JP2004360568A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2004360568A
JP2004360568A JP2003159786A JP2003159786A JP2004360568A JP 2004360568 A JP2004360568 A JP 2004360568A JP 2003159786 A JP2003159786 A JP 2003159786A JP 2003159786 A JP2003159786 A JP 2003159786A JP 2004360568 A JP2004360568 A JP 2004360568A
Authority
JP
Japan
Prior art keywords
combustion
exhaust temperature
control
compression stroke
stratified combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003159786A
Other languages
Japanese (ja)
Other versions
JP4175184B2 (en
Inventor
Takao Yonetani
孝雄 米谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003159786A priority Critical patent/JP4175184B2/en
Publication of JP2004360568A publication Critical patent/JP2004360568A/en
Application granted granted Critical
Publication of JP4175184B2 publication Critical patent/JP4175184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To smoothly switch the combustion of an internal combustion engine between a homogeneous combustion and an exhaust gas temperature rising stratified combustion in which fuel is injected in an intake stroke and a compression stroke with high exhaust gas temperature rising effect. <P>SOLUTION: In switching the combustion from the homogeneous combustion immediately after starting to the exhaust gas temperature rising stratified combustion, an operating range in switching is discriminated (S21). After a spark-retard control in the homogeneous combustion, in a low rotation and low load range, the combustion is switched to a transient exhaust gas temperature rising stratified combustion in which an ignition timing is advanced and then switched to a final target exhaust gas temperature rising stratified combustion compression stroke by retarding the angle of ignition timing (S22). In an intermediate rotation and intermediate load range, the combustion is switched to the transient exhaust gas temperature rising stratified combustion in which the spark-advance of ignition timing is controlled and the spark-advance of fuel injection timing in the compression stroke is controlled and then switched to a target exhaust gas temperature rising stratified combustion compression stroke by retarding ignition timing and compression stroke fuel injection timing (S23). In a high rotation and high load range, the combustion is switched to the transient exhaust gas temperature rising stratified combustion in which the spark advance of compression stroke fuel injection timing is controlled and fuel injection rate in the compression stroke is decreased and then switched to the target exhaust gas temperature rising stratified combustion compression stroke by retarding ignition timing and compression stroke fuel injection timing and increasing the fuel injection rate in the compression stroke (S24). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、吸気行程と圧縮行程とに分割した燃料噴射で点火栓周りの空燃比を外側の空燃比よりリッチとした成層混合気を形成して燃焼させる排温上昇効果大の排温上昇成層燃焼を行う内燃機関に関し、特に、排温上昇成層燃焼を行う領域を、運転性を損なうことなく拡大できる制御に関する。
【0002】
【従来の技術】
燃焼室内に直接燃料を噴射供給して成層燃焼を行わせる直噴火花点火式内燃機関において、燃料を吸気行程と圧縮行程とで分割して噴射することにより、点火栓周りの空燃比をその外側の空燃比よりリッチな成層混合気を形成して燃焼させる成層燃焼(排温上昇成層燃焼)を行って、HCを低減しつつ排温上昇効果を高めて排気浄化触媒の昇温活性化を促進し、排気浄化性能を向上させたものがある(特許文献1参照)。
【0003】
【特許文献1】
特開2001−73912号公報
【0004】
【発明が解決しようとする課題】
上記排温上昇成層燃焼を行う機関では、1回の燃料噴射で燃焼室全体に均質な混合気を形成して燃焼させる均質燃焼と、排温上昇成層燃焼とを切り換えるときに、燃焼切換によるトルク段差を吸収するため、均質燃焼における点火時期を遅角して出力トルクを低下させる制御を行っている。
【0005】
しかしながら、上記燃焼切換を行う部分負荷領域の中でも高回転高負荷領域で燃焼切換を行おうとすると、燃焼切換によるトルク段差が大きすぎて、前記点火時期の遅角制御ではトルク段差を吸収できないため、該燃焼切換が可能な領域、つまり、排温上昇成層燃焼を行うことが可能な運転領域が制約され、排温上昇効果、ひいては排気浄化触媒の昇温活性化促進に限界があった。
【0006】
本発明は、このような従来の課題に着目してなされたもので、均質燃焼と排温上昇成層燃焼との切換によるトルク段差が大きな領域でも燃焼切換を可能とすることにより、排温上昇成層燃焼を行える運転領域を拡大し、排気浄化触媒の昇温活性化をより促進することを目的とする。
【0007】
【課題を解決するための手段】
このため、本発明は、均質燃焼と排温上昇成層燃焼とを、燃焼切換によるトルク段差を吸収するための出力トルク変更制御を用いる移行排温上昇成層燃焼を介して行うときに、異種の出力トルク変更制御の中から吸収すべきトルク段差に対して排温上昇成層燃焼からの排温上昇効果の落ち込みが小さい制御を優先して使用する構成とした。
【0008】
このようにすれば、燃焼切換によるトルク段差が大きいときは、このトルク段差を吸収できるように異種の出力トルク変更制御の中から必要な出力トルク変更制御を1個ないし複数選択して使用し、かつ、その際排温上昇成層燃焼からの排温上昇効果の落ち込みが小さい制御を優先して使用することで、移行排温上昇成層燃焼中もできる限り高い排温上昇効果を得ながらトルク段差を吸収して、排温上昇成層燃焼を行える運転領域を拡大し、もって排気浄化触媒の昇温活性化を最大限促進することができる。
【0009】
【発明の実施の形態】
以下に、本発明の実施の形態を、添付の図面に基づいて説明する。
本発明の実施形態のシステム構成を示す図1において、機関1の吸気通路2には吸入空気流量Qaを検出するエアフローメータ3及び吸入空気流量Qaを制御するスロットル弁4が設けられると共に、各気筒の燃焼室に臨ませて、燃料噴射弁5が設けられている。
【0010】
前記燃料噴射弁5は、コントロールユニット50において設定される駆動パルス信号によって開弁駆動され、燃料を燃焼室内に直接噴射供給することができるようになっている。
【0011】
なお、燃焼室に臨んで装着されて、コントロールユニット50からの点火信号に基づいて吸入混合気に対して点火を行う点火栓(点火プラグ)6が、各気筒に設けられている。
【0012】
一方、排気通路7には、排気中の特定成分(例えば、酸素)濃度を検出することによって排気延いては吸入混合気の空燃比を検出する空燃比センサ8(リッチ・リーン出力する酸素センサであっても良いし、空燃比をリニアに広域に亘って検出する広域空燃比センサであってもよい)が設けられ、その下流側には、排気を浄化するため三元触媒9及びNOxトラップ触媒10が順次設けられる。ここで、前記三元触媒9は、ストイキつまり理論空燃比{λ=1、A/F(空気重量/燃料重量)・14.7}近傍において排気中のCO,HCの酸化とNOxの還元を行って排気を浄化し、前記NOxトラップ触媒10は、リーン空燃比において排気中のNOxをトラップし、ストイキ乃至リッチ空燃比になったときにトラップしたNOxを放出還元して処理する。
【0013】
ところで、空燃比センサ8は、三元触媒9の排気上流側に設けられ、かつ熱容量も小さいので、三元触媒9に比べれば、活性化速度は極めて速い。また、空燃比センサ8を電熱ヒータ等により強制的に昇温(活性化)させることもできるから、後述する排温上昇成層燃焼中(触媒9,10の暖機過程中)に、当該空燃比センサ8の検出結果に基づく空燃比フィードバック制御を行うことは可能である。そこで、本実施の形態では、始動後直ちに空燃比センサ8を活性化させて、排温上昇成層燃焼時に、空燃比センサ8の検出値に基づいて、フィードバック制御することもできるし、簡易的にフィードフォワード制御で排温上昇成層燃焼を行ってもよい。
【0014】
また、クランク角センサ11が備えられており、コントロールユニット50では、該クランク角センサ11から機関回転と同期して出力されるクランク単位角信号を一定時間カウントして、又は、クランク基準角信号の周期を計測して機関回転速度Neを検出できるようになっている。
【0015】
そして、機関1の冷却ジャケットに臨んで設けられ、冷却ジャケット内の冷却水温度Twを検出する水温センサ12が設けられている。
また、前記スロットル弁4の開度を検出するスロットルセンサ13(アイドルスイッチとしても機能させることができる)が設けられ、さらに、前記スロットル弁4の開度を、DCモータ等のアクチュエータにより制御することができるスロットル弁制御装置14が備えられている。
【0016】
当該スロットル弁制御装置14は、運転者のアクセルペダル操作量等に基づき演算される要求トルクを達成できるように、コントロールユニット50からの駆動信号に基づき、スロットル弁4の開度を電子制御するものとして構成することができる。
【0017】
前記各種センサ類からの検出信号は、CPU,ROM,RAM,A/D変換器及び入出力インタフェース等を含んで構成されるマイクロコンピュータからなるコントロールユニット50へ入力され、当該コントロールユニット50は、前記センサ類からの信号に基づいて検出される運転状態に応じて、前記スロットル弁制御装置14を介してスロットル弁4の開度を制御し、前記燃料噴射弁5を駆動して燃料噴射量(燃料供給量)を制御し、点火時期を設定して該点火時期で前記点火栓6を点火させる制御を行う。
【0018】
そして、所定運転状態(低・中負荷領域など)で燃焼室内に圧縮行程で燃料噴射して、燃焼室内の点火栓6周辺に可燃混合気を層状に形成して成層燃焼を行うことができ、特に、始動開始から触媒(三元触媒9及びNOxトラップ触媒10、若しくは最低限三元触媒9)が活性化するまでの暖機中は、大気中へのHCの排出を抑制しながら、触媒の早期活性化を図るように、吸気行程と圧縮行程とに分割して燃料噴射を行うことにより、点火栓周りの混合気の空燃比を外側の混合気の空燃比よりリッチとした成層混合気を形成して燃焼させる排温上昇効果大の排温上昇成層燃焼を行う(図2参照)。一方、他の運転状態(高負荷領域など)では燃焼室内に吸気行程で燃料噴射して、シリンダ全体に略均質な混合比の混合気を形成して均質燃焼を行う。
【0019】
このように、運転状態に応じて燃焼状態を切換可能に構成され、前記均質燃焼と排温上昇成層燃焼との切り換えを、燃焼切換によるトルク段差を吸収するための出力トルク変更制御を用いる移行排温上昇成層燃焼を介して行う。特に、本発明では、前記移行排温上昇成層燃焼において、異種の出力トルク変更制御の中から、前記燃焼切換に伴い吸収すべきトルク段差に対して排温上昇成層燃焼からの排温上昇効果の落ち込みが小さい制御を優先して使用する。
【0020】
図3は、コントロールユニット50による始動開始直後の均質燃焼から上記排気浄化触媒9の早期活性化を図るための排温上昇成層燃焼を行い、暖機完了後、他の燃焼に切り換えられるまでの一連の制御のメインフローを示す。
【0021】
ステップ(図では、Sと記してある。以下、同様)1では、キースイッチ16のイグニッション信号がONとなったか(キー位置がイグニションON位置とされたか)否かを判断する。YESであればステップ2へ進み、NOであれば本フローを終了する。
【0022】
ステップ2では、キースイッチ16のスタート信号がONとなったか(キー位置がスタート位置とされたか)否かを判断する。即ち、スターターモータ(図示せず)によるクランキング要求があるか否かを判断する。
【0023】
YESであれば、始動クランキング要求があるとしてステップ3へ進み、NOであれば未だクランキング要求はないと判断して、ステップ1へリターンする。
ステップ3では、スターターモータの駆動を開始して、機関1をクランキングする。
【0024】
ステップ4では、始動のための燃料噴射(吸気行程1回の噴射)を行って、均質燃焼を行う。ここで、始動性を考慮して空燃比はリッチに設定されている。
次のステップ5では、触媒(三元触媒9及びNOxトラップ触媒10、若しくは最低限三元触媒9)が活性化していないか否かを判断する。当該判断は、該触媒の温度をセンサを設けて検出し、あるいは、機関の運転履歴から該触媒の温度を推定して、判断することができる。
【0025】
触媒が活性化していなければ(YESであれば)、ステップ6へ進む。
一方、ホットリスタート時など既に触媒が活性化していれば(NOであれば)触媒活性化促進のための制御の必要はないとしてステップ13へ進み、通常時の燃焼形態(均質ストイキ燃焼、均質リーン燃焼、成層リーン燃焼)で燃焼を行わせ、本フローを終了する。
【0026】
ステップ6では、空燃比フィードバック制御条件が成立したかを判定する。空燃比フィードバック制御条件が成立していない場合は、空燃比リッチでの均質燃焼が継続される。
【0027】
ステップ6で、空燃比フィードバック制御条件が成立したと判定されたときは、均質燃焼での空燃比をストイキ(理論空燃比)とする空燃比フィードバック制御を開始すると共に、引き続く排温上昇成層燃焼への安定した切り換えを行うため、ステップ7で該空燃比フィードバック制御を所定のディレイ時間継続する。すなわち、排温上昇成層燃焼で燃焼が安定する空燃比範囲は均質燃焼に比較して狭いので、前記空燃比フィードバック制御条件が成立したときの均質燃焼におけるリッチ空燃比のストイキからのズレを考慮し、均質燃焼でのストイキ制御を所定時間以上継続して行って、前記排温上昇成層燃焼で燃焼が安定する空燃比範囲となってから、排温上昇成層燃焼に切り換えるようにする。
【0028】
なお、ステップ6の、空燃比フィードバック制御条件が成立しているか否かの判定は、具体的には、例えば、空燃比センサ8が活性化していること(完爆から所定時間が経過していることで代替してもよい)という条件が成立しているときである。
【0029】
ステップ8では、例えば、運転領域が排温上昇成層燃焼禁止領域(図4)に無いことを確認して、排温上昇成層燃焼の許可を出す。
そして、前記排温上昇成層燃焼の許可条件が成立したと判定された場合は、排温上昇成層燃焼を行わせても良好な着火性・燃焼性延いては機関安定性(機関運転性)等が得られるとして、ステップ9へ進む。
【0030】
一方、NOの場合には、排温上昇成層燃焼を行わせると、燃焼安定性ひいては機関安定性(機関運転性)等が低下する可能性があるので、排温上昇成層燃焼への移行を禁止してステップ13へ進み、通常時の燃焼を行わせ、本フローを終了する。
【0031】
前記排温上昇成層燃焼の許可条件が成立するとステップ9へ進み、前記吸気行程での1回噴射による均質燃焼から吸気行程と圧縮行程とに分割して燃料噴射する排温上昇成層燃焼へトルク段差を吸収する制御を行って、ステップ10で安定した(意図的なトルク変更を行わず、排温の上昇に優れた)排温上昇成層燃焼(以下目的排温上昇成層燃焼という)へ切り換える。ステップ9での本発明にかかる燃焼切換制御については後に詳述する。該排温上昇成層燃焼では、点火栓周りはストイキよりリッチ、その外側はストイキよりリーンな成層混合気が生成され、燃焼が行われる。
【0032】
ステップ11では、上記目的排温上昇成層燃焼へ切り換えられて高い排温上昇効果が得られることにより、再度触媒(三元触媒9及びNOxトラップ触媒10、若しくは最低限三元触媒9)が活性したかを判断し、活性化されたと判断されるまで排温上昇成層燃焼を継続する。
【0033】
ステップ11で触媒が活性化されたと判断されると、ステップ12で前記目的排温上昇成層燃焼からトルク段差を吸収する燃焼切換制御を行って、ステップ13で一回の燃料噴射による通常時の燃焼へ切り換える。
【0034】
次に、前記ステップ9での均質燃焼から排温上昇成層燃焼への燃焼切換制御について詳細に説明する。
前記均質燃焼から排温上昇成層燃焼への切り換えに際し、該燃焼切換に伴うトルク段差を吸収するための出力トルク変更制御を用いる移行排温上昇成層燃焼を行う。ここで、本発明では、上記燃焼切換が行われる運転領域毎に前記トルク段差が相違するので、該トルク段差に応じて適切な出力トルク変更制御を選択して実行する。
【0035】
具体的には、図4,5に示すように、該燃焼切換を行う部分負荷領域の中でも低回転低負荷域ではトルク段差が小さいが、高回転または高負荷になるほどトルク段差が大きくなる。そこで、燃焼切換を行う領域毎に異なる吸収すべきトルク段差に対し、異種の出力トルク変更制御の中から排温上昇成層燃焼からの排温上昇効果の落ち込みが小さい制御を優先して使用する。以下、燃焼切換時の運転領域毎に説明する。
【0036】
低回転低負荷域(ファーストアイドル領域を含む。図4のSTAGE1)
上記のように、このSTAGE1領域では、吸収すべきトルク段差が小さい。まず、均質燃焼で燃焼性を確保できる範囲で点火時期を遅角する制御を行って均質燃焼(吸気行程1回噴射)での出力トルクを減少させる(図6のA’→B’)。均質燃焼の出力トルクは排温上昇成層燃焼(を含む成層燃焼)の出力トルクに比較して大きいので、トルク段差吸収のため、この均質燃焼の点火時期遅角制御は、全てのSTAGE1〜3で行う。
【0037】
このようにして均質燃焼での出力トルクを十分に減少させた後、切換後の排温上昇成層燃焼(以下目的排温上昇成層燃焼という)に対して点火時期を進角させて出力トルクを増大する制御(第1の出力トルク変更制御)を用いた移行排温上昇成層燃焼に切り換える(図6のB’→A)。このようにすれば、この移行排温上昇成層燃焼における出力トルクを、前記減少制御した均質燃焼の出力トルクと等しくなるまで増大させて(増大トルクT1)、トルク段差を吸収することができる。また、該点火時期の進角制御が、排温上昇効果の高い目的排温上昇成層燃焼に対して排温上昇効果の落ち込みを最も小さく抑えることができるので、移行排温上昇成層燃焼の排温上昇効果もできる限り大きくすることができ、HC排出量が増大することもない。
【0038】
均質燃焼から移行排温上昇成層燃焼に切り換えた後、点火時期を徐々に遅角させて安定燃焼性を確保しつつ排温上昇効果を最大限高められる目的排温上昇成層燃焼に収束させる(図6のA→B)。なお、移行排温上昇成層燃焼中のその他の制御値は目的排温上昇成層燃焼と等しい値に固定し、圧縮行程の燃料噴射時期は最大限遅角させ、吸気行程と圧縮行程との燃料噴射量の比(以下燃料噴射量分割比という)は50(%):50(%)とする。これにより、排気浄化触媒の昇温活性化を最大限促進することができる。
【0039】
中回転中負荷域(図4のSTAGE2)
STAGE2領域では、STAGE1領域に比較し回転速度または負荷が大きいのでトルク段差が増大し、前記点火時期進角制御のみを用いた移行排温上昇成層燃焼では出力トルクを、点火時期遅角制御により減少させた均質燃焼の出力トルクまで増大させることが不可能となる。そこで、点火時期進角制御と併用して圧縮行程における燃料噴射時期(以下圧縮行程噴射時期という)の進角制御(第2の出力トルク変更制御)を行う。図7に示すように、目的排温上昇成層燃焼(A点)に対して圧縮行程噴射時期ITを進角すると出力トルクが増大して(C点)トルク段差T2を吸収できる。すなわち、均質燃焼で点火時期遅角制御によって出力トルクを減少させた後(図8のA’→B’)、点火時期進角制御と圧縮行程噴射時期進角制御とを併用した移行排温上昇成層燃焼に切り換える(図8のB’→C)。このようにすれば、増大したトルク段差を、点火時期進角制御による増大トルク分T1と圧縮行程噴射時期進角制御による増大トルク分T2とを合わせた増大トルクで吸収することができる。
【0040】
また、圧縮行程噴射時期の進角は、点火時期進角制御の進角に比較すると目標排温上昇成層燃焼からのトルク増大量に対する排温上昇効果の落ち込み量が大きいが、点火時期進角制御を行いつつ点火時期進角制御だけでは不足するトルク増大量を圧縮行程噴射時期進角制御で補うようにすることで、移行排温上昇成層燃焼中もHC排出量を増大させることなく、できるだけ高い排温上昇効果を得ながら増大したトルク段差を吸収することができる。
【0041】
均質燃焼から上記移行排温上昇成層燃焼に切り換えた後、点火時期及び圧縮行程噴射時期を徐々に遅角させて安定燃焼性を確保しつつ排温上昇効果を最大限高められる目的排温上昇成層燃焼に収束させる(図8のC→B)。なお、移行排温上昇成層燃焼中のその他の制御値は目的排温上昇成層燃焼と等しい値に固定し、吸気行程と圧縮行程との燃料噴射量の比(以下燃料噴射量分割比という)は50(%):50(%)とする。
【0042】
STAGE2において点火時期進角制御と圧縮行程噴射時期進角制御を併用する理由を、さらに、より詳細に(別の観点から)説明する。STAGE1では低回転低負荷なので、圧縮行程での燃料噴射量が少なく噴射期間も短いので、目的排温上昇成層燃焼の圧縮行程噴射時期は燃焼終了を遅らせて排温上昇効果を十分高めるべく十分に遅角された時期に設定されており、移行排温上昇成層燃焼において点火時期を最大限進角制御しても噴射燃料は点火時期までに十分に気化することが可能でスモークの発生を十分防止できる。
【0043】
これに対し、STAGE2領域では、負荷が増大すると圧縮行程での燃料噴射量、噴射期間が増大するので、点火時期までに気化が可能なように噴射時期を早める必要があり、また、回転が増大すると同一の気化時間に要するクランク角期間が増大するため噴射時期を早める必要があり、目的排温上昇成層燃焼における圧縮行程噴射時期をSTAGE1領域より進角させて設定している。この状態で点火時期を進角すると、目的排温上昇成層燃焼における圧縮行程噴射時期を固定したままでは(STAGE1領域より進角させているとはいえ)、点火時期までの気化時間が短くなって噴射燃料が良好に気化されずスモークが許容値を超えてしまう(図9のa参照)。そこで、点火時期の進角制御に応じて圧縮行程噴射時期も進角制御することで点火時期までの気化時間が増大してスモークが許容値以下に抑えつつトルク段差を吸収することができる(図9のb参照)。ここで、圧縮行程噴射時期を進角する代わりに、後述するSTAGE3領域で用いられるように前記分割比を変更して圧縮行程の燃料噴射量割合を減少させる方式としても、噴射燃料量の減少と噴射終了から点火時期までの時間を増大できることにより気化が良好となってスモークの発生を抑制でき、吸気行程の燃料噴射量割合が増大することで点火栓外側の均質混合気の燃焼割合が増大するので出力トルクが増大しトルク段差も吸収できる(図9のc、図12参照)。しかし、排温上昇成層燃焼における排温上昇効果は、主として圧縮行程で噴射された燃料の後期燃焼によって得られるものであるから、圧縮行程の燃料噴射量割合を減少させる方式では、当然ながらトルク増大代に対する排気上昇効果の落ち込み量が、圧縮行程噴射時期の進角制御に比較して大きい(図10,11参照)。そこで、必要なトルク段差を吸収でき、かつ、スモークの発生を抑制できる範囲(その範囲にSTAGE2領域を設定)では、点火時期進角制御と圧縮行程噴射時期進角制御とを用い、燃料噴射量分割比は50(%):50(%)で固定することで、移行排温上昇成層燃焼の排気上昇効果をより高くすることができる。
【0044】
高回転高負荷域(図4のSTAGE3)
STAGE3領域では、STAGE2領域より回転速度または負荷が大きいので、目的排温上昇成層燃焼における圧縮行程噴射時期をSTAGE2領域よりさらに進角させて設定している。したがって、STAGE別の目的排温上昇成層燃焼における圧縮行程噴射時期は、STAGE1では最大遅角位置、STAGE2では大遅角位置、STAGE3では中遅角位置に設定されている。そして、STAGE3では、燃焼切換によるトルク段差がさらに増大して、前記STAGE2のように点火時期進角制御および圧縮行程噴射時期進角制御を併用して移行排温上昇成層燃焼の出力トルクを増大させても、点火時期遅角制御により減少させた均質燃焼の出力トルクまで減少させることが不可能となるか、あるいは圧縮行程噴射時期を最大限進角しても、点火時期がある値を超えて進角されるとスモーク許容値を超えてしまう。そこで、点火時期進角制御及び圧縮行程噴射時期進角制御に加えて、さらに、圧縮行程の燃料噴射量割合を減少させる制御(圧縮行程分割比減少制御:第3の出力トルク変更制御)を併用して移行排温上昇成層燃焼の出力トルクを増大させる。図12に示すように、目的排温上昇成層燃焼(C点)に対して圧縮行程分割比を減少すると出力トルクが増大して(D点)トルク段差T3を吸収できる。したがって、図13に示すように、高回転高負荷時に最も増大するトルク段差を、これら点火時期進角制御、圧縮行程噴射時期進角制御及び圧縮行程分割比減少制御を併用することで吸収することができる(図13参照)。上述したように、この圧縮行程分割比減少制御は、排温上昇効果の落ち込み量は点火時期進角制御、圧縮行程噴射時期進角制御より増大するが、点火時期進角制御および圧縮行程噴射時期進角制御による出力トルク増加の不足分を補い、かつ(または)、圧縮行程噴射時期進角制御だけではスモーク許容値を超えてしまう分を補うように必要最小限の圧縮行程分割比減少制御を行うことで、当該高回転高負荷域での移行排温上昇成層燃焼における排温上昇効果を最も高い値に維持することができる。
【0045】
このように、燃焼切換が行われる領域(STAGE1〜3)によって異なる吸収すべきトルク段差に対し、異種の出力トルク変更制御の中から目的排温上昇成層燃焼からの排温上昇効果の落ち込みが小さい制御を優先して使用することにより、燃焼切換中も高い排温上昇効果を得ながら目的排温上昇成層燃焼を実行できる領域を拡大することができ、総合的に触媒の早期活性化を最大限促進することができ、ひいては排気浄化性能を最大限高めることができる。
【0046】
図14は、上記均質燃焼から目的排温上昇成層燃焼への燃焼切換制御の(図3のステップ9のサブルーチン)のフローを示す。
ステップ21では、燃焼切換時の運転領域がSTAGE1〜STAGE3のいずれに属するかを判別する。
【0047】
ステップ21でSTAGE1と判別されたときは、ステップ22へ進んで上記のSTAGE1に応じた燃焼切換制御、つまり、均質燃焼での点火時期遅角制御、点火時期進角制御を用いた移行排温上昇成層燃焼を介して目的排温上昇成層燃焼に切り換える制御を行う。
【0048】
ステップ21でSTAGE2と判別されたときは、ステップ23へ進んで上記のSTAGE2に応じた燃焼切換制御、つまり、均質燃焼での点火時期遅角制御、点火時期進角制御及び圧縮行程噴射時期進角制御を用いた移行排温上昇成層燃焼を介して目的排温上昇成層燃焼に切り換える制御を行う。
【0049】
ステップ21でSTAGE3と判別されたときは、ステップ24へ進んで上記のSTAGE3に応じた燃焼切換制御、つまり、均質燃焼での点火時期遅角制御、点火時期進角制御、圧縮行程噴射時期進角制御及び圧縮行程分割比減少制御を用いた移行排温上昇成層燃焼を介して目的排温上昇成層燃焼に切り換える制御を行う。
【0050】
図15は、上記燃焼切換制御時における点火時期制御のフローを示す。このフローは燃焼切換要求の発生により割り込み処理される。
ステップ31では、前記均質燃焼の点火時期遅角制御において遅角される目標点火時期ADVHRを、図16に示すマップから検索する。該マップには、STAGE1〜3毎の移行排温上昇成層燃焼への切換時に最大進角されたときの出力トルクと同一の出力トルクまで減少するように遅角された点火時期が設定されている。
【0051】
ステップ32では、前記STAGE1〜3毎の移行排温上昇成層燃焼への切換時における最大進角位置(MBT)相当の目標点火時期ADVKSMBTを、図17に示すマップから検索する。なお、STAGE1では、圧縮行程噴射時期及び燃料噴射量分割比を目的排温上昇成層燃焼と同一値に固定した状態で、STAGE2では、燃料噴射量分割比を目的排温上昇成層燃焼と同一値に固定した状態での最大進角位置(MBT)相当値に設定され、STAGE3では、圧縮行程噴射時期及び燃料噴射量分割比を変更制御した状態での最大進角位置(MBT)相当値に設定される。
【0052】
ステップ33では、前記STAGE1〜3毎の前記切換直後の移行排温上昇成層燃焼から遅角していって最終的に切り換えられる目的排温上昇成層燃焼の目標点火時期ADVSAを、図18に示すマップから検索する。
【0053】
ステップ34では、前記均質燃焼の点火時期を、前記ステップ31で設定された目標点火時期ADVHRまで徐々に遅角する制御を行う。
前記ステップ35では、前記目標点火時期ADVHRに達したかを判定し、達するまで前記遅角制御を継続する。
【0054】
ステップ35で目標点火時期ADVHRに達したと判定されると、ステップ36へ進んで、前記ステップ32で設定した移行排温上昇成層燃焼の目標点火時期ADVKSMBTまで一気に進角させる。
【0055】
次いで、ステップ37で、前記最大進角された目標点火時期ADVKSMBTから前記ステップ33で設定された目的排温上昇成層燃焼の目標点火時期ADVSAまで徐々に遅角させ、ステップ38で目標点火時期ADVSAに達したかを判定し、達したところで遅角制御を終了する。
【0056】
図19は、上記燃焼切換制御時における圧縮行程噴射時期制御のフローを示す。このフローも燃焼切換要求の発生により割り込み処理される。
ステップ41では、均質燃焼から移行排温上昇成層燃焼へ切換直後の目標圧縮行程噴射時期ITKSを図20に示したマップから検索する。ここで、上述したようにSTAGE1では、該圧縮行程噴射時期の進角制御を行わないので、移行排温上昇成層燃焼への切換直後の圧縮行程噴射時期は、目的排温上昇成層燃焼における圧縮行程噴射時期と同一の値に設定され、STAGE2,3では、それぞれの目的排温上昇成層燃焼における圧縮行程噴射時期に対して必要なトルク増大分を確保するように進角された圧縮行程噴射時期に設定されている。
【0057】
ステップ42では、最終的に切り換えられる目的排温上昇成層燃焼の目標圧縮行程噴射時期ITSAを、図21に示すマップから検索する。上述したようにSTAGE1では最遅角され、STAGE2では大きく遅角され、STAGE3では中程度に遅角された噴射時期に設定されている。
【0058】
ステップ43では、均質燃焼から移行排温上昇成層燃焼への切換タイミングになったかを判定する。具体的には前記均質燃焼の遅角制御が終了して移行排温上昇成層燃焼へ切り換えるタイミングによって判定する。
【0059】
そして、切換タイミングになったときにステップ44へ進んで、吸気行程と圧縮行程とに分割された移行排温上昇成層燃焼に切り換え、その圧縮行程噴射時期をステップ41で設定された目標圧縮行程噴射時期ITKSに制御する。
【0060】
ステップ45では、圧縮行程噴射時期を徐々に遅角させ、ステップ46で目標圧縮行程噴射時期ITSAに達したかを判定し、達したところで遅角制御を終了する。
【0061】
図22は、上記燃焼切換制御時における圧縮行程分割比制御のフローを示す。このフローも燃焼切換要求の発生により割り込み処理される。
ステップ51では、均質燃焼から移行排温上昇成層燃焼へ切換直後の目標圧縮行程分割比KPARTKSを図23に示したマップから検索する。ここで、上述したようにSTAGE1及びSTAGE2では、該圧縮行程分割比の減少制御を行わないので、目的排温上昇成層燃焼における目標圧縮行程分割比(例えば50%)と同一の値に設定され、STAGE3では、目的排温上昇成層燃焼における目標圧縮行程分割比に対して必要なトルク増大分を確保するように減少された目標圧縮行程分割比(例えば40〜30%)に設定されている。
【0062】
ステップ52では、最終的に切り換えられる目的排温上昇成層燃焼の圧縮行程分割比KPARTSA(例えば50%)を設定する。なお、目的排温上昇成層燃焼が行える領域を、より拡大するため、目的排温上昇成層燃焼においても高回転高負荷領域で圧縮行程分割比を小さめに設定するようにしてもよい。
【0063】
ステップ53では、均質燃焼から移行排温上昇成層燃焼への切換タイミングになったかを前記同様に判定する。
そして、切換タイミングになったときにステップ54へ進んで、移行排温上昇成層燃焼に切り換え、その圧縮行程分割比をステップ51で設定された目標圧縮行程分割比KPARTKSに制御する。
【0064】
ステップ55では、圧縮行程分割比を徐々に増大させ、ステップ56で目標圧縮行程分割比KPARTSAに達したかを判定し、達したところで分割比の増大制御を終了する。
【0065】
次に、図3のステップ12での目的排温上昇成層燃焼から一回の燃料噴射による通常時の燃焼への燃焼切換について説明すると、通常時の燃焼として均質燃焼(均質ストイキ燃焼及び均質リーン燃焼。ただし、一般的に目的排温上昇成層燃焼から均質リーン燃焼に切り換える際は、一旦均質ストイキ燃焼を介して均質リーン燃焼に切り換える)と圧縮行程1回燃料噴射の成層リーン燃焼があり、成層リーン燃焼への切換は、概略的には圧縮行程分割比を徐々に増大させて100%にすればよく、均質燃焼へ切り換える場合は、前記均質燃焼から目的排温上昇成層燃焼へ切り換える場合と全く逆の経過を辿る。
【0066】
すなわち、STAGE1では目的排温上昇成層燃焼から点火時期を徐々に進角させて移行排温上昇成層燃焼の最大進角位置となったときに、同一出力トルクとなるように一気に大きく遅角して均質燃焼に切り換え、次いで最大進角位置MBTまで徐々に点火時期を進角させる。STAGE2では目的排温上昇成層燃焼から点火時期及び圧縮行程噴射時期を徐々に進角させ、点火時期が移行排温上昇成層燃焼の最大進角位置となったときに、同一出力トルクとなるように一気に大きく遅角して均質燃焼に切り換え、次いで最大進角位置MBTまで徐々に点火時期を進角させる。STAGE3では目的排温上昇成層燃焼から点火時期及び圧縮行程噴射時期を徐々に進角させると共に圧縮分割比を徐々に減少させ、点火時期が移行排温上昇成層燃焼の最大進角位置となったときに、同一出力トルクとなるように一気に大きく遅角して均質燃焼に切り換え、次いで最大進角位置MBTまで徐々に点火時期を進角させる。
【0067】
図24〜図26は、STAGE1〜3における燃焼切換時の各種状態量の変化の様子を示す。これらの図では、均質燃焼から排温上昇成層燃焼への切換と排温上昇成層燃焼から均質燃焼への切換は、同一STAGE(同一負荷領域)で行われた場合を示しているが、異なるSTAGEとなった場合は、異なる出力トルク変更制御の組み合わせで切換が行われる。
【0068】
以上示した実施形態では、移行排温上昇成層燃焼における出力トルク変更制御として、単位トルク増加分に対する排温上昇効果の高い順から点火時期進角制御、圧縮行程噴射時期進角制御、圧縮行程分割比減少制御を順次追加して用いるものを示したが、必ずしもかかる方式に限定されない。
【0069】
例えば、本実施形態ではSTAGE2領域で点火時期を最大限進角(移行排温上昇成層燃焼のMBTまで)させつつ、圧縮行程噴射時期進角制御を併用したが、エンジン機種等によっては、点火時期を最大限進角させてもトルク増大代が小さかったり、点火時期までに気化が十分行われずスモーク許容値を超えてしまう場合もある。したがって、そのような場合には点火時期進角量を小さくして圧縮行程噴射時期の方を大きく進角させ、さらには、圧縮行程噴射時期進角制御のみでトルク段差を吸収させるようにすることもできる。
【0070】
STAGE1の低回転低負荷領域での移行排温上昇成層燃焼における出力トルク変更制御も、一般的には最も排温上昇効果の落ち込みが小さいので点火時期進角制御を採用するのが望ましいが、点火時期進角制御によるトルク増大代が極端に小さかったり、僅かな進角制御でスモーク許容値を超えてしまうような場合は、点火時期進角制御を行わず圧縮行程噴射時期進角制御を行うようにすればよい。
【0071】
つまり、本発明において吸収すべきトルク段差に対して排温上昇成層燃焼からの排温上昇効果の落ち込みが小さい制御を優先して使用するとは、適正な燃焼を確保できる中で排温上昇効果の落ち込みが小さい制御を選択することを意味する。
【図面の簡単な説明】
【図1】本発明の実施形態に係るシステム構成図。
【図2】本発明における排温上昇成層燃焼の吸気行程及び圧縮行程での燃料噴射による混合気形成の様子を示す断面図。
【図3】同上メインルーチンの後半を示すフローチャート。
【図4】燃焼切換時に異なる燃焼切換制御が行われる運転領域を示す図。
【図5】上記異なる運転領域毎に相違する燃焼切換によるトルク段差を示す図。
【図6】低回転低負荷領域(STAGE1)での燃焼切換時の点火時期制御による発生トルクの変化を示す図。
【図7】移行排温上昇成層燃焼における圧縮行程噴射時期進角制御によるトルク段差解消効果を示す図。
【図8】中回転中負荷領域(STAGE2)での燃焼切換時の点火時期制御による発生トルクの変化を示す図。
【図9】上記圧縮行程噴射時期進角制御による負荷変化に対するスモーク回避効果を示す図。
【図10】上記圧縮行程噴射時期進角制御による排温上昇効果の落ち込み量を示す図。
【図11】移行排温上昇成層燃焼における圧縮行程分割比減少制御による排温上昇効果の落ち込み量を示す図。
【図12】移行排温上昇成層燃焼における圧縮行程分割比減少制御によるトルク段差解消効果を示す図。
【図13】高回転高負荷領域(STAGE3)での燃焼切換時の点火時期制御による発生トルクの変化を示す図。
【図14】均質燃焼から目的排温上昇成層燃焼へ切換時のメインフローを示すフローチャート。
【図15】同上燃焼切換時の点火時期制御ルーチンを示すフローチャート。
【図16】均質燃焼の点火時期遅角制御において遅角される目標点火時期ADVHRを設定するためのマップ。
【図17】移行排温上昇成層燃焼切換時の目標点火時期ADVKSMBTを設定するためのマップ。
【図18】目的排温上昇成層燃焼切換後の目標点火時期ADVSAを設定するためのマップ。
【図19】同上燃焼切換時の圧縮行程噴射時期制御ルーチンを示すフローチャート。
【図20】移行排温上昇成層燃焼切換時の目標圧縮行程噴射時期ITKSを設定するためのマップ。
【図21】目的排温上昇成層燃焼切換時の目標圧縮行程噴射時期ITSAを設定するためのマップ。
【図22】同上燃焼切換時の圧縮行程分割比制御ルーチンを示すフローチャート。
【図23】移行排温上昇成層燃焼切換時の目標圧縮行程分割比KPARTKSを設定するためのマップ。
【図24】STAGE1における燃焼切換時の各種状態量の変化の様子を示すタイムチャート。
【図25】STAGE2における燃焼切換時の各種状態量の変化の様子を示すタイムチャート。
【図26】STAGE3における燃焼切換時の各種状態量の変化の様子を示すタイムチャート。
【符号の説明】
1…機関
4…スロットル弁
5…燃料噴射弁
6…点火栓
7…排気通路
8…空燃比センサ
9…三元触媒
10…NOxトラップ触媒
11…クランク角センサ
12…水温センサ
13…スロットルセンサ
16…キースイッチ
50…コントロールニット
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides an exhaust temperature increasing stratification having a large exhaust temperature increasing effect in which a fuel injection divided into an intake stroke and a compression stroke forms a stratified mixture in which the air-fuel ratio around the ignition plug is richer than the outer air-fuel ratio and burns. The present invention relates to an internal combustion engine that performs combustion, and more particularly to control that can expand a region in which exhaust temperature rise stratified combustion is performed without impairing drivability.
[0002]
[Prior art]
In a direct injection spark ignition type internal combustion engine in which fuel is injected and supplied directly into the combustion chamber to perform stratified combustion, the fuel is divided and injected into an intake stroke and a compression stroke, so that the air-fuel ratio around the ignition plug is set to the outside. Stratified combustion (exhaust temperature rise stratified combustion) in which a stratified mixture richer than the air-fuel ratio is formed and burned to increase the exhaust temperature rise effect while reducing HC to promote the temperature rise activation of the exhaust purification catalyst In addition, there is one in which the exhaust purification performance is improved (see Patent Document 1).
[0003]
[Patent Document 1]
JP 2001-73912 A
[0004]
[Problems to be solved by the invention]
In the engine that performs the exhaust temperature rise stratified combustion, when switching between the homogeneous combustion in which a uniform fuel-air mixture is formed and burned in the entire combustion chamber by one fuel injection and the exhaust temperature increase stratified combustion, the torque by the combustion switching is used. In order to absorb the step, the ignition timing in the homogeneous combustion is retarded to reduce the output torque.
[0005]
However, if the combustion switching is to be performed in the high rotation and high load region even in the partial load region in which the combustion switching is performed, the torque step due to the combustion switching is too large and the ignition timing retard control cannot absorb the torque step. The region in which the combustion can be switched, that is, the operation region in which the exhaust temperature rise stratified combustion can be performed, is restricted, and there is a limit to the exhaust temperature rise effect and, consequently, to the promotion of temperature rise activation of the exhaust purification catalyst.
[0006]
SUMMARY OF THE INVENTION The present invention has been made in view of such a conventional problem. By enabling combustion switching even in a region where a torque step is large due to switching between homogeneous combustion and exhaust temperature increasing stratified combustion, exhaust temperature increasing stratification is achieved. It is an object of the present invention to expand an operation region in which combustion can be performed, and to further promote activation of temperature rise of an exhaust purification catalyst.
[0007]
[Means for Solving the Problems]
For this reason, the present invention, when performing homogeneous combustion and exhaust temperature rise stratified combustion through transition exhaust temperature rise stratified combustion using output torque change control for absorbing a torque step due to combustion switching, different types of output In the torque change control, a control is used with priority given to a control in which the decrease in the exhaust temperature increase effect from the exhaust temperature increase stratified combustion is small with respect to the torque step to be absorbed.
[0008]
With this configuration, when the torque step due to the combustion switching is large, one or a plurality of necessary output torque change controls are selected and used from among different types of output torque change controls so as to absorb the torque step, and used. At the same time, by giving priority to the control in which the decrease in the exhaust temperature increase effect from the exhaust temperature increase stratified combustion is small, the torque step can be reduced while obtaining the highest possible exhaust temperature increase effect even during the transitional exhaust temperature increase stratified combustion. It is possible to expand the operating range in which the stratified charge combustion can be performed by absorbing the exhaust gas and thereby increase the temperature-rise activation of the exhaust purification catalyst to the maximum.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
In FIG. 1 showing a system configuration of an embodiment of the present invention, an air flow meter 3 for detecting an intake air flow rate Qa and a throttle valve 4 for controlling the intake air flow rate Qa are provided in an intake passage 2 of an engine 1, and each of the cylinders is provided. The fuel injection valve 5 is provided so as to face the combustion chamber.
[0010]
The fuel injection valve 5 is driven to open by a drive pulse signal set in the control unit 50, so that fuel can be directly injected and supplied into the combustion chamber.
[0011]
Each cylinder is provided with an ignition plug (ignition plug) 6 which is mounted facing the combustion chamber and ignites the intake air-fuel mixture based on an ignition signal from the control unit 50.
[0012]
On the other hand, an exhaust passage 7 is provided with an air-fuel ratio sensor 8 (a rich / lean oxygen sensor that detects the air-fuel ratio of the intake air-fuel mixture by detecting the concentration of a specific component (for example, oxygen) in the exhaust gas). Or a wide-range air-fuel ratio sensor that linearly detects the air-fuel ratio over a wide range) is provided. On the downstream side, a three-way catalyst 9 and a NOx trap catalyst for purifying exhaust gas are provided. 10 are sequentially provided. Here, the three-way catalyst 9 oxidizes CO and HC in the exhaust gas and reduces NOx in the vicinity of the stoichiometric state, that is, in the vicinity of the stoichiometric air-fuel ratio {λ = 1, A / F (air weight / fuel weight) · 14.7}. The NOx trap catalyst 10 traps NOx in the exhaust gas at a lean air-fuel ratio, and releases and reduces the trapped NOx when the stoichiometric or rich air-fuel ratio is reached.
[0013]
Incidentally, the air-fuel ratio sensor 8 is provided on the exhaust gas upstream side of the three-way catalyst 9 and has a small heat capacity. Therefore, the activation speed is extremely higher than that of the three-way catalyst 9. Further, since the temperature of the air-fuel ratio sensor 8 can be forcibly raised (activated) by an electric heater or the like, the air-fuel ratio is increased during stratified combustion of the exhaust temperature to be described later (during the warm-up process of the catalysts 9 and 10). It is possible to perform air-fuel ratio feedback control based on the detection result of the sensor 8. Therefore, in the present embodiment, the air-fuel ratio sensor 8 is activated immediately after the start, and the feedback control can be performed based on the detection value of the air-fuel ratio sensor 8 at the time of exhaust temperature rise stratified combustion. The exhaust temperature increase stratified combustion may be performed by feedforward control.
[0014]
Further, a crank angle sensor 11 is provided, and the control unit 50 counts a crank unit angle signal output from the crank angle sensor 11 in synchronization with the engine rotation for a certain period of time, or The engine rotation speed Ne can be detected by measuring the period.
[0015]
A water temperature sensor 12 is provided facing the cooling jacket of the engine 1 and detects a cooling water temperature Tw in the cooling jacket.
Further, a throttle sensor 13 (which can also function as an idle switch) for detecting the opening of the throttle valve 4 is provided, and the opening of the throttle valve 4 is controlled by an actuator such as a DC motor. A throttle valve control device 14 is provided.
[0016]
The throttle valve control device 14 electronically controls the degree of opening of the throttle valve 4 based on a drive signal from the control unit 50 so that a required torque calculated based on a driver's accelerator pedal operation amount or the like can be achieved. Can be configured as
[0017]
The detection signals from the various sensors are input to a control unit 50 including a microcomputer including a CPU, a ROM, a RAM, an A / D converter, an input / output interface, and the like. The opening degree of the throttle valve 4 is controlled via the throttle valve control device 14 in accordance with the operating state detected based on the signals from the sensors, and the fuel injection valve 5 is driven to drive the fuel injection amount (fuel Supply amount), an ignition timing is set, and the ignition plug 6 is ignited at the ignition timing.
[0018]
Then, fuel can be injected into the combustion chamber in a compression stroke in a predetermined operation state (low / medium load region, etc.), and a stratified combustion can be performed by forming a combustible air-fuel mixture in a stratified form around the ignition plug 6 in the combustion chamber. In particular, during warm-up from the start of startup until the catalyst (the three-way catalyst 9 and the NOx trap catalyst 10, or at least the three-way catalyst 9) is activated, the emission of HC into the atmosphere is suppressed while the catalyst is being warmed up. By splitting the fuel into an intake stroke and a compression stroke and performing fuel injection to achieve early activation, a stratified mixture in which the air-fuel ratio of the air-fuel mixture around the ignition plug is richer than the air-fuel ratio of the outer air-fuel mixture is obtained. Exhaust temperature rise stratified combustion with a large exhaust temperature rise effect of forming and burning (see FIG. 2). On the other hand, in other operation states (such as a high load region), fuel is injected into the combustion chamber during the intake stroke to form a mixture having a substantially uniform mixture ratio over the entire cylinder and perform homogeneous combustion.
[0019]
As described above, the combustion state can be switched in accordance with the operation state, and the switching between the homogeneous combustion and the exhaust temperature-raising stratified combustion is performed by a transition discharge using an output torque change control for absorbing a torque step due to the combustion switching. This is done via warm-up stratified combustion. In particular, according to the present invention, in the transitional exhaust temperature rise stratified combustion, from among different types of output torque change control, the effect of the exhaust temperature increase effect from the exhaust temperature rise stratified combustion on the torque step to be absorbed in accordance with the combustion switching. Priority is given to control with a small drop.
[0020]
FIG. 3 shows a series of processes from the homogeneous combustion immediately after the start of the start by the control unit 50 to the stratified combustion with the exhaust temperature rise for the purpose of early activation of the exhaust gas purifying catalyst 9, and from the completion of the warm-up to the switching to another combustion. 2 shows a main flow of the control of FIG.
[0021]
In step (denoted by S in the figure, the same applies hereinafter), it is determined whether or not the ignition signal of the key switch 16 has been turned ON (whether or not the key position has been turned to the ignition ON position). If YES, proceed to Step 2; if NO, end this flow.
[0022]
In step 2, it is determined whether or not the start signal of the key switch 16 has been turned on (the key position has been set to the start position). That is, it is determined whether or not there is a cranking request by a starter motor (not shown).
[0023]
If YES, it is determined that there is a start cranking request, and the process proceeds to step 3. If NO, it is determined that there is no cranking request yet, and the process returns to step 1.
In step 3, the driving of the starter motor is started, and the engine 1 is cranked.
[0024]
In step 4, fuel injection for starting (injection in one intake stroke) is performed to perform homogeneous combustion. Here, the air-fuel ratio is set to be rich in consideration of startability.
In the next step 5, it is determined whether or not the catalyst (the three-way catalyst 9 and the NOx trap catalyst 10, or at least the three-way catalyst 9) has not been activated. The determination can be made by detecting the temperature of the catalyst by providing a sensor, or by estimating the temperature of the catalyst from the operation history of the engine.
[0025]
If the catalyst has not been activated (YES), proceed to step 6.
On the other hand, if the catalyst has already been activated at the time of hot restart (if NO), it is determined that there is no need to perform control for accelerating the activation of the catalyst, and the process proceeds to step 13, and the normal combustion mode (homogeneous stoichiometric combustion, homogeneous The combustion is performed by lean combustion, stratified lean combustion, and the flow ends.
[0026]
In step 6, it is determined whether the air-fuel ratio feedback control condition has been satisfied. When the air-fuel ratio feedback control condition is not satisfied, the homogeneous combustion with the rich air-fuel ratio is continued.
[0027]
If it is determined in step 6 that the air-fuel ratio feedback control condition has been satisfied, the air-fuel ratio feedback control that sets the air-fuel ratio in homogeneous combustion to stoichiometric (stoichiometric air-fuel ratio) is started, and the exhaust temperature rise stratified combustion is continued. In step 7, the air-fuel ratio feedback control is continued for a predetermined delay time. That is, since the air-fuel ratio range in which combustion is stabilized in exhaust temperature increasing stratified combustion is narrower than in homogeneous combustion, the deviation from the stoichiometric rich air-fuel ratio in homogeneous combustion when the air-fuel ratio feedback control condition is satisfied is considered. Then, the stoichiometric control in the homogeneous combustion is continuously performed for a predetermined time or more, and after switching to the air-fuel ratio range in which the combustion is stabilized in the exhaust temperature rising stratified combustion, the exhaust temperature rising stratified combustion is switched.
[0028]
Note that the determination of whether the air-fuel ratio feedback control condition is satisfied in step 6 is specifically, for example, that the air-fuel ratio sensor 8 is activated (a predetermined time has elapsed since the complete explosion). This may be the case when the condition is satisfied.
[0029]
In step 8, for example, it is confirmed that the operation region is not in the exhaust temperature rise stratified combustion prohibition region (FIG. 4), and the permission of the exhaust temperature rise stratified combustion is issued.
If it is determined that the condition for permitting the exhaust temperature rise stratified combustion is satisfied, good ignitability and flammability even if the exhaust temperature rise stratified combustion is performed, and furthermore, engine stability (engine operability) and the like. , And the process proceeds to step 9.
[0030]
On the other hand, in the case of NO, if the exhaust temperature-raising stratified combustion is performed, the combustion stability and, in turn, the engine stability (engine operability) may decrease, so the transition to the exhaust temperature-raising stratified combustion is prohibited. Then, the routine proceeds to step 13, where normal combustion is performed, and this flow ends.
[0031]
When the condition for permitting the exhaust temperature rise stratified combustion is satisfied, the routine proceeds to step 9, where the torque step is shifted from the homogeneous combustion by the single injection in the intake stroke to the exhaust temperature rise stratified combustion in which the fuel is divided and injected into the intake stroke and the compression stroke. Is performed, and in step 10, the operation is switched to stable exhaust-gas-stratified combustion (hereinafter, referred to as target exhaust-temperature-stratified combustion) which is stable (excellent in increase of exhaust temperature without intentional torque change). The combustion switching control according to the present invention in step 9 will be described later in detail. In the exhaust temperature rise stratified combustion, a stratified air-fuel mixture around the spark plug is richer than the stoichiometric gas and the outside is leaner than the stoichiometric gas, and the combustion is performed.
[0032]
In step 11, the catalyst (the three-way catalyst 9 and the NOx trap catalyst 10, or at least the three-way catalyst 9) was activated again by switching to the target exhaust temperature increase stratified combustion to obtain a high exhaust temperature increase effect. Then, the exhaust temperature rise stratified combustion is continued until it is determined that the combustion is activated.
[0033]
If it is determined in step 11 that the catalyst has been activated, in step 12, combustion switching control is performed to absorb the torque step from the target exhaust temperature rise stratified combustion, and in step 13, normal combustion by one fuel injection is performed. Switch to.
[0034]
Next, the combustion switching control from the homogeneous combustion to the exhaust temperature increasing stratified combustion in step 9 will be described in detail.
At the time of switching from the homogeneous combustion to the exhaust temperature increasing stratified combustion, transitional exhaust temperature increasing stratified combustion using output torque change control for absorbing a torque step accompanying the combustion switching is performed. Here, in the present invention, since the torque step differs for each operation region where the combustion switching is performed, an appropriate output torque change control is selected and executed according to the torque step.
[0035]
Specifically, as shown in FIGS. 4 and 5, the torque step is small in the low rotation and low load region among the partial load regions in which the combustion switching is performed, but the torque step becomes larger as the rotation becomes higher or the load becomes higher. Therefore, for a torque step to be absorbed which differs for each region in which the combustion is switched, the control in which the decrease in the exhaust temperature increase effect from the exhaust temperature increase stratified combustion among the different output torque change controls is preferentially used. Hereinafter, a description will be given for each operation region at the time of combustion switching.
[0036]
Low-speed low-load region (including the fast idle region; STAGE 1 in FIG. 4)
As described above, in the STAGE 1 region, the torque step to be absorbed is small. First, control is performed to retard the ignition timing within a range in which flammability can be ensured by homogeneous combustion, so as to reduce the output torque in homogeneous combustion (single injection in the intake stroke) (A ′ → B ′ in FIG. 6). Since the output torque of the homogeneous combustion is larger than the output torque of the exhaust temperature increasing stratified combustion (including the stratified combustion), the ignition timing retard control of the homogeneous combustion is performed in all the stages 1 to 3 to absorb the torque step. Do.
[0037]
After sufficiently reducing the output torque in the homogeneous combustion in this manner, the output torque is increased by advancing the ignition timing with respect to the exhaust temperature rising stratified combustion after switching (hereinafter referred to as target exhaust temperature rising stratified combustion). Is switched to the transition exhaust temperature rise stratified charge combustion using the control (first output torque change control) (B ′ → A in FIG. 6). In this manner, the output torque in the transitional exhaust temperature rise stratified combustion is increased until it becomes equal to the output torque of the homogeneous combustion subjected to the decrease control (increased torque T1), and the torque step can be absorbed. Further, since the ignition timing advance control can minimize the decrease in the exhaust temperature increase effect with respect to the target exhaust temperature increase stratified combustion having a high exhaust temperature increase effect, the exhaust temperature of the transitional exhaust temperature increase stratified combustion is minimized. The rising effect can be increased as much as possible, and the HC emission does not increase.
[0038]
After switching from homogeneous combustion to transitional exhaust-temperature stratified combustion, the ignition timing is gradually retarded to converge to the target exhaust-temperature-raised stratified combustion that maximizes the exhaust-temperature-raising effect while ensuring stable combustion performance (Fig. 6 A → B). Other control values during the transitional exhaust temperature rise stratified combustion are fixed to the same values as the target exhaust temperature rise stratified combustion, the fuel injection timing of the compression stroke is retarded to the maximum, and the fuel injection between the intake stroke and the compression stroke is performed. The ratio of the amounts (hereinafter referred to as fuel injection amount division ratio) is 50 (%): 50 (%). Thereby, the activation of the temperature of the exhaust purification catalyst can be promoted to the maximum.
[0039]
Medium rotation and medium load range (STAGE 2 in FIG. 4)
In the STAGE2 region, the rotational speed or the load is larger than in the STAGE1 region, so the torque step increases, and in the transitional exhaust temperature rise stratified combustion using only the ignition timing advance control, the output torque is reduced by the ignition timing retard control. It is impossible to increase the output torque of the homogeneous combustion. Therefore, advanced control (second output torque change control) of the fuel injection timing (hereinafter, referred to as compression stroke injection timing) in the compression stroke is performed in combination with the ignition timing advance control. As shown in FIG. 7, when the compression stroke injection timing IT is advanced with respect to the target exhaust temperature rise stratified combustion (point A), the output torque increases (point C) and the torque step T2 can be absorbed. That is, after the output torque is reduced by the ignition timing retard control in the homogeneous combustion (A ′ → B ′ in FIG. 8), the transition exhaust temperature rise using both the ignition timing advance control and the compression stroke injection timing advance control is performed. Switching to stratified combustion (B ′ → C in FIG. 8). In this way, the increased torque step can be absorbed by the increased torque obtained by combining the increased torque T1 by the ignition timing advance control and the increased torque T2 by the compression stroke injection timing advance control.
[0040]
In addition, the advance of the compression stroke injection timing is larger than the advance of the ignition timing advance control in the amount of decrease in the exhaust temperature increase effect relative to the increase in torque from the target exhaust temperature increase stratified combustion. While the ignition timing advance control alone compensates for the torque increase that is insufficient with the compression stroke injection timing advance control, so that the HC emission is increased as much as possible without increasing the HC emission even during the transition exhaust temperature rise stratified combustion. The increased torque step can be absorbed while obtaining the exhaust temperature increasing effect.
[0041]
After switching from the homogeneous combustion to the transitional exhaust temperature increasing stratified combustion, the ignition timing and the compression stroke injection timing are gradually retarded to ensure the stable combustion performance and maximize the exhaust temperature increasing effect while maximizing the exhaust temperature increasing stratification. Converge on combustion (C → B in FIG. 8). The other control values during the transitional exhaust temperature rise stratified combustion are fixed to values equal to the target exhaust temperature rise stratified combustion, and the ratio of the fuel injection amount between the intake stroke and the compression stroke (hereinafter referred to as the fuel injection amount division ratio) is 50 (%): 50 (%).
[0042]
The reason why the ignition timing advance control and the compression stroke injection timing advance control are used together in STAGE 2 will be described in further detail (from another viewpoint). Since the stage 1 has a low rotation and a low load, the fuel injection amount in the compression stroke is small and the injection period is also short. Therefore, the compression stroke injection timing of the target exhaust temperature increase stratified combustion is sufficient to delay the end of combustion and sufficiently enhance the exhaust temperature increase effect. It is set to the retarded time, and even in the transitional exhaust temperature rise stratified combustion, even if the ignition timing is controlled to the maximum advance, the injected fuel can be sufficiently vaporized by the ignition timing, and the generation of smoke is sufficiently prevented it can.
[0043]
On the other hand, in the STAGE 2 region, when the load increases, the fuel injection amount and the injection period in the compression stroke increase, so that it is necessary to advance the injection timing so that vaporization can be performed before the ignition timing, and the rotation increases. Then, since the crank angle period required for the same vaporization time increases, it is necessary to advance the injection timing, and the compression stroke injection timing in the target exhaust temperature rise stratified combustion is set to be advanced from the STAGE 1 region. If the ignition timing is advanced in this state, the vaporization time until the ignition timing is shortened while the compression stroke injection timing in the target exhaust temperature rise stratified combustion is fixed (although it is advanced from the STAGE 1 region). The injected fuel is not sufficiently vaporized, and the smoke exceeds the allowable value (see FIG. 9A). Therefore, by performing the advance control of the compression stroke injection timing in accordance with the advance control of the ignition timing, the vaporization time until the ignition timing is increased, and the torque difference can be absorbed while suppressing the smoke below the allowable value (see FIG. 9b). Here, instead of advancing the compression stroke injection timing, a method of reducing the fuel injection amount ratio in the compression stroke by changing the division ratio so as to be used in a STAGE 3 region to be described later also reduces the injection fuel amount. Since the time from the end of injection to the ignition timing can be increased, the vaporization becomes good and the generation of smoke can be suppressed, and the ratio of fuel injection of the homogeneous mixture outside the spark plug increases by increasing the fuel injection ratio in the intake stroke. Therefore, the output torque increases and the torque step can be absorbed (see FIG. 9C and FIG. 12). However, since the exhaust temperature increase effect in the exhaust temperature increase stratified combustion is mainly obtained by the late combustion of the fuel injected in the compression stroke, the method of decreasing the fuel injection rate in the compression stroke naturally increases the torque. The amount of decrease in the exhaust rise effect with respect to the margin is larger than that in the advance control of the compression stroke injection timing (see FIGS. 10 and 11). Therefore, in the range where the necessary torque step can be absorbed and the generation of smoke can be suppressed (STAGE 2 region is set in that range), the ignition timing advance control and the compression stroke injection timing advance control are used to determine the fuel injection amount. By fixing the split ratio at 50 (%): 50 (%), the effect of increasing the exhaust gas in the transitional exhaust temperature increase stratified combustion can be further enhanced.
[0044]
High rotation and high load range (STAGE 3 in FIG. 4)
Since the rotational speed or the load is higher in the stage 3 region than in the stage 2 region, the compression stroke injection timing in the target exhaust temperature rise stratified combustion is set to be further advanced than in the stage 2 region. Accordingly, the compression stroke injection timing in the target exhaust temperature increasing stratified combustion for each stage is set to the maximum retard position in the stage 1, the large retard position in the stage 2, and the middle retard position in the stage 3. Then, in STAGE3, the torque step due to the combustion switching further increases, and the output torque of the transitional exhaust temperature rise stratified combustion is increased by using both the ignition timing advance control and the compression stroke injection timing advance control as in STAGE2. However, it becomes impossible to reduce the output torque of the homogeneous combustion reduced by the ignition timing retard control, or even if the compression stroke injection timing is advanced to the maximum, the ignition timing exceeds a certain value. If advanced, the smoke will exceed the allowable value. Therefore, in addition to the ignition timing advance control and the compression stroke injection timing advance control, a control for reducing the fuel injection ratio in the compression stroke (compression stroke division ratio reduction control: third output torque change control) is also used. As a result, the output torque of the transition exhaust temperature increase stratified combustion is increased. As shown in FIG. 12, when the compression stroke division ratio is reduced with respect to the target exhaust temperature increasing stratified combustion (point C), the output torque increases (point D), and the torque step T3 can be absorbed. Therefore, as shown in FIG. 13, the torque step which increases most at the time of high rotation and high load is absorbed by using the ignition timing advance control, the compression stroke injection timing advance control, and the compression stroke split ratio decrease control together. (See FIG. 13). As described above, in the compression stroke split ratio reduction control, the amount of decrease in the exhaust temperature increase effect is larger than the ignition timing advance control and the compression stroke injection timing advance control, but the ignition timing advance control and the compression stroke injection timing In order to compensate for the shortfall in the increase in output torque due to the advance angle control, and / or to reduce the necessary minimum compression stroke division ratio so as to compensate for the fact that the compression stroke injection timing advance control alone exceeds the smoke allowable value. By doing so, it is possible to maintain the highest exhaust temperature increase effect in the transitional exhaust temperature increase stratified combustion in the high-speed high-load region.
[0045]
As described above, for the torque steps to be absorbed that differ depending on the region (STAGE 1 to 3) in which the combustion switching is performed, the decrease in the effect of increasing the exhaust temperature from the target exhaust temperature increase stratified combustion is small among the different output torque change controls. By giving priority to control, it is possible to expand the area in which the target exhaust temperature rise stratified combustion can be performed while achieving a high exhaust temperature rise effect even during combustion switching, and maximize the early activation of the catalyst as a whole. Therefore, the exhaust gas purification performance can be maximized.
[0046]
FIG. 14 shows a flow of the combustion switching control (the subroutine of step 9 in FIG. 3) from the homogeneous combustion to the target exhaust temperature increasing stratified combustion.
In step 21, it is determined which of the STAGE <b> 1 to STAGE <b> 3 the operation area at the time of combustion switching belongs.
[0047]
If it is determined in step 21 that it is STAGE1, the process proceeds to step 22 in which the combustion switching control according to the above-described STAGE1, that is, the transition exhaust temperature rise using the ignition timing retard control and the ignition timing advance control in the homogeneous combustion, is performed. Control is performed to switch to the target exhaust temperature increase stratified combustion via the stratified combustion.
[0048]
If it is determined in step 21 that it is STAGE2, the process proceeds to step 23, in which the combustion switching control according to the above-mentioned STAGE2 is performed, that is, ignition timing retard control, ignition timing advance control, and compression stroke injection timing advance in homogeneous combustion. Control is performed to switch to target exhaust gas temperature-stratified combustion through transitional exhaust gas temperature-stratified combustion using control.
[0049]
If it is determined in step 21 that it is STAGE3, the routine proceeds to step 24, in which the combustion switching control according to the above-mentioned STAGE3 is performed, that is, ignition timing retard control, ignition timing advance control, and compression stroke injection timing advance in homogeneous combustion. Control is performed to switch to target exhaust temperature-raised stratified combustion through transitional exhaust temperature-raised stratified combustion using control and compression stroke split ratio reduction control.
[0050]
FIG. 15 shows a flow of the ignition timing control at the time of the combustion switching control. This flow is interrupted by the occurrence of a combustion switching request.
In step 31, the target ignition timing ADVHR to be retarded in the ignition timing retard control for the homogeneous combustion is searched from the map shown in FIG. In this map, the ignition timing retarded so as to decrease to the same output torque as the output torque at the time of the maximum advance when switching to the transitional exhaust temperature rise stratified combustion for each of the stages 1 to 3 is set. .
[0051]
In step 32, the target ignition timing ADVKSMBT corresponding to the maximum advance position (MBT) at the time of switching to the transition exhaust temperature rising stratified combustion for each of the above-mentioned STAGE 1 to 3 is retrieved from the map shown in FIG. In STAGE1, the compression stroke injection timing and the fuel injection amount split ratio are fixed to the same values as the target exhaust temperature increase stratified combustion, and in STAGE2, the fuel injection amount split ratio is set to the same value as the target exhaust temperature increase stratified combustion. In a fixed state, it is set to a value corresponding to the maximum advance position (MBT), and in STAGE 3, it is set to a value corresponding to the maximum advance position (MBT) in a state where the compression stroke injection timing and the fuel injection amount division ratio are controlled to change. You.
[0052]
In step 33, the target ignition timing ADVSA of the target exhaust temperature rise stratified combustion which is retarded from the transitional exhaust temperature rise stratified combustion immediately after the switching for each of the STAGEs 1 to 3 and finally switched is shown in a map shown in FIG. Search from.
[0053]
In step 34, control is performed to gradually retard the ignition timing of the homogeneous combustion to the target ignition timing ADVHR set in step 31.
In step 35, it is determined whether the target ignition timing ADVHR has been reached, and the retard control is continued until the target ignition timing ADVHR is reached.
[0054]
If it is determined in step 35 that the target ignition timing ADVHR has been reached, the routine proceeds to step 36, in which the ignition timing is advanced to the target ignition timing ADVKSMBT for the transitional exhaust temperature rise stratified combustion set in step 32 at once.
[0055]
Next, at step 37, the target ignition timing ADVSA is gradually retarded from the maximum advanced target ignition timing ADVKSMBT to the target ignition timing ADVSA of the target exhaust temperature rise stratified combustion set at step 33. It is determined whether or not it has reached, and when it has reached, the retard control is terminated.
[0056]
FIG. 19 shows a flow of the compression stroke injection timing control at the time of the combustion switching control. This flow is also interrupted by the generation of the combustion switching request.
In step 41, the target compression stroke injection timing ITKS immediately after switching from the homogeneous combustion to the transitional exhaust temperature increasing stratified combustion is retrieved from the map shown in FIG. Here, as described above, in STAGE1, since the advance control of the compression stroke injection timing is not performed, the compression stroke injection timing immediately after switching to the transitional exhaust temperature rise stratified combustion is determined by the compression stroke in the target exhaust temperature rise stratified combustion. The injection timing is set to the same value as the injection timing. In STAGE2 and STAGE3, the compression stroke injection timing advanced so as to secure a necessary torque increase with respect to the compression stroke injection timing in the respective target exhaust temperature increasing stratified combustion is set. Is set.
[0057]
In step 42, the target compression stroke injection timing ITSA of the target exhaust temperature rise stratified combustion that is finally switched is retrieved from the map shown in FIG. As described above, the injection timing is set to be the most retarded in STAGE1, the retarded greatly in STAGE2, and moderately retarded in STAGE3.
[0058]
In step 43, it is determined whether it is time to switch from the homogeneous combustion to the transitional exhaust temperature increase stratified combustion. Specifically, the determination is made based on the timing at which the retard control of the homogeneous combustion is completed and the mode is switched to the transition exhaust temperature increasing stratified combustion.
[0059]
Then, when the switching timing is reached, the routine proceeds to step 44, where the transition is made to the transitional exhaust temperature rise stratified combustion divided into the intake stroke and the compression stroke, and the compression stroke injection timing is set to the target compression stroke injection set in step 41. The timing is controlled to ITKS.
[0060]
In step 45, the compression stroke injection timing is gradually retarded. In step 46, it is determined whether or not the target compression stroke injection timing ITSA has been reached, and when it has been reached, the retard control is terminated.
[0061]
FIG. 22 shows a flow of the compression stroke division ratio control at the time of the combustion switching control. This flow is also interrupted by the generation of the combustion switching request.
In step 51, the target compression stroke division ratio KPARKS immediately after switching from the homogeneous combustion to the transition exhaust temperature increasing stratified combustion is retrieved from the map shown in FIG. Here, as described above, in STAGE1 and STAGE2, since the reduction control of the compression stroke division ratio is not performed, it is set to the same value as the target compression stroke division ratio (for example, 50%) in the target exhaust temperature rise stratified combustion. In STAGE 3, the target compression stroke division ratio (for example, 40 to 30%) is set to be reduced so as to secure a necessary increase in torque with respect to the target compression stroke division ratio in target exhaust temperature rise stratified combustion.
[0062]
In step 52, the compression stroke division ratio KPARTSA (for example, 50%) of the target exhaust temperature rise stratified combustion that is finally switched is set. Note that, in order to further expand the region in which the target exhaust temperature rise stratified combustion can be performed, the compression stroke division ratio may be set to be smaller in the high-speed high-load region also in the target exhaust temperature rise stratified combustion.
[0063]
In step 53, it is determined in the same manner as described above whether or not the timing of switching from the homogeneous combustion to the transition exhaust temperature increasing stratified combustion has come.
Then, when the switching timing is reached, the routine proceeds to step 54, where the transition is made to transitional exhaust temperature increasing stratified combustion, and the compression stroke division ratio is controlled to the target compression stroke division ratio KPARKS set in step 51.
[0064]
In step 55, the compression stroke division ratio is gradually increased, and in step 56, it is determined whether or not the target compression stroke division ratio KPARTSA has been reached.
[0065]
Next, the combustion switching from the target exhaust temperature increase stratified combustion to the normal combustion by one fuel injection in step 12 in FIG. 3 will be described. As the normal combustion, homogeneous combustion (homogeneous stoichiometric combustion and homogeneous lean combustion) is described. However, in general, when switching from the target exhaust temperature increase stratified combustion to the homogeneous lean combustion, the fuel is once switched to the homogeneous lean combustion through the homogeneous stoichiometric combustion) and the stratified lean combustion in which the fuel is injected once in the compression stroke. In general, the switching to the combustion may be performed by gradually increasing the compression stroke split ratio to 100%. When switching to the homogeneous combustion, the switching from the homogeneous combustion to the target exhaust gas temperature-stratified combustion is completely opposite. Follow the course of.
[0066]
That is, in STAGE 1, when the ignition timing is gradually advanced from the target exhaust temperature rising stratified combustion and the transition exhaust temperature rising stratified combustion reaches the maximum advance position, the ignition timing is greatly delayed so as to have the same output torque. The ignition timing is switched to homogeneous combustion, and then the ignition timing is gradually advanced to the maximum advance position MBT. In STAGE 2, the ignition timing and the compression stroke injection timing are gradually advanced from the target exhaust temperature increase stratified combustion so that the same output torque is obtained when the ignition timing reaches the maximum advanced position of the transitional exhaust temperature increase stratified combustion. The ignition timing is greatly retarded and switched to homogeneous combustion, and then the ignition timing is gradually advanced to the maximum advance position MBT. In STAGE 3, when the ignition timing and the compression stroke injection timing are gradually advanced from the target exhaust temperature rising stratified combustion and the compression split ratio is gradually reduced, and the ignition timing reaches the maximum advanced position of the transitional exhaust temperature rising stratified combustion. Then, the ignition timing is greatly retarded at once to switch to homogeneous combustion so that the same output torque is obtained, and then the ignition timing is gradually advanced to the maximum advance position MBT.
[0067]
FIG. 24 to FIG. 26 show how various state quantities change during combustion switching in STAGEs 1 to 3. In these figures, the switching from the homogeneous combustion to the exhaust temperature rising stratified combustion and the switching from the exhaust temperature rising stratified combustion to the homogeneous combustion are performed in the same STAGE (the same load region), but different STAGEs. In this case, the switching is performed by a combination of different output torque change controls.
[0068]
In the embodiment described above, as the output torque change control in the transitional exhaust temperature rise stratified combustion, the ignition timing advance control, the compression stroke injection timing advance control, the compression stroke division Although an example in which the ratio reduction control is sequentially added and used is shown, the present invention is not necessarily limited to such a method.
[0069]
For example, in the present embodiment, the compression stroke injection timing advance control is used in combination with the ignition timing being advanced to the maximum in the STAGE 2 region (up to the MBT of the transition exhaust temperature rise stratified combustion). In some cases, even if the angle is advanced to the maximum, the amount of increase in torque is small, or vaporization is not sufficiently performed by the ignition timing, and the smoke may exceed the allowable value. Therefore, in such a case, the ignition timing advance amount should be reduced to make the compression stroke injection timing more advanced, and further, the torque step should be absorbed only by the compression stroke injection timing advance control. You can also.
[0070]
The output torque change control in the transitional exhaust temperature rise stratified combustion in the low speed and low load region of the STAGE 1 also generally employs the ignition timing advance control because the fall of the exhaust temperature increase effect is the smallest, but it is desirable to use the ignition timing advance control. If the amount of increase in torque due to the timing advance control is extremely small or if the slight advance control exceeds the allowable smoke value, the compression stroke injection timing advance control should be performed without performing the ignition timing advance control. What should I do?
[0071]
In other words, in the present invention, to preferentially use the control in which the decrease in the exhaust temperature increase effect from the exhaust temperature increase stratified combustion is small with respect to the torque step to be absorbed means that while the appropriate combustion can be ensured, the exhaust temperature increase effect is reduced. This means selecting a control with a small dip.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a state of formation of an air-fuel mixture by fuel injection in an intake stroke and a compression stroke of exhaust temperature rise stratified combustion according to the present invention.
FIG. 3 is a flowchart showing the latter half of the main routine.
FIG. 4 is a diagram showing an operation region in which different combustion switching control is performed at the time of combustion switching.
FIG. 5 is a diagram showing a torque step caused by a different combustion switching for each of the different operation regions.
FIG. 6 is a diagram showing a change in torque generated by ignition timing control at the time of combustion switching in a low rotation and low load region (STAGE 1).
FIG. 7 is a view showing a torque step elimination effect by a compression stroke injection timing advance control in transitional exhaust temperature rise stratified combustion.
FIG. 8 is a diagram showing a change in torque generated by ignition timing control at the time of combustion switching in a middle rotation and middle load region (STAGE 2).
FIG. 9 is a diagram showing an effect of avoiding smoke with respect to a load change by the compression stroke injection timing advance control.
FIG. 10 is a diagram showing a decrease amount of an exhaust temperature increasing effect by the compression stroke injection timing advance control.
FIG. 11 is a graph showing the amount of decrease in the exhaust temperature increase effect by the compression stroke division ratio reduction control in transitional exhaust temperature increase stratified combustion.
FIG. 12 is a diagram showing a torque step elimination effect by a compression stroke split ratio reduction control in transitional exhaust temperature rise stratified combustion.
FIG. 13 is a diagram showing a change in torque generated by ignition timing control at the time of combustion switching in a high rotation and high load region (STAGE 3).
FIG. 14 is a flowchart showing a main flow at the time of switching from homogeneous combustion to target exhaust gas temperature-stratified combustion.
FIG. 15 is a flowchart showing an ignition timing control routine at the time of combustion switching according to the first embodiment;
FIG. 16 is a map for setting a target ignition timing ADVHR to be retarded in ignition timing retard control for homogeneous combustion.
FIG. 17 is a map for setting a target ignition timing ADVKSMBT at the time of transition of transitional exhaust temperature increase stratified combustion switching.
FIG. 18 is a map for setting a target ignition timing ADVSA after the target exhaust temperature increase stratified combustion switching.
FIG. 19 is a flowchart showing a compression stroke injection timing control routine at the time of combustion switching;
FIG. 20 is a map for setting a target compression stroke injection timing ITKS at the time of transition of transitional exhaust temperature increase stratified combustion switching.
FIG. 21 is a map for setting a target compression stroke injection timing ITSA at the time of target exhaust temperature rise stratified combustion switching.
FIG. 22 is a flowchart showing a compression stroke split ratio control routine at the time of combustion switching;
FIG. 23 is a map for setting a target compression stroke division ratio KPARKS at the time of switching to transition exhaust temperature increase stratified combustion.
FIG. 24 is a time chart showing how various state quantities change at the time of combustion switching in STAGE 1.
FIG. 25 is a time chart showing how various state quantities change at the time of combustion switching in STAGE2.
FIG. 26 is a time chart showing how various state quantities change at the time of combustion switching in STAGE 3.
[Explanation of symbols]
1. Institution
4: Throttle valve
5 ... Fuel injection valve
6. Spark plug
7. Exhaust passage
8 ... Air-fuel ratio sensor
9 ... Three-way catalyst
10 NOx trap catalyst
11 ... Crank angle sensor
12 ... Water temperature sensor
13 ... Throttle sensor
16 Key switch
50 ... Control knit

Claims (11)

機関運転状態に応じた燃焼形態として、燃焼室全体に均質な混合気を形成して燃焼させる均質燃焼と、吸気行程と圧縮行程とに分割した燃料噴射によって点火栓周りの混合気の空燃比を外側の混合気の空燃比よりリッチとした成層混合気を形成して燃焼させる排温上昇効果大の排温上昇成層燃焼と、を含む内燃機関の制御装置であって、
前記均質燃焼と排温上昇成層燃焼との切り換えを、燃焼切換によるトルク段差を吸収するための出力トルク変更制御を用いる移行排温上昇成層燃焼を介して行い、かつ、異種の出力トルク変更制御の中から吸収すべきトルク段差に対して排温上昇成層燃焼からの排温上昇効果の落ち込みが小さい制御を優先して使用することを特徴とする内燃機関の制御装置。
As a combustion mode corresponding to the engine operating state, the air-fuel ratio of the air-fuel mixture around the ignition plug is determined by homogeneous combustion in which a homogeneous air-fuel mixture is formed and burned throughout the combustion chamber and fuel injection divided into an intake stroke and a compression stroke. An exhaust temperature increase stratified combustion having a large exhaust temperature increase effect of forming and burning a stratified mixture richer than the air-fuel ratio of the outer air-fuel mixture.
The switching between the homogeneous combustion and the exhaust temperature increase stratified combustion is performed through a transitional exhaust temperature increase stratified combustion using output torque change control for absorbing a torque step due to the combustion switching, and different types of output torque change control. A control device for an internal combustion engine, wherein priority is given to a control in which a decrease in the effect of increasing exhaust temperature from stratified exhaust temperature combustion is small with respect to a torque step to be absorbed from inside.
前記機関の負荷または回転速度が小さい運転領域での燃焼切換時は、第1の出力トルク変更制御を使用し、前記機関の負荷または回転速度が大きい運転領域での燃焼切換時は、移行排温上昇成層燃焼に排温上昇成層燃焼からの排温上昇効果の落ち込みが第1の出力トルク変更制御より大きい第2の出力トルク変更制御を含んで使用することを特徴とする請求項1に記載の内燃機関の制御装置。The first output torque change control is used at the time of combustion switching in an operation region where the load or rotation speed of the engine is small, and the transition exhaust temperature is used at the time of combustion switching in an operation region where the load or rotation speed of the engine is large. 2. The method according to claim 1, wherein the ascending stratified combustion includes a second output torque changing control in which a decrease in an exhaust temperature increasing effect from the exhaust temperature rising stratified combustion is larger than the first output torque changing control. 3. Control device for internal combustion engine. 前記機関の負荷または回転速度が大きい運転領域での燃焼切換時は、移行排温上昇成層燃焼に前記第1の出力トルク変更制御と第2の出力トルク変更制御とを併用してトルク段差を吸収することを特徴とする請求項2に記載の内燃機関の制御装置。At the time of combustion switching in an operating region where the load or rotation speed of the engine is large, the first output torque change control and the second output torque change control are used in combination with the transitional exhaust temperature rise stratified combustion to absorb a torque step. The control device for an internal combustion engine according to claim 2, wherein 前記第1の出力トルク変更制御は、移行排温上昇成層燃焼における点火時期を、排温上昇成層燃焼における点火時期より進角させる制御を含み、前記第2の出力トルク変更制御は、移行排温上昇成層燃焼における圧縮行程の燃料噴射時期を、排温上昇成層燃焼における圧縮行程の燃料噴射時期より進角させる制御を含む請求項2または請求項3に記載の内燃機関の制御装置。The first output torque change control includes a control for advancing the ignition timing in the transitional exhaust temperature increase stratified combustion to the ignition timing in the exhaust temperature increase stratified combustion, and the second output torque change control includes the transitional exhaust temperature change stratification. 4. The control device for an internal combustion engine according to claim 2, further comprising a control to advance a fuel injection timing in a compression stroke in rising stratified combustion from a fuel injection timing in a compression stroke in exhaust temperature rising stratified combustion. 5. 前記第1の出力トルク変更制御は、移行排温上昇成層燃焼における点火時期を、排温上昇成層燃焼における点火時期より進角させる制御を含み、前記第2の出力トルク変更制御は、移行排温上昇成層燃焼における圧縮行程の燃料噴射量に対する吸気行程の燃料噴射量の割合を、排温上昇成層燃焼における圧縮行程の燃料噴射量に対する吸気行程の燃料噴射量の割合より大とさせる制御を含む請求項2〜請求項4のいずれか1つに記載の内燃機関の制御装置。The first output torque change control includes a control for advancing the ignition timing in the transitional exhaust temperature increase stratified combustion to the ignition timing in the exhaust temperature increase stratified combustion, and the second output torque change control includes the transitional exhaust temperature change stratification. Claims include a control for making the ratio of the fuel injection amount in the intake stroke to the fuel injection amount in the compression stroke in ascending stratified combustion larger than the ratio of the fuel injection amount in the intake stroke to the fuel injection amount in the compression stroke in exhaust temperature rising stratified combustion. The control device for an internal combustion engine according to any one of claims 2 to 4. 前記第1の出力トルク変更制御は、移行排温上昇成層燃焼における圧縮行程の燃料噴射時期を、排温上昇成層燃焼における圧縮行程の燃料噴射時期より進角させる制御を含み、前記第2の出力トルク変更制御は、移行排温上昇成層燃焼における圧縮行程の燃料噴射量に対する吸気行程の燃料噴射量の割合を、排温上昇成層燃焼における圧縮行程の燃料噴射量に対する吸気行程の燃料噴射量の割合より大とさせる制御を含む請求項2〜請求項5のいずれか1つに記載の内燃機関の制御装置。The first output torque change control includes a control for advancing the fuel injection timing in the compression stroke in the transitional exhaust temperature rise stratified combustion to the fuel injection timing in the compression stroke in the exhaust temperature rise stratified combustion, and the second output torque change control. The torque change control calculates the ratio of the fuel injection amount in the intake stroke to the fuel injection amount in the compression stroke in the transitional exhaust temperature increase stratified combustion, and the ratio of the fuel injection amount in the intake stroke to the fuel injection amount in the compression stroke in the exhaust temperature increase stratified combustion. The control device for an internal combustion engine according to any one of claims 2 to 5, further comprising control for increasing the value. 前記機関の負荷または回転速度が大きい運転領域での燃焼切換時は、前記第2の出力トルク変更制御を使用し、前記機関の負荷または回転速度がさらに大きい運転領域での燃焼切換時は、移行排温上昇成層燃焼に排温上昇成層燃焼からの排温上昇効果の落ち込みが第2の出力トルク変更制御より大きい第3の出力トルク変更制御を含んで使用することを特徴とする請求項2または請求項3に記載の内燃機関の制御装置。At the time of combustion switching in an operation region where the load or rotation speed of the engine is large, the second output torque change control is used. 3. The exhaust temperature rise stratified combustion includes a third output torque change control in which a decrease in an exhaust temperature increase effect from the exhaust temperature rise stratified combustion is larger than the second output torque change control. The control device for an internal combustion engine according to claim 3. 前記機関の負荷または回転速度がさらに大きい運転領域での燃焼切換時は、移行排温上昇成層燃焼に前記第1または第2の出力トルク変更制御の少なくとも一方の出力トルク変更制御と第3の出力トルク変更制御とを併用してトルク段差を吸収することを特徴とする請求項7に記載の内燃機関の制御装置。At the time of combustion switching in an operation region in which the load or rotation speed of the engine is further higher, at least one of the first or second output torque change control and the third output is performed in the transitional exhaust temperature increase stratified combustion. The control device for an internal combustion engine according to claim 7, wherein the torque step is absorbed in combination with the torque change control. 前記第1の出力トルク変更制御は、移行排温上昇成層燃焼における点火時期を、排温上昇成層燃焼における点火時期より進角させる制御を含み、前記第2の出力トルク変更制御は、移行排温上昇成層燃焼における圧縮行程の燃料噴射時期を、排温上昇成層燃焼における圧縮行程の燃料噴射時期より進角させる制御を含み、前記第3の出力トルク変更制御は、移行排温上昇成層燃焼における圧縮行程の燃料噴射量に対する吸気行程の燃料噴射量の割合を、排温上昇成層燃焼における圧縮行程の燃料噴射量に対する吸気行程の燃料噴射量の割合より大とさせる制御を含む請求項7または請求項8に記載の内燃機関の制御装置。The first output torque change control includes a control for advancing the ignition timing in the transitional exhaust temperature increase stratified combustion to the ignition timing in the exhaust temperature increase stratified combustion, and the second output torque change control includes the transitional exhaust temperature change stratification. The third output torque change control includes a control for advancing the fuel injection timing in the compression stroke in the rising stratified charge combustion from the fuel injection timing in the compression stroke in the exhaust temperature rise stratified combustion. 7. The fuel injection control method according to claim 7, wherein the ratio of the fuel injection amount of the intake stroke to the fuel injection amount of the stroke is made larger than the ratio of the fuel injection amount of the intake stroke to the fuel injection amount of the compression stroke in the exhaust temperature rise stratified combustion. 9. The control device for an internal combustion engine according to claim 8. 前記燃焼切換時に、均質燃焼と移行排温上昇成層燃焼との間のトルク段差を吸収するように均質燃焼における出力トルクを低下させる制御を行うことを特徴とする請求項1〜請求項9のいずれか1つに記載の内燃機関の制御装置。The method according to any one of claims 1 to 9, wherein at the time of the combustion switching, control is performed to reduce an output torque in the homogeneous combustion so as to absorb a torque step between the homogeneous combustion and the transition exhaust temperature increasing stratified combustion. A control device for an internal combustion engine according to any one of the preceding claims. 前記均質燃焼における出力トルクを低下させる制御は、点火時期を遅角する制御であることを特徴とする請求項10に記載の内燃機関の制御装置。The control device for an internal combustion engine according to claim 10, wherein the control for reducing the output torque in the homogeneous combustion is a control for retarding an ignition timing.
JP2003159786A 2003-06-04 2003-06-04 Control device for internal combustion engine Expired - Fee Related JP4175184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003159786A JP4175184B2 (en) 2003-06-04 2003-06-04 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003159786A JP4175184B2 (en) 2003-06-04 2003-06-04 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004360568A true JP2004360568A (en) 2004-12-24
JP4175184B2 JP4175184B2 (en) 2008-11-05

Family

ID=34052761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003159786A Expired - Fee Related JP4175184B2 (en) 2003-06-04 2003-06-04 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4175184B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017285A (en) * 2009-07-09 2011-01-27 Nissan Motor Co Ltd Fuel injection control device for internal combustion engine
CN110284982A (en) * 2019-06-19 2019-09-27 东风汽车集团有限公司 A kind of method for handover control of direct spray petrol engine in cylinder from stratified combustion to homogeneous combustion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017285A (en) * 2009-07-09 2011-01-27 Nissan Motor Co Ltd Fuel injection control device for internal combustion engine
CN110284982A (en) * 2019-06-19 2019-09-27 东风汽车集团有限公司 A kind of method for handover control of direct spray petrol engine in cylinder from stratified combustion to homogeneous combustion

Also Published As

Publication number Publication date
JP4175184B2 (en) 2008-11-05

Similar Documents

Publication Publication Date Title
JP4023115B2 (en) Control device for direct-injection spark ignition engine
KR100394842B1 (en) Internal Combustion Engine and it&#39;s Controlling Method
JP2005120942A (en) Control device for direct injection spark ignition type internal combustion engine
JP4378829B2 (en) Control device for internal combustion engine
JP4032859B2 (en) Control device for direct-injection spark ignition engine
JP3743277B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP4000926B2 (en) Control device and control method for direct-injection spark ignition engine
JP2000120471A (en) Cylinder injection type engine control device
JP4943873B2 (en) In-cylinder injection spark ignition internal combustion engine control device
JP3731403B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP3726580B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP2001182601A (en) Early warm-up control device for exhaust emission control catalyst
JP2006002683A (en) Control device for internal combustion engine
JP3755351B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP4175184B2 (en) Control device for internal combustion engine
JP6142662B2 (en) Engine catalyst warm-up device and warm-up method
JP5477498B2 (en) Control device for internal combustion engine
JP3812301B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP2004068690A (en) Exhaust emission control device for internal combustion engine
JP3724369B2 (en) Control device for direct-injection spark ignition engine
JP3747726B2 (en) Exhaust gas purification device for internal combustion engine
JP3149822B2 (en) Exhaust gas heating device for in-cylinder injection internal combustion engine
JP2001073913A (en) Control device of direct injection spark ignition internal combustion engine
JP4388258B2 (en) Control device for direct-injection spark ignition engine
JP3651304B2 (en) Ignition device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080314

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees