JP2004363575A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP2004363575A
JP2004363575A JP2004143064A JP2004143064A JP2004363575A JP 2004363575 A JP2004363575 A JP 2004363575A JP 2004143064 A JP2004143064 A JP 2004143064A JP 2004143064 A JP2004143064 A JP 2004143064A JP 2004363575 A JP2004363575 A JP 2004363575A
Authority
JP
Japan
Prior art keywords
layer
powder
silver
electrolytic capacitor
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004143064A
Other languages
Japanese (ja)
Other versions
JP4988151B2 (en
Inventor
Takayuki Matsumoto
貴行 松本
Tetsuyuki Sakuta
鉄幸 作田
Nobuhiro Honda
伸浩 本田
Shigekatsu Onishi
重克 大西
Naoyuki Shiozawa
直行 塩沢
Hideaki Kojima
秀明 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga Sanyo Industry Co Ltd
Sanyo Electric Co Ltd
Taiyo Holdings Co Ltd
Original Assignee
Saga Sanyo Industry Co Ltd
Taiyo Ink Mfg Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga Sanyo Industry Co Ltd, Taiyo Ink Mfg Co Ltd, Sanyo Electric Co Ltd filed Critical Saga Sanyo Industry Co Ltd
Priority to JP2004143064A priority Critical patent/JP4988151B2/en
Priority to CN2004100559040A priority patent/CN1697103B/en
Priority to TW093124012A priority patent/TWI244101B/en
Priority to KR1020040075414A priority patent/KR100914586B1/en
Priority to US10/973,411 priority patent/US7023689B2/en
Publication of JP2004363575A publication Critical patent/JP2004363575A/en
Application granted granted Critical
Publication of JP4988151B2 publication Critical patent/JP4988151B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a solid electrolytic capacitor with a low ESR in a short time. <P>SOLUTION: A solid electrolytic capacitor 1 has a negative electrode layer 5 formed on a dielectric oxide film 21 on a positive electrode body 20, a negative electrode lead frame 9 attached to the negative electrode layer 5, and a positive electrode lead frame 90 attached to the lead of the positive electrode body. The negative electrode layer 5 has a mixture layer 4 of scale-like silver powder 8 and carbon powder 80, which is directly provided on the outside of a solid electrolyte layer 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、チップ型固体電解コンデンサに関する。 The present invention relates to a chip-type solid electrolytic capacitor.

出願人は、以前に図4に示すチップ型の固体電解コンデンサを提案している(例えば、特許文献1参照)。
固体電解コンデンサ(1)は、図4に示すように、下面にリードフレーム(9)(90)が取り付けられたコンデンサ素子(2)を具え、該コンデンサ素子(2)は合成樹脂製のハウジング(7)にて覆われている。リードフレーム(9)(90)はハウジング(7)の周面に沿って2段に折曲される。コンデンサ素子(2)は、弁金属である陽極体(20)に、誘電体酸化被膜(21)を形成し、該誘電体酸化被膜(21)上に、陰極層(5)を形成している。陰極層(5)は、固体電解質層(3)、カーボン層(6)、銀ペースト層(60)を具えている。ここで、弁金属とは、電解酸化処理により極めて緻密で耐久性を有する誘電体酸化被膜が形成される金属を指し、Al(アルミニウム)、Ta(タンタル)、Ti(チタン)、Nb(ニオブ)等が該当する。また、固体電解質には、ポリチオフェン系、ポリピロール系の導電性高分子が含まれる。
ここに於いて、カーボン層(6)と銀ペースト層(60)は、粒子径、電気的特性等が全く異なるから、両層(6)(60)の界面にて接触抵抗が生じ、これにより固体電解コンデンサ(1)としてのESR(等価直列抵抗)の増加を招来していた。そこで、カーボン層(6)と銀ペースト層(60)との間に、カーボン粉と銀粉の混合層を形成する3層構造のものが提案されている(例えば、特許文献2参照)。これにより、混合層に含まれているカーボン粉によりカーボン層(6)との密着力が高められ、また混合層に含まれている銀粉により銀ペースト層(60)との密着力が高められ、ESRを下げることを図っている。
The applicant has previously proposed a chip-type solid electrolytic capacitor shown in FIG. 4 (for example, see Patent Document 1).
As shown in FIG. 4, the solid electrolytic capacitor (1) comprises a capacitor element (2) having a lead frame (9) (90) attached to the lower surface, and the capacitor element (2) is made of a synthetic resin housing ( It is covered by 7). The lead frames (9) and (90) are bent in two steps along the peripheral surface of the housing (7). The capacitor element (2) has a dielectric oxide film (21) formed on an anode body (20), which is a valve metal, and a cathode layer (5) formed on the dielectric oxide film (21). . The cathode layer (5) includes a solid electrolyte layer (3), a carbon layer (6), and a silver paste layer (60). Here, the valve metal refers to a metal on which an extremely dense and durable dielectric oxide film is formed by electrolytic oxidation treatment, and Al (aluminum), Ta (tantalum), Ti (titanium), Nb (niobium) And so on. The solid electrolyte includes polythiophene-based and polypyrrole-based conductive polymers.
Here, since the carbon layer (6) and the silver paste layer (60) have completely different particle diameters, electrical characteristics, etc., contact resistance occurs at the interface between the two layers (6) and (60). This has caused an increase in ESR (equivalent series resistance) of the solid electrolytic capacitor (1). Therefore, a three-layer structure in which a mixed layer of carbon powder and silver powder is formed between the carbon layer (6) and the silver paste layer (60) has been proposed (for example, see Patent Document 2). Thereby, the adhesion to the carbon layer (6) is increased by the carbon powder contained in the mixed layer, and the adhesion to the silver paste layer (60) is increased by the silver powder contained in the mixed layer, The aim is to lower the ESR.

特開平8−148392号JP-A-8-148392 特開平10−242000号JP-A-10-242000

カーボン層(6)と銀ペースト層(60)との間に、カーボン粉と銀粉の混合層を形成することにより、ESRは低下する。しかし、カーボン層(6)と銀ペースト層(60)は、夫々1回から数回の塗布及び熱処理工程を経て形成されるから、固体電解コンデンサ(1)の製造時間は長時間を要する。両層(6)(60)の間に、カーボン粉と銀粉の混合層を形成すれば、従来よりも更に製造時間が長くなって製造コストの増大を招く。また、カーボン層(6)又は銀ペースト層(60)の何れか一方の層の形成を省略すれば、製造時間は短縮できるが、以下の理由によって実用的ではない。
たとえば、図5、図6のように固体電解質層(3)に、直接銀ペースト層を形成して電極とすると、固体電解質層と銀ペースト層に含まれる銀粉の表面との接点が少なく、接触抵抗が高くなり、導電性の高い銀であってもESRが高くなる。
一方、図7、図8のように固体電解質層(3)に、直接カーボン層を形成すると、固体電解質層とカーボン層に含まれるカーボン粉の表面との接点が多いため、接触抵抗は低くなるが、導電性の高い種のカーボンを選択的に使用したカーボン層であっても銀と比べて導電性が低いため、所望する導電性が得られず、ESRが高くなる。
そのため、従来は、銀ペースト層とカーボン層の2層構造を採用することにより、陰極層と固体電解質層の接触抵抗を低減するカーボン層から導電性の高い銀ペースト層に導電してESRを実用的な水準にしていた。
従って、発明者はESRを従来よりも低くしながら、製造時間を短縮することを着想した。ここで、従来の銀ペーストはエポキシ樹脂等のバインダに銀粉を混練したものであり、その電気抵抗は、図9に示すように、銀ペースト(65)を平板(66)にて延ばし、該延びた銀ペースト(65)の両端部に電極(67)(67)を当てて測定され、塗布された際の長手方向(以下、XY方向と呼ぶ)の抵抗値を示す比抵抗の低減を目的として開発されている。発明者は、従来の銀ペーストやこれを用いた陰極層(5)がコンデンサ素子の厚み方向(以下、Z方向と呼ぶ)における抵抗値の改善を目的として開発されていないことに着目し、鋭意研究した。
本発明の目的は、ESRが低く、且つ短時間で製造可能な固体電解コンデンサを提供することにある。
ESR is reduced by forming a mixed layer of carbon powder and silver powder between the carbon layer (6) and the silver paste layer (60). However, since the carbon layer (6) and the silver paste layer (60) are formed through one to several application and heat treatment steps, respectively, the manufacturing time of the solid electrolytic capacitor (1) requires a long time. If a mixed layer of carbon powder and silver powder is formed between the two layers (6) and (60), the production time becomes longer than before, and the production cost is increased. If the formation of either the carbon layer (6) or the silver paste layer (60) is omitted, the manufacturing time can be reduced, but it is not practical for the following reasons.
For example, if a silver paste layer is formed directly on the solid electrolyte layer (3) as shown in FIGS. 5 and 6 to form an electrode, the contact between the solid electrolyte layer and the surface of silver powder contained in the silver paste layer is small, The resistance is high and the ESR is high even for silver with high conductivity.
On the other hand, if the carbon layer is formed directly on the solid electrolyte layer (3) as shown in FIGS. 7 and 8, the contact resistance between the solid electrolyte layer and the surface of the carbon powder contained in the carbon layer is low because there are many points of contact. However, even a carbon layer selectively using a carbon species of high conductivity has low conductivity as compared with silver, so that desired conductivity cannot be obtained and ESR increases.
Therefore, conventionally, by adopting a two-layer structure of a silver paste layer and a carbon layer, the ESR is practically conducted by conducting from the carbon layer that reduces the contact resistance between the cathode layer and the solid electrolyte layer to the highly conductive silver paste layer. Level.
Therefore, the inventor conceived to shorten the manufacturing time while keeping the ESR lower than before. Here, the conventional silver paste is obtained by kneading silver powder into a binder such as an epoxy resin, and the electric resistance of the silver paste (65) is extended by a flat plate (66) as shown in FIG. The electrodes (67) and (67) are measured by applying the electrodes (67) and (67) to both ends of the silver paste (65), and for the purpose of reducing the specific resistance indicating the resistance value in the longitudinal direction (hereinafter, referred to as XY directions) when applied. Is being developed. The inventor of the present invention has focused on the fact that conventional silver paste and a cathode layer (5) using the same have not been developed for the purpose of improving the resistance value in the thickness direction (hereinafter, referred to as the Z direction) of the capacitor element. Studied.
An object of the present invention is to provide a solid electrolytic capacitor which has a low ESR and can be manufactured in a short time.

陽極体(20)上に誘電体酸化被膜(21)を介して陰極層(5)を形成し、該陰極層(5)上にリードフレーム(9)(90)を取り付けて構成される固体電解コンデンサに於いて、陰極層(5)は、固体電解質層(3)の外側に鱗片状銀粉及びカーボン粉の混合層(4)を直接設けている。   A solid electrolyte formed by forming a cathode layer (5) on an anode body (20) via a dielectric oxide film (21) and attaching lead frames (9) and (90) on the cathode layer (5). In the capacitor, the cathode layer (5) is provided directly with a mixed layer (4) of flaky silver powder and carbon powder outside the solid electrolyte layer (3).

発明者の研究の結果、ESRを低くするには、XY方向の比抵抗を下げるとともに、コンデンサ素子(2)のZ方向の抵抗値を下げることが重要である事を見出した。具体的には、発明者の実験において、同じ比抵抗の銀ペーストであってもESRが大きく異なる結果が得られており、比抵抗の改善のみではコンデンサのESRを改善できないことが確認された。また、Z方向における抵抗値について発明者は(a)陰極層(5)内部における固体電解質層(3)とカーボン、銀などの導電層との層間の接触抵抗、(b)陰極層(5)内部における導電性粉末の粒子間の接触抵抗、(c)陰極層(5)と接着用銀ペーストとの接触抵抗の値を小さくする事により低ESR化が達成される事を見出した。
本発明では、この点に鑑みて、固体電解質層(3)の外側に鱗片状銀粉及びカーボン粉の混合層(4)を直接設けている。カーボン粉は鱗片状銀粉よりも粒径が小さく、固体電解質層(3)と銀粒子の隙間、および銀粒子同士の隙間にカーボン粉が入ることにより、銀粒子が固体電解質層(3)及び他の隣接する銀粒子に接する接触面積を補助的に向上させる。すなわち、固体電解質層(3)と鱗片状銀粉及びカーボン粉の混合層(4)の界面では、図2及び図3のように固体電解質層(3)と銀粒子間の導通に加えて、カーボン粉の補助的導通により、Z方向への並列回路的な作用が増す。これは界面のみならず、銀粒子間においても同様の作用が働いており、結果としてESRを低くできる。
また、固体電解質層(3)上には、鱗片状銀粉及びカーボン粉の混合層(4)を直接設ければよく、固体電解質層(3)上にカーボン層(6)と銀ペースト層(60)を形成していた従来の構成に比して、製造時間を短くできる。
As a result of the research by the inventor, it has been found that it is important to lower the specific resistance in the XY directions and the resistance value in the Z direction of the capacitor element (2) in order to lower the ESR. Specifically, in the experiment of the inventor, a result that the ESR was greatly different even from silver paste having the same specific resistance was obtained, and it was confirmed that the ESR of the capacitor could not be improved only by improving the specific resistance. In addition, regarding the resistance value in the Z direction, the inventor (a) contact resistance between the solid electrolyte layer (3) and the conductive layer such as carbon or silver inside the cathode layer (5), and (b) the cathode layer (5) It has been found that low ESR can be achieved by reducing the value of the contact resistance between the particles of the conductive powder inside and the value of (c) the contact resistance between the cathode layer (5) and the bonding silver paste.
In the present invention, in view of this point, the mixed layer (4) of the flaky silver powder and the carbon powder is directly provided outside the solid electrolyte layer (3). The carbon powder has a smaller particle size than the flaky silver powder, and the carbon particles enter gaps between the solid electrolyte layer (3) and the silver particles and gaps between the silver particles, so that the silver particles become solid electrolyte layer (3) and other particles. The contact area in contact with the adjacent silver particles is further improved. That is, at the interface between the solid electrolyte layer (3) and the mixed layer (4) of flaky silver powder and carbon powder, in addition to conduction between the solid electrolyte layer (3) and silver particles as shown in FIGS. The auxiliary conduction of the powder increases the effect of a parallel circuit in the Z direction. This is because the same action works not only at the interface but also between the silver particles, and as a result, the ESR can be reduced.
Further, a mixed layer (4) of flaky silver powder and carbon powder may be directly provided on the solid electrolyte layer (3), and the carbon layer (6) and the silver paste layer (60) are provided on the solid electrolyte layer (3). The manufacturing time can be shortened as compared with the conventional configuration in which () is formed.

以下、本発明の一例を、図を用いて詳述する。本発明において使用する銀粉は鱗片状銀粉であり、特に限定しない場合は総じて銀粉と表記する。また、銀粉の粒一つを指して呼ぶ場合は銀粒子と表記する。
図1は、固体電解コンデンサ(1)の正面断面図である。固体電解コンデンサ(1)は、コンデンサ素子(2)の下面に、陽極側及び陰極側リードフレーム(90)(9)を接着用銀ペースト等によって取り付けて構成され、コンデンサ素子(2)は、合成樹脂のハウジング(7)にて覆われる。コンデンサ素子(2)は、弁金属、具体的にはタンタルの焼結体である陽極体(20)の一部に、誘電体酸化被膜(21)を形成し、該誘電体酸化被膜(21)上に、陰極層(5)を設けている。陰極層(5)は、固体電解質層(3)と、鱗片状銀粉及びカーボン粉の混合層(4)にて構成される。本例にあっては、この混合層(4)に特徴がある。また、本発明の請求項3に示すように、陰極層(5)と陰極リードフレーム(9)が、接着用銀ペーストによって接続されていることに特徴がある。
Hereinafter, an example of the present invention will be described in detail with reference to the drawings. The silver powder used in the present invention is flaky silver powder, and is generally referred to as silver powder unless otherwise specified. When one silver powder particle is referred to, it is described as silver particle.
FIG. 1 is a front sectional view of the solid electrolytic capacitor (1). The solid electrolytic capacitor (1) is constituted by attaching the anode and cathode lead frames (90) and (9) to the lower surface of the capacitor element (2) with an adhesive silver paste or the like, and the capacitor element (2) is synthesized. It is covered with a resin housing (7). The capacitor element (2) is formed by forming a dielectric oxide film (21) on a part of an anode body (20) which is a sintered body of a valve metal, specifically, tantalum, and forming the dielectric oxide film (21). A cathode layer (5) is provided thereon. The cathode layer (5) is composed of a solid electrolyte layer (3) and a mixed layer (4) of flaky silver powder and carbon powder. In this example, the mixed layer (4) is characterized. Further, the present invention is characterized in that the cathode layer (5) and the cathode lead frame (9) are connected by an adhesive silver paste.

図1のコンデンサ素子(2)の製造方法を簡単に示す。先ず弁金属の焼結体である陽極体(20)を形成し、この陽極体(20)の一部を0.01〜2wt%の燐酸水溶液又はアジピン酸水溶液内に浸して電解酸化処理し、誘電体酸化被膜(21)を形成する。次に、ブタノールを溶媒とした3,4−エチレンジオキシチオフェン、p−トルエンスルホン酸第二鉄の溶液に、陽極体(20)の誘電体酸化被膜(21)の形成部分を浸漬し、ポリチオフェンから成る固体電解質層(3)を形成する。この固体電解質層(3)上に、鱗片状銀粉とカーボン粉の混合層(4)を形成して、コンデンサ素子(2)が完成する。コンデンサ素子(2)にリードフレーム(9)(90)を接着用銀ペースト等によって取り付けた後に、コンデンサ素子(2)を合成樹脂のハウジング(7)にて被覆し、ハウジング(7)の周面に沿って、リードフレーム(9)(90)を折曲して、固体電解コンデンサ(1)が完成する。   A method for manufacturing the capacitor element (2) shown in FIG. 1 will be briefly described. First, an anode body (20), which is a sintered body of valve metal, is formed, and a part of the anode body (20) is immersed in a 0.01 to 2% by weight aqueous solution of phosphoric acid or adipic acid and electrolytically oxidized. A dielectric oxide film (21) is formed. Next, the portion where the dielectric oxide film (21) of the anode body (20) is formed is immersed in a solution of 3,4-ethylenedioxythiophene and ferric p-toluenesulfonate using butanol as a solvent. Is formed. A mixed layer (4) of flaky silver powder and carbon powder is formed on the solid electrolyte layer (3), and the capacitor element (2) is completed. After attaching the lead frames (9) and (90) to the capacitor element (2) with a silver paste for adhesion or the like, the capacitor element (2) is covered with a synthetic resin housing (7), and the peripheral surface of the housing (7). The lead frames (9) and (90) are bent along to complete the solid electrolytic capacitor (1).

本発明の鱗片状銀粉(8)とカーボン粉(80)の混合層(4)を形成するためのペーストは、鱗片状銀粉(8)、カーボン粉(80)、バインダが必須成分である。
鱗片状銀粉(8)は、図2及び図3に示すように、粒状、球状、不定形の銀粉を物理的に扁平させて金属箔状にした鱗片状であり、体積あたりの表面積が大きい点に特徴がある。これにより、混合層(4)を形成する際に鱗片状銀粉がXY方向に横たわることでXY方向の導電性を発現する。また、2個の球状あるいは不定形の銀粉の接点に比べ、2枚の鱗片状銀粉(8)(8)の間に生じる接点は面積が広くて、接触抵抗が低く、Z方向の導電性を一層向上させることができる。また、鱗片状銀粉(8)は、比表面積が大きく、カーボン粉の沈降を抑制することができ、鱗片状銀粉(8)と鱗片状銀粉(8)の間に、多くのカーボン粉(80)を入り込ませることができる。
ここで、導電性ペーストの導電粉としては、鱗片状銀粉以外に銅粉、ニッケル粉等が考えられる。しかし、銅粉、ニッケル粉は表面が酸化され易いため還元性のあるバインダと組み合わせないと導電性が発現せず、しかも、加工性が悪く鱗片状に加工するのが困難である。この為、固体電解コンデンサ用の導電性ペーストとしての使用には適さない。
The paste for forming the mixed layer (4) of the flaky silver powder (8) and the carbon powder (80) of the present invention includes the flaky silver powder (8), the carbon powder (80), and the binder as essential components.
As shown in FIG. 2 and FIG. 3, the flaky silver powder (8) is a flaky metal powder obtained by physically flattening granular, spherical, or amorphous silver powder, and has a large surface area per volume. There is a feature. Thereby, when forming the mixed layer (4), the flaky silver powder lays down in the XY directions, thereby expressing conductivity in the XY directions. In addition, compared to two spherical or amorphous silver powder contacts, the contact formed between the two flaky silver powders (8) (8) has a large area, low contact resistance, and low conductivity in the Z direction. It can be further improved. Further, the flaky silver powder (8) has a large specific surface area and can suppress the sedimentation of the carbon powder, and between the flaky silver powder (8) and the flaky silver powder (8), many carbon powders (80) Can enter.
Here, as the conductive powder of the conductive paste, copper powder, nickel powder and the like can be considered in addition to the flaky silver powder. However, since the surfaces of copper powder and nickel powder are easily oxidized, conductivity is not exhibited unless combined with a reducing binder, and further, the workability is poor and it is difficult to process into a flake shape. Therefore, it is not suitable for use as a conductive paste for solid electrolytic capacitors.

カーボン粉(80)は、固体電解質層(3)と鱗片状銀粉(8)の隙間、および鱗片状銀粉(8)間の隙間に入る。銀粒子が固体電解質層(3)及び他の隣接する銀粒子に接する接触面積を補助的に向上させ、カーボン粉の補助的導通によってZ方向への並列回路的な作用が増す。結果として陰極層(5)の導電性を向上し、ESRを低くできる。
このような作用を付与するには、カーボン粉(80)の平均粒径が鱗片状銀粉(8)よりも小さいことが望ましい。かかるカーボン粉の具体例としては、ケッチェンブラック、チャンネルブラック等のうち、比表面積が600〜1200m2/gのものを用いることができる。平均粒径が小さく、かつ比表面積の大きいカーボン粉は、表面に多数の細孔を有しており、バインダ成分を細孔に吸い込むことでカーボン粉同士、カーボン粉(80)と鱗片状銀粉(8)、およびカーボン粉(80)と固体電解質層(3)間の距離が著しく小さくなる。これにより、接触する効率を向上させる効果がある。通常のカーボンブラック(比表面積5〜350m2/g)では比表面積が充分でなく、例えば、アセチレンブラック(比表面積15〜100m2/g)、ファーネスブラック(比表面積15〜300m2/g)、サーマルブラック(比表面積5〜30m2/g)では要求を満たす導電性が期待できない。このように、本発明で用いるカーボン粉は、極めて大きな比表面積を有している点に特徴がある。
The carbon powder (80) enters gaps between the solid electrolyte layer (3) and the flaky silver powder (8) and gaps between the flaky silver powder (8). The contact area where the silver particles are in contact with the solid electrolyte layer (3) and other adjacent silver particles is supplementarily improved, and the auxiliary conduction of the carbon powder increases the effect of a parallel circuit in the Z direction. As a result, the conductivity of the cathode layer (5) can be improved, and the ESR can be reduced.
In order to impart such an effect, it is desirable that the average particle size of the carbon powder (80) is smaller than that of the flaky silver powder (8). Specific examples of such carbon powder include those having a specific surface area of 600 to 1200 m 2 / g among Ketjen black, channel black and the like. The carbon powder having a small average particle size and a large specific surface area has a large number of pores on its surface, and the carbon powder is sucked into the pores to form the carbon powder, carbon powder (80) and flaky silver powder ( 8) and the distance between the carbon powder (80) and the solid electrolyte layer (3) is significantly reduced. This has the effect of improving the contact efficiency. The specific surface area is not sufficient with ordinary carbon black (specific surface area 5 to 350 m 2 / g), for example, acetylene black (specific surface area 15 to 100 m 2 / g), furnace black (specific surface area 15 to 300 m 2 / g), Thermal black (specific surface area: 5 to 30 m 2 / g) cannot be expected to have the required conductivity. As described above, the carbon powder used in the present invention is characterized by having an extremely large specific surface area.

カーボン粉(80)は、鱗片状銀粉(8)に対し質量比で、0.77〜10.8%の範囲で効果的であり、1〜8%の範囲で含有することが実用的で望ましい。0.77%未満の場合は分散分布が不充分となって導電効果を発揮せず、ESRが大きくなる。また、10.8%より多い場合は電気特性に影響はないものの、比表面積が大きくなることからバインダの流動性を阻害して塗布性能を著しく低下させるため好ましくない。
バインダ成分としては、熱可塑性樹脂や熱硬化性樹脂などの公知慣用の有機化合物を使用することができる。なかでも、熱硬化工程を経て高分子化する熱硬化性樹脂、例えば公知慣用の熱硬化性モノマー、オリゴマー、ポリマーを使用することが出来る。具体的には、ビスフェノールA、F、S、フェノールノボラック、クレゾールノボラックなどのフェノール樹脂や、前記フェノール樹脂を主骨格としたエポキシ樹脂、その他ビフェニル型、ナフタレン型、トリフェニルメタン型、テトラフェニルエタン型などのフェノール樹脂やエポキシ樹脂を用いることができる。必要に応じて硬化剤または硬化触媒として作用する1級、2級、3級アミン類やカルボキシル基含有化合物及びその無水物などを適宜組み合わせ選択して使用することができる。
The carbon powder (80) is effective in a mass ratio of 0.77 to 10.8% with respect to the flaky silver powder (8), and it is practical and desirable to contain it in a range of 1 to 8%. . If it is less than 0.77%, the dispersion distribution becomes insufficient, the conductive effect is not exhibited, and the ESR increases. If it is more than 10.8%, the electrical properties are not affected, but the specific surface area is large, which impairs the fluidity of the binder and remarkably lowers the coating performance.
As the binder component, a known and commonly used organic compound such as a thermoplastic resin or a thermosetting resin can be used. Among them, a thermosetting resin which is polymerized through a thermosetting step, for example, a commonly used thermosetting monomer, oligomer, or polymer can be used. Specifically, phenol resins such as bisphenol A, F, S, phenol novolak, and cresol novolak, epoxy resins having the phenol resin as a main skeleton, and other biphenyl type, naphthalene type, triphenylmethane type, and tetraphenylethane type For example, a phenol resin or an epoxy resin can be used. If necessary, primary, secondary, and tertiary amines acting as a curing agent or a curing catalyst, a carboxyl group-containing compound, an anhydride thereof, and the like can be appropriately selected and used.

出願人は、固体電解質層(3)を形成した陽極体(20)上にカーボン層(6)及び銀ペースト層(60)を形成した従来のコンデンサ素子(2)を作製し、該コンデンサ素子(2)から作製した固体電解コンデンサ(1)を従来例とした。銀ペーストは、比表面積(単位重量の粉体に含まれる全粒子の総和)が0.5〜1.5m2/gで、平均粒径が5〜10μmの鱗片状の銀粉を用い、樹脂であるバインダには、分子量が1000〜3000のエポキシ樹脂を用いた。周知の如く、エポキシ樹脂は熱硬化性である。
また、固体電解質層(3)を形成した陽極体(20)上に鱗片状銀粉(8)及びカーボン粉(80)の混合層(4)を形成してコンデンサ素子(2)を作製し、該コンデンサ素子(2)から作製した固体電解コンデンサ(1)を実施例1〜4、比較例2〜4とした。また、従来例にあってカーボン層(6)を形成しなかったものを比較例1とした。
この混合層(4)内の銀粉は、比表面積が1.0m2/g、平均粒径が3μmである。また、カーボン粉(80)は比表面積が800m2/gで、平均粒径が30nm(=0.03μm)である。銀粉とカーボン粉のバインダには、前記エポキシ樹脂を用いた。
出願人は、実施例に於いて、銀粉とカーボン粉(80)の種類や混合比を種々変更して、4種類の実施例、及び4種類の比較例の固体電解コンデンサ(1)を作製した。即ち、実施例1〜4、比較例1〜4の固体電解コンデンサ(1)には、カーボン層(6)が形成されておらず、従来例の固体電解コンデンサ(1)にカーボン層(6)が形成されている。従来例及び実施例1〜4、比較例1〜3に於ける銀粉の形状は、鱗片状であり、比較例4に於ける銀粉の形状は、不定形である。従来例、実施例、比較例ともにバインダと溶剤の重量比は、何れも銀粉に対して7:23であり、カーボン粉の量のみ違えている。従来例及び実施例1〜4、比較例1〜4の内訳を以下に示す。
The applicant has prepared a conventional capacitor element (2) having a carbon layer (6) and a silver paste layer (60) formed on an anode body (20) having a solid electrolyte layer (3) formed thereon, and The solid electrolytic capacitor (1) produced from 2) was used as a conventional example. The silver paste has a specific surface area (total of all particles contained in a unit weight of powder) of 0.5 to 1.5 m 2 / g and an average particle size of 5 to 10 μm using a flaky silver powder. An epoxy resin having a molecular weight of 1000 to 3000 was used for a certain binder. As is well known, epoxy resins are thermosetting.
Further, a mixed layer (4) of flaky silver powder (8) and carbon powder (80) was formed on the anode body (20) on which the solid electrolyte layer (3) was formed, to produce a capacitor element (2). Solid electrolytic capacitors (1) produced from the capacitor elements (2) were named Examples 1 to 4 and Comparative Examples 2 to 4. Further, Comparative Example 1 in which the carbon layer (6) was not formed in the conventional example was used.
The silver powder in the mixed layer (4) has a specific surface area of 1.0 m 2 / g and an average particle size of 3 μm. The carbon powder (80) has a specific surface area of 800 m 2 / g and an average particle size of 30 nm (= 0.03 μm). The epoxy resin was used as a binder for silver powder and carbon powder.
The applicant made various kinds of solid electrolytic capacitors (1) of four examples and four comparative examples by changing various kinds and mixing ratios of silver powder and carbon powder (80) in the examples. . That is, in the solid electrolytic capacitors (1) of Examples 1 to 4 and Comparative Examples 1 to 4, the carbon layer (6) was not formed, and the carbon layer (6) was formed on the solid electrolytic capacitor (1) of the conventional example. Is formed. The shape of the silver powder in the conventional example, Examples 1 to 4, and Comparative Examples 1 to 3 is scaly, and the shape of the silver powder in Comparative Example 4 is irregular. The weight ratio of the binder to the solvent in each of the conventional example, the example, and the comparative example was 7:23 with respect to the silver powder, and only the amount of the carbon powder was different. The details of the conventional example, Examples 1 to 4, and Comparative Examples 1 to 4 are shown below.

Figure 2004363575
Figure 2004363575

上記表1にて、ESR(等価直列抵抗)は、100kHzの周波数にて測定した。また、カーボン粉が鱗片状銀粉に対し質量比で10.8%より多い比較例2は銀粉とカーボン粉をペースト化できず、測定に至らなかった。
発明者は、従来例、比較例1と実施例1〜3の固体電解コンデンサ(1)を用いて、120Hzの周波数にて静電容量を実測し、前記ESRおよび比抵抗値を実測し、定格電圧40秒通電後に漏れ電流を測定した。固体電解コンデンサ(1)は何れも定格電圧25.0V、静電容量15μFである。測定結果を表2〜表4に示す。測定は何れも10ヶのロットで行った。
In Table 1 above, ESR (equivalent series resistance) was measured at a frequency of 100 kHz. In Comparative Example 2 in which the mass ratio of the carbon powder to the flaky silver powder was more than 10.8%, the silver powder and the carbon powder could not be made into a paste, and the measurement was not completed.
The inventor measured the capacitance at a frequency of 120 Hz using the solid electrolytic capacitors (1) of the conventional example, comparative example 1 and examples 1 to 3, measured the ESR and the specific resistance, and rated After applying the voltage for 40 seconds, the leakage current was measured. Each of the solid electrolytic capacitors (1) has a rated voltage of 25.0 V and a capacitance of 15 μF. Tables 2 to 4 show the measurement results. Each measurement was performed in ten lots.

Figure 2004363575
Figure 2004363575

Figure 2004363575
Figure 2004363575

Figure 2004363575
Figure 2004363575

上記の表2〜表4から、従来の固体電解コンデンサ(1)からカーボン層(6)を省いた比較例1、混合層(4)を形成したがカーボン粉(80)が鱗片状銀粉(8)に対し質量比で0.77%未満の比較例3の固体電解コンデンサ(1)は、比抵抗値が従来例および実施例1〜4の値とほぼ同等であるにもかかわらずESRが増大した。鱗片状銀粉ではなく不定形銀粉を使用した比較例4の固体電解コンデンサ(1)は、比抵抗値およびESRの増大が生じた。これは、球状や不定形の銀粉とカーボン粉とバインダから成るペーストを用いて混合層を形成した場合、図10に示すように、粒子径の小さいカーボン粉(80)が銀粉(8)よりも下に沈殿して偏在する。このため、銀粉(8)(8)同士の隙間には多くのカーボン粉(80)が入り込まなかったものと考えられる。
その一方、混合層(4)を形成した実施例1〜4の固体電解コンデンサ(1)では、従来例以下のESR値を示した。この理由として、鱗片状銀粉(8)とカーボン粉(80)とを用いることにより、銀粉(8)(8)同士の隙間に積極的にカーボン粉(80)を入り込ませることができ、ESRを大幅に低減することができたと考えられる。これにより、固体電解コンデンサ(1)は低いESRを保ちつつ、固体電解質層(3)上にカーボン層(6)と銀ペースト層(60)を形成していた従来の構成に比して、製造時間を短くできた。
From Tables 2 to 4 above, Comparative Example 1 in which the carbon layer (6) was omitted from the conventional solid electrolytic capacitor (1), and the mixed layer (4) was formed, but the carbon powder (80) was flaky silver powder (8 ), The solid electrolytic capacitor (1) of Comparative Example 3 having a mass ratio of less than 0.77% has an increased ESR even though the specific resistance value is almost equal to the values of the conventional example and Examples 1 to 4. did. In the solid electrolytic capacitor (1) of Comparative Example 4 using amorphous silver powder instead of flaky silver powder, the specific resistance and the ESR increased. This is because, when a mixed layer is formed using a paste composed of spherical or amorphous silver powder, carbon powder and a binder, as shown in FIG. 10, the carbon powder (80) having a smaller particle diameter is smaller than the silver powder (8). Precipitates below and is unevenly distributed. Therefore, it is considered that a large amount of the carbon powder (80) did not enter the gap between the silver powders (8).
On the other hand, in the solid electrolytic capacitors (1) of Examples 1 to 4 in which the mixed layer (4) was formed, the ESR value was lower than that of the conventional example. The reason is that by using the flaky silver powder (8) and the carbon powder (80), the carbon powder (80) can be positively introduced into the gap between the silver powders (8) and (8), and the ESR can be reduced. It is probable that the reduction was significant. As a result, the solid electrolytic capacitor (1) is manufactured while maintaining a low ESR, as compared with the conventional configuration in which the carbon layer (6) and the silver paste layer (60) are formed on the solid electrolyte layer (3). The time was shortened.

発明者は銀粉とカーボン粉の割合を種々変えて、実験した。この結果、銀粉に対するカーボン粉の割合が0.77%より小さくなると、鱗片状銀粉(8)(8)同士の隙間及び鱗片状銀粉(8)と固体電解質層との隙間に入り込むカーボン粉末が充分ではないためESRが大きくなり過ぎる。逆に、10.8%を超えると、ペースト化が困難になった。従って、銀粉に対するカーボン粉の割合は、0.77〜10.8%の範囲が実用的であり、できれば1〜8%が好ましい。また、カーボン粉の比表面積が600〜1200m2/gの範囲で実用的なESRが得られた。 The inventor conducted experiments with various ratios of silver powder and carbon powder. As a result, when the ratio of the carbon powder to the silver powder is smaller than 0.77%, the carbon powder that enters the gap between the flaky silver powders (8) and (8) and the gap between the flaky silver powder (8) and the solid electrolyte layer is sufficient. Not so, ESR becomes too large. Conversely, if it exceeds 10.8%, it becomes difficult to make a paste. Therefore, the ratio of carbon powder to silver powder is practically in the range of 0.77 to 10.8%, and preferably 1 to 8%. A practical ESR was obtained when the specific surface area of the carbon powder was in the range of 600 to 1200 m 2 / g.

上記実施例の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或は範囲を減縮する様に解すべきではない。又、本発明の各部構成は上記実施例に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能であることは勿論である。   The description of the above embodiments is for the purpose of illustrating the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope thereof. Further, the configuration of each part of the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made within the technical scope described in the claims.

固体電解コンデンサの正面断面図である。It is a front sectional view of a solid electrolytic capacitor. 鱗片状銀粉とカーボン粉の拡大図である。It is an enlarged view of a flaky silver powder and a carbon powder. 鱗片状銀粉とカーボン粉の拡大図である。It is an enlarged view of a flaky silver powder and a carbon powder. 従来の固体電解コンデンサの正面断面図である。It is a front sectional view of the conventional solid electrolytic capacitor. 望ましくない銀ペースト層と固体電解質層の拡大図である。FIG. 3 is an enlarged view of an undesirable silver paste layer and a solid electrolyte layer. 望ましくない銀ペースト層と固体電解質層の拡大図である。FIG. 3 is an enlarged view of an undesirable silver paste layer and a solid electrolyte layer. 望ましくないカーボン層と固体電解質層の拡大図である。FIG. 3 is an enlarged view of an undesirable carbon layer and a solid electrolyte layer. 望ましくないカーボン層と固体電解質層の拡大図である。FIG. 3 is an enlarged view of an undesirable carbon layer and a solid electrolyte layer. 従来の銀ペーストの電気抵抗を測定する状態を示す図である。It is a figure which shows the state which measures the electric resistance of the conventional silver paste. カーボン粉が銀粉よりも下に沈殿している状態を示す図である。It is a figure showing the state where carbon powder has settled below silver powder.

符号の説明Explanation of reference numerals

(1)固体電解コンデンサ
(2)コンデンサ素子
(3)固体電解質層
(4)混合層
(5)陰極層
(6)カーボン層
(7)ハウジング
(8)鱗片状銀粉
(9)陰極リードフレーム
(20)陽極体
(21)誘電体酸化被膜
(60)銀ペースト層
(65)銀ペースト
(66)平板
(67)電極
(80)カーボン粉
(90)陽極リードフレーム
(1) Solid electrolytic capacitor
(2) Capacitor element
(3) Solid electrolyte layer
(4) Mixed layer
(5) Cathode layer
(6) Carbon layer
(7) Housing
(8) Flaky silver powder
(9) Cathode lead frame
(20) Anode body
(21) Dielectric oxide film
(60) Silver paste layer
(65) Silver paste
(66) Flat plate
(67) Electrode
(80) Carbon powder
(90) Anode lead frame

Claims (5)

陽極体(20)上に誘電体酸化被膜(21)を介して陰極層(5)を形成し、該陰極層(5)は誘電体酸化被膜(21)に接する固体電解質層(3)を有する固体電解コンデンサに於いて、該陰極層(5)は、固体電解質層(3)の外側に鱗片状銀粉(8)及びカーボン粉(80)の混合層(4)を直接設けていることを特徴とする固体電解コンデンサ。 A cathode layer (5) is formed on an anode body (20) via a dielectric oxide film (21), and the cathode layer (5) has a solid electrolyte layer (3) in contact with the dielectric oxide film (21). In the solid electrolytic capacitor, the cathode layer (5) is characterized in that a mixed layer (4) of flaky silver powder (8) and carbon powder (80) is directly provided outside the solid electrolyte layer (3). And a solid electrolytic capacitor. カーボン粉(80)は、鱗片状銀粉(8)よりも平均粒径が小さく、銀粒子と固体電解質層(3)間の隙間および銀粒子間の隙間に入って、補助的に導通することを特徴とする請求項1に記載の固体電解コンデンサ。 The carbon powder (80) has a smaller average particle size than the flaky silver powder (8), and enters the gaps between the silver particles and the solid electrolyte layer (3) and the gaps between the silver particles to conduct auxiliary conduction. The solid electrolytic capacitor according to claim 1, wherein: 陰極層(5)と陰極リードフレーム(9)が、接着用銀ペーストによって接続されていることを特徴とする請求項1又は2に記載の固体電解コンデンサ。 The solid electrolytic capacitor according to claim 1, wherein the cathode layer (5) and the cathode lead frame (9) are connected by an adhesive silver paste. カーボン粉(80)は、鱗片状銀粉に対し質量比で1〜8%であり、カーボン粉の比表面積が600〜1200m2/gであり、鱗片状銀粉(8)は比表面積が0.5〜1.5m2/gである請求項1乃至3の何れかに記載の固体電解コンデンサ。 The carbon powder (80) has a mass ratio of 1 to 8% to the flaky silver powder, the specific surface area of the carbon powder is 600 to 1200 m 2 / g, and the flaky silver powder (8) has a specific surface area of 0.5%. the solid electrolytic capacitor according to any one of claims 1 to 3 is ~1.5m 2 / g. 固体電解質層(3)は、ポリチオフェン系、ポリピロール系の導電性高分子から形成される請求項1乃至4の何れかに記載の固体電解コンデンサ。 The solid electrolytic capacitor according to any one of claims 1 to 4, wherein the solid electrolyte layer (3) is formed of a polythiophene-based or polypyrrole-based conductive polymer.
JP2004143064A 2003-05-14 2004-05-13 Solid electrolytic capacitor Expired - Lifetime JP4988151B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004143064A JP4988151B2 (en) 2003-05-14 2004-05-13 Solid electrolytic capacitor
CN2004100559040A CN1697103B (en) 2004-05-13 2004-08-03 Solid electrolytic capacitor
TW093124012A TWI244101B (en) 2004-05-13 2004-08-11 Solid state electrolytic capacitor
KR1020040075414A KR100914586B1 (en) 2004-05-13 2004-09-21 Solid electrolytic capacitor
US10/973,411 US7023689B2 (en) 2004-05-13 2004-10-27 Solid electrolytic capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003135704 2003-05-14
JP2003135704 2003-05-14
JP2004143064A JP4988151B2 (en) 2003-05-14 2004-05-13 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2004363575A true JP2004363575A (en) 2004-12-24
JP4988151B2 JP4988151B2 (en) 2012-08-01

Family

ID=34067215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004143064A Expired - Lifetime JP4988151B2 (en) 2003-05-14 2004-05-13 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4988151B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017618A1 (en) * 2010-08-02 2012-02-09 パナソニック株式会社 Solid electrolytic capacitor
WO2019167774A1 (en) * 2018-02-28 2019-09-06 パナソニックIpマネジメント株式会社 Electrolytic capacitor and method for production thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159905A (en) * 1987-12-15 1989-06-22 Toyobo Co Ltd Conductive paste
JPH05159987A (en) * 1991-12-10 1993-06-25 Marcon Electron Co Ltd Solid electrolytic capacitor
JP2003059338A (en) * 2001-08-10 2003-02-28 Mitsui Kinzoku Toryo Kagaku Kk Conductive paste composition and solid electrolytic capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159905A (en) * 1987-12-15 1989-06-22 Toyobo Co Ltd Conductive paste
JPH05159987A (en) * 1991-12-10 1993-06-25 Marcon Electron Co Ltd Solid electrolytic capacitor
JP2003059338A (en) * 2001-08-10 2003-02-28 Mitsui Kinzoku Toryo Kagaku Kk Conductive paste composition and solid electrolytic capacitor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017618A1 (en) * 2010-08-02 2012-02-09 パナソニック株式会社 Solid electrolytic capacitor
US8559164B2 (en) 2010-08-02 2013-10-15 Panasonic Corporation Solid electrolytic capacitor
JP5333674B2 (en) * 2010-08-02 2013-11-06 パナソニック株式会社 Solid electrolytic capacitor
US9218911B2 (en) 2010-08-02 2015-12-22 Panasonic Intellectual Property Management Co., Ltd. Solid electrolytic capacitor
WO2019167774A1 (en) * 2018-02-28 2019-09-06 パナソニックIpマネジメント株式会社 Electrolytic capacitor and method for production thereof
JPWO2019167774A1 (en) * 2018-02-28 2021-02-25 パナソニックIpマネジメント株式会社 Electrolytic capacitors and their manufacturing methods
JP7304543B2 (en) 2018-02-28 2023-07-07 パナソニックIpマネジメント株式会社 Electrolytic capacitor and manufacturing method thereof

Also Published As

Publication number Publication date
JP4988151B2 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
JP5289033B2 (en) Solid electrolytic capacitor
US6894890B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2009505413A (en) Solid capacitor and manufacturing method thereof
KR101083465B1 (en) Solid electrolytic condenser and manufacturing method thereof
US7123468B2 (en) Solid electrolytic capacitor and process for producing the same
JP4914769B2 (en) Conductive paste for solid electrolytic capacitor electrode and method for producing electrode of solid electrolytic capacitor using the conductive paste
JP4368349B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2009071300A (en) Solid-state electrolytic capacitor
US7023689B2 (en) Solid electrolytic capacitor
WO2013145498A1 (en) Conductive paste and solid electrolytic capacitor using same
JP5321964B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2012069788A (en) Solid electrolytic capacitor
JP4876705B2 (en) Solid electrolytic capacitor
JP4988151B2 (en) Solid electrolytic capacitor
WO2018043063A1 (en) Electrolytic capacitor and method for producing same
JP2006253169A (en) Solid electrolytic capacitor and manufacturing method thereof
TWI616911B (en) Solid electrolytic capacitor
JP2018147992A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2012069789A (en) Manufacturing method of solid electrolytic capacitor and solid electrolytic capacitor
JP2003168633A (en) Solid electrolytic capacitor, its manufacturing method, conductive composite material, and its manufacturing method
JP2006339182A (en) Solid electrolytic capacitor
JP2006024691A (en) Solid electrolytic capacitor and its manufacturing method
CN113228211B (en) Electrolytic capacitor and method for manufacturing the same
KR102016481B1 (en) Solid Electrolyte Capacitor and fabrication method thereof
JP2009176887A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120426

R150 Certificate of patent or registration of utility model

Ref document number: 4988151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250