JP2004360108A - Method for producing carbon fiber - Google Patents

Method for producing carbon fiber Download PDF

Info

Publication number
JP2004360108A
JP2004360108A JP2003159565A JP2003159565A JP2004360108A JP 2004360108 A JP2004360108 A JP 2004360108A JP 2003159565 A JP2003159565 A JP 2003159565A JP 2003159565 A JP2003159565 A JP 2003159565A JP 2004360108 A JP2004360108 A JP 2004360108A
Authority
JP
Japan
Prior art keywords
catalyst
carbon
carbon source
fiber
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003159565A
Other languages
Japanese (ja)
Other versions
JP4156978B2 (en
Inventor
Hajime Tamon
肇 田門
Shin Mukai
紳 向井
Takashi Otaka
剛史 大高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003159565A priority Critical patent/JP4156978B2/en
Publication of JP2004360108A publication Critical patent/JP2004360108A/en
Application granted granted Critical
Publication of JP4156978B2 publication Critical patent/JP4156978B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently mass-producing at low cost CNF(carbon nanofiber) having proper fiber diameter in a very short reaction time. <P>SOLUTION: The method for producing carbon fiber through growth as fiber by reacting a carbon source on a catalyst comprises the following process: Using as the feedstock a solution prepared by dissolving in a carbon source an organometallic compound as the precursor of the catalyst, the feedstock is introduced into a reactor by a liquid pulse system to generate microparticles serving as the catalyst, which, in turn, are made to contact with the carbon source introduced into the reactor together with the organometallic compound to effect growth of the objective carbon fiber. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、炭素繊維、特に、カーボンナノファイバー(以下、必要に応じて「CNF」と略称する。)の製造方法に関するものである。
【0002】
【従来の技術】
近年、炭素繊維、特にその中でも、n(ナノ)m単位のオーダーのCNFは、特異な形状や優れた熱伝導性、電気伝導性、機械的強度を生かして、ガス吸蔵、複合材料の充填材、電界電子エミッタ、電池材料など様々な分野への応用が期待されている。
【0003】
従来、このCNFの製造にあたっては、アーク放電法、レーザー蒸発法の他に、ベンゼン、メタンといった炭化水素を炭素源として、これを触媒下で熱分解して炭素繊維を生成させる化学気相成長法が良く知られている(例えば、特許文献1〜4参照)。
【0004】
しかし、アーク放電法、レーザー蒸発法は、欠陥が少なく純度の高いCNFが得られる反面、装置のスケールアップが困難で大量生産には適しておらず、今後の更なる需要増に適切には対応できない問題が存在する。
【0005】
一方、一般の化学気相成長法は、炭素源をガスで大量に供給することができるため量産には適しているものの、成長核となる触媒微粒子の生成に時間を要し、その結果、触媒微粒子と炭化水素との接触による炭素繊維の成長速度が遅く、長い反応時間を必要とする問題があった。また、このように反応が遅い結果、成長核となる触媒微粒子が存在しないところでも炭素原子同士が余分な反応を示し、炭素繊維として成長せずに大量の煤として発生してしまい、生成効率が低いという問題もあった。また、特に炭化水素が触媒微粒子と接触し、炭素の繊維成長種微粒子の生成と繊維成長とが同時に並行して進むために、目的とする繊維径を有する炭素繊維を得ることが非常に困難であった。
【0006】
【特許文献1】
特公昭41−12091号公報
【特許文献2】
特許第3071536号公報
【特許文献3】
特許第3071571号公報
【特許文献4】
特許第3117523号公報
【0007】
【発明が解決しようとする課題】
本発明は、上記の問題点を解決するため、非常に短い反応時間で炭素繊維を生成して、効率的に適切な繊維径を有する炭素繊維を生成することができると共に、低コストでCNFを大量生産することができる炭素繊維の製造方法を提供するものである。
【0008】
【課題を解決するための手段】
本発明は、上記の課題を解決するための手段として、触媒に炭素源を反応させて繊維として成長させる炭素繊維の製造方法において、この触媒の前駆体である有機金属化合物を炭素源に溶解させた溶液を原料とし、この原料を液パルス方式で反応器に導入して触媒となる微粒子を発生させ、この触媒である微粒子と、有機金属化合物と共に反応器に導入された炭素源とを接触させることにより、炭素繊維を成長させることを特徴とする炭素繊維の製造方法を提供するものである。
【0009】
本発明の最も特徴とするところは、炭素源となる炭化水素を、触媒の前駆体(原材料)である有機金属化合物とは別に予め連続的に反応器内に流すのではなく、触媒の前駆体(原材料)である有機金属化合物を溶解する溶液として使用し、この有機金属化合物と共に原料として液パルス方式で高温の反応器に滴下する点である。これにより、原料への伝熱速度が速くなり、図2に示すように、反応器10の壁10Aに衝突した原料1中の触媒の前駆体である有機金属化合物の分解が瞬時に生じて、触媒の前駆体となる初期金属クラスター2を大量に発生させることができ、これらの初期金属クラスター2が合一して、CNF4(炭素繊維)の成長核(触媒)となる微粒子3となる。この場合、炭素源をガスで供給する化学気相成長法と比べ、初期金属クラスター2が合一してCNF4の成長に最適なサイズになるまでの滞留時間(触媒である微粒子3となるまでの合一時間)を短くすることができる。
【0010】
その結果、非常に短い反応時間、具体的には、2〜3秒でCNF4を成長させることができると共に、発生する触媒である微粒子3の活性が高い間に炭素源が消費されるため、炭素源を無駄にすることなく、非常に効率的にCNF4(炭素繊維)を成長させることができる。また、炭素源は、触媒の前駆体である有機金属化合物と共に原料1として滴下されるため、少量であることから、繊維径を非常に細かいnm単位に適切に調整することが容易であると同時に、合一時間が短い結果、触媒となる微粒子3のサイズの分布が狭くなり、繊維径が比較的そろった高品質のCNF4を得ることができる。更に、炭素源と触媒の前駆体である有機金属化合物とから成る原料1を液パルス形式で供給することは、簡便な装置で実現することができるため、装置のスケールアップも容易であり、低コストで大量に生産することができる。
【0011】
【発明の実施の形態】
本発明の実施の形態について説明すると、本発明において使用する炭素源としては、通常は、液状の炭化水素が用いられ、例えば、ペンタン、ヘキサン、ヘプタンなどの脂肪族炭化水素、ベンゼン、トルエン、キシレンなどの芳香族炭化水素などを使用することができる。
【0012】
また、本発明において用いる触媒としては、金属触媒が用いられ、この金属としては、鉄、ニッケル、コバルト、チタン、ジルコニア、ヴァナジウム、ニオブマンガン、ロジウム、タングステン、パラジウム、白金、シリコンなどを挙げることができ、これらの金属を、有機金属化合物として用いる。
【0013】
本発明においては、上記の触媒の前駆体である有機金属化合物を炭素源に溶解させた溶液を原料とし、図1に示すように、この原料を液パルス方式で反応器10に導入する。この原料としては、具体的には、例えば、触媒の前駆体である鉄の有機化合物としてフェロセン(ビス[シクロペンタジエニル]鉄(II))、炭素源としてベンゼンを使用し、この触媒の前駆体である鉄の有機化合物であるフェロセンを炭素源となるベンゼンに溶解した溶液に、助触媒としてチオフェンを1重量%添加したものを原料とすることができる。
【0014】
なお、キャリアガスとしては、水素ガス、一酸化炭素ガスといった還元性のガスを単独で、或いはこれに窒素ガス、二酸化炭素ガスなどを混合して用いる。
【0015】
次に、本発明の製造方法の実施手順を図1を参照しながら詳細に説明すると、図1は、本発明の製造方法に使用される反応器10を示し、この反応器10は、キャリアガスである水素を予熱する予熱部(反応管前部)12と、反応部(反応管後部)14と、これらの予熱部12と反応部14との間(反応管中間部)に形成され触媒源及び炭素源とから成る原料が導入される原料導入部16とを備えている。
【0016】
この反応器10の予熱部12に、図1に示すように、キャリアガスとして水素を定常的に流して予熱し、この状態のところへ反応管中間部にある原料導入部16より、上記のように、触媒の前駆体である鉄の有機化合物であるフェロセンを、炭素源であるベンゼンに溶解した溶液を原料として、定量パルスポンプ18により液パルスで打込み、反応器の壁10Aに衝突させる。反応器の壁10Aは、所定の温度に加熱されており、図2に示すように、ここに衝突した原料1の液パルスは瞬時に熱せられた触媒微粒子3を生成して炭素繊維析出帯域A(図1及び図2参照)全体に拡散する。
【0017】
生成した触媒微粒子3は、共に液パルス方式で溶液として導入された炭素源としてのベンゼンと接触し、これにより繊維の成長反応が開始され、更に反応を続伸することにより炭素繊維が短時間に成長を続け、反応器10の下流に設置された内管20にトラップされる。なお、この内管20はなくても反応器10の下流に成長した繊維が運ばれる。その後、反応器10を室温にまで冷却し、生成された炭素繊維(CNF4)を回収する。
【0018】
図示した方法以外にも、原料の導入については、例えば反応器10中心に極微細管から超微粒子でパルスを噴霧するといった方法をとることもできる。また、繊維の補捉は、自重で堆積させてもよいし、反応器10外へ排出するとか、縦型で自由落下させるとかの方法をとることもできる。
【0019】
液パルスのパルス幅、即ち、1回当たりの液パルスの導入に要する時間は、0.2〜4.0秒、好ましくは0.3〜0.6秒の範囲内とするのが好ましい。通常、析出帯域の反応温度は、800〜1300℃、反応時間は、バッチ式、連続式を問わず、2〜3秒と極めて短時間で良い。キャリアガスの流量は10〜200ml/minである。反応温度、反応時間、炭素源や触媒の前駆体である有機金化合物の種類や、これらから成る原料の供給量などを適宜選択調節することにより、炭素繊維の成長速度、得られる炭素繊維の太さ、長さなどを制御することができる。炭素繊維の成長は、100〜300μm/SECの速度で制御することができ、繊維径20〜500nm、長さ1〜100μmのものを得ることができる。
【0020】
【実施例】
触媒の前駆体である有機金属化合物として鉄の有機化合物であるフェロセン(ビス[シクロペンタジエニル]鉄(II))を、炭素源としてベンゼンを使用し、触媒の前駆体であるフェロセンを炭素源となるベンゼンに溶解した溶液に、助触媒としてチオフェンを1重量%添加したものを原料として、これを、シリンジを使用して、1回当たり20μlの原料を液パルス方式で、原料導入部16から反応器10内に導入し、この導入を1分ずつ間隔を空けて、合計20回行った。その後、内管20に捕捉された生成物を回収し、得られた生成物について、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)で直接観察した。この場合において、諸条件による生成物への影響を確認するため、以下の各設定の実験を行った。
【0021】
(実施例1)
まず、キャリアガスの流量がCNFに与える影響を確認する実験を行った。即ち、初期金属クラスター2の合一時間とCNF4の成長時間に影響を及ぼすと考えられるキャリアガスの流量を種々変化させて実施した結果を、表1に示す。なお、この実施例1においては、原料中の触媒濃度(有機金属化合物の濃度)を5重量%、反応温度は1373Kとし、収率については原料中の炭素量と得られた生成物の重量の比として算出した。
【0022】
【表1】

Figure 2004360108
【0023】
この表1から解るように、キャリアガスの流量が少ないと、収率は高く、最も高い数値として約60%近くの収率で、炭素源をCNFとすることができ、従来の30%程度の収率に比し、CNFを著しく効率的に生成することができた。一方、キャリアガスの流量が大きいと、収率は低下するが、得られるCNFの繊維径は小さくできることが解った。また、キャリアガスの流量が大きいほど、CNFの直径の分布が狭いことも判明した。
【0024】
(実施例2)
次に、触媒である微粒子3の大きさ、即ち、CNF4の直径に大きく影響を及ぼすと考えられる原料中の触媒濃度(有機金属化合物の濃度)の影響について検討した結果を、表2に示す。なお、この実施例2においては、キャリアガスの流量を120cm/min、反応温度は1373Kとし、収率については実施例1と同じく原料中の炭素量と得られた生成物の重量の比として算出した。
【0025】
【表2】
Figure 2004360108
【0026】
この表2から解るように、触媒濃度を大きくしても、得られたCNFの直径は比較的小さく、かつ、十分に高い収率も得ることができた。これは、本発明を利用することで、炭素源の熱分解のタイミングをキャリアガス流量により自在にコントロールすることができた結果であると思われる。また、副生成物も少なく、炭素源のCNFへの変換効率が非常に高いことが示唆された。
【0027】
(まとめ)
以上の結果から、触媒濃度とキャリアガスの流量を調節することで、目的の直径を有するCNFを高収率で得られることが解った。例えば、触媒濃度が10重量%のとき、キャリアガスの流量を120cm/minとすると、直径がおよそ150〜200nmのCNFを、31.2%の収率で得ることができる。また、表には示していないが、触媒濃度を10重量%、キャリアガスの流量を180cm/minとして生成すると、収率は18.8%と低下するが、直径が20〜60nmと非常に微細なCNFを得ることができた。従って、これらの触媒濃度やキャリアガスの流量を必要に応じて調整することにより、様々なニーズに応えるCNFとすることができる。
【0028】
【発明の効果】
本発明によれば、上記のように、非常に短い反応時間で炭素繊維を生成して、効率的に適切な繊維径を有する炭素繊維を生成することができると共に、低コストでCNFを大量生産することができる実益がある。
【図面の簡単な説明】
【図1】本発明の炭素繊維の製造方法の実施状態の概略側面図である。
【図2】本発明の炭素繊維の製造方法において、液パルス方式で反応器内に導入された原料から触媒となる微粒子が合一する状態を示す概略モデル図である。
【符号の説明】
1 原料
2 初期金属クラスター
3 微粒子(触媒)
4 CNF(カーボンナノファイバー)
10 反応器
10A 反応器壁
12 予熱部
14 反応部
16 原料導入部
18 定量パルスポンプ
20 内管
A 炭素繊維析出帯域[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing carbon fibers, particularly carbon nanofibers (hereinafter, abbreviated as “CNF” as necessary).
[0002]
[Prior art]
In recent years, carbon fibers, and especially, CNF on the order of n (nano) m units, have a special shape and excellent thermal conductivity, electrical conductivity, and mechanical strength to take advantage of gas occlusion and filling of composite materials. Application to various fields such as field electron emitters and battery materials is expected.
[0003]
Conventionally, in producing this CNF, in addition to the arc discharge method and the laser evaporation method, a chemical vapor deposition method in which hydrocarbons such as benzene and methane are used as a carbon source and pyrolyzed under a catalyst to produce carbon fibers. Are well known (for example, see Patent Documents 1 to 4).
[0004]
However, the arc discharge method and the laser evaporation method can provide high purity CNF with few defects, but are not suitable for mass production due to difficulty in scale-up of the equipment, and appropriately respond to further increasing demand in the future. There are problems that cannot be done.
[0005]
On the other hand, the general chemical vapor deposition method is suitable for mass production because a large amount of carbon source can be supplied by gas, but it takes time to generate catalyst fine particles serving as growth nuclei. There is a problem that the growth rate of the carbon fiber due to the contact between the fine particles and the hydrocarbon is slow, and a long reaction time is required. In addition, as a result of such a slow reaction, even in the absence of the catalyst fine particles serving as growth nuclei, carbon atoms show an extra reaction, are not grown as carbon fibers, are generated as a large amount of soot, and the production efficiency is reduced. There was also the problem of being low. Further, in particular, since the hydrocarbon comes into contact with the catalyst fine particles, and the generation of the carbon fiber growth seed fine particles and the fiber growth proceed simultaneously in parallel, it is very difficult to obtain a carbon fiber having a target fiber diameter. there were.
[0006]
[Patent Document 1]
Japanese Patent Publication No. 41-12091 [Patent Document 2]
Japanese Patent No. 3071536 [Patent Document 3]
Japanese Patent No. 3057171 [Patent Document 4]
Japanese Patent No. 3117523
[Problems to be solved by the invention]
In order to solve the above problems, the present invention can produce carbon fibers in a very short reaction time, efficiently produce carbon fibers having an appropriate fiber diameter, and produce CNF at low cost. An object of the present invention is to provide a method for producing carbon fibers that can be mass-produced.
[0008]
[Means for Solving the Problems]
The present invention provides, as a means for solving the above problems, a method for producing a carbon fiber in which a carbon source is reacted with a catalyst to grow the fiber, wherein an organometallic compound which is a precursor of the catalyst is dissolved in the carbon source. Using the solution obtained as a raw material, the raw material is introduced into a reactor in a liquid pulse system to generate fine particles serving as a catalyst, and the fine particles serving as a catalyst are brought into contact with the carbon source introduced into the reactor together with the organometallic compound. Accordingly, the present invention provides a method for producing a carbon fiber, which comprises growing the carbon fiber.
[0009]
The most characteristic feature of the present invention is that instead of continuously flowing the hydrocarbon as the carbon source into the reactor separately from the organometallic compound which is the precursor (raw material) of the catalyst, the precursor of the catalyst is used. It is used as a solution for dissolving an organometallic compound (raw material), and is dropped into a high-temperature reactor by a liquid pulse method as a raw material together with the organometallic compound. As a result, the speed of heat transfer to the raw material is increased, and as shown in FIG. 2, the decomposition of the organometallic compound, which is the precursor of the catalyst in the raw material 1 colliding with the wall 10A of the reactor 10, occurs instantaneously, A large amount of initial metal clusters 2 serving as a precursor of the catalyst can be generated, and these initial metal clusters 2 combine to form fine particles 3 serving as growth nuclei (catalysts) of CNF4 (carbon fiber). In this case, as compared with the chemical vapor deposition method in which a carbon source is supplied as a gas, the residence time until the initial metal clusters 2 coalesce to an optimal size for the growth of CNF 4 (the time required for the catalyst 3 to become the fine particles 3). Combined time) can be shortened.
[0010]
As a result, CNF 4 can be grown in a very short reaction time, specifically, 2 to 3 seconds, and the carbon source is consumed while the activity of the generated fine particles 3 is high. CNF4 (carbon fiber) can be grown very efficiently without wasting the source. In addition, since the carbon source is dropped as the raw material 1 together with the organometallic compound which is a precursor of the catalyst, since the carbon source is in a small amount, it is easy to appropriately adjust the fiber diameter to very fine nm units. As a result, the distribution of the size of the fine particles 3 serving as a catalyst is narrowed, and high quality CNF 4 having a relatively uniform fiber diameter can be obtained. Further, the supply of the raw material 1 composed of the carbon source and the organometallic compound which is a precursor of the catalyst in the form of a liquid pulse can be realized by a simple apparatus, so that the scale-up of the apparatus is easy, and Mass production at cost.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
To explain the embodiment of the present invention, as the carbon source used in the present invention, usually, a liquid hydrocarbon is used, for example, pentane, hexane, aliphatic hydrocarbon such as heptane, benzene, toluene, xylene Aromatic hydrocarbons such as can be used.
[0012]
Further, as the catalyst used in the present invention, a metal catalyst is used, and examples of the metal include iron, nickel, cobalt, titanium, zirconia, vanadium, niobium manganese, rhodium, tungsten, palladium, platinum, and silicon. These metals can be used as organometallic compounds.
[0013]
In the present invention, a solution obtained by dissolving an organometallic compound as a precursor of the above-mentioned catalyst in a carbon source is used as a raw material, and this raw material is introduced into the reactor 10 by a liquid pulse method as shown in FIG. Specifically, for example, ferrocene (bis [cyclopentadienyl] iron (II)) is used as an organic compound of iron, which is a precursor of the catalyst, and benzene is used as a carbon source. A material obtained by adding 1% by weight of thiophene as a cocatalyst to a solution of ferrocene, which is an organic compound of iron, in benzene as a carbon source can be used as a raw material.
[0014]
As a carrier gas, a reducing gas such as a hydrogen gas or a carbon monoxide gas is used alone, or a mixture of a reducing gas such as a nitrogen gas and a carbon dioxide gas is used.
[0015]
Next, the procedure for carrying out the production method of the present invention will be described in detail with reference to FIG. 1. FIG. 1 shows a reactor 10 used in the production method of the present invention. (Reactor tube front) 12, a reactor (reactor tube rear) 14, and a catalyst source formed between the preheater 12 and the reactor 14 (reactor tube middle). And a raw material introduction section 16 into which a raw material composed of a carbon source and a raw material is introduced.
[0016]
As shown in FIG. 1, the preheating section 12 of the reactor 10 is preheated by steadily flowing hydrogen as a carrier gas, and the material is introduced into the preheating section 12 from the raw material introduction section 16 in the middle of the reaction tube as described above. Then, using a solution obtained by dissolving ferrocene, which is an organic compound of iron, which is a precursor of the catalyst, in benzene, which is a carbon source, as a raw material, the solution is pulsed by a constant pulse pump 18 with a liquid pulse to collide with a wall 10A of the reactor. The wall 10A of the reactor is heated to a predetermined temperature. As shown in FIG. 2, the liquid pulse of the raw material 1 colliding with the wall 10A instantly generates the heated catalyst fine particles 3 to generate the carbon fiber deposition zone A. (See FIGS. 1 and 2).
[0017]
The generated catalyst fine particles 3 are brought into contact with benzene as a carbon source introduced as a solution by a liquid pulse method, whereby a fiber growth reaction is started, and the carbon fiber is grown in a short time by further extending the reaction. And trapped in the inner tube 20 installed downstream of the reactor 10. The fibers grown downstream of the reactor 10 are carried without the inner tube 20. Thereafter, the reactor 10 is cooled to room temperature, and the generated carbon fibers (CNF4) are collected.
[0018]
In addition to the method shown in the figure, the introduction of the raw material may be performed by, for example, spraying a pulse with ultrafine particles from an ultrafine tube at the center of the reactor 10. The fiber may be captured by its own weight, may be discharged to the outside of the reactor 10, or may be freely dropped vertically.
[0019]
It is preferable that the pulse width of the liquid pulse, that is, the time required for introducing one liquid pulse, is in the range of 0.2 to 4.0 seconds, preferably 0.3 to 0.6 seconds. Usually, the reaction temperature in the precipitation zone is 800 to 1300 ° C., and the reaction time is a very short time of 2 to 3 seconds regardless of the batch type or the continuous type. The flow rate of the carrier gas is 10 to 200 ml / min. By appropriately selecting and controlling the reaction temperature, the reaction time, the type of the organic gold compound as the carbon source and the precursor of the catalyst, and the supply amount of the raw material composed of these, the growth rate of the carbon fiber, the thickness of the obtained carbon fiber, Length and length can be controlled. The growth of the carbon fiber can be controlled at a speed of 100 to 300 μm / SEC, and a fiber having a fiber diameter of 20 to 500 nm and a length of 1 to 100 μm can be obtained.
[0020]
【Example】
Ferrocene (bis [cyclopentadienyl] iron (II)), which is an organic compound of iron, is used as an organometallic compound as a catalyst precursor, and benzene is used as a carbon source. Ferrocene, which is a precursor of a catalyst, is used as a carbon source. A solution obtained by adding 1% by weight of thiophene as a co-catalyst to a solution dissolved in benzene as a starting material is used. It was introduced into the reactor 10, and this introduction was performed 20 times at intervals of 1 minute in total. Thereafter, the product captured in the inner tube 20 was recovered, and the obtained product was directly observed with a scanning electron microscope (SEM) and a transmission electron microscope (TEM). In this case, in order to confirm the influence of various conditions on the product, experiments were performed with the following settings.
[0021]
(Example 1)
First, an experiment was performed to confirm the effect of the flow rate of the carrier gas on CNF. That is, Table 1 shows the results obtained by variously changing the flow rate of the carrier gas, which is considered to affect the coalescence time of the initial metal cluster 2 and the growth time of the CNF 4. In Example 1, the catalyst concentration (concentration of the organometallic compound) in the raw material was 5% by weight, the reaction temperature was 1373 K, and the yield was calculated based on the amount of carbon in the raw material and the weight of the obtained product. It was calculated as a ratio.
[0022]
[Table 1]
Figure 2004360108
[0023]
As can be seen from Table 1, when the flow rate of the carrier gas is small, the yield is high, and CNF can be used as the carbon source with the highest value of about 60%, which is about 30% of the conventional value. CNF could be produced significantly more efficiently than the yield. On the other hand, it was found that when the flow rate of the carrier gas was large, the yield decreased, but the fiber diameter of the obtained CNF could be reduced. It was also found that the larger the flow rate of the carrier gas, the narrower the distribution of the diameter of CNF.
[0024]
(Example 2)
Next, Table 2 shows the results of an investigation on the effect of the catalyst concentration (concentration of the organometallic compound) in the raw material, which is considered to greatly affect the size of the fine particles 3 as the catalyst, that is, the diameter of the CNF 4. In Example 2, the flow rate of the carrier gas was set to 120 cm 3 / min, the reaction temperature was set to 1373 K, and the yield was calculated as the ratio of the amount of carbon in the raw material to the weight of the obtained product, as in Example 1. Calculated.
[0025]
[Table 2]
Figure 2004360108
[0026]
As can be seen from Table 2, even if the catalyst concentration was increased, the diameter of the obtained CNF was relatively small, and a sufficiently high yield could be obtained. This seems to be the result of using the present invention to freely control the timing of the thermal decomposition of the carbon source by the flow rate of the carrier gas. In addition, there were few by-products, suggesting that the conversion efficiency of the carbon source to CNF was very high.
[0027]
(Summary)
From the above results, it was found that by adjusting the catalyst concentration and the flow rate of the carrier gas, CNF having a target diameter could be obtained in high yield. For example, when the catalyst concentration is 10% by weight and the flow rate of the carrier gas is 120 cm 3 / min, CNF having a diameter of about 150 to 200 nm can be obtained with a yield of 31.2%. Although not shown in the table, when the catalyst concentration is 10% by weight and the flow rate of the carrier gas is 180 cm 3 / min, the yield is reduced to 18.8%, but the diameter is very large, 20 to 60 nm. Fine CNF could be obtained. Therefore, by adjusting the catalyst concentration and the flow rate of the carrier gas as needed, it is possible to obtain a CNF that meets various needs.
[0028]
【The invention's effect】
According to the present invention, as described above, carbon fibers can be produced in a very short reaction time, carbon fibers having an appropriate fiber diameter can be produced efficiently, and CNF can be mass-produced at low cost. There are benefits that can be done.
[Brief description of the drawings]
FIG. 1 is a schematic side view of an embodiment of a method for producing a carbon fiber according to the present invention.
FIG. 2 is a schematic model diagram showing a state in which fine particles serving as a catalyst are coalesced from a raw material introduced into a reactor by a liquid pulse method in the method for producing carbon fiber of the present invention.
[Explanation of symbols]
1 Raw material 2 Initial metal cluster 3 Fine particles (catalyst)
4 CNF (carbon nanofiber)
Reference Signs List 10 reactor 10A reactor wall 12 preheating section 14 reaction section 16 raw material introduction section 18 fixed pulse pump 20 inner tube A carbon fiber deposition zone

Claims (1)

触媒に炭素源を反応させて繊維として成長させる炭素繊維の製造方法において、前記触媒の前駆体である有機金属化合物を前記炭素源に溶解させた溶液を原料とし、前記原料を液パルス方式で反応器に導入して前記触媒となる微粒子を発生させ、前記触媒である微粒子と、前記有機金属化合物と共に前記反応器に導入された前記炭素源とを接触させることにより、炭素繊維を成長させることを特徴とする炭素繊維の製造方法。In a method for producing carbon fiber, wherein a carbon source is reacted with a catalyst to grow the fiber, a solution obtained by dissolving an organometallic compound as a precursor of the catalyst in the carbon source is used as a raw material, and the raw material is reacted by a liquid pulse method. Generating fine particles to be the catalyst by introducing into the vessel, and contacting the fine particles as the catalyst with the carbon source introduced into the reactor together with the organometallic compound to grow carbon fibers. Characteristic method for producing carbon fiber.
JP2003159565A 2003-06-04 2003-06-04 Carbon fiber manufacturing method Expired - Lifetime JP4156978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003159565A JP4156978B2 (en) 2003-06-04 2003-06-04 Carbon fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003159565A JP4156978B2 (en) 2003-06-04 2003-06-04 Carbon fiber manufacturing method

Publications (2)

Publication Number Publication Date
JP2004360108A true JP2004360108A (en) 2004-12-24
JP4156978B2 JP4156978B2 (en) 2008-09-24

Family

ID=34052591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003159565A Expired - Lifetime JP4156978B2 (en) 2003-06-04 2003-06-04 Carbon fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP4156978B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246590A (en) * 2011-05-30 2012-12-13 Sumitomo Bakelite Co Ltd Method for producing fibrous carbon
KR20140131935A (en) 2012-03-08 2014-11-14 아사히 카본 가부시키가이샤 Method for Manufacturing Carbon Fiber, and Carbon Fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246590A (en) * 2011-05-30 2012-12-13 Sumitomo Bakelite Co Ltd Method for producing fibrous carbon
KR20140131935A (en) 2012-03-08 2014-11-14 아사히 카본 가부시키가이샤 Method for Manufacturing Carbon Fiber, and Carbon Fiber
US9475700B2 (en) 2012-03-08 2016-10-25 Asahi Carbon Co., Ltd. Method for manufacturing carbon fiber, and carbon fiber
KR101952479B1 (en) 2012-03-08 2019-02-26 아사히 카본 가부시키가이샤 Method for Manufacturing Carbon Fiber, and Carbon Fiber

Also Published As

Publication number Publication date
JP4156978B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JP4968643B2 (en) Method for producing single-walled carbon nanotube
US7518045B2 (en) Method of preparing carbon nanocages
US6913789B2 (en) Process utilizing pre-formed cluster catalysts for making single-wall carbon nanotubes
EP1390294B1 (en) Synthesis of nanoscaled carbon materials
Fan et al. Preparation, morphology, and microstructure of diameter-controllable vapor-grown carbon nanofibers
EP1618234B1 (en) Method of producing vapor-grown carbon fibers
US20050118090A1 (en) Plasma synthesis of hollow nanostructures
US20020102194A1 (en) Process utilizing seeds for making single-wall carbon nanotubes
KR20080111534A (en) Method for the production of carbon nanotubes in a fluidized bed
JP4953606B2 (en) Vapor grown carbon fiber and method for producing the same
JPWO2004060800A1 (en) Single-walled carbon nanotube manufacturing method and manufacturing apparatus
US7524479B2 (en) Method for producing vapor grown carbon fiber
WO2002079082A2 (en) Process utilizing pre-formed cluster catalysts for making single-wall carbon nanotubes
JP4156978B2 (en) Carbon fiber manufacturing method
JP6020850B2 (en) Carbon fiber manufacturing method and carbon fiber
JP2016153353A (en) Carbon nano-tube production device
KR101155057B1 (en) Process for preparing carbon nano-tube
JP2003112050A (en) Method for manufacturing catalytic carbon nanofiber by decomposition of hydrocarbon and catalyst
CN100467369C (en) Preparation method of carbon nanometer pipe
JP2007223820A (en) Method of manufacturing carbon nano-structure, catalytic metal base material and catalytic reaction vessel
JP3071536B2 (en) Carbon fiber
JP3117523B2 (en) Method for producing vapor grown carbon fiber
JPS60252720A (en) Production of carbon fiber by vapor phase method
Liu et al. Low temperature growth of carbon nanotubes by thermal chemical vapor deposition using non-isothermal deposited Ni–P–Pd as co-catalyst
JPS6262914A (en) Production of carbonaceous fiber

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20030704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4156978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term