JP4230954B2 - Organohalogen compound treatment system - Google Patents

Organohalogen compound treatment system Download PDF

Info

Publication number
JP4230954B2
JP4230954B2 JP2004114204A JP2004114204A JP4230954B2 JP 4230954 B2 JP4230954 B2 JP 4230954B2 JP 2004114204 A JP2004114204 A JP 2004114204A JP 2004114204 A JP2004114204 A JP 2004114204A JP 4230954 B2 JP4230954 B2 JP 4230954B2
Authority
JP
Japan
Prior art keywords
tubular reactor
reaction
reactor
fluid
organic halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004114204A
Other languages
Japanese (ja)
Other versions
JP2005296744A (en
Inventor
明仁 折井
章夫 本地
和雄 高橋
正明 向出
真二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004114204A priority Critical patent/JP4230954B2/en
Publication of JP2005296744A publication Critical patent/JP2005296744A/en
Application granted granted Critical
Publication of JP4230954B2 publication Critical patent/JP4230954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は有機ハロゲン化合物の処理システムに係り、特に環境汚染物質であるポリ塩化ビフェニル(以下、PCBと記す)等の有機塩素化合物を金属ナトリウム分散体と反応させて脱塩素化するのに好適な処理システムに関する。   The present invention relates to an organic halogen compound treatment system, and is particularly suitable for dechlorination by reacting an organic chlorine compound such as polychlorinated biphenyl (hereinafter referred to as PCB), which is an environmental pollutant, with a metal sodium dispersion. It relates to a processing system.

PCB等の有機塩素化合物、或いはPCB等の有機塩素化合物を含有する汚染油の処理方法としては、アルカリ金属、特に固体の金属ナトリウム(以下、Naと記す)を微粒子にして電気絶縁油などの溶媒に分散させたNa分散体を用いるものが知られている(例えば、特許文献1参照)。この処理方法は、活性なNaとPCB中の塩素原子を反応槽内で反応させて塩化ナトリウム(NaCl)とビフェニル類に分解し、PCBを脱塩素化して無害化するものである。   As a method for treating a contaminated oil containing an organic chlorine compound such as PCB or an organic chlorine compound such as PCB, a solvent such as an electrical insulating oil in which alkali metal, particularly solid metal sodium (hereinafter referred to as Na) is finely divided. The one using Na dispersion dispersed in is known (for example, see Patent Document 1). In this treatment method, active Na and chlorine atoms in PCB are reacted in a reaction tank to decompose into sodium chloride (NaCl) and biphenyls, and PCB is dechlorinated to be detoxified.

脱塩素反応は発熱反応であり、反応熱による過度な温度上昇を抑制するために、反応槽内にPCBまたはNa分散体を滴下し、また攪拌機で攪拌しながら長時間反応させて脱塩素処理を行っている。反応を促進するために反応槽を加熱したり、一方で反応熱を除熱するために、電気絶縁油を足したり、或いは反応槽を冷却したりして所定の反応温度に制御することも行われている。   The dechlorination reaction is an exothermic reaction, and in order to suppress an excessive temperature rise due to the heat of reaction, a PCB or Na dispersion is dropped into the reaction vessel, and the reaction is continued for a long time while stirring with a stirrer for dechlorination treatment. Is going. In order to accelerate the reaction, the reaction tank is heated, and on the other hand, in order to remove the heat of reaction, an electric insulating oil is added or the reaction tank is cooled to control to a predetermined reaction temperature. It has been broken.

反応槽での処理の場合、大量処理に伴い反応槽も大型化する。反応槽を大容量化すると反応場が大きくなり反応の不均一が生じるなど、スケールアップに伴い新たな課題が発生する。   In the case of treatment in a reaction vessel, the reaction vessel is also enlarged with a large amount of treatment. When the capacity of the reaction tank is increased, a new problem arises with the scale-up, for example, the reaction field becomes larger and the reaction becomes uneven.

特開昭49−82570号公報(特許請求の範囲)JP-A-49-82570 (Claims)

近年、微小空間(流路)内で流体同士を接触させて反応を行い、反応の不均一化を抑制するマイクロリアクタ技術が注目されている。反応する流路幅をマイクロサイズからミリサイズの範囲にすることで、反応物質の拡散距離を短くでき、機械的攪拌などを行わずに分子拡散により反応を速やかに進ませることができる。このマイクロリアクタ技術を有機ハロゲン化合物の脱ハロゲン化処理に適用することにより、反応槽での反応のように滴下操作等を行わずに、短時間で脱ハロゲン化処理を行うことが可能になる。また、リアクタを複数個備えて、同時に反応させることで大量処理にも対応できる。出願人は、マイクロリアクタ技術を利用して有機ハロゲン化合物を脱ハロゲン化する処理装置を出願(特願2002−296878号)している。   In recent years, attention has been focused on microreactor technology that performs reaction by bringing fluids into contact with each other in a minute space (flow channel) and suppresses nonuniform reaction. By setting the reaction channel width to a range from micro size to millimeter size, the diffusion distance of the reactant can be shortened, and the reaction can be rapidly advanced by molecular diffusion without performing mechanical stirring or the like. By applying this microreactor technology to the dehalogenation treatment of an organic halogen compound, it is possible to perform the dehalogenation treatment in a short time without performing a dropping operation or the like as in the reaction in the reaction vessel. In addition, a large number of reactors can be provided and reacted simultaneously to handle a large amount of processing. The applicant has applied for a processing apparatus (Japanese Patent Application No. 2002-296878) for dehalogenating an organic halogen compound using microreactor technology.

マイクロリアクタ技術を有機ハロゲン化合物の処理に適用した場合、リアクタへ反応液を連続供給して反応を行うフロー処理方式では、リアクタへの安定した流量供給が重要になる。ところが、実際にはポンプの脈動や、流量変動があり、リアクタに安定した流量を供給できず、リアクタ内で反応が十分に行えないという恐れがある。   When the microreactor technology is applied to the treatment of an organic halogen compound, a stable flow rate supply to the reactor is important in the flow processing method in which the reaction liquid is continuously supplied to the reactor to perform the reaction. However, there are actually pump pulsations and flow rate fluctuations, and a stable flow rate cannot be supplied to the reactor, and there is a risk that the reaction cannot be sufficiently performed in the reactor.

本発明の目的は、リアクタ内での状態を監視して、速やかにフィードバック制御したり、処理を停止できるようにした有機ハロゲン化合物処理システムを提供することにある。   An object of the present invention is to provide an organohalogen compound processing system that monitors the state in a reactor and can quickly perform feedback control or stop processing.

本発明は、有機ハロゲン化合物と水素供与体とを混合した混合液または前記混合液にさらに溶媒を加えた混合液と、金属Na粒子が溶媒中に分散したNa分散体とを、ミリサイズの内径を有する管状反応器を用いて、管内で合流させて反応させる有機ハロゲン化合物処理システムにおいて、前記管状反応器を透明又は半透明のフッ素樹脂で構成し、反応器の内部を観察できるようにしたことにある。   The present invention relates to a mixed liquid obtained by mixing an organic halogen compound and a hydrogen donor, or a mixed liquid obtained by further adding a solvent to the mixed liquid, and a Na dispersion in which metal Na particles are dispersed in a solvent. In the organohalogen compound processing system in which the reaction is performed by joining in a tube using a tubular reactor having the above structure, the tubular reactor is made of a transparent or translucent fluororesin so that the inside of the reactor can be observed. It is in.

本発明において、フッ素樹脂製の管状反応器は、その表面の一部を金属製の被覆管で覆うことが望ましい。この場合、前記混合液と前記Na分散体とが合流する部分近傍は被覆管で覆わないようにすることが好ましい。また、できれば、管状反応器の出口部分近傍も被覆管で覆わないようにすることが好ましい。   In the present invention, it is desirable that a part of the surface of the fluororesin tubular reactor is covered with a metal cladding tube. In this case, it is preferable not to cover the vicinity of the portion where the mixed liquid and the Na dispersion meet with a cladding tube. If possible, it is preferable not to cover the vicinity of the outlet portion of the tubular reactor with the cladding tube.

また、被覆管に複数の開口部を設けておき、その開口部から反応器の内部の状況を観察できるようにすることが望ましい。   In addition, it is desirable to provide a plurality of openings in the cladding tube so that the state inside the reactor can be observed from the openings.

本発明によれば、管状反応器がフッ素樹脂で構成されているので、内壁にNa流子が付着しにくくなり管の閉塞が生じにくくなるという効果がある。また、管状反応器は透明又は半透明であるので、反応器の内部の状況を目視で観察でき、フィードバック制御あるいは処理の停止を速やかに行うことができるという効果がある。   According to the present invention, since the tubular reactor is made of a fluororesin, there is an effect that it is difficult for the Na flown to adhere to the inner wall and the tube is not easily blocked. In addition, since the tubular reactor is transparent or translucent, the internal state of the reactor can be visually observed, and feedback control or processing can be stopped quickly.

以下、図面を用いて、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は、ミリサイズの管状反応器を用いて有機ハロゲン化合物を処理する場合の処理フローを示したものである。金属Na分散体1である流体Aと、有機ハロゲン化合物2である流体B1と溶媒3である流体B2および水素供与体4である流体B3とが予混合5の手段により十分に混合された混合液である流体Bとが、リアクタである管状反応器6に連続供給される。流体Aと流体Bは管状反応器6の内部で合流し、有機ハロゲン化合物に結合しているハロゲン原子とNaとが反応して脱ハロゲン化が進み、反応済液Cが管状反応器6から排出される。反応済液Cが、所望の脱ハロゲン率(所望の有機ハロゲン化合物濃度)になるように、流体Aと流体Bの供給流量が制御され、管状反応器6で所定の反応条件、反応時間(管状反応器内の滞留時間)を確保した流動とされる。例えば、PCBの脱塩素による無害化処理の場合には、反応後の処理済油中のPCB濃度が0.5mg/kg(0.5ppm)以下となるように制御される。反応済液Cは後処理7の工程で適切に処理され、後処理液Dは廃液8となり産業廃棄物として処分される。   FIG. 1 shows a processing flow when an organic halogen compound is processed using a millimeter-sized tubular reactor. Fluid A in which metal Na dispersion 1 is mixed, fluid B1 in organic halogen compound 2, fluid B2 in solvent 3, and fluid B3 in hydrogen donor 4 are sufficiently mixed by means of premixing 5. The fluid B is continuously supplied to the tubular reactor 6 which is a reactor. The fluid A and the fluid B merge inside the tubular reactor 6, the halogen atom bonded to the organic halogen compound reacts with Na, dehalogenation proceeds, and the reacted liquid C is discharged from the tubular reactor 6. Is done. The supply flow rates of the fluid A and the fluid B are controlled so that the reacted liquid C has a desired dehalogenation rate (desired organohalogen compound concentration), and the tubular reactor 6 performs predetermined reaction conditions and reaction time (tubular). (Residence time in the reactor). For example, in the case of detoxification treatment by dechlorination of PCB, the PCB concentration in the treated oil after the reaction is controlled to be 0.5 mg / kg (0.5 ppm) or less. The reacted liquid C is appropriately processed in the post-processing step 7, and the post-processing liquid D becomes the waste liquid 8 and is disposed of as industrial waste.

本発明の対象となる有機ハロゲン化合物は、例えば有機塩素化合物であり、その一例は塩素原子が炭素と結合している化合物である。この化合物には、例えばPCB(ポリ塩化ビフェニル)やPCB混合油に代表される液体状のものなどがある。   The organic halogen compound which is a subject of the present invention is, for example, an organic chlorine compound, and an example thereof is a compound in which a chlorine atom is bonded to carbon. Examples of the compound include liquid compounds represented by PCB (polychlorinated biphenyl) and PCB mixed oil.

図2は、図1の処理フローを具体的なハード構成にした実施の形態を示しており、特にPCBの脱塩素化による無害化処理システムを示している。   FIG. 2 shows an embodiment in which the processing flow of FIG. 1 has a specific hardware configuration, and particularly shows a detoxification processing system by dechlorination of PCB.

Na分散体はNa分散体容器13に収納される。容器には攪拌機14が備えられており、Na粒子を均一に分散させている。本実施例では攪拌機を用いているが、超音波器などの分散装置でもよい。Na分散体はポンプ20で管状反応器6に所定量が供給される。   The Na dispersion is stored in the Na dispersion container 13. The container is equipped with a stirrer 14 to uniformly disperse Na particles. In this embodiment, a stirrer is used, but a dispersing device such as an ultrasonic device may be used. A predetermined amount of the Na dispersion is supplied to the tubular reactor 6 by the pump 20.

Na分散体は、活性なNaが鉱油などの溶媒中に分散されたものであり、直接、空気と接触しないため空気中でも反応しないが、安全上、Na分散体容器13は不活性ガスボンベ9と接続し、不活性ガス雰囲気下とすることが好ましい。不活性ガスとしては窒素(N)、アルゴン(Ar)などが用いられる。 The Na dispersion is obtained by dispersing active Na in a solvent such as mineral oil and does not react directly with air because it does not directly contact air, but for safety, the Na dispersion container 13 is connected to an inert gas cylinder 9. However, it is preferable to use an inert gas atmosphere. Nitrogen (N 2 ), argon (Ar), or the like is used as the inert gas.

Na分散体のNa濃度は、高いほど溶媒の量が少なくて済むので反応済液Cの量が低減するが、高濃度の場合、ポンプでの供給が困難となることから、Na濃度は10〜20重量%とすることが好ましい。   The higher the Na concentration of the Na dispersion, the smaller the amount of the solvent, so the amount of the reacted liquid C is reduced. However, when the concentration is high, the supply with a pump becomes difficult. It is preferable to set it as 20 weight%.

また、Naの粒子径は小さいほど反応がよく、平均粒子径は約10μm以下が好ましい。   Also, the smaller the Na particle size, the better the reaction, and the average particle size is preferably about 10 μm or less.

有機ハロゲン化合物であるPCBはPCB容器10に収納され、溶媒である電気絶縁油(鉱油)は電気絶縁油容器11に収納される。水素供与体には主としてアルコールが用いられ、本実施例の場合には、イソプロピルアルコール(以下、IPAと記す)が、IPA容器12に収納されている。これらの容器に収納されたPCB、電気絶縁油およびIPAは、予混合を行う混合槽18に各ラインに設けたポンプ15〜17で所定量が供給される。   PCB, which is an organic halogen compound, is stored in a PCB container 10, and electrical insulating oil (mineral oil), which is a solvent, is stored in an electrical insulating oil container 11. Alcohol is mainly used as the hydrogen donor, and in this embodiment, isopropyl alcohol (hereinafter referred to as IPA) is stored in the IPA container 12. A predetermined amount of PCB, electrical insulating oil, and IPA stored in these containers is supplied to a mixing tank 18 that performs premixing by pumps 15 to 17 provided in each line.

ここで、水素供与体であるIPAは、PCBおよび混合されている有機塩素化合物の総塩素数を基準に必要な量を供給する。理論量は、塩素1モルに対してOH基1モル分を供給すればよく、IPAの場合はIPA分子1モルでOH基1モルが存在するため、塩素1モルに対してIPA1モル以上を添加すればよい。過剰分は水素となって放出されるが、この水素気泡は反応器内で流体を攪拌し、混合を促進する作用がある。   Here, IPA which is a hydrogen donor supplies a necessary amount on the basis of the total number of chlorine in the PCB and the mixed organic chlorine compound. The theoretical amount may be one mole of OH groups supplied per mole of chlorine. In the case of IPA, 1 mole of OH groups is present per mole of IPA, so 1 mole of IPA is added per mole of chlorine. do it. The excess is released as hydrogen, but the hydrogen bubbles act to stir the fluid in the reactor and promote mixing.

本実施例では、混合槽18に攪拌機19が備えられており、各液体が混合される。混合槽18で混合されたPCB混合液は流体Bとなって、ポンプ21で管状反応器6に供給される。PCBと電気絶縁油およびIPAの混合が攪拌機などを用いることなく配管内に設置したミキサーなどで速やかに行われる場合には、混合槽18、攪拌機19、ポンプ21は省略しても良い。   In the present embodiment, the mixing tank 18 is provided with a stirrer 19 and each liquid is mixed. The PCB mixed solution mixed in the mixing tank 18 becomes fluid B and is supplied to the tubular reactor 6 by the pump 21. When mixing of PCB, electrical insulating oil, and IPA is performed quickly with a mixer installed in the piping without using a stirrer or the like, the mixing tank 18, the stirrer 19, and the pump 21 may be omitted.

PCBは100%濃度のものでも良いし、またトリクロロベンゼンなどの有機ハロゲン化合物や電気絶縁油などと混和したPCB混合液であっても良く、混合槽18で所定のPCB,IPA濃度とすればよい。PCB以外に塩素を含有している物質が存在する場合には、混合槽18内の全塩素に対して所望のIPA濃度を設定する。   The PCB may have a concentration of 100%, or may be a PCB mixed solution mixed with an organic halogen compound such as trichlorobenzene or an electrical insulating oil, and the concentration of the PCB and IPA may be set in the mixing tank 18. . When there is a substance containing chlorine other than PCB, a desired IPA concentration is set for all chlorine in the mixing tank 18.

管状反応器6に供給された流体Aと流体Bは、管状反応管6内で合流し、反応してPCBが脱塩素化される。処理された反応済液は管状反応器6から排出される。図2には示していないが、管状反応器6、供給ライン、PCB容器、電気絶縁油容器、IPA容器なども温度制御し、流体温度を一定に保つことで、外気温度に影響されずに安定した反応が可能となり、信頼性の高い処理システムにできるメリットがある。管状反応器6の1本の内径は1mm〜10mm、長さは反応器温度分布の極大が現れるに十分な長さを有していればよい。処理量の増大に対しては、管状反応器6の本数を増やすか、供給流量を増大する、或いは1日の運転時間を延長することで対応できる。   The fluid A and the fluid B supplied to the tubular reactor 6 merge in the tubular reaction tube 6 and react to dechlorinate PCB. The treated reacted liquid is discharged from the tubular reactor 6. Although not shown in FIG. 2, the temperature of the tubular reactor 6, supply line, PCB container, electrical insulating oil container, IPA container, etc. is also controlled, and the fluid temperature is kept constant, so that it is stable without being affected by the outside air temperature. This makes it possible to achieve a highly reliable processing system. The inner diameter of one tubular reactor 6 is 1 mm to 10 mm, and the length only needs to be long enough for the maximum temperature distribution in the reactor to appear. Increasing the throughput can be dealt with by increasing the number of tubular reactors 6, increasing the supply flow rate, or extending the daily operating time.

本実施例では、水素供与体にIPAを用いているが、Naと反応して容易に水素を発生するアルコール、フェノール類、カルボン酸、水なども使用できる。特に常温で液体でありNaとの反応も適度なアルコールが望ましい。アルコールとしては、例えばメタノール、エタノール、変成アルコール、1-プロパノール、IPA、ブタノール、ペンタノール、ヘキサノール、イソアミルアルコール、エチレングリコール、シクロヘキサノール、プロピレングリコール、ベンジルアルコール、グリセリンが好ましい。Naとの反応性、溶媒との親和性等を考慮すると、IPAが特に好ましい。   In this embodiment, IPA is used as the hydrogen donor, but alcohols, phenols, carboxylic acids, water, etc. that easily generate hydrogen by reacting with Na can also be used. In particular, an alcohol that is liquid at room temperature and has an appropriate reaction with Na is desirable. As the alcohol, for example, methanol, ethanol, modified alcohol, 1-propanol, IPA, butanol, pentanol, hexanol, isoamyl alcohol, ethylene glycol, cyclohexanol, propylene glycol, benzyl alcohol, and glycerin are preferable. In view of reactivity with Na, affinity with a solvent, etc., IPA is particularly preferable.

水素供与体は単独で用いても、2種類以上を混合してもよく、また、溶媒との親和性を高めるために界面活性剤を添加してもよい。   The hydrogen donor may be used alone, or two or more types may be mixed, and a surfactant may be added in order to increase the affinity with the solvent.

水素供与体はNaと反応し水素を発生することから、IPAの添加量に伴いNaも消費される。よってPCBの脱塩素に必要なNa量、すなわちNa/Clモル比はIPA/Clモル比より多く必要となる。IPAおよびNaの使用量は、処理コストの観点から重合が抑制できる理論量近傍での使用量が望ましく、IPA/Clモル比は1〜10、Na/Clモル比は2〜24、Na/(Cl+IPA)モル比は1以上が好ましく、さらにはIPA/Clモル比は2〜3、Na/Clモル比は4〜12が好ましい。   Since the hydrogen donor reacts with Na to generate hydrogen, Na is also consumed with the amount of IPA added. Therefore, the amount of Na required for PCB dechlorination, that is, the Na / Cl molar ratio, is required to be larger than the IPA / Cl molar ratio. The amount of IPA and Na used is desirably the amount close to the theoretical amount that can suppress polymerization from the viewpoint of processing cost. The IPA / Cl molar ratio is 1-10, the Na / Cl molar ratio is 2-24, The Cl + IPA) molar ratio is preferably 1 or more, more preferably the IPA / Cl molar ratio is 2 to 3, and the Na / Cl molar ratio is 4 to 12.

一方、溶媒についても、使用量は少ない方が廃油量が少なくなり、低コスト、省スペースのメリットがある。しかし、溶媒量が少ないと反応液に占める反応固体生成物の量の割合が多くなり、流路閉塞の恐れが生じる。反応熱による流体の温度上昇の観点からも極端に少なくできない。PCB混合液とNa分散体を合わせた全量(合計流量)に占めるPCB(有機塩素化合物量)量(流量)は、重量比で18%以下とすることが好ましく、特に5%以下が好ましい。   On the other hand, as for the solvent, the smaller the amount used, the smaller the amount of waste oil, and there are advantages of low cost and space saving. However, when the amount of the solvent is small, the proportion of the amount of the reaction solid product in the reaction solution increases, and there is a risk that the flow path is blocked. It cannot be extremely reduced from the viewpoint of the temperature rise of the fluid due to reaction heat. The amount (flow rate) of PCB (organochlorine compound) in the total amount (total flow rate) of the PCB mixed solution and the Na dispersion is preferably 18% or less, and particularly preferably 5% or less.

なお、Na分散体に使用する溶媒とPCBに混合する溶媒には、同一の物質を用いることが好ましい。同一の物質を使用できない場合には、親和性の良いものを用いることが好ましい。また、溶媒には灯油、鉱油、電気絶縁油、トランスオイル、パラフィンなどを用いることが好ましく、特に高沸点で、流動性も良い電気絶縁油、鉱油、トランスオイルが好ましい。これらは、単独で用いても良いし、或いは2種類以上を混合して用いても良い。また、有機塩素化合物および水素供与体との親和性を高めるために界面活性剤を添加してもよい。   In addition, it is preferable to use the same substance for the solvent used for the Na dispersion and the solvent mixed with the PCB. When the same substance cannot be used, it is preferable to use a substance having good affinity. In addition, kerosene, mineral oil, electrical insulating oil, trans oil, paraffin and the like are preferably used as the solvent, and electrical insulating oil, mineral oil, and trans oil having a high boiling point and good fluidity are particularly preferable. These may be used singly or in combination of two or more. Further, a surfactant may be added in order to increase the affinity with the organic chlorine compound and the hydrogen donor.

管状反応器6は、反応生成物が内壁に付着し流路を閉塞するのを抑制するために、フッ素樹脂製とする。また、反応器の内部の状況を目視で観察できるようにするために、透明または半透明の材料で構成する。具体的には、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体)などで構成することが望ましい。   The tubular reactor 6 is made of a fluororesin in order to suppress reaction products from adhering to the inner wall and closing the flow path. Moreover, in order to be able to observe the internal condition of a reactor visually, it comprises with a transparent or translucent material. Specifically, it is desirable to use PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer), FEP (tetrafluoroethylene / hexafluoropropylene copolymer), or the like.

管状反応器6から排出された反応済液Cは、攪拌機23を備えた後処理槽22に送られる。後処理槽22では余剰のNaをクエンチ処理するために水タンク30から所定量の水をポンプ31で注入し、活性なNaをNaOHとする。この際、Naと水の反応熱により反応済液が高温となる場合は、後処理槽22に冷却ジャケット等を設けて温度調整を行ってもよい。また、Naと水の反応で水素が発生することから、後処理槽22には発生水素などを排気するための排気系が設置される。排気系は主にブロア33、活性炭32で構成されており、後処理槽22から排気する気体は活性炭32を通して環境へ放出される。水素ガスは可燃性の気体であることから安全性を高めるために不活性ガスを供給したり、水素を触媒燃焼し、その燃焼熱を利用したり、水素を直接回収するなど再利用しても良い。また、クエンチ処理後の後処理液Dには油と水が混在しているので、油水分離槽24で攪拌機25を用いて油と水を遠心分離し、分離した廃油と廃液をそれぞれポンプ26、27を用いて廃油タンク28、廃液タンク29に移送する。油と水の分離は、遠心分離のほかに、静置分離などでもよい。廃油、廃液は産業廃棄物としての処理基準を確認後、適切に処分される。   The reacted liquid C discharged from the tubular reactor 6 is sent to a post-treatment tank 22 equipped with a stirrer 23. In the post-treatment tank 22, in order to quench the surplus Na, a predetermined amount of water is injected from the water tank 30 with a pump 31, and active Na is made NaOH. At this time, when the reacted liquid becomes high temperature due to the reaction heat of Na and water, the temperature may be adjusted by providing a cooling jacket or the like in the post-treatment tank 22. Further, since hydrogen is generated by the reaction of Na and water, the post-treatment tank 22 is provided with an exhaust system for exhausting the generated hydrogen and the like. The exhaust system is mainly composed of a blower 33 and activated carbon 32, and the gas exhausted from the post-treatment tank 22 is released to the environment through the activated carbon 32. Since hydrogen gas is a flammable gas, it can be reused by supplying inert gas to improve safety, catalytically burning hydrogen, using the heat of combustion, or recovering hydrogen directly. good. Moreover, since oil and water are mixed in the post-treatment liquid D after the quench treatment, the oil and water are centrifuged using the stirrer 25 in the oil / water separation tank 24, and the separated waste oil and waste liquid are respectively pumped 26, 27 is transferred to a waste oil tank 28 and a waste liquid tank 29. The separation of oil and water may be stationary separation or the like in addition to centrifugation. Waste oil and waste liquid will be disposed of properly after confirming the treatment standard as industrial waste.

本実施例では、処理システムの起動時或いは停止時に、配管内のガスを排出し、また配管内にNa粒子が堆積するのを防止するために、流体Aの供給ライン及び流体Bの供給ラインにおけるポンプ20、21の上流部に溶媒11のラインを接続し、切り替えバルブで切り替えられるようにしている。   In this embodiment, when the processing system is started or stopped, the gas in the pipe is discharged, and in order to prevent Na particles from accumulating in the pipe, the fluid A supply line and the fluid B supply line A line for the solvent 11 is connected to the upstream part of the pumps 20 and 21 so that it can be switched by a switching valve.

図3は、本発明に係る管状反応器6の概略構造を示したものである。管状反応器6には、流体Aを導入する導入管41及び流体Bを導入する導入管42が接続されている。流体A及び流体Bは、それぞれの導入管を流出後、反応器内で合流する。本実施例では流体Aの導入管41の先端部が流体Bの導入管42の先端部42aよりも、管状反応器6の入口近くにあり、流体A,Bを導入する導入管の先端位置が反応器の長手方向で異なるようにしている。これにより、ポンプの脈動に対して他の流体への影響が緩和されるという効果がある。つまり、導入管の先端位置がほぼ同じ場合には、流体Aと流体Bの流量変動が生じた場合に、一方の流体が他方の流体の入口に流入して先端部を閉塞する恐れがあるが、導入管の先端位置をずらすことで、それを防止することができる。どちらを短くするか、どちらを長くするかは任意である。本実施例では、流体Bの導入管42の先端部42aが、流体Aと流体Bの合流開始位置となる。管状反応器6は、内部が目視で観察できるように、透明又は半透明のフッ素樹脂で構成されている。また、管状反応器6の流体Aと流体Bの合流部近傍を除く部分が、例えばステンレス鋼等の金属製の被覆管62で覆われている。透明または半透明のフッ素樹脂で構成することにより、反応器の内部の流量変動が目視により観察でき、反応が良好か否かを判断できる。これにより、早めにフィードバック制御することが可能になり、また流体Aと流体Bを送液する各ポンプを速やかに停止することができる。   FIG. 3 shows a schematic structure of the tubular reactor 6 according to the present invention. The tubular reactor 6 is connected to an introduction pipe 41 for introducing the fluid A and an introduction pipe 42 for introducing the fluid B. The fluid A and the fluid B merge in the reactor after flowing out from the respective introduction pipes. In this embodiment, the distal end portion of the fluid A introduction pipe 41 is closer to the inlet of the tubular reactor 6 than the distal end portion 42 a of the fluid B introduction pipe 42, and the distal end position of the introduction pipe for introducing the fluids A and B is Different in the longitudinal direction of the reactor. Thereby, there is an effect that the influence on other fluids is reduced with respect to the pulsation of the pump. In other words, when the leading end position of the introduction pipe is almost the same, when the flow rate fluctuations of the fluid A and the fluid B occur, one fluid may flow into the inlet of the other fluid and close the leading end. This can be prevented by shifting the tip position of the introduction tube. Which is shorter or which is longer is arbitrary. In the present embodiment, the leading end portion 42 a of the introduction pipe 42 for the fluid B is the joining start position of the fluid A and the fluid B. The tubular reactor 6 is made of a transparent or translucent fluororesin so that the inside can be visually observed. Further, the portion of the tubular reactor 6 excluding the vicinity of the joining portion of the fluid A and the fluid B is covered with a cladding tube 62 made of metal such as stainless steel. By constituting with a transparent or translucent fluororesin, the flow rate fluctuation inside the reactor can be observed visually, and it can be judged whether the reaction is good or not. As a result, feedback control can be performed early, and each pump for feeding fluid A and fluid B can be quickly stopped.

図4は、図3に示す構造の管状反応器を用いた場合の反応器の長手方向における温度分布Nと、被覆管を設けずにフッ素樹脂のみの構成とした管状反応器の長手方向における温度分布Mを比較したものである。被覆管を設けた場合には被覆管による保温作用があるので、被覆管を設けない場合に較べて、ピーク温度位置より下流での反応器の温度低下が抑制されている。反応器出口までの温度が高温に維持されることで、分解効率が向上するので、反応器の長さを短くし、コンパクトな処理装置にすることができる。また、フッ素樹脂製反応器の一部を金属製の被覆管62で覆うことにより反応器の機械的強度が増大し、反応器の破損、損傷によるPCBなどの有害物質の漏洩を防止でき、信頼性の高いシステムが構築できる。   FIG. 4 shows the temperature distribution N in the longitudinal direction of the reactor when the tubular reactor having the structure shown in FIG. 3 is used, and the temperature in the longitudinal direction of the tubular reactor having only a fluororesin without providing a cladding tube. The distributions M are compared. When the cladding tube is provided, there is a heat retaining action by the cladding tube, so that the temperature drop of the reactor downstream from the peak temperature position is suppressed as compared with the case where the cladding tube is not provided. Since the decomposition efficiency is improved by maintaining the temperature up to the outlet of the reactor at a high temperature, the length of the reactor can be shortened and a compact processing apparatus can be obtained. In addition, by covering a part of the fluororesin reactor with a metal cladding tube 62, the mechanical strength of the reactor is increased, and leakage of harmful substances such as PCBs due to damage or damage to the reactor can be prevented. A highly efficient system can be constructed.

図5は、被覆管62に複数の開口部63を設けたものである。本実施例によれば、実施例1と同様の効果が得られ、さらに、開口部63により反応器内部の流動が観察できるようになり、より的確に内部の様子を判断できるようになる。   In FIG. 5, a plurality of openings 63 are provided in the cladding tube 62. According to this example, the same effect as in Example 1 can be obtained, and further, the flow inside the reactor can be observed through the opening 63, and the state of the inside can be judged more accurately.

なお、開口部63の増大による開口面積の増大は、保温効果を低下させることから、開口部63の数及び大きさは、保温効果が著しく低下させない程度でとどめることが好ましい。本実施例では開口部の形状は円形であるが、矩形や、メッシュ構造でもよい。   In addition, since the increase in the opening area due to the increase in the opening 63 reduces the heat retention effect, it is preferable to limit the number and size of the openings 63 to such an extent that the heat retention effect is not significantly reduced. In this embodiment, the shape of the opening is circular, but it may be rectangular or mesh structure.

図6は、管状反応器6の流体Aと流体Bの合流部近傍と反応器出口近傍とを除いた部分に、被覆管62を設けたものである。脱塩素反応はピーク温度直下部でほぼ終息することから、ピーク温度直下部を含む近傍を被覆管62で覆うようにすれば反応率が改善する。反応器の出口近傍に被覆管を設けないようにした場合、良好に反応が進んでいれば、反応管の入口部分と出口部分では、流体の色に変化が現れる。その色の変化を出口近傍で観察することにより、反応の良否を判定することができる。また、その結果をもとに、フィードバック制御を行うことができるというメリットがある。   FIG. 6 shows a case where a cladding tube 62 is provided in a portion of the tubular reactor 6 excluding the vicinity of the joining portion of the fluid A and the fluid B and the vicinity of the reactor outlet. Since the dechlorination reaction is almost terminated immediately below the peak temperature, the reaction rate can be improved by covering the vicinity including the region immediately below the peak temperature with the cladding tube 62. When the cladding tube is not provided near the outlet of the reactor, if the reaction proceeds well, a change in the color of the fluid appears at the inlet and outlet portions of the reactor tube. The quality of the reaction can be determined by observing the color change in the vicinity of the exit. Further, there is an advantage that feedback control can be performed based on the result.

有機ハロゲン化合物の脱ハロゲン化処理を、ミリサイズの管状反応器を用いて行うことができるようになり、また、その場合にリアクタ内で良好に反応が行われているか否かを観察して、フィードバック制御或いは処理システムを速やかに停止させることが可能になった。   The dehalogenation treatment of the organic halogen compound can be performed using a millimeter-sized tubular reactor, and in that case, it is observed whether the reaction is performed well in the reactor, The feedback control or processing system can be quickly stopped.

管状反応器による有機ハロゲン化合物の処理フロー図。The processing flow figure of the organic halogen compound by a tubular reactor. 管状反応器による有機ハロゲン化合物処理システムの構成図。The block diagram of the organic halogen compound processing system by a tubular reactor. 本発明の一実施例による管状反応器の構成図。The block diagram of the tubular reactor by one Example of this invention. フッ素樹脂製管状反応器と、フッ素樹脂製管状反応器の表面の一部を被覆管で覆ったものとについて、反応器の長手方向の温度分布を示した線図。The diagram which showed the temperature distribution of the longitudinal direction of a reactor about the fluororesin tubular reactor and what covered a part of surface of the fluororesin tubular reactor with the cladding. 本発明の他の実施例を示す管状反応器の構成図。The block diagram of the tubular reactor which shows the other Example of this invention. 本発明による管状反応器の他の例を示す構成図。The block diagram which shows the other example of the tubular reactor by this invention.

符号の説明Explanation of symbols

1…金属Na分散体、2…有機ハロゲン化合物、3…溶媒、4…水素供与体、5…予混合、6…管状反応器、41…導入管、42…導入管、62…被覆管、63…開口部。   DESCRIPTION OF SYMBOLS 1 ... Metal Na dispersion, 2 ... Organohalogen compound, 3 ... Solvent, 4 ... Hydrogen donor, 5 ... Premix, 6 ... Tubular reactor, 41 ... Introducing tube, 42 ... Introducing tube, 62 ... Cladding tube, 63 …Aperture.

Claims (3)

有機ハロゲン化合物と水素供与体とを混合した混合液または前記混合液にさらに溶媒を加えた混合液と、金属ナトリウム粒子が溶媒中に分散したナトリウム分散体とを、管状反応器の内部で合流させて反応させる有機ハロゲン化合物処理システムにおいて、前記管状反応器を透明または半透明のフッ素樹脂製にし、かつ前記混合液と前記ナトリウム分散体との合流部近傍を除く前記管状反応器の表面を金属製の被覆管で覆ったことを特徴とする有機ハロゲン化合物処理システム。 A mixed liquid in which an organic halogen compound and a hydrogen donor are mixed or a mixed liquid in which a solvent is further added to the above mixed liquid and a sodium dispersion in which metal sodium particles are dispersed in the solvent are combined inside the tubular reactor. In the organohalogen compound treatment system to be reacted, the tubular reactor is made of a transparent or translucent fluororesin , and the surface of the tubular reactor excluding the vicinity of the junction of the mixed solution and the sodium dispersion is made of metal. An organic halogen compound treatment system characterized by being covered with a cladding tube . 有機ハロゲン化合物と水素供与体とを混合した混合液または前記混合液にさらに溶媒を加えた混合液と、金属ナトリウム粒子が溶媒中に分散したナトリウム分散体とを、管状反応器の内部で合流させて反応させる有機ハロゲン化合物処理システムにおいて、前記管状反応器を透明または半透明のフッ素樹脂製にし、かつ前記混合液と前記ナトリウム分散体との合流部近傍と出口部近傍を除く前記管状反応器の表面を金属製の被覆管で覆ったことを特徴とする有機ハロゲン化合物処理システム。   A mixed liquid in which an organic halogen compound and a hydrogen donor are mixed or a mixed liquid in which a solvent is further added to the above mixed liquid and a sodium dispersion in which metal sodium particles are dispersed in the solvent are combined inside the tubular reactor. In the organic halogen compound treatment system to be reacted, the tubular reactor is made of a transparent or translucent fluororesin, and the vicinity of the junction and the outlet of the mixed liquid and the sodium dispersion are excluded. An organic halogen compound treatment system characterized in that the surface is covered with a metal cladding tube. 請求項またはにおいて、前記被覆管に複数の開口部を設けたことを特徴とする有機ハロゲン化合物処理システム。 3. The organic halogen compound treatment system according to claim 1 , wherein a plurality of openings are provided in the cladding tube.
JP2004114204A 2004-04-08 2004-04-08 Organohalogen compound treatment system Expired - Fee Related JP4230954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004114204A JP4230954B2 (en) 2004-04-08 2004-04-08 Organohalogen compound treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004114204A JP4230954B2 (en) 2004-04-08 2004-04-08 Organohalogen compound treatment system

Publications (2)

Publication Number Publication Date
JP2005296744A JP2005296744A (en) 2005-10-27
JP4230954B2 true JP4230954B2 (en) 2009-02-25

Family

ID=35328942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004114204A Expired - Fee Related JP4230954B2 (en) 2004-04-08 2004-04-08 Organohalogen compound treatment system

Country Status (1)

Country Link
JP (1) JP4230954B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2620413B1 (en) 2007-12-28 2020-07-01 3M Innovative Properties Company Continuous hydrothermal reactor system comprising a fluorinated polymer tubular reactor
JP5383582B2 (en) * 2010-04-11 2014-01-08 中国電力株式会社 Detoxification method for PCB mixed insulating oil
MX2015005138A (en) * 2012-10-28 2015-07-17 Biochemtex Spa Continuous process for conversion of lignin to useful compounds.
JPWO2020183952A1 (en) * 2019-03-14 2020-09-17

Also Published As

Publication number Publication date
JP2005296744A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
Hori et al. Efficient decomposition of perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water
JP5988155B2 (en) Waste liquid treatment equipment
JP4230954B2 (en) Organohalogen compound treatment system
CN104812710B (en) The hydrothermal oxidization processing method of organohalogen compound and its catalyst
JP2004337649A (en) Organochlorine compound treatment apparatus
JP2010259496A (en) Decomposition treatment method for organic halogen compound and decomposition treatment device
JP4254371B2 (en) Method for starting and stopping organochlorine compound processing equipment using metallic sodium dispersion
JP4780992B2 (en) Method for inactivating residual alkali metal
JP2004141815A (en) Method and apparatus for treating organic halogen compound
JP2004201967A (en) Method and apparatus for treating organohalogen compound
JP2005007285A (en) Treatment apparatus of alkali metal-containing liquid and operation method therefor
JP2007105061A (en) Microwave simultaneous use type decomposing method and decomposing system of organic halogen compound
JP2005254147A (en) Portable organic chlorine compound treatment apparatus
JP3686778B2 (en) Operation method of supercritical water reactor
JP4267791B2 (en) Supercritical water treatment equipment
JP2005007286A (en) System for treating organic halogen compound
JP5287505B2 (en) Detoxification treatment method and detoxification treatment apparatus for organohalogen compound residual equipment
JP3976329B2 (en) Organic halogen compound decomposition treatment method and mobile decomposition treatment system
JPH10156175A (en) Starting method and stopping method of supercritical water oxidizing device
KR100522575B1 (en) Wastewater and wasteliquid disposal apparatus using supercritical water oxidation process
JP3703695B2 (en) Nozzle for supercritical water, method for producing clean water using the nozzle for supercritical water, and supercritical water reactor
JP2008194063A (en) Method of degrading highly-concentrated organic chlorine compound
JP2010259681A (en) Method and apparatus for detoxification treatment of pcb-containing oil
JP2001170664A (en) Supercritical water treating device
JP2003210607A (en) Decomposition treatment method for halogenated organic compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees