount of Pd on the copper after the treatment was measured. These substrates are immersed in an electroless copper plating solution (Sulcup PEA manufactured by Uemura Kogyo Co., Ltd.) using Rochelle salt formaldehyde as a reducing agent at 36 ° C. for 30 minutes, and the electroless copper plating film is placed on the copper of the substrate and Formed on the through-hole wall. Thereafter, a 30 μm copper plating film was formed using a known copper sulfate electroplating solution, and heat treatment was performed at 150 ° C. for 1 hour. The presence or absence of no plating and the adhesion between the electroless copper plating film and the electrolytic copper plating film were confirmed. The results are shown in Table 3.
[0066]
Moreover, the presence or absence of non-plating confirmed the through hole cross section by SEM, made the case where there is an unplated part unsuccessful (x), and made the case where there is no non-plated part pass ((circle)).
The evaluation of adhesion between the electroless copper plating film and the electro copper plating film was carried out using the copper foil peeled off from the substrate (copper on the surface layer of the FR-4 copper-clad laminate, electroless copper plating film and electro copper plating film) When the copper foil turns red due to the flame using the burner thermal shock test method, the copper foil is separated from the flame, and after standing cooling, the copper foil is blistered. A case where a failure (x) or no blistering occurred was determined to be a pass (◯).
[0067]
[Table 3]
Figure 2005008936
[0068]
From the above, it can be seen that when a printed wiring board is produced using the method of the present invention, its reliability is high. It can also be seen that if the amount of Pd deposited on the copper portion of the surface to be plated is too small, no plating occurs. Furthermore, it is understood that there is no problem in the formation of the electroless copper plating film itself when the Pd adhesion amount on the copper portion of the surface to be plated is too large, but the adhesion with the subsequent electrolytic copper plating film is deteriorated.
[0069]
【The invention's effect】
According to the present invention, an electroless plating film with good adhesion can be formed on a composite base material whose plating surface is composed of a metal material part and a non-conductive material part without any plating phenomenon. .

Claims (17)

被めっき面として金属材料部及び非導電性材料部を有する基材に対し、上記金属材料部上に置換触媒溶液を用いて触媒金属を付与する第1触媒工程を行い、続いて上記非導電性材料部に触媒溶液を用いて触媒金属を付与する第2触媒工程を行い、その後無電解めっき液を用いて無電解めっき皮膜を形成する無電解めっき工程を行うことを特徴とする無電解めっき皮膜の形成方法。A first catalyst step of applying a catalytic metal to the base material having a metal material portion and a non-conductive material portion as a surface to be plated using a substitution catalyst solution on the metal material portion is performed, and then the non-conductive property is obtained. An electroless plating film characterized by performing a second catalyst step of applying a catalytic metal to a material part using a catalyst solution and then performing an electroless plating step of forming an electroless plating film using an electroless plating solution Forming method. 前記第2触媒工程は、アルカリ性触媒金属イオン溶液で処理した後に還元剤液で処理するか、又は酸性触媒金属コロイド溶液を用いて処理した後に酸溶液で処理することを特徴とする請求項1記載の無電解めっき皮膜の形成方法。The said 2nd catalyst process is processed with an acid solution after processing with a reducing agent liquid after processing with an alkaline catalyst metal ion solution, or treating with an acidic catalyst metal colloid solution. Of forming an electroless plating film. 被めっき面として金属材料部及び樹脂材料部を有する基材に対し、上記金属材料部上に置換触媒溶液を用いて触媒金属を付与する第1触媒工程を行い、続いて上記非導電性材料部にアルカリ性触媒金属イオン溶液を用いて触媒金属を付与する第2触媒工程を行い、その後還元剤液を用いて処理する還元工程を行い、上記還元工程後に無電解めっき液を用いて無電解めっき皮膜を形成する無電解めっき工程を行うことを特徴とする無電解めっき皮膜の形成方法。A base material having a metal material portion and a resin material portion as a surface to be plated is subjected to a first catalyst step of applying a catalytic metal on the metal material portion using a replacement catalyst solution, and then the non-conductive material portion. A second catalyst step of applying a catalytic metal to the substrate using an alkaline catalyst metal ion solution, followed by a reduction step of treatment using a reducing agent solution, and an electroless plating film using an electroless plating solution after the reduction step A method of forming an electroless plating film, comprising performing an electroless plating step to form a film. 前記還元工程後に、界面活性剤及び還元剤を含有する活性化溶液で処理する活性化工程を行い、その後前記無電解めっき工程を行うことを特徴とする請求項3記載の無電解めっき皮膜の形成方法。4. The electroless plating film according to claim 3, wherein after the reduction step, an activation step of treating with an activation solution containing a surfactant and a reducing agent is performed, and then the electroless plating step is performed. Method. 前記基材が、プリント基板であることを特徴とする請求項3又は4記載の無電解めっき皮膜の形成方法。The method for forming an electroless plating film according to claim 3 or 4, wherein the base material is a printed circuit board. 前記無電解めっき工程が、無電解銅めっき液を用いて無電解銅めっき皮膜を形成することを特徴とする請求項5記載の無電解めっき皮膜の形成方法。6. The method of forming an electroless plating film according to claim 5, wherein the electroless plating step forms an electroless copper plating film using an electroless copper plating solution. 前記無電解めっき工程が、錯化剤としてロッシェル塩を含有する無電解銅めっき液を用いて無電解銅めっき皮膜を形成することを特徴とする請求項6記載の無電解めっき皮膜の形成方法。The method of forming an electroless plating film according to claim 6, wherein the electroless plating step forms an electroless copper plating film using an electroless copper plating solution containing Rochelle salt as a complexing agent. 金属材料及びセラミック材料からなる複合材料に、上記金属材料部上に置換触媒溶液を用いて触媒金属を付与する第1触媒工程を行い、続いて上記非導電性材料部に触媒溶液を用いて触媒金属を付与する第2触媒工程を行い、その後無電解めっき液を用いて無電解めっき皮膜を形成する無電解めっき工程を行うことを特徴とする無電解めっき皮膜の形成方法。A composite material composed of a metal material and a ceramic material is subjected to a first catalyst step in which a catalyst metal is imparted on the metal material portion using a replacement catalyst solution, and then a catalyst is used on the non-conductive material portion using a catalyst solution. A method for forming an electroless plating film, comprising performing a second catalyst step for imparting metal, and then performing an electroless plating step for forming an electroless plating film using an electroless plating solution. 前記第2触媒工程が、アルカリ性触媒金属イオン溶液で処理した後に還元剤液で処理するか、又は酸性触媒金属コロイド溶液を用いて処理した後に酸溶液で処理することを特徴とする請求項8記載の無電解めっき皮膜の形成方法。The said 2nd catalyst process is processed with a reducing agent liquid after processing with an alkaline catalyst metal ion solution, or is processed with an acidic catalyst metal colloid solution, and is then processed with an acid solution. Of forming an electroless plating film. 前記金属材料がCu又はAlであることを特徴とする請求項9記載の無電解めっき皮膜の形成方法。The method for forming an electroless plating film according to claim 9, wherein the metal material is Cu or Al. 前記金属材料がAlであり、前記第1触媒工程の置換触媒溶液はZn置換溶液であることを特徴とする請求項9記載の無電解めっき皮膜の形成方法。The method for forming an electroless plating film according to claim 9, wherein the metal material is Al, and the substitution catalyst solution in the first catalyst step is a Zn substitution solution. 前記無電解めっき工程が、無電解ニッケルめっき液を用いて無電解ニッケルめっき皮膜を形成することを特徴とする請求項11記載の無電解めっき皮膜の形成方法。12. The method of forming an electroless plating film according to claim 11, wherein the electroless plating step forms an electroless nickel plating film using an electroless nickel plating solution. 請求項1乃至12のいずれか1項に記載の無電解めっき皮膜の形成方法に用いる置換触媒溶液であって、アミン化合物を含有しないことを特徴とする置換触媒溶液。A replacement catalyst solution for use in the method for forming an electroless plating film according to any one of claims 1 to 12, wherein the replacement catalyst solution does not contain an amine compound. 請求項8乃至12のいずれか1項に記載の無電解めっき皮膜の形成方法を用いて作製されたことを特徴とする放熱めっき部材。A heat dissipating plated member produced by using the electroless plating film forming method according to any one of claims 8 to 12. 基材の銅表面上に、Sn不含触媒溶液を用いて触媒金属を10〜120μg/dmで付与した後、錯化剤として非アミン系化合物を含有する無電解銅めっき液を用いて処理することを特徴とする請求項3乃至7のいずれか1項に記載の無電解めっき皮膜の形成方法。On the copper surface of the substrate, after application of the catalytic metal in 10~120μg / dm 2 using a Sn-free catalyst solution, using an electroless copper plating solution containing a non-amine compound as the complexing agent treatment The method of forming an electroless plating film according to any one of claims 3 to 7. 前記基材が、電子部品用基材であることを特徴とする請求項15記載の無電解めっき皮膜の形成方法。The method for forming an electroless plating film according to claim 15, wherein the base material is a base material for an electronic component. 請求項3又は4記載の方法によって得られ、基材の銅表面上に、非アミン系化合物を錯化剤として含有する無電解銅めっき皮膜を形成するための触媒層を有する電子部品用基材であって、上記触媒層は、Snを実質的に含有せず、かつ、触媒金属が10〜120μg/dmであることを特徴とする電子部品用基材。A base material for electronic parts, which is obtained by the method according to claim 3 or 4 and has a catalyst layer for forming an electroless copper plating film containing a non-amine compound as a complexing agent on the copper surface of the base material. And the said catalyst layer does not contain Sn substantially, and a catalyst metal is 10-120 microgram / dm < 2 >, The base material for electronic components characterized by the above-mentioned.
JP2003173450A 2003-06-18 2003-06-18 Method for forming electroless plating film, replacement catalyst solution used therefor, printed wiring board, and heat dissipation plating member Expired - Fee Related JP4081576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003173450A JP4081576B2 (en) 2003-06-18 2003-06-18 Method for forming electroless plating film, replacement catalyst solution used therefor, printed wiring board, and heat dissipation plating member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003173450A JP4081576B2 (en) 2003-06-18 2003-06-18 Method for forming electroless plating film, replacement catalyst solution used therefor, printed wiring board, and heat dissipation plating member

Publications (2)

Publication Number Publication Date
JP2005008936A true JP2005008936A (en) 2005-01-13
JP4081576B2 JP4081576B2 (en) 2008-04-30

Family

ID=34097263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003173450A Expired - Fee Related JP4081576B2 (en) 2003-06-18 2003-06-18 Method for forming electroless plating film, replacement catalyst solution used therefor, printed wiring board, and heat dissipation plating member

Country Status (1)

Country Link
JP (1) JP4081576B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272598A (en) * 2008-05-06 2009-11-19 Samsung Electro Mech Co Ltd External electrode forming method of tantalum capacitor
WO2016031004A1 (en) * 2014-08-28 2016-03-03 三菱電機株式会社 Semiconductor device manufacturing method and semiconductor device
JP2016056389A (en) * 2014-09-05 2016-04-21 Dowaメタルテック株式会社 Plating pretreatment method of Al-Cu conjugate
KR20170008287A (en) 2014-09-11 2017-01-23 이시하라 케미칼 가부시키가이샤 Nickel colloid catalyst solution for electroless nickel or nickel alloy plating, and electroless nickel or nickel alloy plating method
CN115135804A (en) * 2020-02-19 2022-09-30 学校法人芝浦工业大学 Plated substrate
CN115537788A (en) * 2022-08-29 2022-12-30 深圳大学 Chemical plating activator and preparation method and application thereof
KR102660750B1 (en) * 2023-07-20 2024-04-26 주식회사 지씨이 Non-contact vertical continuous type electroless plating and flash plating equipment

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272598A (en) * 2008-05-06 2009-11-19 Samsung Electro Mech Co Ltd External electrode forming method of tantalum capacitor
WO2016031004A1 (en) * 2014-08-28 2016-03-03 三菱電機株式会社 Semiconductor device manufacturing method and semiconductor device
KR20170036071A (en) * 2014-08-28 2017-03-31 미쓰비시덴키 가부시키가이샤 Semiconductor device manufacturing method and semiconductor device
JPWO2016031004A1 (en) * 2014-08-28 2017-04-27 三菱電機株式会社 Manufacturing method of semiconductor device
KR101921845B1 (en) 2014-08-28 2018-11-23 미쓰비시덴키 가부시키가이샤 Semiconductor device manufacturing method and semiconductor device
JP2016056389A (en) * 2014-09-05 2016-04-21 Dowaメタルテック株式会社 Plating pretreatment method of Al-Cu conjugate
KR20170008287A (en) 2014-09-11 2017-01-23 이시하라 케미칼 가부시키가이샤 Nickel colloid catalyst solution for electroless nickel or nickel alloy plating, and electroless nickel or nickel alloy plating method
CN115135804A (en) * 2020-02-19 2022-09-30 学校法人芝浦工业大学 Plated substrate
CN115135804B (en) * 2020-02-19 2023-12-22 学校法人芝浦工业大学 Plating substrate
CN115537788A (en) * 2022-08-29 2022-12-30 深圳大学 Chemical plating activator and preparation method and application thereof
KR102660750B1 (en) * 2023-07-20 2024-04-26 주식회사 지씨이 Non-contact vertical continuous type electroless plating and flash plating equipment

Also Published As

Publication number Publication date
JP4081576B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
JPS63259083A (en) Polyimide film having surface pattern
JP2016507009A (en) Method for forming a first metal layer on a non-conductive polymer
KR20190102097A (en) Electroless plating process
JP3337802B2 (en) Direct plating method by metallization of copper (I) oxide colloid
KR20140035701A (en) Method fo forming au thin-film and printed circuit board
JP2001519477A (en) Methods and solutions for producing a gold layer
JP3890542B2 (en) Method for manufacturing printed wiring board
JP4081576B2 (en) Method for forming electroless plating film, replacement catalyst solution used therefor, printed wiring board, and heat dissipation plating member
JP5843249B2 (en) Activation liquid for pretreatment of electroless palladium plating or electroless palladium alloy plating
JP5371465B2 (en) Non-cyan electroless gold plating solution and conductor pattern plating method
KR20140019174A (en) Method for manufacturing printed circuit board
JP2006104504A (en) Electroless plating pre-treatment method and surface metallizing method for polyimide resin, and flexible printed circuit board and manufacturing method for the same
JP2010196121A (en) Electroless palladium plating bath and electroless palladium plating method
US20030233960A1 (en) Method for electroless plating without precious metal sensitization
JP3388298B2 (en) Etching solution for pretreatment in plating on glass surface, plating method and method for manufacturing glass substrate
JP4740711B2 (en) Pd / Sn colloidal catalyst adsorption promoter
JP4842620B2 (en) Method for manufacturing printed wiring board having high-density copper pattern
JP5990789B2 (en) Activation liquid for pretreatment of electroless palladium plating or electroless palladium alloy plating
JP2004332036A (en) Electroless plating method
JP2002256444A (en) Wiring board
JP3325236B2 (en) Electroless copper plating method
JP3355055B2 (en) Substrate treatment method
JP2003286578A (en) Pretreatment method for plating, and composite material having plated film
TW202233561A (en) Solution and process for the activation of nonconductive area for electroless process
JP2022183021A (en) ELECTROLESS Co-W PLATED COATING, AND ELECTROLESS Co-W PLATING SOLUTION

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080122

R150 Certificate of patent or registration of utility model

Ref document number: 4081576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees