JP2004359979A - Reduction refining method of high purity metal from vaporizable metallic compound by magnetron capacitive coupling type plasma, and device therefor - Google Patents

Reduction refining method of high purity metal from vaporizable metallic compound by magnetron capacitive coupling type plasma, and device therefor Download PDF

Info

Publication number
JP2004359979A
JP2004359979A JP2003156944A JP2003156944A JP2004359979A JP 2004359979 A JP2004359979 A JP 2004359979A JP 2003156944 A JP2003156944 A JP 2003156944A JP 2003156944 A JP2003156944 A JP 2003156944A JP 2004359979 A JP2004359979 A JP 2004359979A
Authority
JP
Japan
Prior art keywords
metal
high purity
magnetron
plasma
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003156944A
Other languages
Japanese (ja)
Other versions
JP4295823B2 (en
Inventor
Nobuyuki Mori
信行 森
Yoshimi Kamijo
芳省 上條
Takashi Ushita
隆史 丑田
Masatoshi Sasaki
政敏 佐々木
Hisashi Nakajima
中嶋  恒
Bokushi Tokuhiro
牧士 徳廣
Yoshiharu Ujiie
芳治 氏家
Chiaki Ouchi
千秋 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UMK TECHNOLOGY KK
Original Assignee
UMK TECHNOLOGY KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UMK TECHNOLOGY KK filed Critical UMK TECHNOLOGY KK
Priority to JP2003156944A priority Critical patent/JP4295823B2/en
Publication of JP2004359979A publication Critical patent/JP2004359979A/en
Application granted granted Critical
Publication of JP4295823B2 publication Critical patent/JP4295823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain reduced metal of high purity such as Ti by efficient and low energy consumption while retaining the high purity of high purity, inexpensive vaporizable metallic compounds as starting materials. <P>SOLUTION: A reaction region within a chamber is fed with vaporizable metallic compounds 8 such as TiCl<SB>4</SB>in a vaporized state together with hydrogen. In the reaction region, magnetron capacitive coupling type plasma 11 is formed between external electrodes composed of an inner tube 1 and an outer tube 2 and internal electrodes 3 stored with magnets 4, and hydrogen reduction is performed. The reduced metal and hydrides (9) are separately recovered. The reduced metal is precipitated mainly over the electrodes and the wall faces of the chamber, is peeled, is naturally fallen, and is deposited on the lower part of the chamber so as to be collected. The method is widely applicable to metal such as Si, Ge, Al, Sn and V which is the active one firmly bonded with oxygen and from which high purity metal is hard to be obtained by thermal reduction, and is the one having high purity and from which vaporizable halides or hydrogen compounds can be obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
金属元素、特に活性が高く、酸素との結合エネルギーが高いため、従来の高温の冶金的製造方法によっては高純度の材料を得ることが困難な、Ti、Siなどの金属の高純度還元精製法に関する。
【0002】
【従来の技術】
金属Tiは、軽量、耐食性、高靭性、生体適合性に優れ人工骨格等に適するなど、多くの優れた特性を利用して様々な用途に用いられているが、酸素と強く結合し、その高い化学的活性のため原料鉱石から還元して金属単体を得ることは困難で、金属Tiとするには多くのエネルギーが必要であった。又これらの還元精製工程に伴う不純物を除去してこれらの用途に適した特性を付与することは困難であった。
現在、一般に金属Tiの製造は、酸化物鉱石から高純度の塩化物(TiCl)を製造し、さらにマグネシウムとの置換反応によりスポンジチタンを得るKroll法がもっぱらである。
このKroll法においては、まず、チタン鉱石を塩化炉で還元剤のコークス及び塩素と1.000〜1.100℃の高温で反応させて粗四塩化チタンを得るが、これをさらに蒸留塔で連続蒸留して純度99.9%以上の純四塩化チタンとする。
Kroll法では、この純四塩化チタンを原料として溶融マグネシウムによって還元し、さらに真空蒸留によってマグネシウムとチタンを分離してスポンジチタンとする。
このスポンジチタンを破砕、溶解して製造されるインゴットとして金属チタンを製造している。
【0003】
このようにKroll法は、多くの工程が必要であり、バッチプロセスであって生産性が低いばかりでなく、還元用のMgの電解工程が別途プロセスに加わるなど、電力消費量も多く、高コストとならざるを得ない。
しかも、上記のように一旦高純度化された四塩化チタンを用いていながら、Mg還元、真空蒸留時に容器などの環境からの不純物による汚染が不可避であって、折角の原料純度を維持できず、また、加工特性などに影響する酸素含有量も、中間原料である四塩化チタンが50ppmであるに拘わらず、スポンジチタンの段階で200〜600ppmに増加するなどその特性を劣化させるものとなっている。
【0004】
これに対して、四塩化チタンを中間原料として水素還元熱CVD法や塩化物と金属との溶融塩を用いて四塩化チタンを還元する方法、マグネシウム蒸気や塩化物蒸気を用いた四塩化チタン還元プロセスなどが提案されている。
しかしながら、水素還元熱CVD法では、反応中間生成物(TiClx)が生じて、反応を阻害してTi生成に至らない。他の方法も、Ti、Cl以外の元素が反応系内に共存して不純物となったり、Kroll法と同様に工程の複雑化、電力消費が大きいなどの問題を解消するに至っていない。
これらの事情は、Tiに限らずその他の酸素との結合度の強い、活性な金属に共通であって、半導体材料として需要の大きいSiについても、SiFやSiHなどの高純度化合物が容易に入手可能であるにかかわらず、一般に高純度Siを形成する還元精製方法は、依然として高温の冶金的方法を多段階で繰り返す方法によっている。また、同様の事情は、Al、Ge、Sn、Vなどについてもいうことができる。
【0005】
【発明が解決しようとする課題】
本発明は、比較的低コストで得られ、しかも高純度の四塩化チタン等の化合物を出発原料として、その高純度を保って、効率的、且つ低エネルギー消費により金属チタンなどの高純度金属を得る還元精製方法を提供する。
【0006】
【課題を解決するための手段】
反応域に水素、又は塩素などの反応ガスと共にハロゲン化物、又は水素化合物などの気化性金属化合物を導入し、該反応域にマグネトロン容量結合型プラズマを形成して金属を還元・解離させ、還元された金属と反応生成物を分離回収する高純度金属の還元精製方法であり、特に、上記プラズマ発生機構として同軸マグネトロン容量結合型プラズマを用い、また、上記気化性金属化合物として、四塩化チタンTiCl、四塩化シリコンSiCl、又は四フッ化シリコンSiF等のハロゲン化物、或いは、シランSiHを対象とする。
また、そのための装置として、チャンバー内の反応域に対してマグネトロン容量結合型プラズマを発生する電極を配置し、
該反応域上方より気化した気化性金属化合物及び水素、又は塩素を導入する原料供給装置を配置し、また、反応域下方には反応域で形成された還元金属粉末及びその他の反応生成物を排出する収集排出装置を配置してなる高純度金属の還元精製装置であり、特に、上記マグネトロン容量結合型プラズマを発生する電極配置を、同軸型とするものである。
【0007】
本発明者らは、先にSiF及びSiHを原料として、水素を含む雰囲気中で誘導型又は容量型のプラズマを発生させ、プラズマ中にSi粉末を落下させてSi粉末にSi基板上にCVDにより形成されるエピタキシアル成長と同様に解離したSiを附着成長させて回収するSi還元精製還元方法を提案した(PCT/JP01/04052)。
気化されたこれらの金属化合物と水素をプラズマ中で反応させて還元金属などを形成する反応機構自体は、プラズマCVDなどの半導体に用いられる成膜技術として公知であるが、これらは厚さがμmオーダーの反応生成量であって、プラズマ発生のための投入電力量やそれに対する効率、生産性からみてこれらより遥かに高い生産性と低コストが要求される金属還元精製法としては顧みられなかったのである。
【0008】
なによりも、成膜技術の場合、反応後の被膜を形成された基板を反応系外へ取り出すのみであるのに対し、金属還元法としては還元された金属の系外への取り出し、採取にそのような形態は採用できず、還元された金属の形態とそれに適用可能な効率的な捕集・反応系外への取り出し手段が伴わない限り金属還元法として成立しない、ということがあった。
例えば、熱プラズマ中で還元されたSiをカーテン状の水を通して捕集する(米国特許明細書第4,377,564号参照)方法などが試みられているが、高温の熱プラズマでヒューム状となった還元金属の捕集は容易ではなく、熱プラズマによることのエネルギー消費も大きいなど問題があった。
【0009】
本発明者らは、低温プラズマに於いては、電子温度は高いが反応系の温度が200〜300℃であるためエネルギー的には効率がよいこと、及びSiFなどの気化性金属化合物が高純度で且つ比較的低廉であって高純度材料の出発原料として好適であることに着目して、これを低温プラズマ中で還元し、形成されたSiをいわば種結晶となる純Si粉末上に析出させて系外に取り出す、Si還元精製法を先に提案したのである。
この方法においては、解離したSiを同じSi粉末表面に析出させてある程度粒径の大きい形態として系外に取り出すことを可能とするのであって、反応機構自体はプラズマCVDの手法を利用することができ、出発原料であるSiF由来の高純度を損なうことなく、高純度のSiが得られる。
【0010】
しかしながら、これらの方法によっても、エネルギー消費上の効率や生産性等について自ずと限界があり、より以上の生産性向上は困難であった。
また、これら還元金属の反応系外への取り出し手段としてプラズマ反応域への種結晶となる純Si粉末の導入を行っているが、これらのプラズマ形成効率や生産性向上のためプラズマ発生域を拡大すると、還元金属は反応チャンバー壁面などプラズマ反応域に接する周辺にも析出する現象が見られた。
プラズマ発生機構が誘導型の場合にはこれらの現象が、プラズマ発生などに悪影響を及ぼし、好ましくない。
しかし、マグネトロン容量結合型プラズマ発生機構によると、このような障害は見られなかった。
しかも析出した金属は、エピタキシャル成長する傾向があり、基本的には単結晶となるため、これらの壁面と馴染まずに、その内部応力によって自ずと剥離する性質があることが判明した。
【0011】
このような知見から、本発明者らは、この現象を利用すれば効率的に還元金属収集と反応系外への取り出しを行うことが可能であることを着想し、このためのプラズマ発生機構としてこれらに適し、且つエネルギー効率と生産性の高い機構を求めて本発明に至った。
そして、これらの着想を実証する対象として、上記のTiClを出発原料として選び、同軸マグネトロン型プラズマ発生機構を適用することにより本発明を完成した。
マグネトロンプラズマは、プラズマ密度が高く、電極間に渡って維持できるため効率が良く,生産性も大幅に向上することができる。また、生産性向上に伴う高い原料ガス分圧に於いても還元、解離反応を維持できることがわかった。
また、上記したようにTi等の生成物が析出した壁面などに固着することなく、剥離して自然落下するため、反応域と離隔した位置で容易に収集することができる。
以下、本発明の装置を示す図面を参照して、具体的に説明する。
【0012】
【発明の実施の形態】
図1は、本発明のプラズマ精製装置の概念図である。
図において、反応チャンバーは、内管1をステンレス管等で構成し、該内管を冷却するためにステンレスの外筒2を配置する。この内管1と外管2を一体として外部電極とする。
チャンバー内には、外部電極と同軸となるように内部電極3を配置し、内部に磁石4を収容して、両電極間に磁束10を形成してマグネトロン容量結合型プラズマ発生機構を構成する。
チャンバー内は、低温プラズマではあってもプラズマ発生に伴って200〜300℃になるため、マグネットの熱減磁を防止するためその中心軸を貫通する水冷パイプ6を配置する。
図2は、本発明のプラズマ精製装置の全体構成図であって、同軸マグネトロン容量結合型プラズマ装置20からなり、上方に 原料ガス供給系25、生成金属収集装置26、反応ガス、排気系27、高周波発信器30、及びガスコントロール装置40から構成される。
【0013】
【実施例】
原料物質として、液体TiClを沸点(136.4℃)以上に加熱して気化し、プラズマ装置に導入する。又は、液体TiClをキャリアガスでバブリングしてプラズマ装置に導入することも可能である。
TiClガスとHガス、又はキャリアガスとしてのHガスによるTiClバブル蒸気とH原料混合ガス8は、所定の混合比率に混合して図のプラズマ装置上方から導入する。
プラズマ装置に導入された混合ガスは、プラズマエネルギーによって還元/解離反応して、還元金属TiとHClガス9とに分離する。
【0014】
還元された高純度金属Tiは、主として内部電極3或いはその外周の捕集壁面となるチャンバー1内壁面に析出し、ある程度析出すると自然に剥離して下方に落下する。また、一部はプラズマ11中で析出し、微粉末状となって直接チャンバー下部に落下する。これらはチャンバー下部に堆積した状態で適宜バッチ採取される。
一方、同時に生成したHClは、真空ポンプで排出捕集して液化し、タンクに貯蔵する。このHClはこの還元生成プロセス系において、粗製Tiと反応させてTiClとHとなり、再び本プロセスに還流される。或いは,塩化炉によって再利用される。
プラズマ中のTi還元の反応式は、次のとおりである。
TiCl + 2H → Ti + 4HCl
なお、粗製Tiの場合の反応は
Ti + 4HCl → TiCl + 2H
【0015】
実験条件は、以下の条件範囲から各種組合わせて行った。実験結果を表1に示す。
TiCl/H比 0.1〜1.0
ガス流量 0.5〜5.0 L/min
RFパワ ー 0.5〜2.0 kw
チャンバー内ガス圧 1〜50 Torr
TiClの気化温度 137〜250℃
また、実験装置諸元は、チャンバー全長1000mm、外径90mmである。
【表1】

Figure 2004359979
【0016】
以上の実験結果において、中間生成物であるチタン塩化物TiCl混入の可能性があるため、X線回折、及びX線マイクロアナライザーにより析出相の同定を行ったが、チタン単相であって、高TiClガス分圧においてチタン形成を阻害するとされる中間生成生物である塩化物TiClxの影響は認められなかった。
また、出発原料が高純度の四塩化チタン及び水素であって、高温還元反応において不可避の随伴反応や溶解に伴う汚染のない低温プラズマによる還元であるため、これらの出発原料の純度を損なうことなく、それ以上の高純度化が可能であった。
【0017】
以上の結果から、本発明によるチタン還元精製法は、チタン純度、電力原単位等のエネルギー効率及び生産性に於いて、充分実用化可能であり、実用規模の生産設備において従来のKroll法を凌ぐ優れた還元法となり得ることがわかった。
以上の実証実験は、四塩化チタンにおいて行ったが、上記したようにSiF、SiCl、SiHにおいてもそのままの実験装置において適用可能である。
【0018】
その他、対象となる金属とその出発原料についても、いわゆる気化性金属化合物として、室温でガス状若しくは液体であって比較的気化温度の低い金属化合物であれば、上記のプラズマ還元法が適用可能である。これらに好適な例として、金属ハロゲン化物及び金属水素化合物がある。
水素化合物の場合は、塩素を用いて、反応式は次のようになる。
SiH + 2Cl → Si + 4HCl
以下に本発明の適用可能な化合物の例を挙げるが、上記の条件を満たせば、これら以外の化合物にも適用可能であって、これらの例に限定されるものでない。
【表2】
Figure 2004359979
【0019】
プラズマ発生装置についても、上記の同軸マグネトロン型容量結合型プラズマに限るものではなく、マグネトロン容量結合型プラズマであれば、平行型であっても原理的に変わりはないから、電極の方向を垂直にするなど形成された還元金属の捕集に適した形態とすれば同様にして適用可能である。
また、本発明に於いては、還元析出した金属が、チャンバー内の壁面に析出するが、析出した金属の収集の便のため、これらの反応域を囲む領域をプラズマ形成に障害とならない形態・材質の捕集壁面とし、或いは、剥離のためこれらに振動を付与するなど、適宜の手段を講じることが可能である。
自然落下した還元金属は、これらの反応チャンバー底部に堆積するため、バッチ処理などにより適宜収集、取り出すことができる。
【0020】
【発明の効果】
Ti、Siは、地殻中に豊富に存在し、またその物理的機械的な構造特性、機能的特性の各面できわめて優れた特性を有しており、本発明によりその特性を発揮できる高純度材料が低コストで量的に得られることにより、応用分野の拡大,普及が期待される。また、Tiに限らず、同じように気化性化合物が高純度で低廉に入手可能なSi、Al、Ge、Sn、V等の活性金属について、その高純度を維持して製造可能であることにより、これらの多くの材料について応用分野の拡大と普及が可能となり、産業上貢献することが期待される。
【図面の簡単な説明】
【図1】本発明のプラズマ還元装置概念図。
【図2】本発明の同軸マグネトロン容量結合型プラズマ処理装置全体図
【符号の説明】
1 チャンバー
2 外部電極
3 内部電極
4 マグネット
6 水冷パイプ
61 冷却水
8 原料ガス(TiCl、H
9 還元金属(Ti)及び反応生成ガス(HCl)
10 磁束
11 プラズマ
20 同軸マグネトロン容量結合型プラズマ装置
25 原料ガス供給系
26 生成金属収集装置
27 反応ガス、排気系
30 高周波発信器
40 ガスコントロール装置[0001]
TECHNICAL FIELD OF THE INVENTION
A high-purity reduction and purification method for metals such as Ti and Si, in which it is difficult to obtain a high-purity material by conventional high-temperature metallurgical manufacturing methods due to high activity and particularly high binding energy to metal elements and oxygen. About.
[0002]
[Prior art]
Metal Ti is used for various applications by utilizing many excellent properties, such as light weight, corrosion resistance, high toughness, excellent biocompatibility, and suitable for artificial skeletons, etc. Due to the chemical activity, it was difficult to obtain a metal simple substance by reducing it from the raw ore, and a large amount of energy was required to obtain metal Ti. In addition, it has been difficult to remove impurities involved in these reduction and purification steps and to impart properties suitable for these uses.
At present, generally, the production of metallic Ti is exclusively performed by the Kroll method in which high-purity chloride (TiCl 4 ) is produced from an oxide ore, and further, titanium sponge is obtained by a substitution reaction with magnesium.
In the Kroll method, first, titanium ore is reacted with coke and chlorine as a reducing agent at a high temperature of 1.00 to 1.100 ° C. in a chlorination furnace to obtain crude titanium tetrachloride. Distillation is performed to obtain pure titanium tetrachloride having a purity of 99.9% or more.
In the Kroll method, this pure titanium tetrachloride is reduced with molten magnesium as a raw material, and magnesium and titanium are separated by vacuum distillation to form sponge titanium.
Metallic titanium is produced as an ingot produced by crushing and dissolving this sponge titanium.
[0003]
As described above, the Kroll method requires many steps, is not only low in productivity because of a batch process, but also consumes a large amount of power, for example, a separate electrolysis step of Mg for reduction is added to the process. I have to be.
Moreover, while using titanium tetrachloride once purified as described above, Mg reduction, contamination by impurities from the environment such as a container during vacuum distillation is inevitable, and the raw material purity cannot be maintained. In addition, the oxygen content that affects processing characteristics and the like also deteriorates its characteristics such as increasing to 200 to 600 ppm at the stage of titanium sponge, despite the fact that titanium tetrachloride as an intermediate material is 50 ppm. .
[0004]
On the other hand, a hydrogen reduction thermal CVD method using titanium tetrachloride as an intermediate material, a method of reducing titanium tetrachloride using a molten salt of chloride and metal, and a method of reducing titanium tetrachloride using magnesium vapor or chloride vapor Processes have been proposed.
However, in the hydrogen reduction thermal CVD method, a reaction intermediate product (TiClx) is generated, which hinders the reaction and does not lead to Ti generation. Other methods have not solved problems such as elements other than Ti and Cl coexisting in the reaction system and becoming impurities, as in the case of the Kroll method, complicated processes and large power consumption.
These circumstances are not limited to Ti, but are common to active metals having a high degree of bonding with oxygen, and high-purity compounds such as SiF 4 and SiH 4 can be easily obtained for Si which is in great demand as a semiconductor material. In general, the refining method for forming high-purity Si is based on a method in which a high-temperature metallurgical method is repeated in multiple stages. The same situation can be applied to Al, Ge, Sn, V, and the like.
[0005]
[Problems to be solved by the invention]
The present invention uses a compound such as titanium tetrachloride having a high purity as a starting material, which can be obtained at a relatively low cost, and maintains a high purity of the compound to efficiently produce a high-purity metal such as a titanium metal by low energy consumption. The resulting reductive purification method is provided.
[0006]
[Means for Solving the Problems]
A reaction gas such as hydrogen or chlorine is introduced into the reaction zone together with a halide or a vaporizable metal compound such as a hydrogen compound, and a magnetron capacitively coupled plasma is formed in the reaction zone to reduce and dissociate the metal, thereby reducing the metal. A method for reducing and purifying a high-purity metal for separating and recovering a metal and a reaction product. In particular, a coaxial magnetron capacitively coupled plasma is used as the plasma generation mechanism, and titanium tetrachloride TiCl 4 is used as the vaporizable metal compound. , Silicon tetrachloride SiCl 4 , or silicon tetrafluoride SiF 4 , or silane SiH 4 .
In addition, as an apparatus for that, an electrode for generating a magnetron capacitively coupled plasma is arranged in a reaction area in the chamber,
A raw material supply device for introducing a vaporized metal compound and hydrogen or chlorine from the upper part of the reaction zone is disposed, and a reduced metal powder and other reaction products formed in the reaction zone are discharged below the reaction zone. And an apparatus for reducing and purifying high-purity metal, in which the electrode arrangement for generating the magnetron capacitively coupled plasma is coaxial.
[0007]
The present inventors first generate inductive or capacitive plasma in an atmosphere containing hydrogen using SiF 4 and SiH 4 as raw materials, drop Si powder into the plasma, and place the Si powder on the Si substrate. In the same manner as in the epitaxial growth formed by CVD, an Si reduction purification method in which dissociated Si is grown and attached to the substrate is proposed (PCT / JP01 / 04052).
The reaction mechanism itself for forming a reduced metal or the like by reacting these vaporized metal compounds with hydrogen in a plasma is known as a film forming technique used for semiconductors such as plasma CVD. It is an orderly amount of reaction generated, and it is not considered as a metal reduction purification method that requires much higher productivity and lower cost from the viewpoint of the amount of power input for plasma generation, its efficiency, and productivity. It is.
[0008]
Above all, in the case of film forming technology, only the substrate on which the film after the reaction is formed is taken out of the reaction system, whereas the metal reduction method is used to take out the reduced metal outside the system and collect it. Such a form cannot be adopted, and the metal reduction method cannot be realized unless the form of the reduced metal and an applicable means for collecting and taking it out of the reaction system are applicable.
For example, a method of collecting reduced Si in thermal plasma through curtain water (see U.S. Pat. No. 4,377,564) has been attempted. It is not easy to collect the reduced metal, and there is a problem in that energy consumption due to thermal plasma is large.
[0009]
The present inventors have found that in low-temperature plasma, the electron temperature is high but the temperature of the reaction system is 200 to 300 ° C., so that the energy is efficient, and that the vaporizable metal compound such as SiF 4 is high. Focusing on the fact that it is pure and relatively inexpensive and is suitable as a starting material for high-purity materials, it is reduced in low-temperature plasma, and the formed Si is deposited on pure Si powder, which becomes a so-called seed crystal. The Si reduction refining method was proposed earlier, which was then taken out of the system.
In this method, dissociated Si can be precipitated on the same Si powder surface and taken out of the system as a form having a relatively large particle size, and the reaction mechanism itself can utilize a plasma CVD method. As a result, high-purity Si can be obtained without impairing the high purity derived from the starting material SiF 4 .
[0010]
However, even with these methods, there are naturally limits on efficiency and productivity in terms of energy consumption, and it has been difficult to further improve productivity.
In addition, as a means for extracting these reduced metals to the outside of the reaction system, pure Si powder as a seed crystal is introduced into the plasma reaction zone, but the plasma generation zone is expanded to improve the plasma formation efficiency and productivity. As a result, a phenomenon was observed in which the reduced metal was deposited also on the periphery of the reaction chamber wall, which is in contact with the plasma reaction zone.
If the plasma generation mechanism is of an induction type, these phenomena adversely affect plasma generation and the like, which is not preferable.
However, according to the magnetron capacitively coupled plasma generation mechanism, no such obstacle was observed.
In addition, it has been found that the deposited metal tends to grow epitaxially and is basically a single crystal. Therefore, it has been found that the deposited metal has a property of being naturally separated by its internal stress without being adapted to these wall surfaces.
[0011]
From such findings, the present inventors have conceived that it is possible to efficiently collect reduced metal and take it out of the reaction system by using this phenomenon, and as a plasma generation mechanism for this purpose The present invention has been sought for a mechanism suitable for these and having high energy efficiency and high productivity.
The present invention was completed by selecting the above-mentioned TiCl 4 as a starting material as an object to prove these ideas and applying a coaxial magnetron type plasma generation mechanism.
The magnetron plasma has a high plasma density and can be maintained between the electrodes, so that the efficiency is high and the productivity can be greatly improved. It was also found that the reduction and dissociation reactions could be maintained even at a high raw material gas partial pressure accompanying the improvement in productivity.
In addition, as described above, since the product such as Ti does not adhere to the wall surface on which it is deposited, it peels off and falls naturally, so that it can be easily collected at a position separated from the reaction zone.
Hereinafter, a specific description will be given with reference to the drawings showing the device of the present invention.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a conceptual diagram of the plasma refining apparatus of the present invention.
In the figure, in the reaction chamber, an inner tube 1 is constituted by a stainless tube or the like, and a stainless outer tube 2 is arranged to cool the inner tube. The inner tube 1 and the outer tube 2 are integrated into an external electrode.
In the chamber, an internal electrode 3 is arranged so as to be coaxial with an external electrode, a magnet 4 is housed inside, and a magnetic flux 10 is formed between the two electrodes to constitute a magnetron capacitively coupled plasma generation mechanism.
Since the inside of the chamber becomes 200 to 300 ° C. with the generation of the plasma even if it is a low-temperature plasma, a water-cooled pipe 6 penetrating the center axis thereof is arranged in order to prevent the magnet from being thermally demagnetized.
FIG. 2 is an overall configuration diagram of the plasma refining apparatus of the present invention, which comprises a coaxial magnetron capacitively-coupled plasma apparatus 20, and has a raw material gas supply system 25, a generated metal collection device 26, a reaction gas, an exhaust system 27, It comprises a high-frequency transmitter 30 and a gas control device 40.
[0013]
【Example】
As a raw material, liquid TiCl 4 is heated to a temperature equal to or higher than the boiling point (136.4 ° C.), vaporized, and introduced into a plasma apparatus. Alternatively, liquid TiCl 4 can be bubbled with a carrier gas and introduced into a plasma device.
TiCl 4 gas and H 2 gas, or TiCl 4 bubble vapor and H 2 raw material mixed gas 8 by H 2 gas as a carrier gas are mixed at a predetermined mixing ratio and introduced from above the plasma apparatus shown in the figure.
The mixed gas introduced into the plasma device undergoes a reduction / dissociation reaction by plasma energy, and is separated into reduced metal Ti and HCl gas 9.
[0014]
The reduced high-purity metal Ti mainly precipitates on the inner electrode 3 or the inner wall surface of the chamber 1 serving as a collecting wall on the outer periphery thereof. Further, a part thereof is deposited in the plasma 11, becomes a fine powder, and falls directly to the lower part of the chamber. These are appropriately collected in batches in a state of being deposited at the lower part of the chamber.
On the other hand, the simultaneously generated HCl is discharged and collected by a vacuum pump, liquefied, and stored in a tank. This HCl reacts with the crude Ti in the reduction production process system to become TiCl 4 and H 2 , and is returned to the process again. Alternatively, it is reused by a chlorination furnace.
The reaction formula for the reduction of Ti in plasma is as follows.
TiCl 4 + 2H 2 → Ti + 4HCl
Incidentally, the reaction when the crude Ti Ti + 4HCl → TiCl 4 + 2H 2
[0015]
The experimental conditions were performed in various combinations from the following condition ranges. Table 1 shows the experimental results.
TiCl 4 / H 2 ratio 0.1 to 1.0
H 2 gas flow rate 0.5 to 5.0 L / min
RF power 0.5-2.0 kw
Gas pressure in chamber 1-50 Torr
Evaporation temperature of TiCl 4 137-250 ° C
In addition, the specifications of the experimental apparatus were such that the total length of the chamber was 1000 mm and the outer diameter was 90 mm.
[Table 1]
Figure 2004359979
[0016]
In the above experimental results, since there is a possibility of mixing of titanium chloride TiCl X which is an intermediate product, X-ray diffraction and identification of the precipitated phase by an X-ray microanalyzer were performed. At high TiCl 4 gas partial pressures, the effect of chloride TiClx, an intermediate product that is believed to inhibit titanium formation, was not observed.
In addition, since the starting materials are high-purity titanium tetrachloride and hydrogen and are reduced by low-temperature plasma without concomitant reactions in the high-temperature reduction reaction and contamination due to dissolution, without impairing the purity of these starting materials. And higher purification was possible.
[0017]
From the above results, the titanium reduction and purification method according to the present invention is sufficiently practical in terms of titanium purity, energy efficiency such as power consumption unit, and productivity, and exceeds the conventional Kroll method in a practical-scale production facility. It has been found that this can be an excellent reduction method.
Although the above-described verification experiment was performed on titanium tetrachloride, as described above, SiF 4 , SiCl 4 , and SiH 4 can be applied to the experimental apparatus as it is.
[0018]
In addition, the above-described plasma reduction method can be applied to the target metal and its starting material as long as it is a gaseous or liquid metal compound having a relatively low vaporization temperature at room temperature as a so-called vaporizable metal compound. is there. Suitable examples of these include metal halides and metal hydrides.
In the case of a hydrogen compound, the reaction formula is as follows using chlorine.
SiH 4 + 2Cl 2 → Si + 4HCl
Examples of the compounds applicable to the present invention will be shown below, but as long as the above conditions are satisfied, the present invention can be applied to other compounds and is not limited to these examples.
[Table 2]
Figure 2004359979
[0019]
The plasma generator is not limited to the above-described coaxial magnetron-type capacitively-coupled plasma, and if it is a magnetron capacitively-coupled plasma, even if it is a parallel type, there is no change in principle, so that the direction of the electrodes is perpendicular. The present invention can be applied in the same manner as long as it has a form suitable for collecting the formed reduced metal.
Further, in the present invention, the metal deposited by reduction is deposited on the wall surface in the chamber. However, for convenience of collecting the deposited metal, a region surrounding these reaction zones does not hinder plasma formation. Appropriate measures can be taken, such as collecting walls made of a material or applying vibration to these for separation.
Since the reduced metal that has fallen naturally accumulates at the bottom of these reaction chambers, it can be appropriately collected and taken out by batch processing or the like.
[0020]
【The invention's effect】
Ti and Si are abundant in the earth's crust, and have extremely excellent physical and mechanical structural properties and functional properties. Since the material can be obtained quantitatively at low cost, the application field is expected to expand and spread. Further, not only Ti, but also active metals such as Si, Al, Ge, Sn, V, etc., in which the vaporizable compound is similarly available at a high purity and at a low cost, can be produced while maintaining the high purity. In addition, it is possible to expand and spread the application fields of many of these materials, and it is expected to contribute to industry.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a plasma reduction device of the present invention.
FIG. 2 is an overall view of a coaxial magnetron capacitively coupled plasma processing apparatus according to the present invention.
Reference Signs List 1 chamber 2 external electrode 3 internal electrode 4 magnet 6 water cooling pipe 61 cooling water 8 raw material gas (TiCl 4 , H 2 )
9 Reduction metal (Ti) and reaction product gas (HCl)
Reference Signs List 10 magnetic flux 11 plasma 20 coaxial magnetron capacitively coupled plasma device 25 source gas supply system 26 generated metal collection device 27 reaction gas, exhaust system 30 high frequency transmitter 40 gas control device

Claims (6)

反応域に水素、又は塩素などの反応ガスと共にハロゲン化物、又は水素化合物などの気化性金属化合物を導入し、該反応域にマグネトロン容量結合型プラズマを形成して金属を還元・解離させ、還元された金属と反応生成物を分離回収することを特徴とする、高純度金属の還元精製方法。A reaction gas such as hydrogen or chlorine is introduced into the reaction zone together with a halide or a vaporizable metal compound such as a hydrogen compound. A method for reducing and purifying a high-purity metal, comprising separating and recovering a metal and a reaction product. 上記プラズマが同軸マグネトロン容量結合型プラズマであることを特徴とする、請求項1記載の高純度金属の還元精製方法。2. The method according to claim 1, wherein the plasma is a coaxial magnetron capacitively coupled plasma. 上記気化性金属化合物が、四塩化チタンTiCl、四塩化シリコンSiCl、又は四フッ化シリコンSiFなどのハロゲン化物であることを特徴とする請求項1又は2記載の高純度金属の還元精製方法。The volatile metal compound, titanium tetrachloride TiCl 4, four reduction purification of high-purity metal according to claim 1 or 2, wherein the chloride silicon SiCl 4, or a halide, such as silicon tetrafluoride SiF 4 Method. 上記気化性金属化合物が、シランSiHであることを特徴とする、請求項1又は2記載の高純度金属の還元精製方法。The volatile metal compounds, characterized in that silane is SiH 4, the reduction method of purifying highly pure metal according to claim 1 or 2, wherein. チャンバー内の反応域に対してマグネトロン容量結合型プラズマを発生する電極を配置し、
該反応域上方より気化した気化性金属化合物と水素又は塩素を導入する原料供給装置を配置し、また、反応域下方には反応域で形成された還元金属粉末及びその他の反応生成物を排出する収集排出装置を配置してなる、
高純度金属の還元精製装置。
An electrode that generates a magnetron capacitively-coupled plasma is placed in the reaction zone in the chamber,
A raw material supply device for introducing a vaporized metal compound and hydrogen or chlorine from the upper part of the reaction zone is disposed, and the reduced metal powder and other reaction products formed in the reaction zone are discharged below the reaction zone. A collection and discharge device is arranged,
High-purity metal reduction and purification equipment.
上記マグネトロン容量結合型プラズマを発生する電極配置は、同軸型であることを特徴とする請求項5記載の高純度金属の還元精製装置。6. The apparatus for reducing and purifying a high-purity metal according to claim 5, wherein the electrode arrangement for generating the magnetron capacitively coupled plasma is of a coaxial type.
JP2003156944A 2003-06-02 2003-06-02 Method for reducing and purifying high-purity metal from vaporizable metal compound by magnetron capacitively coupled plasma and apparatus therefor Expired - Fee Related JP4295823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003156944A JP4295823B2 (en) 2003-06-02 2003-06-02 Method for reducing and purifying high-purity metal from vaporizable metal compound by magnetron capacitively coupled plasma and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003156944A JP4295823B2 (en) 2003-06-02 2003-06-02 Method for reducing and purifying high-purity metal from vaporizable metal compound by magnetron capacitively coupled plasma and apparatus therefor

Publications (2)

Publication Number Publication Date
JP2004359979A true JP2004359979A (en) 2004-12-24
JP4295823B2 JP4295823B2 (en) 2009-07-15

Family

ID=34050866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003156944A Expired - Fee Related JP4295823B2 (en) 2003-06-02 2003-06-02 Method for reducing and purifying high-purity metal from vaporizable metal compound by magnetron capacitively coupled plasma and apparatus therefor

Country Status (1)

Country Link
JP (1) JP4295823B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299336A (en) * 2005-04-19 2006-11-02 Doshisha Method for recovering fine particle in molten salt
JP2007505992A (en) * 2003-09-19 2007-03-15 エスアールアイ インターナショナル Method and apparatus for producing metal compositions by reduction of metal halides
WO2010017373A2 (en) * 2008-08-06 2010-02-11 Electrodynamic Applications, Inc. Plasma processes for producing silanes and derivatives thereof
JP2010521393A (en) * 2007-03-15 2010-06-24 レヴ・リニューワブル・エナージー・ヴェンチャーズ・インコーポレーティッド Plasma assisted synthesis
CN108723389A (en) * 2017-04-18 2018-11-02 台湾积体电路制造股份有限公司 The method for forming conductive powder
CN109317693A (en) * 2018-10-31 2019-02-12 云南驰宏国际锗业有限公司 A method of germanium metal is directly prepared using germanium tetrachloride
US11975301B2 (en) 2019-03-30 2024-05-07 Dow Silicones Corporation Method of producing nanoparticles

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505992A (en) * 2003-09-19 2007-03-15 エスアールアイ インターナショナル Method and apparatus for producing metal compositions by reduction of metal halides
JP2006299336A (en) * 2005-04-19 2006-11-02 Doshisha Method for recovering fine particle in molten salt
JP2010521393A (en) * 2007-03-15 2010-06-24 レヴ・リニューワブル・エナージー・ヴェンチャーズ・インコーポレーティッド Plasma assisted synthesis
WO2010017373A2 (en) * 2008-08-06 2010-02-11 Electrodynamic Applications, Inc. Plasma processes for producing silanes and derivatives thereof
WO2010017373A3 (en) * 2008-08-06 2010-05-14 Electrodynamic Applications, Inc. Plasma processes for producing silanes and derivatives thereof
CN108723389A (en) * 2017-04-18 2018-11-02 台湾积体电路制造股份有限公司 The method for forming conductive powder
US20200357694A1 (en) * 2017-04-18 2020-11-12 Taiwan Semiconductor Manufacturing Company, Ltd. Conductive powder formation method and device for forming conductive powder
US11819923B2 (en) 2017-04-18 2023-11-21 Taiwan Semiconductor Manufacturing Company, Ltd. Conductive powder formation method and device for forming conductive powder
CN109317693A (en) * 2018-10-31 2019-02-12 云南驰宏国际锗业有限公司 A method of germanium metal is directly prepared using germanium tetrachloride
US11975301B2 (en) 2019-03-30 2024-05-07 Dow Silicones Corporation Method of producing nanoparticles

Also Published As

Publication number Publication date
JP4295823B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
JP2001220123A (en) Continuous manufacturing method and continuous manufacturing device of silicon oxide powder
US8871303B2 (en) Method for producing titanium metal
JP5571537B2 (en) Metal titanium manufacturing apparatus and metal titanium manufacturing method
US20120171848A1 (en) Method and System for Manufacturing Silicon and Silicon Carbide
JPH1111925A (en) Production of polycrystalline silicon and zinc oxide
JP4295823B2 (en) Method for reducing and purifying high-purity metal from vaporizable metal compound by magnetron capacitively coupled plasma and apparatus therefor
JP5290387B2 (en) Method for producing high purity calcium
US8173094B2 (en) Method for producing polycrystalline silicon
JP2004525841A (en) Method and apparatus for producing high-purity silicon
AU2011236279B2 (en) Metal titanium production device and metal titanium production method
TWI429792B (en) Method and apparatus for producing solid product
JP2004210594A (en) Method of manufacturing high purity silicon
JP2004035382A (en) Method of manufacturing polycrystalline silicon
WO2007013644A1 (en) Process for producing polycrystalline silicon
JP2001039708A (en) High purity metal silicon and its production
JP2008007395A (en) Process for production of polycrystalline silicon
RU2519460C1 (en) Production of silicon with the use of aluminium subchloride
JP5419971B2 (en) Method for producing polycrystalline silicon and reactor for producing polycrystalline silicon
JP2001097708A (en) Production process for metallic silicon
TW201215711A (en) Polysilicon production device and polysilicon production method
JP2011121799A (en) Method for producing polycrystalline silicon and reaction furnace for producing polycrystalline silicon
JP2013071882A (en) Method for manufacturing polycrystalline silicon and device for manufacturing polycrystalline silicon
JP2013071881A (en) Method for producing polycrystalline silicon
JP2005220002A (en) APPARATUS FOR REFINING SiO, METHOD OF REFINING SiO USING THE SAME, AND METHOD OF MANUFACTURING HIGH PURITY SILICON USING THE OBTAINED SiO

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060530

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20090411

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees