JP2005008549A - Method for starting/stopping apparatus for treating organochlorine compound by metallic sodium dispersion - Google Patents

Method for starting/stopping apparatus for treating organochlorine compound by metallic sodium dispersion Download PDF

Info

Publication number
JP2005008549A
JP2005008549A JP2003174203A JP2003174203A JP2005008549A JP 2005008549 A JP2005008549 A JP 2005008549A JP 2003174203 A JP2003174203 A JP 2003174203A JP 2003174203 A JP2003174203 A JP 2003174203A JP 2005008549 A JP2005008549 A JP 2005008549A
Authority
JP
Japan
Prior art keywords
dispersion
solvent
reactor
supplied
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003174203A
Other languages
Japanese (ja)
Other versions
JP4254371B2 (en
Inventor
Akio Honchi
章夫 本地
Akihito Orii
明仁 折井
Kazuo Takahashi
和雄 高橋
Shinji Tanaka
真二 田中
Masaaki Mukaide
正明 向出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003174203A priority Critical patent/JP4254371B2/en
Publication of JP2005008549A publication Critical patent/JP2005008549A/en
Application granted granted Critical
Publication of JP4254371B2 publication Critical patent/JP4254371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for starting/stopping an apparatus, with which dechlorination is carried out without clogging of a flow channel in a reactor with a reaction product, etc., in a method for dechlorinating an organochlorine compound using Na dispersion in a tubular reactor. <P>SOLUTION: In starting the apparatus, firstly a solvent is supplied to the apparatus and a mixed solution composed of the Na dispersion, the organochlorine compound and a hydrogen donor is successively supplied to the apparatus. In stopping the apparatus, the mixed solution is replaced with a solvent and then successively the Na dispersion with a mineral oil. According to the method, the flow channel is not clogged with a metallic Na particle and the reaction product, the organochlorine compound is continuously supplied to the apparatus by using the Na dispersion to carry out a chemical reaction and the dechlorination is performed for many hours. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は有機塩素化合物、特に環境汚染物質であるポリ塩化ビフェニル(PCB)を金属ナトリウム分散体で脱塩素化する処理装置の起動方法或いは停止方法に関する。
【0002】
【従来の技術】
有機塩素化合物、特に環境汚染物質であるPCBなどの有機塩素化合物およびポリ塩化ビフェニル(PCB)などを含有している汚染油の処理方法としては、アルカリ金属、特に固体の金属ナトリウム(以下Naと記す)を微粒子にして電気絶縁油などの溶媒に分散させたNa分散体を用い、活性なNaとPCB中の塩素原子を反応槽内で反応させて塩化ナトリウム(NaCl)とビフェニルに分解し、PCBを脱塩素化して無害化する方法が知られている(例えば特許文献1参照)。
【0003】
脱塩素反応は発熱反応であり、反応熱による温度上昇を抑制するため、従来は反応槽内にPCB、またはNa分散体を滴下し、攪拌機で攪拌しながら長時間反応させ脱塩素処理を行っている。反応を促進するため、反応槽を加熱したり、一方で、反応熱を除熱するため、電気絶縁油を足したり、反応槽を冷却したりして所定の反応温度に制御している。
【0004】
【特許文献1】
特開昭49−82570号公報(特許請求の範囲)
【0005】
【発明が解決しようとする課題】
本発明の目的は、従来は複雑であった反応温度制御を容易に、かつ精度良く実施するために管状リアクタを適用するに際し、反応生成物やNa分散体が流路内面に付着・堆積して、流路を閉塞しないようにすることである。
【0006】
【課題を解決するための手段】
本発明は、有機塩素化合物と少なくとも1種類の水素供与体とを混合した混合液、または前記混合液にさらに少なくとも1種類の溶媒を加えた混合液と、金属Na粒子が溶媒中に分散したNa分散体とが合流する合流流路を形成した管状リアクタに、前記混合液とNa分散体とを連続供給するようにした有機塩素化合物の処理装置において、管状リアクタの起動時や停止時に、流路内あるいは混合液とNa分散体の合流流路、さらには管状リアクタ出口において、Na分散体に含まれるNa粒子や、生成物であるアルコキシド,塩化ナトリウムが付着し、流路を閉塞することを防止するための起動・停止方法に関する。本発明では、処理が不十分な状態でリアクタから排出されるのも防止できるようにした。
【0007】
本発明においては、管状リアクタは単数でも複数本並列化しても同様の効果ある。リアクタの材料としては、ふっ素系樹脂であるPTFE(ポリテトラフルオロエチレン),PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体),FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体),ETFE(テトラフルオロエチレン・エチレン共重合体),PVDF(ポリビニルデンフルオライド),PCTFE(ポリクロロトリフルオロエチレン)などが使用できる。これらの材料をコーティングした材料であってもよい。このほかに、シリカと不活性膜など同様な作用のある材質をコーティングして使用してもよい。
【0008】
水素供与体としては、アルコール,フェノール類,カルボン酸,水などがあり、たとえばメタノール,エタノール,変成アルコール,プロパノール,イソプロピルアルコール,ブタノール,ペンタノール,ヘキサノール,イソアミルアルコール,エチレングリコール,シクロヘキサノール,プロピレングリコール,ベンジルアルコール,グリセリンまたはこれらの混合物、さらには溶媒との親和性を高める界面活性剤を添加したものなどが使用できる。
【0009】
溶媒は炭化水素であり、特に灯油,パラフィン,鉱油,電気絶縁油またはこれらの混合物、さらには水素供与体との親和性を高める界面活性剤を添加したものなどが使用できる。
【0010】
運転時に有機塩素化合物を基準値以下まで処理することは当然であるが、起動時或いは停止時においても、基準を満足しなければならない。さもなくば再度処理しなければならない。有機塩素化合物は金属Naと水素供与体によって脱塩素され、無害化されるので、起動時にはまず、Na分散体を供給し、その後に処理対象となる有機塩素化合物と水素供与体を供給する必要がある。水素供与体は有機塩素化合物と同時に供給することが好ましい。なぜなら、有機塩素化合物が脱塩素された際に水素供与体が共存しない場合には反応が開始せず、仮に反応が開始したとすると、塩素が抜けた部分に、別の塩素が抜けた有機塩素化合物が結合して重合物を形成してしまうからである。この重合物はリアクタ内に付着・堆積して、リアクタの閉塞を引き起こすことがある。また、水素供与体を、有機塩素化合物供給の前に供給しておいてもよい。
【0011】
【発明の実施の形態】
実施例1
図1及び図2に本発明に係る有機ハロゲン化合物を脱塩素化処理する処理システムの概要を示す。図1は脱塩素化する処理システムの概略フロー図を示している。金属Na分散体1である流体Aと、有機塩素化合物2である流体B1、溶媒3である流体B2、水素供与体4である流体B3が予混合5の手段により十分に混合された混合液である流体Bとが、それぞれリアクタ6に連続供給され、流体AとBが合流する合流流路を有するリアクタ6内で化学反応を行い、有機塩素化合物に結合している塩素原子とNaが反応し脱塩素化し、反応済液Cがリアクタ6から排出される。反応済液Cが、所望の脱塩素率(所望の有機塩素化合物濃度)になるように、流体A,Bの供給流量を制御し、リアクタでの所定の反応条件,反応時間(リアクタ内の滞留時間)を確保した流動とすればよい。
【0012】
特にPCBの脱塩素による無害化処理の場合、反応後の処理済油中のPCB濃度を0.5mg/kg(0.5ppm)以下としなければならない。
【0013】
反応済液Cは後処理7の工程で適切に処理され、後処理後の廃液8は産業廃棄物として処分される。
【0014】
本発明の対象となる有機塩素化合物としては塩素原子が炭素と結合している化合物であり、例えばPCBやPCB混合油に代表される液体状のものなどである。
【0015】
図2は図1のフローを具体的なハード構成にした実施の形態を示しており、特にPCBの脱塩素化による無害化処理を行うシステムを示している。
【0016】
Na分散体はNa分散体容器13に収納され、該容器に設けた攪拌機14で
Na粒子を均一に分散させている。本実施例では攪拌機を用いているが、超音波器などの分散装置であっても問題ない。Na分散体はポンプ20でリアクタ6に所定量が供給される。
【0017】
Na分散体の場合、活性なNaは鉱油などの溶媒中に分散しており、直接空気や水蒸気と接触しないため空気中でも反応しないが、安全上、Na分散体容器13は不活性ガス9と接続し、不活性ガス雰囲気下とすることが好ましい。不活性ガスとしては窒素(N ),アルゴンなどが用いられる。
【0018】
Na分散体のNa濃度は高いほど溶媒の量が少なくて済むので反応済液Cの量が低減するが、高濃度の場合、ポンプでの供給が困難となることからNa濃度は10〜20重量%とするのが望ましい。
【0019】
一方、有機ハロゲン化合物であるPCB,溶媒である電気絶縁油(鉱油),水素供与体である例えばアルコールであるイソプロピルアルコール(以下IPAと記す)は、各専用容器、具体的にはPCB容器10,電気絶縁油容器11及びIPA容器12に収納され、予混合を行う混合槽18に各ラインに設けた各々のポンプ15〜17で所定量を供給する。
【0020】
ここで、水素供与体であるIPAは、PCBおよび混合している有機塩素化合物の総塩素数を基準に必要な量を供給する。理論量は、塩素1モルに対してOH基1モル分を供給すればよく、IPAの場合はIPA分子1モルでOH基1モルが存在するため、塩素1モルに対してIPA1モル以上を添加すればよい。
【0021】
混合槽18には攪拌機19が設けてあり、ここで十分に各液体が混合される。十分に混合したPCB混合液はポンプ21でリアクタ6に供給される。上記した混合が攪拌機などを用いることなく配管内に設置したミキサなどで速やかに行われる場合には攪拌機19,混合槽18,ポンプ21を不要とすることもできる。
【0022】
図中のPCBは100%濃度のものでも、トリクロロベンゼンなどの有機ハロゲン化合物,電気絶縁油などと混和したPCB混合液であっても良く、混合槽18で所定のPCB,IPA濃度とすればよい。
【0023】
リアクタ6に供給された両液はリアクタである管状の反応管内で合流(反応)してPCBを脱塩素化処理し、リアクタ6から排出される。図には示していないが、リアクタ6,供給ライン,PCB容器10,電気絶縁油容器11及びIPA容器12なども温度制御し、流体温度を一定に保つことで、外気温に影響されずに安定した反応が可能となり、信頼性の高い処理システムができるメリットもある。
【0024】
排出された反応済液Dは攪拌機23を備えた後処理槽22に送られる。後処理槽22では余剰のNaをクエンチ処理するために所定量の水を水供給ポンプ31で注入し、活性なNaをNaOHとする。この際、Naと水の反応熱により反応済液が高温となる場合は、後処理槽22に冷却ジャケット等を設けて温度調整を行ってもよい。また、Naと水の反応で水素が発生することから後処理槽22には発生水素などを排気するための排気系が設置されている。排気系は主にブロア33,活性炭32で構成されており、後処理槽22から排気する気体は活性炭32を介して環境へ放出される。また、クエンチ処理後の処理液Dは油と水が混在しており、油水分離槽24で油,水を分離し、分離した廃油と廃液をそれぞれポンプ26,27を用いて廃油タンク28,廃液タンク29に移送する。分離には静置分離,遠心分離などが用いられる。タンク28,29内の廃油,廃液は産業廃棄物としての処理基準を確認後、適切に処分される。
【0025】
図中のリアクタ6は前述したように管状の反応管(チューブ)で構成されており、処理量の増大に対しては、反応管の数を増し、供給流量を増大したり、1日の運転時間を延長することで対応できる。
【0026】
処理システムの起動時或いは停止時には、配管内のガスの排出,Na粒子の配管内の堆積を防止するため、各ラインに溶媒(電気絶縁油など)のみを供給できるように、ポンプ20,21の上流部には電気絶縁油容器11からのラインが接続され切替バルブが設置されている。
【0027】
水素供与体であるIPAはNaと反応して活性な水素原子を放出すると共に反応熱により発熱する。ある程度の温度になれば、PCBとNaも反応を開始すると考えられる。PCBとNaの反応も発熱反応であるため、反応が進行している間は、放熱よりも発熱が多く、リアクタの温度が上昇する。反応が終息に近づけば、発熱量が減少し、放熱の方が多くなって温度が低下する。リアクタ出口から得られた反応後の試料に含まれるPCBを分析したところ、起動時,定常運転時,停止時のいずれにおいても基準値である0.5mg/kg 以下であった。
【0028】
装置の起動・停止の方法について詳しく述べる。まず、起動前に、リアクタ内を不活性ガスである窒素で置換し、内部に含まれる酸素及び水蒸気を除去したのちに、起動操作を開始する。ただし、既に運転したことがある場合には、リアクタは鉱油で満たされており、その場合には窒素で置換する必要はない。操作の方法を図3に示す。図2の流体A及び流体Bのいずれも溶媒である鉱油とし、同流量でリアクタ6に供給した。リアクタ内が鉱油で満たされたのち、流体AをNa分散体で置き換えた。リアクタ内にはPCB及びIPAともに供給されておらず、反応は起こらず、温度もほとんど変化がない。次に、流体Bを、PCB及びIPAを含む鉱油に切り替えた。すると、リアクタ内で反応が進行し始め、温度上昇が始まった。リアクタ入口から離れるに従い温度が上昇し、極大点を経て温度低下が観測された。この温度分布が定常になることを確認した。定常状態を維持しているということは、リアクタに順調に流体A及びBが供給されていることを示し、かつ予想される反応が進行していることを表す。そこで、流体A及び流体Bの流量を増大させ、所定の処理量になるようにした。その際、常時温度分布を監視し、極大点の位置が常に観測されることを確認した。極大点がリアクタの範囲から出てしまいそうな場合には、流体A及び流体Bの流量を低下させ、流体Aと流体Bの比を変えることなく、全体の流量を低下させた。
【0029】
数時間の運転後、停止操作に入った。まず、流体Bを鉱油に置換して供給した。PCB及びIPAが供給されなくなったため、温度が低下しはじめ、完全に鉱油で置換されるとリアクタ温度はほぼ一定となった。その後、流体Aを鉱油に切り替えた。リアクタ内には鉱油のみが流れるようになったことを確認してポンプを停止した。
【0030】
この操作を数回繰り返し、IPAとNaとの反応で水素を発生すると同時に生成するアルコキシドや、NaとPCB中の塩素との反応生成物である塩化ナトリウムによる、リアクタ内への付着,堆積による閉塞の状況を調べた。特にアルコキシドは、付着性が強く、反応流路内の流路壁面に付着し、流路を閉塞する主要因となっている。同時に、Na分散体中に含まれるNa粒子の堆積についても調べた。
【0031】
リアクタ6の閉塞状況は、リアクタ上流部に設けた圧力計,リアクタ前後の差圧(いずれも図示せず)で監視した。また、反応量が変化するため、リアクタの温度分布でも確認することが可能である。リアクタの流路に反応生成物が付着してくると、流路断面積が小さくなり、流速が増大するため流動抵抗が増大し、圧力計,差圧計の値が上昇する。また、付着が進行し、閉塞により流体の供給量が低減した場合、反応熱が減少し、リアクタの温度分布の極大点が入口側にシフトすると共に、温度上昇が小さくなる。従って、圧力(差圧)の増大,温度上昇の低下から流路閉塞を判断することが可能である。本実施例では、上記のようなリアクタへの付着や閉塞の兆候は認められなかった。
【0032】
なお、用いたNa分散剤中のNa平均粒子径は約10μmである。Na濃度は10〜20重量%の範囲とした。リアクタ1本の内径は1mm〜10mm、長さはリアクタ温度分布の極大が現れるのに十分な長さがあればよい。これを複数本並列化して使用できる。
【0033】
本実施例では、水素供与体としてIPAを用いたが、Naと反応して容易に水素を発生するアルコール,フェノール類,カルボン酸,水なども使用可能である。特に常温で液体でNaとの反応も適度なアルコールが望ましく、特にNaとの反応性,溶媒との親和性等を考慮するとIPA(イソプロピルアルコール)が最も好ましい。上記水素供与体は単独で用いても、2種類以上を混合しても、さらには溶媒との親和性を高めるために界面活性剤を添加してもよい。
【0034】
水素供与体はNaと反応し水素を発生することからIPAの添加量に伴いNaも消費される。よってPCBの脱塩素に必要なNa量、すなわちNa/Clモル比は、IPA/Clモル比より多く必要となる。IPA,Na使用量は処理コストの観点から重合が抑制できる理論量近傍での少量使用が望ましく、IPA/Clモル比は1〜10、Na/Clモル比は2〜20が好ましく、さらには、IPA/Clモル比は1〜2、Na/Clモル比は2〜5が好ましい。
【0035】
一方、溶媒についても使用量が少ない方が低コスト,省スペース化のメリットがあるが、溶媒である鉱油量が少ないと、反応液に占める反応固体生成物量の割合が大きくなり流路閉塞の恐れ、また反応熱による流体の温度上昇の観点からも、極端に少なくできない。PCB混合液とNa分散体両液の全量(合計流量)に占めるPCB(有機ハロゲン化合物量)量(流量)は、重量比で30%以下とするのが好ましい。
【0036】
なお、溶媒としては、Na分散体に使用する溶媒とPCBと混合する溶媒とは同一物質もしくは親和性の良いものが好ましく、特に灯油,鉱油,電気絶縁油,トランスオイル,パラフィンなどが好ましい。特に高沸点で、流動性も良い電気絶縁油,鉱油,トランスオイルが好ましい。
【0037】
上記溶媒は単独で用いても、2種類以上を混合しても、さらには有機塩素化合物および水素供与体との親和性を高めるために界面活性剤を添加してもよい。
【0038】
実施例2
実施例1と同様にして、装置の起動・停止を実施した。その方法を図4に示す。流体A及び流体B(図2)のいずれも、溶媒である鉱油とし、同流量でリアクタ6に供給した。リアクタ内が鉱油で満たされたのち、流体AをNa分散体で置き換えた。リアクタ内にはPCB及びIPAともに供給されておらず、反応は起こらず、温度もほとんど変化がない。次に、流体Bを、IPAだけを含む鉱油に切り替えた。すると、リアクタ内で反応が進行し始め、温度上昇が始まった。定常になったところで、PCBを追加した。これによりさらに温度が上昇し、極大点を経て温度低下が観測された。この温度分布が定常になることを確認した。
【0039】
数時間の運転後、停止操作に入った。まず、流体Bを、IPAだけを含む鉱油に置換して供給した。IPAが供給されなくなったため、温度が低下しはじめた。さらに、鉱油のみを供給するようにした。リアクタ温度は低下し、ほぼ一定となった。その後、流体Aを鉱油に切り替えた。リアクタ内には鉱油のみが流れるようになったことを確認してポンプを停止した。
【0040】
この操作を数回繰り返し、アルコキシドや塩化ナトリウムによる、リアクタ内への付着,堆積による閉塞の状況を調べた。同時に、Na分散体中に含まれるNa粒子の堆積についても調べた。
【0041】
本実施例では、リアクタへの付着や閉塞の兆候は認められなかった。
【0042】
また、リアクタ出口から得られた反応後の試料に含まれるPCBを分析したところ、起動時,定常運転時,停止時のいずれにおいても基準値である0.5mg/kg以下であった。
【0043】
なお、本実施例では、図2に示したシステムに、IPAと鉱油を混合する混合槽を追加して実施した。
【0044】
【発明の効果】
本発明によれば、Na分散体に含まれるNa粒子および反応生成物で流路が閉塞することなく、PCBのような有機塩素化合物を管状リアクタに連続供給して、安定に化学反応を行うことができ、長時間に渡って、基準以下まで脱塩素処理が可能となる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す処理フロー図。
【図2】本発明の一実施例を示す処理システムの概要図。
【図3】本発明の一実施例を示す起動・停止フロー図。
【図4】本発明の他の実施例を示す起動・停止フロー図。
【符号の説明】
1…金属Na分散体、2…有機塩素化合物、3…溶媒、4…水素供与体、5…予混合、6…リアクタ、7…後処理、8…廃液、9…不活性ガス、10…PCB容器、11…電気絶縁油容器、12…IPA容器、13…Na分散体容器、14,19,23,25…攪拌機、18…混合槽、22…後処理槽、24…油水分離槽、28…廃油タンク、29…廃液タンク、30…水タンク、31…水供給ポンプ、32…活性炭、33…ブロア。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for starting or stopping a processing apparatus for dechlorinating organochlorine compounds, particularly polychlorinated biphenyl (PCB), which is an environmental pollutant, with a metal sodium dispersion.
[0002]
[Prior art]
As a method of treating contaminated oil containing organochlorine compounds, especially organic chlorine compounds such as PCB, which is an environmental pollutant, and polychlorinated biphenyl (PCB), alkali metals, particularly solid metal sodium (hereinafter referred to as Na) are used. ) In the form of fine particles and dispersed in a solvent such as electrical insulating oil, active Na and chlorine atoms in PCB are reacted in a reaction vessel to decompose into sodium chloride (NaCl) and biphenyl, and PCB A method of dechlorinating and detoxifying is known (for example, see Patent Document 1).
[0003]
Since the dechlorination reaction is an exothermic reaction, in order to suppress the temperature rise due to the heat of reaction, conventionally, a PCB or Na dispersion was dropped into the reaction vessel, and the reaction was carried out for a long time while stirring with a stirrer to perform dechlorination treatment. Yes. In order to accelerate the reaction, the reaction tank is heated, and on the other hand, in order to remove the heat of reaction, electric insulating oil is added or the reaction tank is cooled to control the reaction temperature to a predetermined value.
[0004]
[Patent Document 1]
JP-A-49-82570 (Claims)
[0005]
[Problems to be solved by the invention]
The object of the present invention is to apply a reaction product and Na dispersion to the inner surface of a flow channel when applying a tubular reactor in order to easily and accurately carry out reaction temperature control, which has been complicated in the past. This is to prevent the flow path from being blocked.
[0006]
[Means for Solving the Problems]
The present invention relates to a mixed solution obtained by mixing an organic chlorine compound and at least one hydrogen donor, or a mixed solution obtained by adding at least one solvent to the mixed solution, and Na in which metal Na particles are dispersed in the solvent. In the organochlorine compound processing apparatus in which the mixed liquid and the Na dispersion are continuously supplied to a tubular reactor in which a merged flow path where the dispersion is joined is formed, the flow path is set when the tubular reactor is started or stopped. Prevents clogging of the flow path due to adhesion of Na particles, products alkoxide, and sodium chloride in the Na dispersion at the inner or mixed flow path of the mixed liquid and Na dispersion, and also at the outlet of the tubular reactor It is related with the start / stop method for doing. In the present invention, it is possible to prevent discharge from the reactor in a state where the treatment is insufficient.
[0007]
In the present invention, a single tubular reactor or a plurality of tubular reactors are provided with the same effect. Materials for the reactor include PTFE (polytetrafluoroethylene), PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer), FEP (tetrafluoroethylene / hexafluoropropylene copolymer), and ETFE (fluorine resin). Tetrafluoroethylene / ethylene copolymer), PVDF (polyvinyldenfluoride), PCTFE (polychlorotrifluoroethylene) and the like can be used. A material coated with these materials may be used. In addition, a material having the same action such as silica and an inert film may be coated.
[0008]
Examples of hydrogen donors include alcohols, phenols, carboxylic acids, and water, such as methanol, ethanol, modified alcohols, propanol, isopropyl alcohol, butanol, pentanol, hexanol, isoamyl alcohol, ethylene glycol, cyclohexanol, propylene glycol. , Benzyl alcohol, glycerin, or a mixture thereof, and those to which a surfactant that enhances affinity with a solvent is added can be used.
[0009]
The solvent is a hydrocarbon, and in particular, kerosene, paraffin, mineral oil, electrical insulating oil, or a mixture thereof, and those added with a surfactant that enhances the affinity with the hydrogen donor can be used.
[0010]
It is natural that the organic chlorine compound is treated to a reference value or less during operation, but the reference must be satisfied even when starting or stopping. Otherwise it must be processed again. Since the organic chlorine compound is dechlorinated by the metal Na and hydrogen donor and detoxified, it is necessary to supply the Na dispersion first at the start-up, and then supply the organic chlorine compound and the hydrogen donor to be treated. is there. The hydrogen donor is preferably supplied simultaneously with the organochlorine compound. This is because if the hydrogen donor does not coexist when the organic chlorine compound is dechlorinated, the reaction does not start. If the reaction starts, the organic chlorine from which another chlorine has been released in the portion from which chlorine has been released. This is because the compound is bonded to form a polymer. This polymer may adhere and accumulate in the reactor, causing the reactor to become clogged. Further, the hydrogen donor may be supplied before supplying the organic chlorine compound.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Example 1
1 and 2 show an outline of a treatment system for dechlorinating an organic halogen compound according to the present invention. FIG. 1 shows a schematic flow diagram of a treatment system for dechlorination. A fluid in which the fluid A as the metal Na dispersion 1, the fluid B1 as the organochlorine compound 2, the fluid B2 as the solvent 3, and the fluid B3 as the hydrogen donor 4 are sufficiently mixed by means of the premixing 5. A certain fluid B is continuously supplied to the reactor 6, and a chemical reaction is performed in the reactor 6 having a merging channel where the fluids A and B merge, and the chlorine atom bonded to the organochlorine compound reacts with Na. After dechlorination, the reacted liquid C is discharged from the reactor 6. The supply flow rates of fluids A and B are controlled so that the reacted liquid C has a desired dechlorination rate (desired organochlorine compound concentration), and predetermined reaction conditions and reaction time (retention in the reactor) in the reactor. It is sufficient to make the flow secure (time).
[0012]
In particular, in the case of detoxification treatment by dechlorination of PCB, the PCB concentration in the treated oil after the reaction must be 0.5 mg / kg (0.5 ppm) or less.
[0013]
The reacted liquid C is appropriately treated in the post-treatment step 7, and the post-treatment waste liquid 8 is disposed as industrial waste.
[0014]
The organic chlorine compound that is the subject of the present invention is a compound in which a chlorine atom is bonded to carbon, such as a liquid compound represented by PCB or PCB mixed oil.
[0015]
FIG. 2 shows an embodiment in which the flow of FIG. 1 has a specific hardware configuration, and particularly shows a system for performing detoxification processing by dechlorination of PCB.
[0016]
The Na dispersion is stored in a Na dispersion container 13 and the Na particles are uniformly dispersed by a stirrer 14 provided in the container. In this embodiment, a stirrer is used, but there is no problem even if a dispersing device such as an ultrasonic device is used. A predetermined amount of Na dispersion is supplied to the reactor 6 by the pump 20.
[0017]
In the case of Na dispersion, active Na is dispersed in a solvent such as mineral oil and does not react in air because it is not in direct contact with air or water vapor. However, for safety, the Na dispersion container 13 is connected to an inert gas 9. However, it is preferable to use an inert gas atmosphere. Nitrogen (N 2 ), argon or the like is used as the inert gas.
[0018]
The higher the Na concentration of the Na dispersion, the less the amount of solvent is required, so the amount of the reacted liquid C is reduced. However, when the concentration is high, the supply with a pump becomes difficult, so the Na concentration is 10 to 20 wt. % Is desirable.
[0019]
On the other hand, PCB, which is an organic halogen compound, electrical insulating oil (mineral oil), which is a solvent, and isopropyl alcohol (hereinafter referred to as IPA), which is a hydrogen donor, are used for each dedicated container, specifically, the PCB container 10, A predetermined amount is supplied to each of the pumps 15 to 17 provided in each line to a mixing tank 18 which is housed in the electrical insulating oil container 11 and the IPA container 12 and performs premixing.
[0020]
Here, IPA which is a hydrogen donor supplies a necessary amount on the basis of the total number of chlorines in the PCB and the mixed organic chlorine compound. The theoretical amount may be one mole of OH groups supplied per mole of chlorine. In the case of IPA, 1 mole of OH groups is present per mole of IPA, so 1 mole of IPA is added per mole of chlorine. do it.
[0021]
The mixing tank 18 is provided with a stirrer 19 where the liquids are sufficiently mixed. The sufficiently mixed PCB mixed solution is supplied to the reactor 6 by the pump 21. In the case where the above-described mixing is performed quickly with a mixer or the like installed in the pipe without using a stirrer or the like, the stirrer 19, the mixing tank 18, and the pump 21 can be eliminated.
[0022]
The PCB in the figure may be a PCB having a 100% concentration, a PCB mixed solution mixed with an organic halogen compound such as trichlorobenzene, electrical insulating oil, or the like, and a predetermined PCB or IPA concentration may be set in the mixing tank 18. .
[0023]
Both liquids supplied to the reactor 6 join (react) in a tubular reaction tube as a reactor to dechlorinate PCB, and are discharged from the reactor 6. Although not shown in the figure, the reactor 6, supply line, PCB container 10, electrical insulating oil container 11 and IPA container 12 are also controlled in temperature, and the fluid temperature is kept constant, so that it is stable without being affected by the outside air temperature. Reaction is possible, and there is an advantage that a highly reliable processing system can be realized.
[0024]
The discharged reacted liquid D is sent to a post-treatment tank 22 equipped with a stirrer 23. In the post-treatment tank 22, a predetermined amount of water is injected by the water supply pump 31 in order to quench excess Na, and active Na is made NaOH. At this time, when the reacted liquid becomes high temperature due to the reaction heat of Na and water, the temperature may be adjusted by providing a cooling jacket or the like in the post-treatment tank 22. Further, since hydrogen is generated by the reaction of Na and water, the post-treatment tank 22 is provided with an exhaust system for exhausting the generated hydrogen and the like. The exhaust system mainly includes a blower 33 and activated carbon 32, and the gas exhausted from the post-treatment tank 22 is released to the environment via the activated carbon 32. In addition, the treatment liquid D after the quench treatment contains a mixture of oil and water, and the oil and water are separated in the oil / water separation tank 24, and the separated waste oil and waste liquid are separated into waste oil tank 28 and waste liquid using pumps 26 and 27, respectively. Transfer to tank 29. For separation, stationary separation, centrifugation, or the like is used. The waste oil and waste liquid in the tanks 28 and 29 are properly disposed after confirming the treatment standard as industrial waste.
[0025]
As described above, the reactor 6 in the figure is composed of a tubular reaction tube (tube). To increase the processing amount, the number of reaction tubes is increased, the supply flow rate is increased, or the daily operation is increased. This can be done by extending the time.
[0026]
When the processing system is started or stopped, the pumps 20 and 21 are provided so that only the solvent (electrical insulating oil, etc.) can be supplied to each line in order to prevent the discharge of gas in the pipe and the accumulation of Na particles in the pipe. A line from the electrical insulating oil container 11 is connected to the upstream portion, and a switching valve is installed.
[0027]
IPA, which is a hydrogen donor, reacts with Na to release active hydrogen atoms and generates heat due to heat of reaction. If the temperature reaches a certain level, it is considered that PCB and Na also start the reaction. Since the reaction between PCB and Na is also an exothermic reaction, while the reaction is in progress, heat is generated more than heat dissipation, and the temperature of the reactor rises. When the reaction approaches the end, the calorific value decreases, the heat release increases, and the temperature decreases. When PCB contained in the sample after the reaction obtained from the reactor outlet was analyzed, it was 0.5 mg / kg or less, which is a reference value, at any time of starting, steady operation, and stopping.
[0028]
The method for starting and stopping the apparatus will be described in detail. First, before starting up, the inside of the reactor is replaced with nitrogen, which is an inert gas, and after the oxygen and water vapor contained therein are removed, the starting operation is started. However, if it has already been operated, the reactor is filled with mineral oil, in which case it is not necessary to replace it with nitrogen. The method of operation is shown in FIG. Each of fluid A and fluid B in FIG. 2 was a mineral oil as a solvent, and was supplied to the reactor 6 at the same flow rate. After the reactor was filled with mineral oil, fluid A was replaced with Na dispersion. Neither PCB nor IPA is supplied into the reactor, the reaction does not occur, and the temperature hardly changes. Next, fluid B was switched to mineral oil containing PCB and IPA. Then, the reaction started to proceed in the reactor and the temperature started to rise. The temperature rose with increasing distance from the reactor inlet, and a temperature drop was observed via the maximum point. It was confirmed that this temperature distribution was steady. Maintaining a steady state indicates that fluids A and B are being smoothly supplied to the reactor and that an expected reaction is in progress. Therefore, the flow rates of fluid A and fluid B are increased so as to obtain a predetermined processing amount. At that time, the temperature distribution was constantly monitored, and it was confirmed that the position of the maximum point was always observed. When the maximum point was likely to come out of the reactor range, the flow rates of fluid A and fluid B were reduced, and the overall flow rate was reduced without changing the ratio of fluid A and fluid B.
[0029]
After several hours of operation, the vehicle started to stop. First, fluid B was replaced with mineral oil and supplied. Since PCB and IPA were no longer supplied, the temperature began to drop and the reactor temperature became nearly constant when completely replaced with mineral oil. Thereafter, fluid A was switched to mineral oil. The pump was stopped after confirming that only mineral oil was allowed to flow into the reactor.
[0030]
This operation is repeated several times, and hydrogen is generated by the reaction between IPA and Na. Simultaneously, alkoxide generated and sodium chloride, which is a reaction product of Na and chlorine in PCB, are stuck in the reactor and blocked by deposition. I investigated the situation. In particular, the alkoxide has a strong adhesion and adheres to the wall surface of the reaction channel, which is a main factor for blocking the channel. At the same time, the deposition of Na particles contained in the Na dispersion was also examined.
[0031]
The blockage of the reactor 6 was monitored with a pressure gauge provided upstream of the reactor and a differential pressure before and after the reactor (both not shown). Moreover, since the reaction amount changes, it can also be confirmed by the temperature distribution of the reactor. When the reaction product adheres to the flow path of the reactor, the cross-sectional area of the flow path decreases, the flow velocity increases, the flow resistance increases, and the values of the pressure gauge and differential pressure gauge rise. Further, when the adhesion progresses and the supply amount of the fluid is reduced due to the blockage, the reaction heat is reduced, the maximum point of the temperature distribution of the reactor is shifted to the inlet side, and the temperature rise is reduced. Therefore, it is possible to determine the blockage of the flow path from the increase in pressure (differential pressure) and the decrease in temperature rise. In this example, there was no sign of adhesion or blockage to the reactor as described above.
[0032]
In addition, the Na average particle diameter in the used Na dispersing agent is about 10 micrometers. The Na concentration was in the range of 10 to 20% by weight. The inner diameter of one reactor may be 1 mm to 10 mm, and the length only needs to be long enough for the maximum of the reactor temperature distribution to appear. A plurality of these can be used in parallel.
[0033]
In this example, IPA was used as the hydrogen donor, but alcohols, phenols, carboxylic acids, water, etc. that readily generate hydrogen by reacting with Na can also be used. In particular, an alcohol that is liquid at normal temperature and has an appropriate reaction with Na is desirable, and IPA (isopropyl alcohol) is most preferable in consideration of reactivity with Na, affinity with a solvent, and the like. The hydrogen donor may be used alone, or two or more types may be mixed, or a surfactant may be added to increase the affinity with the solvent.
[0034]
Since the hydrogen donor reacts with Na to generate hydrogen, Na is also consumed with the amount of IPA added. Therefore, the amount of Na necessary for PCB dechlorination, that is, the Na / Cl molar ratio, is required to be larger than the IPA / Cl molar ratio. The amount of IPA and Na used is preferably a small amount in the vicinity of the theoretical amount that can suppress polymerization from the viewpoint of processing cost, the IPA / Cl molar ratio is preferably 1 to 10, and the Na / Cl molar ratio is preferably 2 to 20, The IPA / Cl molar ratio is preferably 1-2, and the Na / Cl molar ratio is preferably 2-5.
[0035]
On the other hand, the smaller the amount of solvent used, the lower the cost and the space-saving merit. However, if the amount of mineral oil as the solvent is small, the proportion of the reaction solid product in the reaction solution increases and the channel may be blocked. Also, from the viewpoint of temperature rise of the fluid due to reaction heat, it cannot be extremely reduced. The amount (flow rate) of PCB (organohalogen compound) in the total amount (total flow rate) of both the PCB mixed solution and Na dispersion is preferably 30% or less.
[0036]
As the solvent, the solvent used for the Na dispersion and the solvent mixed with PCB are preferably the same substance or those having good affinity, and kerosene, mineral oil, electrical insulating oil, trans oil, paraffin and the like are particularly preferable. Particularly preferred are electrical insulating oils, mineral oils and transformer oils having a high boiling point and good fluidity.
[0037]
The above solvents may be used singly, or two or more kinds may be mixed, or a surfactant may be added to enhance the affinity with the organic chlorine compound and the hydrogen donor.
[0038]
Example 2
The apparatus was started and stopped in the same manner as in Example 1. The method is shown in FIG. Both fluid A and fluid B (FIG. 2) were mineral oil as a solvent, and were supplied to the reactor 6 at the same flow rate. After the reactor was filled with mineral oil, fluid A was replaced with Na dispersion. Neither PCB nor IPA is supplied into the reactor, the reaction does not occur, and the temperature hardly changes. Next, fluid B was switched to mineral oil containing only IPA. Then, the reaction started to proceed in the reactor and the temperature started to rise. When it became steady, PCB was added. As a result, the temperature further increased, and a temperature decrease was observed through the maximum point. It was confirmed that this temperature distribution was steady.
[0039]
After several hours of operation, the vehicle started to stop. First, the fluid B was supplied after being replaced with mineral oil containing only IPA. Since IPA was no longer supplied, the temperature began to drop. Furthermore, only mineral oil was supplied. The reactor temperature dropped and became almost constant. Thereafter, fluid A was switched to mineral oil. The pump was stopped after confirming that only mineral oil was allowed to flow into the reactor.
[0040]
This operation was repeated several times, and the state of clogging due to adhesion and deposition in the reactor due to alkoxide and sodium chloride was investigated. At the same time, the deposition of Na particles contained in the Na dispersion was also examined.
[0041]
In this example, there was no sign of adhesion or blockage to the reactor.
[0042]
Further, when the PCB contained in the sample after reaction obtained from the reactor outlet was analyzed, it was 0.5 mg / kg or less, which is a reference value at any time of starting, steady operation, and stopping.
[0043]
In addition, in the present Example, it added and implemented the mixing tank which mixes IPA and mineral oil to the system shown in FIG.
[0044]
【The invention's effect】
According to the present invention, an organic chlorine compound such as PCB is continuously supplied to a tubular reactor and the chemical reaction is stably performed without clogging the flow path with Na particles and reaction products contained in the Na dispersion. It is possible to dechlorinate to below the standard for a long time.
[Brief description of the drawings]
FIG. 1 is a process flow diagram showing an embodiment of the present invention.
FIG. 2 is a schematic diagram of a processing system showing an embodiment of the present invention.
FIG. 3 is a start / stop flow chart showing an embodiment of the present invention.
FIG. 4 is a start / stop flowchart showing another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Metal Na dispersion, 2 ... Organochlorine compound, 3 ... Solvent, 4 ... Hydrogen donor, 5 ... Premix, 6 ... Reactor, 7 ... Post-treatment, 8 ... Waste liquid, 9 ... Inert gas, 10 ... PCB Container, 11 ... Electrical insulating oil container, 12 ... IPA container, 13 ... Na dispersion container, 14, 19, 23, 25 ... Stirrer, 18 ... Mixing tank, 22 ... Post-treatment tank, 24 ... Oil-water separation tank, 28 ... Waste oil tank, 29 ... waste liquid tank, 30 ... water tank, 31 ... water supply pump, 32 ... activated carbon, 33 ... blower.

Claims (3)

金属Na粒子が溶媒中に分散したNa分散体を供給する流路Aと、有機塩素化合物と少なくとも1種類の水素供与体とを混合した混合液または前記混合液にさらに少なくとも1種類の溶媒を加えた混合液を供給する流路Bとを有し、前記流路AとBが合流する合流流路を備えた管状リアクタに、前記混合液とNa分散体とを連続供給する有機塩素化合物処理装置の起動方法であって、処理を開始するにあたり、まず、前記流路Aと流路Bに溶媒を、それぞれ前記Na分散体及び前記混合液の代わりに供給し、次に前記流路Aに、溶媒に代わってNa分散体を供給し、その後、前記流路Bに、溶媒に代わって前記混合液を供給することを特徴とする有機塩素化合物処理装置の起動方法。At least one kind of solvent is added to the channel A for supplying the Na dispersion in which the metal Na particles are dispersed in the solvent, the mixed liquid of the organic chlorine compound and at least one hydrogen donor, or the mixed liquid. Organochlorine compound processing apparatus that continuously supplies the mixed liquid and the Na dispersion to a tubular reactor having a flow path B for supplying the mixed liquid and having a merged flow path where the flow paths A and B merge. In starting the process, first, a solvent is supplied to the flow path A and the flow path B, respectively, instead of the Na dispersion and the mixed solution, and then to the flow path A. An organic chlorine compound processing apparatus start-up method, wherein an Na dispersion is supplied instead of a solvent, and then the mixed solution is supplied instead of the solvent to the channel B. 金属Na粒子が溶媒中に分散したNa分散体を供給する流路Aと、有機塩素化合物と少なくとも1種類の水素供与体とを混合した混合液または前記混合液にさらに少なくとも1種類の溶媒を加えた混合液を供給する流路Bとを有し、前記流路AとBとが合流する合流流路を有する管状リアクタに、前記混合液とNa分散体とを連続供給する有機塩素化合物処理装置の停止方法であって、処理を終了するにあたり、まず、前記流路Bに、混合液に代わって溶媒を供給し、次いで前記流路Aに、Na分散体に代わって溶媒を供給し、その後で前記流路A及びBへの溶媒の供給を停止することを特徴とする有機塩素化合物処理装置の停止方法。At least one kind of solvent is added to the channel A for supplying the Na dispersion in which the metal Na particles are dispersed in the solvent, the mixed liquid of the organic chlorine compound and at least one hydrogen donor, or the mixed liquid. Organochlorine compound processing apparatus that continuously supplies the mixed liquid and the Na dispersion to a tubular reactor having a flow path B for supplying the mixed liquid and having a merged flow path where the flow paths A and B merge. In stopping the process, first, a solvent is supplied to the channel B instead of the mixed solution, and then a solvent is supplied to the channel A instead of the Na dispersion. And stopping the supply of the solvent to the flow paths A and B. 金属Na粒子が溶媒中に分散したNa分散体と、有機塩素化合物と少なくとも1種類の水素供与体とを混合した混合液または前記混合液にさらに少なくとも1種類の溶媒を加えた混合液とが合流する合流流路を有する管状リアクタに、前記混合液とNa分散体とを連続供給する有機塩素化合物処理装置の起動・停止方法において、前記管状リアクタの起動時には、まず前記Na分散体を供給した後に、前記水素供与体及び有機塩素化合物の順にまたはこれらを同時に供給し、停止時には、前記有機塩素化合物及び水素供与体の順にあるいはこれらを同時に供給停止した後に、前記Na分散体の供給を停止することを特徴とする有機塩素化合物処理装置の起動・停止方法。A Na dispersion in which metal Na particles are dispersed in a solvent and a mixed solution obtained by mixing an organic chlorine compound and at least one hydrogen donor or a mixed solution obtained by adding at least one solvent to the mixed solution are combined. In the start / stop method of the organochlorine compound processing apparatus for continuously supplying the mixed solution and the Na dispersion to the tubular reactor having the merging flow path, when the tubular reactor is started, the Na dispersion is first supplied. Supplying the hydrogen donor and the organic chlorine compound in the order or simultaneously, and stopping the supply of the Na dispersion after stopping the supply of the organic chlorine compound and the hydrogen donor in order or simultaneously. A method for starting and stopping an organochlorine compound processing apparatus.
JP2003174203A 2003-06-19 2003-06-19 Method for starting and stopping organochlorine compound processing equipment using metallic sodium dispersion Expired - Fee Related JP4254371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003174203A JP4254371B2 (en) 2003-06-19 2003-06-19 Method for starting and stopping organochlorine compound processing equipment using metallic sodium dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003174203A JP4254371B2 (en) 2003-06-19 2003-06-19 Method for starting and stopping organochlorine compound processing equipment using metallic sodium dispersion

Publications (2)

Publication Number Publication Date
JP2005008549A true JP2005008549A (en) 2005-01-13
JP4254371B2 JP4254371B2 (en) 2009-04-15

Family

ID=34097753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003174203A Expired - Fee Related JP4254371B2 (en) 2003-06-19 2003-06-19 Method for starting and stopping organochlorine compound processing equipment using metallic sodium dispersion

Country Status (1)

Country Link
JP (1) JP4254371B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255083A (en) * 2009-07-27 2009-11-05 Fujifilm Corp Microchemical device-operating method
KR20180079315A (en) * 2015-11-03 2018-07-10 체하테 에르. 바이트리히 게엠베하 Continuous reaction method using fine particle alkali metal dispersion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255083A (en) * 2009-07-27 2009-11-05 Fujifilm Corp Microchemical device-operating method
KR20180079315A (en) * 2015-11-03 2018-07-10 체하테 에르. 바이트리히 게엠베하 Continuous reaction method using fine particle alkali metal dispersion
JP2018536029A (en) * 2015-11-03 2018-12-06 ツェーハーテー エグ. バイトリッヒ ゲーエムベーハー A continuous process for reaction with particulate alkali metal dispersions.
KR102567309B1 (en) * 2015-11-03 2023-08-16 체하테 저머니 게엠베하 Continuous Reaction Method Using Particulate Alkali Metal Dispersion

Also Published As

Publication number Publication date
JP4254371B2 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
Hori et al. Efficient decomposition of perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water
US20170348743A1 (en) Apparatus for Treating Perfluoroalkyl Compounds
US5608136A (en) Method and apparatus for pyrolytically decomposing waste plastic
JP2006312134A (en) Exhaust gas processor and processing method using it
CN104812710B (en) The hydrothermal oxidization processing method of organohalogen compound and its catalyst
JP4254371B2 (en) Method for starting and stopping organochlorine compound processing equipment using metallic sodium dispersion
JP2004337649A (en) Organochlorine compound treatment apparatus
JP3972792B2 (en) Method and apparatus for treating organic halogen compounds
JP4230954B2 (en) Organohalogen compound treatment system
JP4780992B2 (en) Method for inactivating residual alkali metal
JP2005254147A (en) Portable organic chlorine compound treatment apparatus
JP4538613B2 (en) Supercritical processing method and apparatus used therefor
JP2005007285A (en) Treatment apparatus of alkali metal-containing liquid and operation method therefor
CA2062054C (en) Destruction of polychlorinated biphenyls
JP2005007286A (en) System for treating organic halogen compound
JP3437408B2 (en) Supercritical water oxidation method and apparatus
JP3686778B2 (en) Operation method of supercritical water reactor
JP2003210607A (en) Decomposition treatment method for halogenated organic compound
JP2004121495A (en) Treatment method and treatment apparatus for chemical substance having hormone-like activity action
JP2010259681A (en) Method and apparatus for detoxification treatment of pcb-containing oil
JP2005288401A (en) Device for dehalogenating organohalogen, its method, and its system
JP3678740B1 (en) Method for dechlorination of PCB-containing high-concentration organic halogen compounds
JP3210962B2 (en) Decomposition method of halogenated organic matter by high pressure and high temperature thermal water oxidation
US20240116849A1 (en) Method of manufacturing halogen oxoacid and manufacturing apparatus therefor
JP3464897B2 (en) Supercritical water oxidation method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees