JP2005001574A - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
JP2005001574A
JP2005001574A JP2003168712A JP2003168712A JP2005001574A JP 2005001574 A JP2005001574 A JP 2005001574A JP 2003168712 A JP2003168712 A JP 2003168712A JP 2003168712 A JP2003168712 A JP 2003168712A JP 2005001574 A JP2005001574 A JP 2005001574A
Authority
JP
Japan
Prior art keywords
motor
phase
current value
value
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003168712A
Other languages
English (en)
Other versions
JP4140454B2 (ja
Inventor
Shigeki Nagase
茂樹 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2003168712A priority Critical patent/JP4140454B2/ja
Publication of JP2005001574A publication Critical patent/JP2005001574A/ja
Application granted granted Critical
Publication of JP4140454B2 publication Critical patent/JP4140454B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Power Steering Mechanism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

【課題】ブラシレスモータを用いた電動パワーステアリング装置において、環境変化によるトルク脈動を防止し、また、デューティ比を制限することなくモータの性能を十分に引き出す。
【解決手段】モータ駆動回路50の全ての相に電流検出回路41〜43を備える。モータ制御部20では、全ての相の電流検出回路41〜43で検出された検出信号に基づくモータ電流値と、操舵トルクに応じて設定された目標電流値との偏差に基づいて、モータ6を駆動するための指令値Vが求められる。また、PWM信号生成回路17では、その指令値Vに応じたデューティ比のPWM信号が生成される。いずれかの相において下側デューティ比が所定値未満になると、その相に流れるモータ電流値は、それ以外の相のモータ電流値より求められる。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、電動パワーステアリング装置に関し、特にブラシレスモータによって車両のステアリング機構に操舵補助力が与えられる電動パワーステアリング装置に関する。
【0002】
【従来の技術】
従来から、運転者がハンドル(ステアリングホイール)に加える操舵トルクに応じて電動モータを駆動することによりステアリング機構に操舵補助力を与える電動パワーステアリング装置が用いられている。この電動パワーステアリング装置には、操舵のための操作手段であるハンドルに加えられる操舵トルクを検出するトルクセンサが設けられており、トルクセンサで検出される操舵トルクに基づき電動モータに供給すべき電流の目標値(以下「目標電流値」という)が設定される。そして、この目標電流値と電動モータに実際に流れる電流の値との偏差に基づいて比例積分演算により電動モータの駆動手段に与えるべき指令値が生成される。電動モータの駆動手段は、その指令値に応じたデューティ比のパルス幅変調信号(以下「PWM信号」という)を生成するPWM信号生成回路と、そのPWM信号のデューティ比に応じてオン/オフするパワートランジスタを用いて構成されるモータ駆動回路とを備え、そのデューティ比に応じた電圧を電動モータに印加する。この電圧印加によって電動モータに流れる電流は電流検出回路によって検出され、この目標電流値と検出値との差が上記指令値を生成するための偏差として使用される。
【0003】
このような電動パワーステアリング装置において、近年は電動モータとしてブラシレスモータが使用されているものもある。図6は、3相のブラシレスモータが使用されている従来の電動パワーステアリング装置における制御装置であるECU5の構成を示すブロック図である。このECU5は、モータ制御部20とモータ駆動部10とリレー駆動回路70と電流検出回路81、82とを備えている。モータ制御部20は、マイクロコンピュータで構成されており、メモリに格納された所定のプログラムを実行することにより作動する。モータ駆動部10は、PWM信号生成回路17と、モータ駆動回路50とから構成される。リレー駆動回路70は、リレー9を開閉することによりモータ駆動部10やモータ6に対して電源供給や電源遮断を行うために設けられている。
【0004】
モータ駆動回路50には、図6に示すように、電源ライン側(バッテリ8側)に配置されたFET(電界効果型トランジスタ)51H〜53Hと接地ライン側に配置されたFET51L〜53Lとが互いに対となるように直列に接続されており、そのFET対が3対並列に接続されて構成されている。各FET51H〜53H、51L〜53Lは、ゲートに印加される電圧に応じて導通状態と非導通状態とが切り替わるスイッチング素子として動作する。なお、一般的にこのような回路において、電源ライン側の回路部分は「上アーム」と呼ばれ、接地ライン側の回路部分は「下アーム」と呼ばれている。上アームと下アームとの接続点は、それぞれモータ端子61〜63と接続されている。図6では、モータ端子61、62、63はそれぞれU相、V相、W相の端子を示している。また、U相とV相とについては、モータ駆動回路50とモータ6との間に電流検出回路81、82が設けられている。この電流検出回路81、82にはホール素子が含まれており、このホール素子に生じる電圧に基づいて、電流が検出される。
【0005】
上述のFET51H〜53H、51L〜53Lは、PWM信号生成回路17によって生成されたPWM信号に基づいてオン/オフされる。これにより、そのPWM信号のデューティ比に応じた電圧がモータ6に印加され、モータ6が駆動される(以下、PWM信号のデューティ比に応じてスイッチング素子がオン/オフし、そのデューティ比に応じた電圧がモータに印加されることにより当該モータが駆動されることを「PWM駆動」という)。このとき、モータ6のU相及びV相に流れる電流は、電流検出回路81、82によってそれぞれ検出される。電流検出回路81、82はモータ制御部20と接続されているので、検出された電流値はモータ制御部20に与えられる。
【0006】
図7は、上記従来例と別の例の電動パワーステアリング装置における制御装置であるECU5の構成を示すブロック図である。図6に示す従来例では、モータ6に流れる電流を検出するために、モータ駆動回路50とモータ6との間に電流検出回路81、82が設けられていたが、図7に示す例では、U相及びV相の下アームにおいて、FET51L、52Lと直列に接続された電流検出回路41、42がそれぞれ設けられている。この電流検出回路41、42にはシャント抵抗が含まれており、そのシャント抵抗の両端間の電圧に基づいて、電流が検出される。このような図7に示す構成の方が図6に示す構成よりも回路が簡素化されるため、図7に示す構成の方が一般的となっている。
【0007】
上記従来技術による構成では、電流検出回路は3相のうちいずれか2相にのみ設けられている。上記のような3相のブラシレスモータを用いた構成においては、モータ6に流れる電流は3相交流となり、各相に流れる電流の値の総和は零になる。図6および図7に示すように、例えばU相とV相とに電流検出回路が設けられている場合、W相に流れる電流の値Iwは、U相に流れる電流の値IuとV相に流れる電流の値Ivとに基づき、以下の式(1)で求められる。
Iw=−(Iu+Iv) ・・・(1)
このようにして、3相のうちの2相の電流値によって他の1相の電流値を求めることができる。このため、従来、3相のブラシレスモータを用いている電動パワーステアリング装置では、電流検出回路は2相にのみ設けられ、他の1相の電流値は、モータ制御部20にて式(1)による計算で求められていた。
【0008】
【特許文献1】
特開平7−323853号公報
【0009】
【発明が解決しようとする課題】
ところが、上記のような計算によってモータ6に流れる電流値を求めた場合、電流値が正しく得られないことがある。電動パワーステアリング装置においては、電流検出回路で検出されるオフセット電流の値(オフセット値)が保持されており、所望の電流制御が可能となるように、イグニッションスイッチがオンにされるごとにそのオフセット値は補正される。上記従来例によると、環境変化によってオフセット値が変動すると、U相、V相はその変動分、また計算によって得られるW相は、U相、V相の逆方向に変動分だけ実際のモータ電流値と異なった値で制御される。このことがトルク脈動が発生する要因となっている。
【0010】
また、図7に示す従来例によると、上アームのデューティ比が100%であるPWM駆動が行われると、電流検出回路で電流が検出されないことがある。U相を例に挙げて説明すると、FET51HとFET51Lとは交互にオン/オフするようにPWM信号生成回路17から信号が送られるが、上アームのデューティ比が100%であると、その駆動期間中、FET51Hは常にオン状態となり、FET51Lは常にオフ状態となる。
【0011】
下アームのFET51Lが常にオフ状態になると、U相の下アームに設けられている電流検出回路41では電流が検出されない。このとき、U相とV相とに電流検出回路41、42が設けられていても、電流が検出されるのはV相に設けられた電流検出回路42のみとなる。その結果、上記例ではU相とW相の電流値は求められない。このため、下アームのFETが常にオフ状態になることがないよう、モータ制御部20において、下側デューティ比が所定値未満となるPWM駆動が行われないよう処理されていた(なお、「下側デューティ比」とは、PWM駆動されたときに、その駆動期間中における下アーム側のFETがオン状態である時間の割合のことをいう)。これにより、モータが所望のデューティ比でPWM駆動されないことがあり、モータの性能が十分には引き出されていなかった。
【0012】
そこで本発明では、環境変化に起因するトルク脈動を防止することができる電動パワーステアリング装置を提供することを目的とする。また、モータの性能を十分に引き出すことができる電動パワーステアリング装置を提供することをも目的とする。
【0013】
【課題を解決するための手段および発明の効果】
第1の発明は、車両操舵のための操作手段に加えられる操舵トルクに応じてブラシレスモータを駆動することにより、当該車両のステアリング機構に操舵補助力を与える電動パワーステアリング装置であって、
電源ライン側に配置された第1のスイッチング素子と接地側に配置された第2のスイッチング素子とからなる互いに直列に接続されたスイッチング素子対を含むアームが並列に複数接続された、前記ブラシレスモータのためのモータ駆動回路と、
前記ブラシレスモータの各相に流れる電流を検出し、その検出信号を出力するモータ電流検出手段と、
前記ブラシレスモータを駆動するためのモータ駆動目標電流値を前記操舵トルクに基づいて設定するとともに、前記ブラシレスモータに流れるモータ電流値を前記検出信号に基づいて算出し、前記モータ駆動目標電流値と前記モータ電流値との偏差に基づいて前記ブラシレスモータを駆動するための指令値を生成するモータ制御手段と、
前記指令値に応じたデューティ比で前記第1のスイッチング素子と前記第2のスイッチング素子とを断続的にオンさせるためのPWM信号を生成するPWM信号生成回路とを備えたことを特徴とする。
【0014】
このような第1の発明によれば、モータ駆動回路の全ての相において、流れる電流の値がモータ電流検出手段によって検出される。これにより、環境変化等によって検出値が変動した場合でも、全ての相において同様の影響が出る為、影響が互いにキャンセルされた電流値に基づいてモータが駆動されるため、トルク脈動の発生が抑制される。
【0015】
第2の発明は、第1の発明において、
前記モータ電流検出手段は、前記第2のスイッチング素子を含む各アームの接地側に配置されたことを特徴とする。
【0016】
このような第2の発明によれば、回路が簡素化される。
【0017】
第3の発明は、第2の発明において、
前記モータ制御手段は、前記モータ駆動回路におけるいずれか1つのアームの第2のスイッチング素子が所定値未満のデューティ比で断続的にオンする場合に、前記指令値の生成に使用される前記モータ電流値のうち前記1つのアームの接地側に流れる電流値を、前記所定値以上のデューティ比で断続的にオンする第2のスイッチング素子を含むアームの接地側に設けられた前記モータ電流検出手段が出力する検出信号に基づいて算出されたモータ電流値から求めることを特徴とする。
【0018】
このような第3の発明によれば、いずれかの相の下アームに流れる電流値が所定値未満になると、その相の電流値は、他の相において電流検出回路で検出された電流値により求められる。これにより、常に所望のデューティ比でモータがPWM駆動される。このため、モータの本来の性能を十分に引き出すことが可能となる。
【0019】
【発明の実施の形態】
以下、添付図面を参照しつつ、本発明の一実施形態について説明する。
<1.全体構成>
図1は、本発明の第1の実施形態に係る電動パワーステアリング装置の構成を、それに関連する車両構成と共に示す概略図である。この電動パワーステアリング装置は、操舵のための操作手段としてのハンドル100に一端が固着されるステアリングシャフト102と、そのステアリングシャフト102の他端に連結されたラックピニオン機構104と、ハンドル100の操作によってステアリングシャフト102に加えられる操舵トルクTsを検出するトルクセンサ3と、当該車両の走行速度Vsを検出する車速センサ4と、ハンドル操作による運転者の負荷を軽減するための操舵補助力を発生するブラシレスモータ6と、その操舵補助力をラック軸に伝達するボールねじ駆動部11と、ブラシレスモータ6のロータの回転位置を検出するモータ位置センサ12と、車載バッテリ8から電源の供給を受けて、トルクセンサ3および車速センサ4からのセンサ信号に基づきブラシレスモータ6の駆動を制御する電子制御ユニット(ECU)5とを備えている。
【0020】
運転者がハンドル100を操作すると、トルクセンサ3によって検出された操舵トルクTsと車速センサ4によって検出された車速Vsとモータ位置センサ12によって検出されたロータの回転位置とに基づいて、ECU5によりブラシレスモータ6が駆動される。これによりブラシレスモータ6は操舵補助力を発生し、この操舵補助力がボールねじ駆動部11を介してラック軸に加えられることにより、運転者の負荷が軽減される。すなわち、ハンドル操作によって加えられる操舵トルクTsとブラシレスモータ6の発生する操舵補助力とによって、ラック軸が往復運動を行う。ラック軸の両端はタイロッドおよびナックルアームから成る連結部材106を介して車輪108に連結されており、ラック軸の往復運動に応じて車輪108の向きが変わる。
【0021】
<2.制御装置の構成>
図2は、上記電動パワーステアリング装置の制御装置であるECU5の構成を示すブロック図である。このECU5は、モータ制御部20とモータ駆動部10とリレー駆動回路70とサンプルホールド回路31〜33とを備えている。モータ制御部20は、マイクロコンピュータで構成され、メモリに格納された所定のプログラムを実行することにより作動する。モータ駆動部10は、PWM信号生成回路17とモータ駆動回路50とから構成される。モータ駆動回路50は、上アームの各ラインに設けられた第1のスイッチング素子であるFET51H〜53Hと下アームの各ラインに設けられた第2のスイッチング素子であるFET51L〜53Lとが互いに対となるように直列に接続して構成されており、そのFET対が3対並列に接続された3相の構成となっている。そして、上アームと下アームとの各接続点は、モータの各相の端子61〜63と接続されている。また、3相すべての下アームのFET51L〜53Lと直列に接続された電流検出回路41〜43がそれぞれ設けられている。この電流検出回路41〜43にはシャント抵抗が含まれており、そのシャント抵抗の両端間の電圧に基づいて、U相電流値Iu、V相電流値Iv、W相電流値Iwが検出される。
【0022】
モータ制御部20は、トルクセンサ3で検出された操舵トルクと、車速センサ4により検出された車速と、サンプルホールド回路31〜33を介して得られるモータ駆動回路50の各相に流れる電流値Iu、Iv、Iwとを受け取る。サンプルホールド回路31〜33が出力する信号はアナログ信号であり、AD(アナログ−デジタル)変換により順次デジタル信号に変換される。モータ制御部20は、そのAD変換後の電流値からオフセット値を減算し、モータ6の各相に実際に流れる電流値(以下「モータ電流値」という)を求める。また、アシストマップと呼ばれる、操舵トルクと目標電流値とを対応づけるテーブルを参照して、操舵トルクと車速とに基づいて、モータ6に流すべき目標電流値を決定する。そして、その目標電流値とモータ電流値との偏差に基づき比例積分演算を行い、PWM信号生成回路17に与える指令値Vを生成する。また、モータ制御部20は、故障等の検出結果に基づいてリレー駆動回路70を制御するためのリレー制御信号を出力する。
【0023】
モータ駆動部10では、PWM信号生成回路17が上記指令値Vを受け取り、その指令値Vに応じてデューティ比の変化するPWM信号が生成される。このPWM信号に基づいて、モータ駆動回路50がモータ6に電圧を印加することによりモータ6が駆動される。なお、モータ駆動部10の詳しい動作については後述する。
【0024】
サンプルホールド回路31〜33では、入力された信号値が一時的に保持される。本実施形態においては、マイクロコンピュータであるモータ制御部20で、電流検出回路41〜43から出力されたアナログ信号をデジタル信号に変換している。ところが、現在のマイクロコンピュータでは、3つ以上のアナログ信号を同時にデジタル信号に変換することができない。このため、モータ制御部20と電流検出回路41〜43との間にサンプルホールド回路31〜33が設けられている。これにより、電流検出回路41〜43から出力されたアナログ信号はサンプルホールド回路31〜33に一時的に保持されるので、順次モータ制御部20でデジタル信号に変換することができる。
【0025】
リレー駆動回路70は、モータ制御部20が出力したリレー制御信号に基づいて動作する。リレー駆動回路70は、故障が検出された旨を示す信号をモータ制御部20から受け取るまでは、リレーを閉状態に保ち、モータ駆動部10及びモータ6への電源供給を続ける。モータ制御部20における故障検出処理で故障が検出されると、リレー駆動回路70は、モータ制御部20より故障が検出された旨を示す信号を受け取る。これにより、リレー駆動回路70は、リレーを開状態にし、モータ駆動部10およびモータ6への電源供給を遮断する。
【0026】
<3.モータ駆動部の動作>
次に、本実施形態におけるモータ駆動部10の動作について説明する。
PWM信号生成回路17は、モータ制御部20で生成された指令値Vを受け取り、その指令値Vに応じてデューティ比の変化するPWM信号を生成する。図3は、U相の上アームおよび下アームに設けられたFET51H、FET51Lのオン/オフの動作を示すタイミングチャートである。
【0027】
図3において、T1で示す期間は、デューティ比が70%(下側デューティ比が30%)でPWM駆動されている。T1で示す期間中、FET51Hがオン状態である時間とFET51Lがオン状態である時間との比は7対3となっている。T1aで示す期間中、FET51Hはオン状態であり、FET51Lはオフ状態である。このとき、U相では、FET51Hとモータ端子61との間に電流が流れる。一方、T1bで示す期間中、FET51Hはオフ状態であり、FET51Lはオン状態である。このとき、U相では、FET51Lとモータ端子61との間に電流が流れる。ここで、図3で点線にて示している時点の直前(FET51Lがオンからオフに変わる直前)では、U相の下アームに設けられた電流検出回路41によって、電流が検出される。これにより、T1期間中にモータのU相に流れる電流の値Iuが検出される。
【0028】
以上のことは、V相及びW相についても同様である。このため、各相の下アームに設けられた電流検出回路41〜43によって、U相の電流値Iu、V相の電流値Iv、およびW相の電流値Iwが検出される。そして、検出された電流値からオフセット値を減算することでモータ電流値が求められる。ここで、環境変化等によりモータに流れる電流のオフセット値が変動した場合について説明する。例えば、オフセット値が上昇したとき、従来の構成では、電流検出回路が設けられていない相のモータ電流値は、前述のように、他の2相とは逆方向にオフセット電流が生じたものとして計算される。しかし、実際には、全ての相において、ほぼ同様にオフセット電流は変動する。本実施形態では、全ての相に電流検出回路41〜43が設けられているので、或る1相のモータ電流値を他の2相のモータ電流値より計算で算出する必要はない。このため、オフセット値の変動に拘わらず、全ての相で本来のモータ電流値が得られる。
【0029】
次に、デューティ比が100%(下側デューティ比が0%)でPWM駆動される場合について説明する。図3において、T2で示す期間は、デューティ比が100%でPWM駆動されている。T2で示す期間中、FET51Hは常にオンされており、FET51Lは常にオフされている。このとき、U相では、常にFET51Hとモータ端子61との間に電流が流れる。一方、FET51Lとモータ端子61との間に電流が流れることはない。このため、U相の下アームに設けられた電流検出回路41によって、T2期間中にモータのU相に流れる電流の値Iuは検出されない。
【0030】
以上のことは、V相およびW相についても同様である。また、図3で点線にて示している時点の直前で電流を検出していると、FET51Lがオンされている期間がごく短い場合、電流を検出する時点から図3で点線にて示している時点までの間でのみ電流が流れることがある。このような場合、検出される電流値の信頼度は低くなる。そこで、本実施形態においては、或る相において下側デューティ比が所定値未満となった場合には、その相のモータ電流値は、他の2相から計算により求められる。以下、或る相のモータ電流値を他の2相のモータ電流値から計算により求めることとするデューティ比の閾値を下側基準デューティ比Dbという。図4は、本実施形態におけるモータ制御部20のモータ電流値算出の手順を示すフローチャートである。以下、図4を参照しつつ説明する。
【0031】
この電動パワーステアリング装置において、モータ制御が開始されると、モータ制御部20は、下側基準デューティ比Dbを設定する(ステップS101)。ステップS103では、電流検出回路41〜43によって検出された電流値に基づいて、U相オフセット値Iou、V相オフセット値Iov、W相オフセット値Iowを設定する。
【0032】
ステップS105では、各相のそれぞれに与えられるPWM信号のデューティ比(U相下側デューティ比Du、V相下側デューティ比Dv、W相下側デューティ比Dw)を取得する。ステップS107では、U相下側デューティ比Duが下側基準デューティ比Db未満であるか否かを判定する。判定の結果、U相下側デューティ比Duが下側基準デューティ比Db未満であれば、ステップS141に進む。U相下側デューティ比Duが下側基準デューティ比Db以上であれば、ステップS109に進む。ステップS109では、V相下側デューティ比Dvが下側基準デューティ比Db未満であるか否かを判定する。判定の結果、V相下側デューティ比Dvが下側基準デューティ比Db未満であれば、ステップS131に進む。V相下側デューティ比Dvが下側基準デューティ比Db以上であれば、ステップS111に進む。ステップS111では、W相下側デューティ比Dwが下側基準デューティ比Db未満であるか否かを判定する。判定の結果、W相下側デューティ比Dwが下側基準デューティ比Db未満であれば、ステップS121に進む。W相下側デューティ比Dwが下側基準デューティ比Db以上であれば、ステップS113に進む。
【0033】
ステップS113では、電流検出回路41、42、43が出力した検出信号に基づいて、U相電流値Iu、V相電流値Iv、およびW相電流値Iwを取得する。さらに、U相電流値Iu、V相電流値IvおよびW相電流値IwからそれぞれU相オフセット値Iou、V相オフセット値IovおよびW相オフセット値Iowを減算することにより、U相モータ電流値Imu、V相モータ電流値ImvおよびW相モータ電流値Imwを算出する。その後、ステップS151に進む。
【0034】
ステップS121では、U相およびV相の電流検出回路41、42が出力した検出信号に基づいて、U相電流値IuとV相電流値Ivとを取得する。さらに、U相電流値IuおよびV相電流値IvからそれぞれU相オフセット値IouおよびV相オフセット値Iovを減算することにより、U相モータ電流値ImuおよびV相モータ電流値Imvを算出する。その後、ステップS123に進む。
【0035】
ステップS123では、U相モータ電流値ImuとV相モータ電流値Imvとに基づきW相モータ電流値Imwを次式(2)により算出する。
Imw=−(Imu+Imv) ・・・(2)
W相モータ電流値Imwが算出されると、ステップS151に進む。
【0036】
ステップS131では、ステップS121と同様にして、U相モータ電流値ImuおよびW相モータ電流値Imwを算出し、その後、ステップS133に進む。ステップS133では、ステップS123と同様にして、V相モータ電流値Imvを算出し、その後、ステップS151に進む。ステップS141では、ステップS121と同様にして、V相モータ電流値ImvおよびW相モータ電流値Imwを算出し、その後、ステップS143に進む。ステップS143では、ステップS123と同様にして、U相モータ電流値Imuを算出し、その後、ステップS151に進む。
【0037】
ステップS151では、上述の手順により得られたU相モータ電流値Imu、V相モータ電流値ImvおよびW相モータ電流値Imwに基づいて、従来と同様のモータ駆動処理を行う。その後、ステップS105に戻り、上述の処理が繰り返される。
【0038】
図4に示すフローチャートのステップS101では、下側基準デューティ比Dbは、例えば5%と設定される。この場合、例えばW相下側デューティ比Dwが5%未満になると、W相モータ電流値Imwは、U相電流値Iuから算出されたU相モータ電流値Imuと、V相電流値Ivから算出されたV相モータ電流値Imvとに基づいて計算により求められる。これにより、下側デューティ比が0%もしくは微小な値となった場合にも、所望のデューティ比によるPWM駆動が行われる。
【0039】
<4.変形例>
上記実施形態においては、電流検出回路41〜43はモータ駆動回路50の各相の下アームに設けられたが、本変形例においては、図5に示すように、電流検出回路81〜83は、モータ駆動回路50とモータ6との間に設けられている。この構成によると、デューティ比100%駆動が行われても、各相に設けられた電流検出回路81〜83で電流が検出される。このため、下側デューティ比が所定値未満となった場合でも、或る1相のモータ電流値を他の2相のモータ電流値から計算により求める必要がなくなる。
【0040】
また、上記実施形態においては、電流検出回路により検出された3相の電流値をAD変換するためにサンプルホールド回路を用いる構成としたが、本発明はこれに限定されない。例えば、ピークホールド回路を用いて、PWM駆動の制御周期中における各相の電流のピーク値を保持するようにしてもよい。なお、サンプルホールド回路やピークホールド回路を用いることにより複数のアナログ信号をデジタル信号に変換する処理は公知であるので、説明は省略する。
【0041】
<5.効果>
以上のように、本実施形態に係る電動パワーステアリング装置では、モータ駆動回路の全ての相に電流検出回路が設けられている。これにより、環境変化等により電流検出回路で検出されるオフセット電流が変動しても、全ての相においてモータ電流値が正しく検出される。そして、その正しく検出されたモータ電流値に基づいてモータが駆動されるため、トルク脈動の発生が抑制される。また、或る相の下側デューティ比が所定値未満になったとき、その相に流れるモータ電流値は、他の相において電流検出回路で検出されたモータ電流値により求められる。このため、常に所望のデューティ比でモータがPWM駆動される。これにより、モータの本来の性能を十分に引き出すことが可能となる。
【0042】
なお上記実施形態では、3相のブラシレスモータを例に挙げて説明したが、本発明は3相に限定されるものではない。モータのそれぞれの相に電流検出回路を備えることにより、4相以上の複数相のブラシレスモータが使用されている電動パワーステアリング装置に適用することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る電動パワーステアリング装置の構成をそれに関連する車両構成と共に示す概略図である。
【図2】上記実施形態に係る電動パワーステアリング装置を制御的観点から見た構成を示すブロック図である。
【図3】上記実施形態におけるU相の上アームおよび下アームに設けられたFETの動作を示すタイミングチャートである。
【図4】上記実施形態におけるモータ制御部20のモータ電流値算出の手順を示すフローチャートである。
【図5】上記実施形態の変形例に係る電動パワーステアリング装置を制御的観点から見た構成を示すブロック図である。
【図6】従来の電動パワーステアリング装置におけるECUの構成を示すブロック図である。
【図7】上記従来例の変形例に係る電動パワーステアリング装置におけるECUの構成を示すブロック図である。
【符号の説明】
5 …ECU(電子制御ユニット)
6 …ブラシレスモータ
10 …モータ駆動部
17 …PWM信号生成回路
20 …モータ制御部
31〜33 …サンプルホールド回路
41〜43、81〜83 …電流検出回路
50 …モータ駆動回路
51H〜53H、51L〜53L …FET(電界効果型トランジスタ)

Claims (3)

  1. 車両操舵のための操作手段に加えられる操舵トルクに応じてブラシレスモータを駆動することにより、当該車両のステアリング機構に操舵補助力を与える電動パワーステアリング装置であって、
    電源ライン側に配置された第1のスイッチング素子と接地側に配置された第2のスイッチング素子とからなる互いに直列に接続されたスイッチング素子対を含むアームが並列に複数接続された、前記ブラシレスモータのためのモータ駆動回路と、
    前記ブラシレスモータの各相に流れる電流を検出し、その検出信号を出力するモータ電流検出手段と、
    前記ブラシレスモータを駆動するためのモータ駆動目標電流値を前記操舵トルクに基づいて設定するとともに、前記ブラシレスモータに流れるモータ電流値を前記検出信号に基づいて算出し、前記モータ駆動目標電流値と前記モータ電流値との偏差に基づいて前記ブラシレスモータを駆動するための指令値を生成するモータ制御手段と、
    前記指令値に応じたデューティ比で前記第1のスイッチング素子と前記第2のスイッチング素子とを断続的にオンさせるためのPWM信号を生成するPWM信号生成回路とを備えたことを特徴とする、電動パワーステアリング装置。
  2. 前記モータ電流検出手段は、前記第2のスイッチング素子を含む各アームの接地側に配置されたことを特徴とする、請求項1に記載の電動パワーステアリング装置。
  3. 前記モータ制御手段は、前記モータ駆動回路におけるいずれか1つのアームの第2のスイッチング素子が所定値未満のデューティ比で断続的にオンする場合に、前記指令値の生成に使用される前記モータ電流値のうち前記1つのアームの接地側に流れる電流値を、前記所定値以上のデューティ比で断続的にオンする第2のスイッチング素子を含むアームの接地側に設けられた前記モータ電流検出手段が出力する検出信号に基づいて算出されたモータ電流値から求めることを特徴とする、請求項2に記載の電動パワーステアリング装置。
JP2003168712A 2003-06-13 2003-06-13 電動パワーステアリング装置 Expired - Fee Related JP4140454B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003168712A JP4140454B2 (ja) 2003-06-13 2003-06-13 電動パワーステアリング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003168712A JP4140454B2 (ja) 2003-06-13 2003-06-13 電動パワーステアリング装置

Publications (2)

Publication Number Publication Date
JP2005001574A true JP2005001574A (ja) 2005-01-06
JP4140454B2 JP4140454B2 (ja) 2008-08-27

Family

ID=34094069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003168712A Expired - Fee Related JP4140454B2 (ja) 2003-06-13 2003-06-13 電動パワーステアリング装置

Country Status (1)

Country Link
JP (1) JP4140454B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1808955A2 (en) 2006-01-13 2007-07-18 Omron Corporation Inverter device
JP2010226846A (ja) * 2009-03-23 2010-10-07 Jtekt Corp モータ制御装置及び電動パワーステアリング装置
WO2011142032A1 (ja) * 2010-05-14 2011-11-17 三菱電機株式会社 ブラシレスモータの駆動装置
JP2015107052A (ja) * 2013-11-29 2015-06-08 エルエス産電株式会社Lsis Co., Ltd. インバータ制御装置及び方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1808955A2 (en) 2006-01-13 2007-07-18 Omron Corporation Inverter device
JP2007189825A (ja) * 2006-01-13 2007-07-26 Omron Corp インバータ装置
US7626838B2 (en) 2006-01-13 2009-12-01 Omron Corporation Inverter circuit with switching deadtime synchronized sample and hold current detection
JP2010226846A (ja) * 2009-03-23 2010-10-07 Jtekt Corp モータ制御装置及び電動パワーステアリング装置
JPWO2011142032A1 (ja) * 2010-05-14 2013-07-22 三菱電機株式会社 ブラシレスモータの駆動装置
CN102893508A (zh) * 2010-05-14 2013-01-23 三菱电机株式会社 无刷电动机的驱动装置
WO2011142032A1 (ja) * 2010-05-14 2011-11-17 三菱電機株式会社 ブラシレスモータの駆動装置
JP5414893B2 (ja) * 2010-05-14 2014-02-12 三菱電機株式会社 ブラシレスモータの駆動装置
KR101393828B1 (ko) 2010-05-14 2014-05-12 미쓰비시덴키 가부시키가이샤 브러시레스 모터의 구동 장치
CN102893508B (zh) * 2010-05-14 2015-07-29 三菱电机株式会社 无刷电动机的驱动装置
US10298162B2 (en) 2010-05-14 2019-05-21 Mitsubishi Electric Corporation Brushless-motor drive apparatus
JP2015107052A (ja) * 2013-11-29 2015-06-08 エルエス産電株式会社Lsis Co., Ltd. インバータ制御装置及び方法
US9450483B2 (en) 2013-11-29 2016-09-20 Lsis Co., Ltd. Apparatus and method for controlling inverter by measuring each phase current

Also Published As

Publication number Publication date
JP4140454B2 (ja) 2008-08-27

Similar Documents

Publication Publication Date Title
US9371087B2 (en) Power conversion device and electric power steering device using the same
JP4474896B2 (ja) パワーステアリング装置
JP5131432B2 (ja) モータ用制御装置
US9912280B2 (en) Rotating electric machine control device
US10177694B2 (en) Current sensor abnormality diagnosis device
JP5058554B2 (ja) 電動パワーステアリング装置
EP3613650B1 (en) Vehicle control apparatus
US9831807B2 (en) Motor control apparatus and power steering system
US10252744B2 (en) System sharing battery with external device
JP2008220155A (ja) モータ制御装置および電動パワーステアリング装置
US10343712B2 (en) Electric power steering system
JP2010241165A (ja) 電動パワーステアリング装置
JP4474894B2 (ja) パワーステアリング装置および電流検出手段のゲイン差補償方法
KR20050020638A (ko) 전동파워스티어링장치
JP2008099394A (ja) モータ制御装置および電動パワーステアリング装置
JP2007215306A (ja) モータ用制御装置
JP2003324985A (ja) モータ制御装置
JP2005065443A (ja) 電動パワーステアリング装置
JP4371844B2 (ja) ブラシレスモータ駆動装置
JP4140454B2 (ja) 電動パワーステアリング装置
JP2004312930A (ja) モータ制御装置
US20190260317A1 (en) Motor controller
JP5083494B2 (ja) モータ用制御装置
JP2005059777A (ja) 電動パワーステアリング装置
JP2012153355A (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4140454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees