JP2005000500A - Foot joint electric device - Google Patents

Foot joint electric device Download PDF

Info

Publication number
JP2005000500A
JP2005000500A JP2003169158A JP2003169158A JP2005000500A JP 2005000500 A JP2005000500 A JP 2005000500A JP 2003169158 A JP2003169158 A JP 2003169158A JP 2003169158 A JP2003169158 A JP 2003169158A JP 2005000500 A JP2005000500 A JP 2005000500A
Authority
JP
Japan
Prior art keywords
ankle joint
joint
user
lower limb
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003169158A
Other languages
Japanese (ja)
Other versions
JP2005000500A5 (en
Inventor
Ryokichi Hirata
亮吉 平田
Taisuke Sakaki
泰輔 榊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003169158A priority Critical patent/JP2005000500A/en
Publication of JP2005000500A publication Critical patent/JP2005000500A/en
Publication of JP2005000500A5 publication Critical patent/JP2005000500A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/01Orthopaedic devices, e.g. splints, casts or braces
    • A61F5/0102Orthopaedic devices, e.g. splints, casts or braces specially adapted for correcting deformities of the limbs or for supporting them; Ortheses, e.g. with articulations
    • A61F5/0123Orthopaedic devices, e.g. splints, casts or braces specially adapted for correcting deformities of the limbs or for supporting them; Ortheses, e.g. with articulations for the knees

Abstract

<P>PROBLEM TO BE SOLVED: To provide a foot joint electric device which enables the automatic plantar dorsiflexion of the foot joints according to the phase of the pacing cycle by judging whether the sole of the user contacts the ground surface or not. <P>SOLUTION: The foot joint electric device is constituted of a lower limb application part for application on a lower limb of the user, a joint angle measuring part for measuring the angle of the foot joints of the user, a pressure sensor provided on the sole of the lower limb application part, an actuator provided on the foot joint part of the lower limb application part and a control part for operating the actuator. The control part implements the measurement of the angle of the foot joints of the user with the joint angle measuring part and the measurement with the pressure sensor to determine whether the sole of the user contacts the ground surface or not to judge the phase of the pacing cycle. Thus, the plantar dorsiflexion of the lower limb application part is carried out with the actuator according to the phase, thereby enabling the plantar dorsiflexion of the foot joints of the user. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、運動神経麻痺等により通常の歩行ができない歩行障害者および健常高齢者に対し、歩行周期の位相を判断して、歩行周期の位相に応じ足関節を自動的に底背屈させることで、足先のつまずきを防止する足関節電動装具に関するものである。
【0002】
【従来の技術】
第1の従来例である特許文献1では、使用者の大腿部および下腿部に装着し、膝関節角度の調節機構を設けることで棒足歩行を改善することを目的とした次のような膝関節角度調節機構付き長下肢装具が記載されている。
以下、簡単に図を用いて説明する。図7は、従来の長下肢装具の構成を示す図である。(a)は正面図、(b)は側面図である。図8は、従来の長下肢装具を用いたときの歩行補助を概念的に示す図である。歩行周期は立脚相(踵接地〜つま先離床前)、遊脚相(つま先離床〜踵接地直前)から構成される。101は大腿支持部材、102は膝関節部材、103は下腿支持部材、104は足支持部材、105は屈曲角度検知センサ、106aは離床検知センサ、106bは着地検知センサ、107は足関節角度検知センサ、108は屈曲角度固定・解除機構、109は制御部、110は大腿包接部材、111、114は締付部材、112は下腿抱接部材である。
この長下肢装具は、膝関節障害者の大腿・下腿の少なくとも外側部から足の少なくとも外側部にかけて添装される歩行補助用の膝関節角度調節機構を備えている。また、大腿支持部材101と、180度よりも小さい角度の範囲で屈曲角度変更可能な膝関節部材102と、下腿支持部材103と、足支持部材104とが連結され、
(1)膝関節部の屈曲角度を検知する角度検知処理、
(2)足底爪先側に設けた着地検知センサ106bおよび/または足首関節の屈曲角度によって足底部が床から離れたことを検知する離床検知処理、
(3)前記角度検知処理からの信号によって膝関節部材102の屈曲角度を固定し、また前記離床検知処理からの信号によって該膝関節部材102の屈曲角度固定を解除する、屈曲角度固定・解除機構108、
(4)上記処理(1)〜(3)による検知と作動を集中制御する制御機構を備えている。
【0003】
以上の構成において、制御部109に使用者の歩行補助に最も適した膝関節屈曲角度を予め設定しておき、制御部109が、膝角度検知センサ105で膝関節角度を検知して屈曲角度固定・解除機構108を作動させる。具体的には、制御部109が以下の処理を実施する。
・立脚相の踵離床・遊脚相には、膝関節部材102の屈曲角度固定・解除機構108を解除し下腿を前方に振り出す。
・立脚相の踵接地には、膝関節部材の屈曲角度固定・解除機構108を固定し体重を支持する。
上記のような膝関節角度調節機構付き長下肢装具において、制御部が歩行周期に応じ膝関節部材の固定・解除を実施し、使用者の肉体的負担を可及的に軽減しつつ自然な歩行を実現できるようになっている。
【0004】
【特許文献1】実登3002320号公報
【0005】
第2の従来例である特許文献2では、運動神経麻痺等により通常の歩行が出来ない歩行障害者に対し、膝関節部分を回動自在として左右ぶれのない健常者に近い歩行を実施させることを目的とした次のような歩行補助装具が記載されている。
以下、簡単に図を用いて説明する。図9(a)は、従来の歩行補助装具の構成を示す図(側面図)である。図9(b)は、従来の歩行補助装具の膝部分を折り曲げた状態を示す側面図である。201は歩行補助装具で、該歩行補助装具201は、膝関節部の上部、即ち上腿部に装着する上腿取付部材202と、膝関節の下部、即ち下腿部に装着する下腿取付部材203と、上腿取付部材202と下腿取付部材203とを回動自在に連結する継手205とから構成される。伸縮機構(アクチュエータ)204は上腿取付部材202と下腿取付部材203との回動を規制制御するものであり、一方の部材(図では上腿取付部材202)に遊びをもって取付けられたモータ206と、他方の部材(図では下腿取付部材203)に取付けられたソケット208の螺旋孔に螺合するボールネジ207とからなり、該ボールネジ207と前記モータ206の軸とはフレキシブル継手209で連結されている。なお、図中214は下腿取付部部材203に設けた靴である。
また、上下の両取付部202、203をボールネジ207で連結している。ボールネジ207は立位時(膝を伸ばしたとき)に歩行者の全体重が負荷されても折れ曲がることのない丈夫な部材、例えば鋼材等の棒材の表面にネジを該設してなり、上下の取付部材202、203を繋ぐ継手205の回動自在の動きを規制するもので、障害者が該上下の取付部材202、203に全体重を掛けても上下の取付部材202、203が折れ曲がることがない。
図9(c)は、従来の歩行補助装具における杖に設けたコントローラとモータの制御との関係を示す図である。杖220にはリモートコントローラ222が設けられ、リモートコントローラ222の操作スイッチ223は杖220を握る把持部221に取付けられている。リモートコントローラ222は前記伸縮機構204のモータ206の駆動装置(センサ)225に赤外線を照射しモータ206の回転を遠隔操作し得るよう構成されており、杖220に設けた操作スイッチ223を、歩行者が杖220を操作するのに合わせて指で操作できるように構成されている。
【0006】
以上の構成において、右足を一歩先に進める場合について説明する。杖220を前について上体を傾斜させる。次に杖220の把持部221に設けたリモートコントローラ222の操作スイッチ223を操作(例えば押し込む)し、モータ206を駆動させる。モータ206を駆動させると、モータ206にフレキシブル継手209を介して連結されているボールネジ207が回転し、ボールネジ207と螺合するソケット208をモータ206方向に引き寄せる。ソケット208は図では下腿取付部材202方向に引き寄せられることとなり、下腿取付部材203は回動自在の継手205で上腿取付部材202に連結されているため、膝を突き出す形で膝部分を回動し、「く」の字状に折り曲げられ、靴214が歩行面227からかなりの高さまで浮き上がる。
このように靴214を高く浮き上がらせた状態になるにしたがって脚(歩行補助装具201)は自然に振り子のように前に向かって振られることになる。そして、右足が最大に前に振れた時点でリモートコントローラ222の操作スイッチ223を再度制御する(上記例では操作スイッチ223を放す)と、モータ206は逆回転し、ボールネジ207はソケット208がモータ206から離れる方向に回転し、それに伴って下腿取付部材203と上腿取付部材202とは直線状態になるように回動し、直線状態になったところでモータ206は停止し、下腿取付部材203と上腿取付部材202とは直線状態に戻る。下腿取付部材203と上腿取付部材202とが直線上腿に戻った状態で歩行面227に靴214を着地させ一歩進んだことになる。
上記のような歩行補助装具において、膝部に設けた継手205を伸縮機構204により回動し上腿取付部材202と下腿取付部材203とを折り曲げ可能として靴214と歩行面227との距離を可変にすることができ、歩行時に確実な立脚相と遊脚相の形成ができ、安定した歩容が得られるとともに、従来のごとく上体の傾斜や転倒などを生ずることが回避できる。
【0007】
【特許文献2】特開2002−191654号公報
【0008】
【発明が解決しようとする課題】
しかしながら、上記第1の従来例の膝関節角度調節機構付き長下肢装具においては、制御部が、膝角度検知センサで膝関節角度を検知して屈曲角度固定・解除機構を作動させることで膝関節を固定・解除するが、歩行周期の位相に応じ膝関節を屈曲・伸展させることができなかった。また上記第2の従来例の歩行補助装具においては、モータによりフレキシブル継手を介して連結されているボールネジを回転させることで、膝関節を「く」の字状に屈曲させるが、歩行周期の位相に応じ膝関節を屈曲・伸展させることができなかった。また、歩行者が歩行周期に応じ操作スイッチを操作することで膝関節を屈曲させるが、足底が地面に接地しているかどうかを判断し自動的に膝関節を屈曲させることができなかった。
したがって、本発明の目的は、使用者の足底が地面に接地しているかどうかを判断し、歩行周期の位相に応じ自動的に足関節を底背屈させる足関節電動装具を提供することである。
【0009】
【課題を解決するための手段】
上記問題を解決するため、請求項1に記載の発明は、使用者の下肢に装着する下肢装着部と、前記使用者の足関節角度を計測する関節角度計測部と、前記下肢装着部の足底に設けられた圧センサと、前記下肢装着部の足関節部に設けられたアクチュエータと、前記アクチュエータを作動させる制御部とからなる足関節電動装具であって、
前記制御部は、前記関節角度計測部により使用者の足関節角度の計測と、前記圧センサにより足底が地面に接地しているかどうかの計測を実施して前記使用者の歩行周期の位相を判断し、位相に応じて前記アクチュエータにより前記下肢装着部の足関節を底背屈させることで、使用者の足関節を底背屈させることを特徴とするものである。
また、請求項2に記載の発明は、請求項1に記載の足関節電動装具において、前記アクチュエータは回転機構であり、前記回転機構により前記下肢装着部の足関節を正転・逆転させることで、使用者の足関節を底背屈させることを特徴とするものである。
また、請求項3に記載の発明は、請求項1に記載の足関節電動装具において、前記アクチュエータはスライダー機構であり、前記スライダー機構により前記下肢装着部の足関節を底背屈させることで、使用者の足関節を底背屈させることを特徴とするものである。
また、請求項4に記載の発明は、請求項1に記載の足関節電動装具において、前記アクチュエータはワイヤ駆動機構であり、前記ワイヤ駆動機構により前記下肢装着部の足関節を底背屈させることで、使用者の足関節を底背屈させることを特徴とするものである。
請求項1乃至4記載の足関節電動装具によれば、歩行周期の位相に応じ足関節を自動的に底背屈させることができ、足先のつまずきを防止することができる。
【0010】
【発明の実施の形態】
以下、本発明の具体的実施例を図に基づいて説明する。
(第1実施例)
本発明の第1の実施の形態の足関節電動装具について図1乃至図3に基づいて説明する。図1は、本発明の第1の実施の形態の足関節電動装具のシステム構成を示す図である。1は足関節電動装具、2は使用者7の下肢に装着する下肢装着部、3は足関節の角度を計測する関節角度計測部、4は踵と爪先が地面に接地しているかどうかを計測する圧センサ、5は足関節電動装具の足関節を駆動するアクチュエータ、6は前記関節角度計測部3により計測された使用者7の関節角度情報と、前記圧センサ4により計測された足底の地面への接地情報とを基に、歩行周期の位相を判断し、使用者7の歩行周期の位相に応じアクチュエータ5に駆動指令を出力する制御部、7は使用者である。
【0011】
図2は、本発明の第1の実施の形態の足関節の背屈方法(方法1)を示す図である。歩行周期の位相における代表的な関節角度変化も示している。
まず、歩行周期の位相について説明する。歩行周期の位相は、▲1▼踵接地、▲2▼足底接地、▲3▼立脚中期、▲4▼踵離地、▲5▼足尖離地、▲6▼遊脚初期、および▲7▼遊脚後期から構成され、各位相に応じて股関節、膝関節、足関節の屈曲・伸展運動が繰り返される。
▲1▼踵接地
・股関節 最大屈曲位となり以後伸展していく
・膝関節 ほぼ完全に伸展し以後屈曲していく
・足関節 背屈位から底屈していく
▲2▼足底接地
・股関節 伸展していく
・膝関節 屈曲していく
・足関節 底屈位(約10°)となる
▲3▼立脚中期
・股関節 伸展していく
・膝関節 立脚期での最大屈曲位(約20°)となる
・足関節 背屈していく
▲4▼踵離地
・股関節 最大伸展位(約10°)となる
・膝関節 伸展から屈曲していく
・足関節 最大底屈位(約10°)となり以後は底屈していく
▲5▼足尖離地
・股関節 屈曲していく
・膝関節 屈曲していく
・足関節 最大底屈位(約20°)となる
▲6▼遊脚初期
・股関節 加速しながら屈曲していく
・膝関節 最大約60°まで屈曲していく
・足関節 背屈していく
▲7▼遊脚後期
・股関節 減速しながら屈曲していく
・膝関節 伸展していく
・足関節 背屈位を保つ
【0012】
次に、足関節の背屈方法(方法1)について説明する。
以下の手順で制御部6が足関節を背屈させる。
(1)関節角度計測部3により足関節角度を計測する。
(2)圧センサ4により踵と爪先が地面に接地しているかどうかを計測する。
(3)踵と爪先が地面から離れている期間(足尖離地、遊脚初期、および遊脚後期)において、アクチュエータ5を駆動することで、使用者7の足関節を歩行周期に応じ背屈させる。
(4)(1)〜(3)を繰り返す。
ここで、足尖離地、遊脚初期、および遊脚後期の時間は、以下のいずれかを採用する。
・前回の歩行周期における踵と爪先が地面から離れている時間とする。
・関節角度計測部により、股・膝関節角度も計測することで、歩行周期の位相を判断する。
【0013】
図3は、本発明の第1の実施の形態の足関節の底背屈方法(方法2)を示す図である。以下の手順で制御部6が足関節を底背屈させる。
(1)関節角度計測部3により股・膝・足関節角度を計測する。
(2)圧センサ4により踵と爪先が地面に接地しているかどうかを計測する。
(3)アクチュエータ5を駆動することで、踵接地、足底接地、および踵離地において、使用者の足関節を歩行周期に応じ底屈、立脚中期、足尖離地、遊脚初期、および遊脚後期において、使用者7の足関節を歩行周期に応じ背屈させる。
(4)(1)〜(3)を繰り返す。
【0014】
なお、足関節電動装具に足関節トルク計測部を備え、前記足関節トルク計測部により使用者7の足関節トルクを計測し、制御部6が前記トルクに応じ足関節を底背屈させてもよい。具体的には、足関節トルクのしきい値を予め設定しておき、足関節トルクがしきい値以上になるとそれ以上背屈させない方法をとってもよい。
また、足関節電動装具に提示部(視覚・聴覚・振動等)を備え、制御部6が歩行周期に応じ歩行のリズムを提示部により使用者に通知してもよい。
さらに、足関節電動装具に生体情報計測部を備え、前記生体情報計測部により使用者の生体情報(心拍数等)を計測し、心拍数が予め設定したしきい値以上になると歩行を止めるようにしてもよい。
【0015】
(第2実施例)
本発明の第2の実施の形態の足関節電動装具について図4に基づいて説明する。
図4は、本発明の第2の実施の形態の足関節電動装具のシステム構成を示す図である。図4において図1と同じ符号のものは同一のものを示しているので説明は省略する。8は足関節電動装具の足関節を駆動する回転機構である。
第1の実施の形態と同様にして、制御部6が回転機構を駆動し足関節電動装具の足関節を正転・逆転させることで、前記方法1、方法2において足関節を底背屈させる。
【0016】
(第3実施例)
本発明の第3の実施の形態の足関節電動装具について図5に基づいて説明する。
図5は、本発明の第3の実施の形態の足関節電動装具のシステム構成を示す図である。図5において図1と同じ符号のものは同一のものを示しているので説明は省略する。9は足関節電動装具の足関節を駆動するスライダー機構である。
第1の実施の形態と同様にして、制御部6がスライダー機構を駆動し足関節電動装具の足底を底背屈させることで、前記方法1、方法2において足関節を底背屈させる。
【0017】
(第4実施例)
本発明の第4の実施の形態の足関節電動装具について図6に基づいて説明する。
図6は、本発明の第4の実施の形態の足関節電動装具のシステム構成を示す図である。図6において図1と同じ符号のものは同一のものを示しているので説明は省略する。10は足関節電動装具の足関節を駆動するワイヤ駆動機構である。
第1の実施の形態と同様にして、制御部6がワイヤ駆動機構を駆動し足関節電動装具の足底を底背屈させることで、前記方法1、方法2において足関節を底背屈させる。
【0018】
【発明の効果】
以上説明したように、請求項1乃至4記載の足関節電動装具によれば、歩行周期の位相を判断して、位相に応じ足関節を自動的に底背屈させることができ、足先のつまずきを防止することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の歩行訓練装置のシステム構成を示す図である。
【図2】本発明の第1の実施の形態の足関節の背屈方法(方法1)を示す図である。
【図3】本発明の第1の実施の形態の足関節の底背屈方法(方法2)を示す図である。
【図4】本発明の第2の実施の形態の足関節電動装具のシステム構成を示す図である。
【図5】本発明の第3の実施の形態の足関節電動装具のシステム構成を示す図である。
【図6】本発明の第4の実施の形態の足関節電動装具のシステム構成を示す図である。
【図7】従来の第1の実施の形態の長下肢装具の構成を示す図である。
【図8】従来の第1の実施の形態の長下肢装具を用いたときの歩行補助を概念的に示す図である。
【図9】従来の第2の実施の形態の歩行補助装具の構成を示す図である。
【符号の説明】
1 足関節電動装具
2 下肢装着部
3 関節角度計測部
4 圧センサ
5 アクチュエータ
6 制御部
7 使用者
8 回転機構
9 スライダー機構
10 ワイヤ駆動機構
101 大腿支持部材
102 膝関節部材
103 下腿支持部材
104 足支持部材
105 屈曲角度検知センサ
106a 離床検知センサ
106b 着地検知センサ
107 足関節角度検知センサ
108 屈曲角度固定・解除機構
109 制御部
110 大腿抱接部材
111 締付部材
112 下腿抱接部材
113 締付部材
114 締付部材
115 正・逆回転モータ
116 スクリューナット
117 ブレーキレバー
119 ブレーキ部材
201 歩行補助装具
202 上腿取付部材
203 下腿取付部材
204 伸縮機構
205 継手
206 モータ
207 ボールネジ
208 ソケット
209 フレキシブル継手
210 金具
211 テープ
213 リミットスイッチ
214 靴
215 結合部材
220 杖
221 把持部
222 リモートコントローラ
223 操作スイッチ
225 駆動装置
227 歩行面
[0001]
BACKGROUND OF THE INVENTION
The present invention judges the phase of the gait cycle for a disabled person and a healthy elderly person who cannot normally walk due to motor nerve palsy, etc., and automatically deforms the ankle joint in the dorsiflexion according to the phase of the gait cycle Thus, the present invention relates to an ankle-joint electric brace that prevents a toe from tripping.
[0002]
[Prior art]
In Patent Document 1, which is a first conventional example, the following is intended to improve walking on a stick foot by mounting on a user's thigh and crus and providing a knee joint angle adjustment mechanism. A long leg brace with a knee joint angle adjustment mechanism is described.
Hereinafter, it will be briefly described with reference to the drawings. FIG. 7 is a diagram illustrating a configuration of a conventional long leg brace. (A) is a front view, (b) is a side view. FIG. 8 is a diagram conceptually illustrating walking assistance when a conventional long leg brace is used. The walking cycle is composed of a stance phase (踵 grounding to before toe flooring) and a free leg phase (toe floor to just before heel grounding). 101 is a thigh support member, 102 is a knee joint member, 103 is a crus support member, 104 is a foot support member, 105 is a bending angle detection sensor, 106a is a bed leaving detection sensor, 106b is a landing detection sensor, 107 is an ankle joint angle detection sensor 108 is a bending angle fixing / releasing mechanism, 109 is a control unit, 110 is a thigh wrapping member, 111 and 114 are tightening members, and 112 is a crus holding member.
This long leg brace includes a knee joint angle adjustment mechanism for walking assistance that is attached from at least the outer side of the thigh and lower leg of the person with a knee joint disorder to at least the outer side of the foot. Further, the thigh support member 101, the knee joint member 102 capable of changing the bending angle within a range of angles smaller than 180 degrees, the crus support member 103, and the foot support member 104 are coupled,
(1) An angle detection process for detecting the bending angle of the knee joint,
(2) A landing detection sensor 106b provided on the toe toe side and / or a bed leaving detection process for detecting that the bottom of the foot is separated from the floor by the bending angle of the ankle joint,
(3) A bending angle fixing / releasing mechanism that fixes the bending angle of the knee joint member 102 by a signal from the angle detection process and releases the bending angle fixation of the knee joint member 102 by a signal from the bed leaving detection process. 108,
(4) A control mechanism for centrally controlling the detection and operation by the processes (1) to (3) is provided.
[0003]
In the above configuration, the knee joint flexion angle most suitable for the user's walking assistance is preset in the control unit 109, and the control unit 109 detects the knee joint angle by the knee angle detection sensor 105 and fixes the flexion angle. -The release mechanism 108 is operated. Specifically, the control unit 109 performs the following processing.
In the standing phase, in the heel phase / free swing phase, the bending angle fixing / releasing mechanism 108 of the knee joint member 102 is released and the lower leg is swung forward.
-For heel contact during the stance phase, the bending angle fixing / releasing mechanism 108 of the knee joint member is fixed to support the weight.
In the long leg brace with knee joint angle adjustment mechanism as described above, the control unit fixes and releases the knee joint member according to the walking cycle, and natural walking while reducing the physical burden of the user as much as possible. Can be realized.
[0004]
[Patent Document 1] Japanese Utility Model Publication No. 3002320
In Patent Document 2, which is a second conventional example, for a walking handicapped person who cannot normally walk due to motor nerve palsy or the like, the knee joint part can be turned freely to perform walking close to a healthy person without left-right shaking. The following walking assistive devices for the purpose are described.
Hereinafter, it will be briefly described with reference to the drawings. Fig.9 (a) is a figure (side view) which shows the structure of the conventional walking assistance device. FIG.9 (b) is a side view which shows the state which bent the knee part of the conventional walking assistance device. Reference numeral 201 denotes a walking assistance device. The walking assistance device 201 includes an upper thigh attachment member 202 attached to the upper part of the knee joint, that is, the upper thigh, and a lower thigh attachment member 203 attached to the lower part of the knee joint, that is, the lower thigh. And a joint 205 that rotatably connects the upper leg attachment member 202 and the lower leg attachment member 203. The telescopic mechanism (actuator) 204 controls the rotation of the upper thigh attachment member 202 and the lower thigh attachment member 203, and includes a motor 206 attached to one member (upper thigh attachment member 202 in the figure) with play. And a ball screw 207 screwed into a spiral hole of a socket 208 attached to the other member (lower leg attachment member 203 in the figure), and the ball screw 207 and the shaft of the motor 206 are connected by a flexible joint 209. . In the figure, reference numeral 214 denotes a shoe provided on the crus attachment member 203.
Further, the upper and lower mounting portions 202 and 203 are connected by a ball screw 207. The ball screw 207 is formed by placing a screw on the surface of a strong member that does not bend even when the pedestrian's overall weight is applied when standing (when the knee is extended), such as a steel bar. The upper and lower mounting members 202 and 203 are bent even if a handicapped person puts the entire weight on the upper and lower mounting members 202 and 203. There is no.
FIG.9 (c) is a figure which shows the relationship between the controller provided in the cane in the conventional walking assistance device, and control of a motor. The cane 220 is provided with a remote controller 222, and an operation switch 223 of the remote controller 222 is attached to a grip portion 221 that holds the cane 220. The remote controller 222 is configured to irradiate infrared rays to the driving device (sensor) 225 of the motor 206 of the expansion / contraction mechanism 204 so that the rotation of the motor 206 can be remotely operated. Can be operated with a finger in accordance with the operation of the cane 220.
[0006]
In the above configuration, a case where the right foot is advanced one step will be described. The upper body is tilted with respect to the cane 220 in front. Next, the operation switch 223 of the remote controller 222 provided on the grip portion 221 of the cane 220 is operated (for example, pushed) to drive the motor 206. When the motor 206 is driven, the ball screw 207 connected to the motor 206 via the flexible joint 209 rotates, and the socket 208 screwed with the ball screw 207 is pulled toward the motor 206. In the figure, the socket 208 is pulled toward the crus attachment member 202, and the crus attachment member 203 is connected to the crus attachment member 202 by a rotatable joint 205. Then, the shoe 214 is bent into a “<” shape and the shoe 214 is lifted from the walking surface 227 to a considerable height.
In this way, as the shoe 214 is lifted high, the leg (walking assisting device 201) naturally swings forward like a pendulum. When the operation switch 223 of the remote controller 222 is controlled again when the right foot swings forward to the maximum (in the above example, the operation switch 223 is released), the motor 206 rotates in the reverse direction, and the ball screw 207 has the socket 208 connected to the motor 206. The crus attachment member 203 and the crus attachment member 202 are rotated so as to be in a linear state, and when the linear state is reached, the motor 206 is stopped and the crus attachment member 203 and the upper The thigh attachment member 202 returns to a straight state. The shoe 214 is landed on the walking surface 227 with the lower leg attaching member 203 and the upper leg attaching member 202 returned to the straight upper leg, and one step has been taken.
In the walking assistive device as described above, the joint 205 provided on the knee is rotated by the expansion / contraction mechanism 204 so that the upper thigh attachment member 202 and the lower thigh attachment member 203 can be bent, and the distance between the shoe 214 and the walking surface 227 is variable. Thus, the standing stance phase and the swinging limb phase can be reliably formed during walking, and a stable gait can be obtained, and the occurrence of tilting or falling of the upper body as in the past can be avoided.
[0007]
[Patent Document 2] Japanese Patent Application Laid-Open No. 2002-191654
[Problems to be solved by the invention]
However, in the long leg brace with the knee joint angle adjustment mechanism of the first conventional example, the control unit detects the knee joint angle by the knee angle detection sensor and operates the bending angle fixing / releasing mechanism to operate the knee joint. The knee joint could not be flexed or extended according to the phase of the walking cycle. In the walking assistance device of the second conventional example, the ball joint connected by the motor through the flexible joint is rotated to bend the knee joint into a “<” shape. The knee joint could not be flexed or extended in response. In addition, although the pedestrian flexes the knee joint by operating the operation switch according to the walking cycle, the knee joint cannot be flexed automatically by determining whether the sole is in contact with the ground.
Accordingly, an object of the present invention is to provide an ankle joint electric device that determines whether or not a user's sole is in contact with the ground and automatically buckles the ankle joint in the back according to the phase of the walking cycle. is there.
[0009]
[Means for Solving the Problems]
In order to solve the above problem, the invention according to claim 1 is directed to a lower limb mounting unit to be mounted on a user's lower limb, a joint angle measuring unit for measuring an ankle joint angle of the user, and a foot of the lower limb mounting unit. An ankle joint electric appliance comprising a pressure sensor provided at the bottom, an actuator provided at an ankle joint portion of the lower limb wearing portion, and a control unit for operating the actuator,
The control unit performs measurement of a user's ankle joint angle by the joint angle measurement unit and measurement of whether or not a sole is in contact with the ground by the pressure sensor, and determines a phase of the user's walking cycle. The user's ankle joint is bent back dorsiflexed by judging and making the ankle joint of the lower limb wearing portion dorsiflexed by the actuator according to the phase.
According to a second aspect of the present invention, in the electric ankle joint orthosis according to the first aspect, the actuator is a rotation mechanism, and the ankle joint of the lower limb mounting portion is rotated forward and reverse by the rotation mechanism. The ankle joint of the user is bent back and bent.
Further, the invention according to claim 3 is the ankle joint electric appliance according to claim 1, wherein the actuator is a slider mechanism, and the ankle joint of the lower limb wearing portion is bent back and bent by the slider mechanism. It is characterized in that the user's ankle joint is bent to the sole.
According to a fourth aspect of the present invention, in the ankle joint electric brace according to the first aspect, the actuator is a wire drive mechanism, and the ankle joint of the lower limb wearing portion is bent to the back with the wire drive mechanism. Thus, the user's ankle joint is bent dorsiflexively.
According to the ankle joint electric appliances of the first to fourth aspects, the ankle joint can be automatically bent to the dorsum of the foot according to the phase of the walking cycle, and the toe can be prevented from being tripped.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
An ankle joint electric appliance according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing a system configuration of an ankle joint electric appliance according to a first embodiment of the present invention. 1 is an ankle joint electric appliance, 2 is a lower limb wearing part to be worn on the lower limb of the user 7, 3 is a joint angle measuring part for measuring the angle of the ankle joint, and 4 is measuring whether the heel and toes are in contact with the ground The pressure sensor 5 is an actuator for driving the ankle joint of the ankle joint electric appliance, 6 is the joint angle information of the user 7 measured by the joint angle measurement unit 3, and the sole of the sole measured by the pressure sensor 4. The control unit 7 determines the phase of the walking cycle based on the ground contact information to the ground and outputs a drive command to the actuator 5 according to the phase of the walking cycle of the user 7.
[0011]
FIG. 2 is a diagram illustrating an ankle joint dorsiflexion method (method 1) according to the first embodiment of this invention. A typical joint angle change in the phase of the walking cycle is also shown.
First, the phase of the walking cycle will be described. The phases of the walking cycle are as follows: (1) 踵 ground contact, (2) plantar ground contact, (3) mid-stance phase, (4) 踵 out of ground, (5) foot tip off, (6) free leg initial, and ▲ 7 ▼ It consists of the latter part of the swing leg, and flexion and extension movements of the hip joint, knee joint and ankle joint are repeated according to each phase.
▲ 1 踵 Ground contact / hip joint Bend to the maximum bending position and extend after that ・ Knee joint almost fully extend and then bend ・ Ankle joint bent from the dorsiflexion position ▲ 2 ▼ Ground contact and hip joint extension -Knee joint Bending-Ankle joint Bending in the bottom (approx. 10 °) ▲ 3 ▼ Mid-Standing / Hip joint extending-Knee joint Maximum bending in the stance (approx. 20 °)・ Ankle joint dorsiflexion (4) 踵 Remote area ・ Hip joint is in maximum extension position (about 10 °) ・ Knee joint is bent from extension ・ Ankle joint is in maximum bottom flexion position (about 10 °) and then the bottom Flexing ▲ 5 ▼ Tap point separation ・ Hip joint Flexing ・ Knee joint Flexing ・ Ankle joint Maximum bottom flexion (about 20 °) ▲ 6 ▼ Free leg initial stage ・ Hip joint Bending while accelerating・ Knee joint Bending up to approx. 60 ° ・ Ankle joint dorsiflexion ▲ 7 ▼ Long swing leg ・ Hip joint slowing down While flexing, knee joint, extending, ankle, keeping dorsiflexion [0012]
Next, an ankle joint dorsiflexion method (method 1) will be described.
The control unit 6 causes the ankle joint to dorsiflex in the following procedure.
(1) The ankle joint angle is measured by the joint angle measurement unit 3.
(2) The pressure sensor 4 measures whether the heel and toes are in contact with the ground.
(3) During the period in which the heel and toes are separated from the ground (toe separation, early swing leg and late swing leg), the actuator 5 is driven so that the ankle joint of the user 7 is backed according to the walking cycle. Bend.
(4) Repeat (1) to (3).
Here, any of the following is adopted for the time of the toe off, the free leg early stage, and the late leg late stage.
・ The time when the heel and toes are away from the ground in the previous walking cycle.
-The joint angle measuring unit also measures the hip and knee joint angles to determine the phase of the walking cycle.
[0013]
FIG. 3 is a diagram showing a sole dorsiflexion method (method 2) of the ankle joint according to the first embodiment of this invention. The control unit 6 bends the ankle joint in the following procedure.
(1) The joint angle measurement unit 3 measures the hip, knee, and foot joint angles.
(2) The pressure sensor 4 measures whether the heel and toes are in contact with the ground.
(3) By driving the actuator 5, in the heel contact, the plantar contact, and the heel-off ground, the user's ankle joint is bent according to the walking cycle, mid-stance stance, foot-point detachment, swing leg initial stage, and In the late stage of the swing leg, the user's 7 ankle joint is bent back according to the walking cycle.
(4) Repeat (1) to (3).
[0014]
In addition, even if an ankle joint electric appliance is provided with an ankle joint torque measurement part, the ankle joint torque of the user 7 is measured by the ankle joint torque measurement part, and the control part 6 causes the ankle joint to dorsiflexively bend in response to the torque. Good. Specifically, a threshold value of the ankle torque may be set in advance, and a method in which the dorsiflexion is not further caused when the ankle torque exceeds the threshold value may be used.
Further, the ankle joint electric appliance may be provided with a presentation unit (vision, hearing, vibration, etc.), and the control unit 6 may notify the user of the walking rhythm by the presentation unit according to the walking cycle.
Furthermore, the ankle joint orthosis is equipped with a biological information measuring unit, and the biological information measuring unit measures the user's biological information (heart rate, etc.), and stops walking when the heart rate exceeds a preset threshold value. It may be.
[0015]
(Second embodiment)
An ankle-joint electric appliance according to a second embodiment of the present invention will be described with reference to FIG.
FIG. 4 is a diagram showing a system configuration of the electric ankle joint orthosis according to the second embodiment of the present invention. In FIG. 4, the same reference numerals as those in FIG. Reference numeral 8 denotes a rotation mechanism that drives the ankle joint of the ankle joint electric brace.
In the same manner as in the first embodiment, the control unit 6 drives the rotation mechanism to cause the ankle joint of the ankle joint electric orthosis to rotate forward and backward, thereby causing the ankle joint to dorsiflexion in the method 1 and method 2. .
[0016]
(Third embodiment)
An ankle joint electric appliance according to a third embodiment of the present invention will be described with reference to FIG.
FIG. 5 is a diagram showing a system configuration of the ankle joint electric appliance according to the third embodiment of the present invention. In FIG. 5, the same reference numerals as those in FIG. A slider mechanism 9 drives the ankle joint of the ankle joint electric appliance.
In the same manner as in the first embodiment, the control unit 6 drives the slider mechanism to cause the plantar dorsiflexion of the sole of the ankle joint electric brace, so that the ankle joint is dorsiflexed in the method 1 and the method 2.
[0017]
(Fourth embodiment)
An ankle joint electric appliance according to a fourth embodiment of the present invention will be described with reference to FIG.
FIG. 6 is a diagram showing a system configuration of the ankle joint electric device according to the fourth embodiment of the present invention. In FIG. 6, the same reference numerals as those in FIG. Reference numeral 10 denotes a wire drive mechanism that drives the ankle joint of the ankle joint electric brace.
In the same manner as in the first embodiment, the control unit 6 drives the wire drive mechanism to cause the plantar dorsiflexion of the sole of the electric ankle joint orthosis so that the ankle joint is dorsiflexed in the method 1 and the method 2. .
[0018]
【The invention's effect】
As described above, according to the ankle joint electric appliances of the first to fourth aspects, the phase of the walking cycle can be determined, and the ankle joint can be automatically bent to the dorsum of the foot according to the phase. Stumbling can be prevented.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a system configuration of a walking training apparatus according to a first embodiment of this invention.
FIG. 2 is a diagram illustrating an ankle joint dorsiflexion method (method 1) according to the first embodiment of this invention;
FIG. 3 is a diagram showing an ankle plantar dorsiflexion method (method 2) according to the first embodiment of the present invention;
FIG. 4 is a diagram showing a system configuration of an electric ankle joint orthosis according to a second embodiment of the present invention.
FIG. 5 is a diagram showing a system configuration of an electric ankle joint orthosis according to a third embodiment of the present invention.
FIG. 6 is a diagram showing a system configuration of an ankle joint electric device according to a fourth embodiment of the present invention.
FIG. 7 is a diagram showing a configuration of a long leg brace according to the first embodiment of the prior art.
FIG. 8 is a diagram conceptually illustrating walking assistance when using the long leg brace of the first conventional embodiment.
FIG. 9 is a diagram showing a configuration of a walking assistance device according to a conventional second embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ankle joint electric equipment 2 Lower leg mounting part 3 Joint angle measurement part 4 Pressure sensor 5 Actuator 6 Control part 7 User 8 Rotation mechanism 9 Slider mechanism 10 Wire drive mechanism 101 Thigh support member 102 Knee joint member 103 Lower leg support member 104 Foot support Member 105 Bending angle detection sensor 106a Landing detection sensor 106b Landing detection sensor 107 Ankle joint angle detection sensor 108 Bending angle fixing / releasing mechanism 109 Control unit 110 Thigh hugging member 111 Tightening member 112 Lower thigh hugging member 113 Tightening member 114 Tightening Attached member 115 Forward / reverse rotation motor 116 Screw nut 117 Brake lever 119 Brake member 201 Walking assistance device 202 Upper leg attachment member 203 Lower leg attachment member 204 Telescopic mechanism 205 Joint 206 Motor 207 Ball screw 208 Socket 209 Flexible joint 210 Ingredients 211 tape 213 limit switch 214 shoes 215 binding member 220 Cane 221 gripper 222 walking surface remote controller 223 the operation switch 225 drives 227

Claims (4)

使用者の下肢に装着する下肢装着部と、前記使用者の足関節角度を計測する関節角度計測部と、前記下肢装着部の足底に設けられた圧センサと、前記下肢装着部の足関節部に設けられたアクチュエータと、前記アクチュエータを作動させる制御部とからなる足関節電動装具であって、
前記制御部は、前記関節角度計測部により使用者の足関節角度の計測と、前記圧センサにより足底が地面に接地しているかどうかの計測を実施して前記使用者の歩行周期の位相を判断し、位相に応じて前記アクチュエータにより前記下肢装着部の足関節を底背屈させることで、使用者の足関節を底背屈させることを特徴とする足関節電動装具。
A lower limb mounting unit to be mounted on a user's lower limb, a joint angle measuring unit for measuring an ankle joint angle of the user, a pressure sensor provided on a sole of the lower limb mounting unit, and an ankle joint of the lower limb mounting unit An ankle joint electric device comprising an actuator provided in a part and a control part for operating the actuator,
The control unit performs measurement of a user's ankle joint angle by the joint angle measurement unit and measurement of whether or not a sole is in contact with the ground by the pressure sensor, and determines a phase of the user's walking cycle. An ankle-joint electric appliance characterized in that the user's ankle joint is bent dorsiflexed by determining and bending the ankle joint of the lower limb wearing portion by the actuator according to the phase.
前記アクチュエータは回転機構であり、前記回転機構により前記下肢装着部の足関節を正転・逆転させることで、使用者の足関節を底背屈させることを特徴とする請求項1記載の足関節電動装具。2. The ankle joint according to claim 1, wherein the actuator is a rotation mechanism, and the ankle joint of the lower limb wearing part is rotated forward and reverse by the rotation mechanism to cause the user's ankle joint to bend back. 3. Electric brace. 前記アクチュエータはスライダー機構であり、前記スライダー機構により前記下肢装着部の足関節を底背屈させることで、使用者の足関節を底背屈させることを特徴とする請求項1記載の足関節電動装具。2. The ankle joint electric motor according to claim 1, wherein the actuator is a slider mechanism, and the ankle joint of the lower limb wearing portion is bent dorsiflexed by the slider mechanism, and the ankle joint of the user is bent dorsiflexively. Brace. 前記アクチュエータはワイヤ駆動機構であり、前記ワイヤ駆動機構により前記下肢装着部の足関節を底背屈させることで、使用者の足関節を底背屈させることを特徴とする請求項1記載の足関節電動装具。The foot according to claim 1, wherein the actuator is a wire drive mechanism, and the ankle joint of the lower limb wearing portion is bent dorsiflexed by the wire drive mechanism, thereby causing the user's ankle joint to bend dorsiflexively. Joint electric orthosis.
JP2003169158A 2003-06-13 2003-06-13 Foot joint electric device Pending JP2005000500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003169158A JP2005000500A (en) 2003-06-13 2003-06-13 Foot joint electric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003169158A JP2005000500A (en) 2003-06-13 2003-06-13 Foot joint electric device

Publications (2)

Publication Number Publication Date
JP2005000500A true JP2005000500A (en) 2005-01-06
JP2005000500A5 JP2005000500A5 (en) 2006-06-29

Family

ID=34094384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003169158A Pending JP2005000500A (en) 2003-06-13 2003-06-13 Foot joint electric device

Country Status (1)

Country Link
JP (1) JP2005000500A (en)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239086A (en) * 2005-03-02 2006-09-14 Matsushita Electric Works Ltd Walking sensation generating device
JP2007054086A (en) * 2005-08-22 2007-03-08 Kochi Univ Of Technology Orthosis for assisting activities
JP2007089633A (en) * 2005-09-27 2007-04-12 Casio Comput Co Ltd Muscular strength assisting device
KR100799303B1 (en) * 2006-06-21 2008-01-29 한국전자통신연구원 An apparatus and method for inserting/extracting capturing-resistant audio watermark based on discrete wavelet transform, audio rights protection system using it
JP2008132153A (en) * 2006-11-28 2008-06-12 Masanori Sugisaka Device for rehabilitating and aiding anterior tibial muscle
KR100848169B1 (en) * 2007-02-06 2008-07-23 주식회사 피앤에스미캐닉스 Walking zimmer
JP2008200512A (en) * 2003-08-21 2008-09-04 Univ Of Tsukuba Wearable action-assist device, and method and program for controlling wearable action-assist device
JP2009060946A (en) * 2007-09-04 2009-03-26 Univ Of Tsukuba Wearable action aid, its control method and program
JP2009219864A (en) * 2008-02-07 2009-10-01 Otto Bock Healthcare Gmbh Foot section for orthopedics and method for controlling foot section for orthopedics
KR100939284B1 (en) * 2008-03-31 2010-01-28 주식회사 피앤에스미캐닉스 A walking support device of ankle joint
US20100174385A1 (en) * 2008-09-04 2010-07-08 Iwalk, Inc. Hybrid Terrain-Adaptive Lower-Extremity Systems
JP2010148760A (en) * 2008-12-26 2010-07-08 Toyota Motor Corp Walking aid device
WO2011055428A1 (en) * 2009-11-04 2011-05-12 トヨタ自動車株式会社 Walking aid device
WO2011058641A1 (en) * 2009-11-13 2011-05-19 トヨタ自動車株式会社 Walking aid device
JP2011206289A (en) * 2010-03-30 2011-10-20 Toyota Motor Corp Walking support device
JP2012050718A (en) * 2010-09-02 2012-03-15 Toyota Motor Corp Walking aid
JP2012081018A (en) * 2010-10-08 2012-04-26 Univ Of Occupational & Environmental Health Japan Motion detector, knee immobilization release device, and lower extremity orthosis
US8551184B1 (en) 2002-07-15 2013-10-08 Iwalk, Inc. Variable mechanical-impedance artificial legs
US8551029B1 (en) 2003-09-25 2013-10-08 Massachusetts Institute Of Technology Active ankle foot orthosis
CN103431929A (en) * 2013-08-29 2013-12-11 电子科技大学 Method and device for sensing walking gait of strength enhanced power exoskeleton
US8852292B2 (en) 2005-09-01 2014-10-07 Ossur Hf System and method for determining terrain transitions
US8915968B2 (en) 2010-09-29 2014-12-23 össur hf Prosthetic and orthotic devices and methods and systems for controlling the same
US8986397B2 (en) 2003-11-18 2015-03-24 Victhom Human Bionics, Inc. Instrumented prosthetic foot
US9060884B2 (en) 2011-05-03 2015-06-23 Victhom Human Bionics Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US9066817B2 (en) 2007-01-05 2015-06-30 Victhom Human Bionics Inc. High torque active mechanism for orthotic and/or prosthetic devices
US9066819B2 (en) 2005-04-19 2015-06-30 össur hf Combined active and passive leg prosthesis system and a method for performing a movement with such a system
US9078774B2 (en) 2004-12-22 2015-07-14 össur hf Systems and methods for processing limb motion
JP2015136585A (en) * 2014-01-24 2015-07-30 パナソニックIpマネジメント株式会社 Electrostimulator
US9358137B2 (en) 2002-08-22 2016-06-07 Victhom Laboratory Inc. Actuated prosthesis for amputees
JP2016528940A (en) * 2013-05-31 2016-09-23 プレジデント アンド フェローズ オブ ハーバード カレッジ A flexible exoskeleton suit to assist human movement
US9526636B2 (en) 2003-11-18 2016-12-27 Victhom Laboratory Inc. Instrumented prosthetic foot
US9561118B2 (en) 2013-02-26 2017-02-07 össur hf Prosthetic foot with enhanced stability and elastic energy return
US9649206B2 (en) 2002-08-22 2017-05-16 Victhom Laboratory Inc. Control device and system for controlling an actuated prosthesis
JP2017514569A (en) * 2014-04-30 2017-06-08 オットー・ボック・ヘルスケア・ゲーエムベーハーOtto Bock HealthCare GmbH Prosthesis
US9693883B2 (en) 2010-04-05 2017-07-04 Bionx Medical Technologies, Inc. Controlling power in a prosthesis or orthosis based on predicted walking speed or surrogate for same
US9707104B2 (en) 2013-03-14 2017-07-18 össur hf Prosthetic ankle and method of controlling same based on adaptation to speed
US9737419B2 (en) 2011-11-02 2017-08-22 Bionx Medical Technologies, Inc. Biomimetic transfemoral prosthesis
JP2017170015A (en) * 2016-03-25 2017-09-28 株式会社安川電機 Control device of motion assist device, motion assist device, control method of motion assist device, and control program of motion assist device
JP2017189305A (en) * 2016-04-01 2017-10-19 上銀科技股▲分▼有限公司 Control method of walking machine for rehabilitation
US10195057B2 (en) 2004-02-12 2019-02-05 össur hf. Transfemoral prosthetic systems and methods for operating the same
US10278883B2 (en) 2014-02-05 2019-05-07 President And Fellows Of Harvard College Systems, methods, and devices for assisting walking for developmentally-delayed toddlers
US10285828B2 (en) 2008-09-04 2019-05-14 Bionx Medical Technologies, Inc. Implementing a stand-up sequence using a lower-extremity prosthesis or orthosis
CN109938892A (en) * 2019-04-03 2019-06-28 河北工业大学 A kind of intelligent lap artificial limb wearer riding condition identifying system
JP2019107047A (en) * 2017-12-15 2019-07-04 サンコール株式会社 Walking motion assist device
US10390974B2 (en) 2014-04-11 2019-08-27 össur hf. Prosthetic foot with removable flexible members
US10427293B2 (en) 2012-09-17 2019-10-01 Prisident And Fellows Of Harvard College Soft exosuit for assistance with human motion
US10434030B2 (en) 2014-09-19 2019-10-08 President And Fellows Of Harvard College Soft exosuit for assistance with human motion
US10531965B2 (en) 2012-06-12 2020-01-14 Bionx Medical Technologies, Inc. Prosthetic, orthotic or exoskeleton device
US10864100B2 (en) 2014-04-10 2020-12-15 President And Fellows Of Harvard College Orthopedic device including protruding members
CN112504540A (en) * 2020-11-23 2021-03-16 乐聚(深圳)机器人技术有限公司 Method, system and device for detecting falling feet and main controller
JPWO2021084628A1 (en) * 2019-10-29 2021-05-06
US11007072B2 (en) 2007-01-05 2021-05-18 Victhom Laboratory Inc. Leg orthotic device
US11014804B2 (en) 2017-03-14 2021-05-25 President And Fellows Of Harvard College Systems and methods for fabricating 3D soft microstructures
US11324655B2 (en) 2013-12-09 2022-05-10 Trustees Of Boston University Assistive flexible suits, flexible suit systems, and methods for making and control thereof to assist human mobility
US11498203B2 (en) 2016-07-22 2022-11-15 President And Fellows Of Harvard College Controls optimization for wearable systems
US11590046B2 (en) 2016-03-13 2023-02-28 President And Fellows Of Harvard College Flexible members for anchoring to the body

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7637959B2 (en) 2004-02-12 2009-12-29 össur hf Systems and methods for adjusting the angle of a prosthetic ankle based on a measured surface angle
CN1984623B (en) 2004-03-10 2011-04-13 奥瑟Hf公司 Control system and method for a prosthetic knee

Cited By (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8551184B1 (en) 2002-07-15 2013-10-08 Iwalk, Inc. Variable mechanical-impedance artificial legs
US9649206B2 (en) 2002-08-22 2017-05-16 Victhom Laboratory Inc. Control device and system for controlling an actuated prosthesis
US9358137B2 (en) 2002-08-22 2016-06-07 Victhom Laboratory Inc. Actuated prosthesis for amputees
JP2008200512A (en) * 2003-08-21 2008-09-04 Univ Of Tsukuba Wearable action-assist device, and method and program for controlling wearable action-assist device
US9668888B2 (en) 2003-09-25 2017-06-06 Massachusetts Institute Of Technology Active ankle foot orthosis
US8808214B2 (en) 2003-09-25 2014-08-19 Massachusetts Institute Of Technology Active ankle foot orthosis
US10695256B2 (en) 2003-09-25 2020-06-30 Massachusetts Institute Of Technology Motorized limb assistance device
US8551029B1 (en) 2003-09-25 2013-10-08 Massachusetts Institute Of Technology Active ankle foot orthosis
US8986397B2 (en) 2003-11-18 2015-03-24 Victhom Human Bionics, Inc. Instrumented prosthetic foot
US9526636B2 (en) 2003-11-18 2016-12-27 Victhom Laboratory Inc. Instrumented prosthetic foot
US10195057B2 (en) 2004-02-12 2019-02-05 össur hf. Transfemoral prosthetic systems and methods for operating the same
US9078774B2 (en) 2004-12-22 2015-07-14 össur hf Systems and methods for processing limb motion
JP2006239086A (en) * 2005-03-02 2006-09-14 Matsushita Electric Works Ltd Walking sensation generating device
US9066819B2 (en) 2005-04-19 2015-06-30 össur hf Combined active and passive leg prosthesis system and a method for performing a movement with such a system
US9717606B2 (en) 2005-04-19 2017-08-01 össur hf Combined active and passive leg prosthesis system and a method for performing a movement with such a system
JP2007054086A (en) * 2005-08-22 2007-03-08 Kochi Univ Of Technology Orthosis for assisting activities
US8852292B2 (en) 2005-09-01 2014-10-07 Ossur Hf System and method for determining terrain transitions
JP2007089633A (en) * 2005-09-27 2007-04-12 Casio Comput Co Ltd Muscular strength assisting device
JP4645391B2 (en) * 2005-09-27 2011-03-09 カシオ計算機株式会社 Strength assist device
KR100799303B1 (en) * 2006-06-21 2008-01-29 한국전자통신연구원 An apparatus and method for inserting/extracting capturing-resistant audio watermark based on discrete wavelet transform, audio rights protection system using it
JP4693755B2 (en) * 2006-11-28 2011-06-01 政典 杉坂 Functional recovery and auxiliary device for anterior tibial muscle
JP2008132153A (en) * 2006-11-28 2008-06-12 Masanori Sugisaka Device for rehabilitating and aiding anterior tibial muscle
US9730824B2 (en) 2007-01-05 2017-08-15 Victhom Laboratory Inc. High torque active mechanism for orthotic and/or prosthetic devices
US9066817B2 (en) 2007-01-05 2015-06-30 Victhom Human Bionics Inc. High torque active mechanism for orthotic and/or prosthetic devices
US11007072B2 (en) 2007-01-05 2021-05-18 Victhom Laboratory Inc. Leg orthotic device
KR100848169B1 (en) * 2007-02-06 2008-07-23 주식회사 피앤에스미캐닉스 Walking zimmer
JP2009060946A (en) * 2007-09-04 2009-03-26 Univ Of Tsukuba Wearable action aid, its control method and program
JP2009219864A (en) * 2008-02-07 2009-10-01 Otto Bock Healthcare Gmbh Foot section for orthopedics and method for controlling foot section for orthopedics
US10299943B2 (en) 2008-03-24 2019-05-28 össur hf Transfemoral prosthetic systems and methods for operating the same
KR100939284B1 (en) * 2008-03-31 2010-01-28 주식회사 피앤에스미캐닉스 A walking support device of ankle joint
US10285828B2 (en) 2008-09-04 2019-05-14 Bionx Medical Technologies, Inc. Implementing a stand-up sequence using a lower-extremity prosthesis or orthosis
US10105244B2 (en) 2008-09-04 2018-10-23 Bionx Medical Technologies, Inc. Hybrid terrain-adaptive lower-extremity systems
US8900325B2 (en) 2008-09-04 2014-12-02 Iwalk, Inc. Hybrid terrain-adaptive lower-extremity systems
US9211201B2 (en) 2008-09-04 2015-12-15 Iwalk, Inc. Hybrid terrain-adaptive lower-extremity systems
US9554922B2 (en) * 2008-09-04 2017-01-31 Bionx Medical Technologies, Inc. Hybrid terrain-adaptive lower-extremity systems
US20100174385A1 (en) * 2008-09-04 2010-07-08 Iwalk, Inc. Hybrid Terrain-Adaptive Lower-Extremity Systems
US9351856B2 (en) 2008-09-04 2016-05-31 Iwalk, Inc. Hybrid terrain-adaptive lower-extremity systems
JP2010148760A (en) * 2008-12-26 2010-07-08 Toyota Motor Corp Walking aid device
JP5083458B2 (en) * 2009-11-04 2012-11-28 トヨタ自動車株式会社 Walking assist device
US9050237B2 (en) 2009-11-04 2015-06-09 Toyota Jidosha Kabushiki Kaisha Walking assist device
WO2011055428A1 (en) * 2009-11-04 2011-05-12 トヨタ自動車株式会社 Walking aid device
CN102665638A (en) * 2009-11-13 2012-09-12 丰田自动车株式会社 Walking aid device
WO2011058641A1 (en) * 2009-11-13 2011-05-19 トヨタ自動車株式会社 Walking aid device
US9216131B2 (en) 2009-11-13 2015-12-22 Toyota Jidosha Kabushiki Kaisha Walking assist device
JP5640991B2 (en) * 2009-11-13 2014-12-17 トヨタ自動車株式会社 Walking assist device
JP2011206289A (en) * 2010-03-30 2011-10-20 Toyota Motor Corp Walking support device
US10406002B2 (en) 2010-04-05 2019-09-10 Bionx Medical Technologies, Inc. Controlling torque in a prosthesis or orthosis based on a deflection of series elastic element
US9693883B2 (en) 2010-04-05 2017-07-04 Bionx Medical Technologies, Inc. Controlling power in a prosthesis or orthosis based on predicted walking speed or surrogate for same
JP2012050718A (en) * 2010-09-02 2012-03-15 Toyota Motor Corp Walking aid
US8915968B2 (en) 2010-09-29 2014-12-23 össur hf Prosthetic and orthotic devices and methods and systems for controlling the same
US9925071B2 (en) 2010-09-29 2018-03-27 össur hf Prosthetic and orthotic devices and methods and systems for controlling the same
US11020250B2 (en) 2010-09-29 2021-06-01 Össur Iceland Ehf Prosthetic and orthotic devices and methods and systems for controlling the same
JP2012081018A (en) * 2010-10-08 2012-04-26 Univ Of Occupational & Environmental Health Japan Motion detector, knee immobilization release device, and lower extremity orthosis
US11185429B2 (en) 2011-05-03 2021-11-30 Victhom Laboratory Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US9060884B2 (en) 2011-05-03 2015-06-23 Victhom Human Bionics Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US10251762B2 (en) 2011-05-03 2019-04-09 Victhom Laboratory Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US9737419B2 (en) 2011-11-02 2017-08-22 Bionx Medical Technologies, Inc. Biomimetic transfemoral prosthesis
US10531965B2 (en) 2012-06-12 2020-01-14 Bionx Medical Technologies, Inc. Prosthetic, orthotic or exoskeleton device
US10427293B2 (en) 2012-09-17 2019-10-01 Prisident And Fellows Of Harvard College Soft exosuit for assistance with human motion
US11464700B2 (en) 2012-09-17 2022-10-11 President And Fellows Of Harvard College Soft exosuit for assistance with human motion
US10369019B2 (en) 2013-02-26 2019-08-06 Ossur Hf Prosthetic foot with enhanced stability and elastic energy return
US11285024B2 (en) 2013-02-26 2022-03-29 Össur Iceland Ehf Prosthetic foot with enhanced stability and elastic energy return
US9561118B2 (en) 2013-02-26 2017-02-07 össur hf Prosthetic foot with enhanced stability and elastic energy return
US11576795B2 (en) 2013-03-14 2023-02-14 össur hf Prosthetic ankle and method of controlling same based on decreased loads
US9707104B2 (en) 2013-03-14 2017-07-18 össur hf Prosthetic ankle and method of controlling same based on adaptation to speed
US10695197B2 (en) 2013-03-14 2020-06-30 Össur Iceland Ehf Prosthetic ankle and method of controlling same based on weight-shifting
JP2016528940A (en) * 2013-05-31 2016-09-23 プレジデント アンド フェローズ オブ ハーバード カレッジ A flexible exoskeleton suit to assist human movement
US10843332B2 (en) 2013-05-31 2020-11-24 President And Fellow Of Harvard College Soft exosuit for assistance with human motion
CN103431929B (en) * 2013-08-29 2016-01-20 电子科技大学 A kind of strength enhancement mode power exoskeleton walking step state cognitive method and device
CN103431929A (en) * 2013-08-29 2013-12-11 电子科技大学 Method and device for sensing walking gait of strength enhanced power exoskeleton
US11324655B2 (en) 2013-12-09 2022-05-10 Trustees Of Boston University Assistive flexible suits, flexible suit systems, and methods for making and control thereof to assist human mobility
JP2015136585A (en) * 2014-01-24 2015-07-30 パナソニックIpマネジメント株式会社 Electrostimulator
US10278883B2 (en) 2014-02-05 2019-05-07 President And Fellows Of Harvard College Systems, methods, and devices for assisting walking for developmentally-delayed toddlers
US10864100B2 (en) 2014-04-10 2020-12-15 President And Fellows Of Harvard College Orthopedic device including protruding members
US11446166B2 (en) 2014-04-11 2022-09-20 Össur Iceland Ehf Prosthetic foot with removable flexible members
US10390974B2 (en) 2014-04-11 2019-08-27 össur hf. Prosthetic foot with removable flexible members
US10441440B2 (en) 2014-04-30 2019-10-15 Ottobock Se & Co. Kgaa Prosthesis with a passive release device
JP2017514569A (en) * 2014-04-30 2017-06-08 オットー・ボック・ヘルスケア・ゲーエムベーハーOtto Bock HealthCare GmbH Prosthesis
US10434030B2 (en) 2014-09-19 2019-10-08 President And Fellows Of Harvard College Soft exosuit for assistance with human motion
US11590046B2 (en) 2016-03-13 2023-02-28 President And Fellows Of Harvard College Flexible members for anchoring to the body
US10603241B2 (en) 2016-03-25 2020-03-31 Kabushiki Kaisha Yaskawa Denki Controller for motion assisting apparatus, motion assisting apparatus, method for controlling motion assisting apparatus, and recording medium
CN107440888A (en) * 2016-03-25 2017-12-08 株式会社安川电机 The control device of action assisting device, action assisting device, the control method of action assisting device
JP2017170015A (en) * 2016-03-25 2017-09-28 株式会社安川電機 Control device of motion assist device, motion assist device, control method of motion assist device, and control program of motion assist device
JP2017189305A (en) * 2016-04-01 2017-10-19 上銀科技股▲分▼有限公司 Control method of walking machine for rehabilitation
US11498203B2 (en) 2016-07-22 2022-11-15 President And Fellows Of Harvard College Controls optimization for wearable systems
US11014804B2 (en) 2017-03-14 2021-05-25 President And Fellows Of Harvard College Systems and methods for fabricating 3D soft microstructures
JP7111463B2 (en) 2017-12-15 2022-08-02 サンコール株式会社 Walking motion assist device
JP2019107047A (en) * 2017-12-15 2019-07-04 サンコール株式会社 Walking motion assist device
CN109938892A (en) * 2019-04-03 2019-06-28 河北工业大学 A kind of intelligent lap artificial limb wearer riding condition identifying system
CN109938892B (en) * 2019-04-03 2020-08-04 河北工业大学 Intelligent riding state recognition system for knee prosthesis wearer
WO2021084628A1 (en) * 2019-10-29 2021-05-06 株式会社アシックス Frame for walking assist device, walking assist device, and shoe with walking assist device
JPWO2021084628A1 (en) * 2019-10-29 2021-05-06
JP7295263B2 (en) 2019-10-29 2023-06-20 株式会社アシックス Walking aid frame, walking aid and shoes with walking aid
CN112504540A (en) * 2020-11-23 2021-03-16 乐聚(深圳)机器人技术有限公司 Method, system and device for detecting falling feet and main controller

Similar Documents

Publication Publication Date Title
JP2005000500A (en) Foot joint electric device
US10390973B2 (en) Interactive exoskeleton robotic knee system
KR100825544B1 (en) Wearing type behavior help device, wearing type behavior help device calibration device, and calibration program
JP5119440B2 (en) Hip and knee joint automatic hip prosthesis
EP3750166B1 (en) Advanced gait control system and methods enabling continuous walking motion of a powered exoskeleton device
KR101317354B1 (en) Control method of walking assistance torque and walking assistance apparatus
WO2017208480A1 (en) Walking motion assist device
TW201639534A (en) Exoskeleton ankle robot
JP2007054086A (en) Orthosis for assisting activities
JP2002191654A (en) Walking prosthesis
JP2013542014A (en) Walking motion assist device with integrated tilt sensor
JP2007524483A5 (en)
JP2014073199A (en) Walking support device and walking support program
JP5724312B2 (en) Rehabilitation assist device
JP6247483B2 (en) Operation assistance device and operation assistance program
JP2010273748A (en) Landing timing specifying apparatus and walking assisting apparatus
WO2016180074A1 (en) Interactive exoskeleton robotic knee system
JP5565037B2 (en) Walking support device
JP2010051416A (en) Apparatus for assisting movement of foot joint and method for controlling apparatus for assisting movement of foot joint
JP3002320U (en) Long leg brace with knee joint angle adjustment mechanism
JP2019531858A (en) System to support walking
Ma et al. Design and control of a powered knee orthosis for gait assistance
JP2018033641A (en) Device for preventing leg muscle atrophy
JP2006075456A (en) Wearing type support system based on human body model
KR102162485B1 (en) Controlling method of lower body assisting robot

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609