JP2004358285A - Spray nozzle - Google Patents

Spray nozzle Download PDF

Info

Publication number
JP2004358285A
JP2004358285A JP2003156052A JP2003156052A JP2004358285A JP 2004358285 A JP2004358285 A JP 2004358285A JP 2003156052 A JP2003156052 A JP 2003156052A JP 2003156052 A JP2003156052 A JP 2003156052A JP 2004358285 A JP2004358285 A JP 2004358285A
Authority
JP
Japan
Prior art keywords
nozzle
flow
gas flow
liquid
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003156052A
Other languages
Japanese (ja)
Other versions
JP4246550B2 (en
Inventor
Shinichi Hara
真一 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibuya Corp
Original Assignee
Shibuya Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibuya Machinery Co Ltd filed Critical Shibuya Machinery Co Ltd
Priority to JP2003156052A priority Critical patent/JP4246550B2/en
Publication of JP2004358285A publication Critical patent/JP2004358285A/en
Application granted granted Critical
Publication of JP4246550B2 publication Critical patent/JP4246550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Nozzles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spray nozzle which sprays a pressurized gas flow mixed with particulates, can suppress dust caused by the scattering of the particulates, and can maintain a high-speed, long-distance jet flow by controlling the damping of the energy of the gas jet flow mixed with the particulate ejected from the ejection port of the nozzle. <P>SOLUTION: An inside nozzle 2 is arranged inside an outside nozzle 1, the flow rate of an outside gas flow passing between the outside nozzle 1 and the inside nozzle 2 is made higher than the flow rate of an inside gas flow passing inside the inside nozzle 2, and a liquid spray nozzle 3 is arranged to encompass the outside nozzle 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、研掃材等の適宜の粉粒体を混入した加圧気体流を噴射する噴射ノズルに関する。より詳しくは、加圧気体流に混入された粉粒体の飛散を防止するとともに、その加圧気体流の有するエネルギの減衰をより効果的に抑制して噴流速度の低下を回避し得るように改良した噴射ノズルに関する。
【0002】
【従来の技術】
この種の研掃材等の粉粒体を混入した加圧気体流を噴射する噴射ノズルに関しては、その粉粒体の飛散による粉塵を抑制するために、粉粒体を含んだ噴射流を囲むように液体噴射流を形成する湿式の噴射ノズルが従来から知られている。この湿式の噴射ノズルにおいて、特に炭酸水素ナトリウム等の水溶性の粉粒体を使用した場合には、液体噴射流形成用の液体がノズル内の粉粒体の流通路に侵入して該流通路を閉塞してしまうという問題があった。このため、ノズル内の粉粒体の流通路と液体の流通路との間に両端部が外部へ連通した空隙部を設け、噴射流の負圧作用により他端側の外部から空気を吸引して粉粒体を含んだ噴射流と液体噴射流との間に空気層を介在させ、ノズルの外部において粉粒体と液体とが混合するように構成することによりノズル内への液体の侵入を防ぐという技術も開示されている(特許文献1)。
【0003】
【特許文献1】
特開2001−277120号公報
【0004】
【発明が解決しようとする課題】
ところで、前記従来技術は、噴射媒体として粉粒体を使用する噴射ノズルの問題点である粉粒体の飛散による粉塵を抑制し得る点と、液体のノズル内の侵入による粉粒体流通路の閉塞を防止し得る点できわめて有効であるが、ノズルの噴射口から外部へ噴射された後、粉粒体の噴射流が周囲の液体噴射流と接触して混合することにより減衰し、粉粒体の噴流速度が低下して被処理面に吹付けられた際の物理的作用が低下するという技術的問題があった。本発明は、以上のような従来技術の技術的問題に鑑みて発明したもので、粉粒体の飛散による粉塵を抑制し得るとともに、ノズルの噴射口から噴射された粉粒体を混入した気体噴射流の有するエネルギの減衰を抑制して、より遠くまで高速の噴射流を維持し得る噴射ノズルを提供することを目的とするものである。
【0005】
【課題を解決するための手段】
前記課題を解決するため、請求項1の発明では、粉粒体を混入した加圧気体流を噴射する噴射ノズルにおいて、外側ノズルの内方に内側ノズルを配設して、それらの外側ノズルと内側ノズルとの間を流通する外側気体流の流速が前記内側ノズルの内方を流通する内側気体流の流速より高速になるように構成するとともに、前記外側ノズルを囲むように液体噴射ノズルを配設するという技術手段を採用した。本発明によれば、外側ノズルと内側ノズルとの間を流通する外側気体流の流速が内側ノズルの内方を流通する内側気体流の流速より高速になるように構成するとともに、前記外側ノズルを囲むように液体噴射ノズルを配設したので、液体噴射流によって気体噴射流の拡がりを抑制するとともに、内側気体流はより高速の外側気体流によって包囲され、その高速の外側気体流によって内側気体流がより遠くまで液体噴射流との接触を回避し得る。その結果、内側気体流の減衰が抑制され、より遠くまで内側気体流の流速を維持することが可能となり、しかも内側気体流及び外側気体流が液体噴射流に包囲されることから、それらの噴射流が被処理面に当る前も当った後においても、粉粒体の飛散による粉塵を抑制することが可能である。以上の請求項1の発明の技術手段に加えて、請求項2の発明では、前記外側ノズルの内方を流通する加圧気体流を前記内側ノズルにより外側気体流と内側気体流に分割するという技術手段を採用した。請求項3の発明では、前記内側ノズルの内方を流通する内側気体流の流量がその内側ノズルと外側ノズルとの間を流通する外側気体流の流量より大になるように構成するという技術手段を採用した。請求項4の発明では、前記内側ノズルと外側ノズルとの間に形成される流路断面積が最小の流路部より下流側の流通路の流路断面積を下流側へ向けて徐々に拡大するように形成して、外側気体流の増速を図るという技術手段を採用した。請求項5の発明では、前記内側ノズルの内方に流速調整部材を配設するという技術手段を採用した。
【0006】
【発明の実施の形態】
本発明に係る噴射ノズルは、建物や車両、航空機などの種々の物に付着した汚れの除去手段として有効である。また、ブラスト加工用の噴射ノズルとして適用することも可能である。ノズルの具体的な構成に関しては、種々の設定が可能であり、要は、外側ノズルと内側ノズルとの間を流通する外側気体流の流速が内側ノズルの内方を流通する内側気体流より高速になるとともに、前記外側気体流の外側を包囲する液体噴射流を形成し得るものであればよく、内側気体流をより高速の外側気体流で包囲した状態で噴射して液体噴射流との接触を回避することにより、内側気体流の噴射後のエネルギの減衰を抑制し得るとともに、粉粒体の飛散による粉塵を抑制し得るものであればよい。例えば、外側ノズルと内側ノズルとの間を流通する外側気体流の供給の仕方に関しては、以下の実施例のようにノズル内に供給される気体流を内側ノズルの上流側端部により内側気体流と外側気体流に分割して供給するように構成したものでもよいし、それらの外側ノズルと内側ノズルとの間の外側流通路に気体供給管を接続して外部から供給するように構成したものでもよいし、それらの形態を組合わせたものでもよい。なお、内側ノズルによりノズル内の気体流を分割した場合には、外側気体流を内側気体流より高速にすると、内側気体流は外側気体流より必然的に圧力の高い気体流となる。内側ノズルの内側と外側に対して別々の供給源から加圧気体を供給する場合には、外側気体流の圧力を高く設定することも可能である。因みに、外側気体流自体は、粉粒体が混入したものでも、混入しないものでもよい。液体噴射ノズルに供給する液体の圧力に関しては、高い方が気体噴射流の減衰が少ないことから望ましいが、液体噴射流が被処理面までの間、ほぼ直進し得るものであればよい。液体噴射流の噴射形態自体は、末広がり状に噴射するものでもよい。
【0007】
また、外側ノズルと内側ノズルとの間に形成される外側流通路に関しては、その途中の流路断面積が最小の最小流路部より下流側の流通路の流路断面積を下流側へ向けて徐々に拡大して末広がり状に形成することにより、超音速の外側気体流を形成するように構成することも可能であるが、それに限定されるものではない。同様に、内側ノズルの内方の内側流通路に関しても、中細末広がり状のラバールノズル状に形成してもよいが、それに限定されるものではない。さらに、内側気体流の流速を外側気体流の流速との関係において適度の流速に調整するため、内側ノズルの内方の内側流通路に流速調整部材を配設してもよい。特に、内側流通路をラバールノズル状に形成した場合には、その最小径部の上流側に設けることが好ましい。さらに、前記流速調整部材の適宜部分に液体の噴射口を設けて、粉粒体を混入した内側気体流に更に液剤等を混入させることも可能である。因みに、外側ノズルの内方に配設する内側ノズルの設置数を同軸的に増やすことも可能である。この場合には、最外周の気体流の流速を内側の気体流に比べて最も高速に設定する。最外周の気体流を最も高速に設定すれば、その内側の内側気体流相互間の流速に関しては特に制約されない。例えば、外側へ向けて段階的に流速を上げたり、途中に内側より流速の遅い気体流が介在した形態なども可能である。さらに、内側ノズル内の流通路や内側ノズルと外側ノズルとの間の流通路を更に放射状に仕切ることも可能である。同様に、液体噴射ノズルを更に放射状に仕切ったり、複数の液体噴射ノズルを用いて外側ノズルを囲むように配設することも可能である。なお、内側ノズル、外側ノズル及び液体噴射ノズルの断面形状に関しては特に限定されず、円形状のものでも偏平状ものでもよい。すなわち、円形状の噴射流でも、フラットな噴射流でもよい。
【0008】
【実施例】
以下、図面を用いて本発明の実施例に関して説明する。図1は本発明の第1実施例を示した縦断面図、図2はその要部拡大縦断面図、図3は噴射口部分を示した拡大側面図である。図示のように、噴射ノズルは、外側ノズル1と、その内側に配設した内側ノズル2と、さらに外側ノズル1を囲むように外側に配設した液体噴射ノズル3から構成される。本実施例では、外側ノズル1の内方を内側ノズル2により二分割し、その内側ノズル2の上流側端部により、外側ノズル1の上流側に接続される粉粒体を混入した加圧気体供給管に連なる気体流通路4を内側流通路5と外側流通路6に分割している。図示のように、内側ノズル2は、その先端部が外側ノズル1の先端部より若干内側に引込んだ位置になるように短く設定した。これにより、図2に示したように、気体噴射口7と内側ノズル2の下流側端部8との間に形成される空間9において、周囲を外側ノズル1の内周面で規制された状態にて、内側流通路5を経て送られる内側気体流の外周部を外側流通路6を経て送られる高速の外側気体流により包囲した気体流が形成され、その後に気体噴射口7から外部へ噴射されることになるので、噴射流形成時における乱れや拡がりの少ない強力な噴射流を形成することができる。また、本実施例の液体噴射ノズル3は、図1に示したように、外側ノズル1の外周部の途中から下流側に形成した小径部分に配設し、その液体噴射ノズル3の外周部には外部からの加圧水供給管を接続する接続口10を設けた。接続口10を経て供給される加圧水は、外側ノズル1の外周部と液体噴射ノズル3の内周部との間に形成される液体供給路11を介して、図3に示したように液体噴射ノズル3の先端部に気体噴射口7を囲むように形成した多数の液体噴射孔12から噴射され、内側気体流の外周部をより高速の外側気体流により包囲した気体噴射流の外側を更に液体噴射流で包囲するように構成した。
【0009】
なお、図1に示したように、本実施例の液体噴射ノズル3は、その下流側端部を外側ノズル1の外周部に形成した雄ねじ部13に螺着することにより、外側ノズル1に対して固定するように構成した。また、液体噴射ノズル3の先端外周部に形成した雄ねじ14に対してリング状部材15を螺着するように構成した。このリング状部材15には、図2に示したように外側ノズル1の外周部と液体噴射ノズル3の内周部との間に形成される液体供給路11に連なるリング状溝部16を形成し、そのリング状溝部16に対して前記多数の液体噴射孔12を連通するように穿設した。なお、図中、17〜19はシール用のOリングである。因みに、以上の実施例では、多数の液体噴射孔12を気体噴射口7を囲むように設け、全体で気体噴射口7を包囲する液体噴射口を形成するように構成したが、図4の液体噴射口に関する変形例の要部拡大縦断面図に示したように、リング状部材20の内周面と外側ノズル1の外周面との間に隙間を設けてリング状の液体噴射口21を形成するように構成してもよい。
【0010】
図5は前記第1実施例の他の要部を示した要部拡大縦断面図である。図示のように、外側ノズル1と内側ノズル2との間に形成される加圧気体の外側流通路6の上流側は、流路断面積が一定の外側流通路6aとした。その外側流通路6aの下流側は、外側ノズル1の内面に形成されたテーパ面22と内側ノズル2の外面に形成されたテーパ面23との間に形成される流路断面積が徐々に縮小する外側流通路6bとした。さらに、外側流通路6bの下流側は、その外側流通路6bの下流側端部を最小の流路断面積からなる最小流路部24とし、該最小流路部24を境に少なくとも外側ノズル1の内面あるいは内側ノズル2の外面を緩やかなテーパ状に形成して流路断面積が徐々に増える外側流通路6cとした。すなわち、流路断面積が最小の最小流路部24を挟んで、流路断面積を先細状に徐々に縮小した外側流通路6bと流路断面積を末広がり状に徐々に拡大した外側流通路6cを形成した。これにより、外側流通路6aを通過する外側気体流は、外側流通路6bにて増速し、最小流路部24において例えば音速近傍まで流速を上昇させた後、外側流通路6cにて更に増速して噴射速度を超音速に上昇させることも可能である。この外側流通路6cにおける増速の際に気体流の密度が減少し、内側気体流はより密度の小さい外側気体流によって包囲されることになる。なお、流路断面積が末広がり状に徐々に拡大する外側流通路6cは、外側ノズル1の内面に形成された一定の内径からなる同径面と、内側ノズル2の外面に形成された緩やかな先細状のテーパ面との間に形成するようにすれば、外側気体流の噴射方向が若干内側へ指向され、内側気体流の有するエネルギの減衰の抑制にも有効である。さらに、外側流通路6cを形成する外側ノズル1の内面形状を同径とせず、内側ノズル2の外面に形成されたテーパとの関係を勘案しながら先細状ないし末広がり状のテーパ状に形成することも可能である。
【0011】
図1及び図5に示したように、前記内側ノズル2は、図示しない適宜の支持部材を介して外側気体流の流通を阻害しないように外側ノズル1の内側に同軸的に支持した。また、本実施例の内側ノズル2の内面は、最小径部25を挟んで、上流側は大きいテーパ面からなる前方テーパ部26と揺るやかなテーパ面からなる後方テーパ部27により先細状に2段に絞り、下流側は緩やかなテーパ部28により末広がり状に形成した。さらに、後方テーパ部27の上流側に流速調整部材29を配設して、内側流通路5内の流路断面積を絞ることにより、内側気体流の流速を外側気体流との関係において適度の流速に調整した。なお、流速調整部材29は、図示しない適宜の支持部材を介して内側気体流の流通を阻害しないように内側ノズル2の内側に支持した。
【0012】
図6は本発明の第2実施例の要部を拡大して示した要部拡大縦断面図である。本実施例に係る外側ノズル30は、内側ノズル31の内方に配設した流速調整部材32に液体噴射口33を設け、その液体噴射口33に接続した液体供給路34を経て内側ノズル31の内方の内側流通路35を流通する内側気体流に対して適宜の液体を混入できるように構成した点で特徴を有しており、他の点では前記第1実施例と基本的に異なるところはない。なお、図中36は液体供給用の接続部を示したものである。
【0013】
【発明の効果】
本発明によれば、外側ノズルと内側ノズルとの間を流通する外側気体流の流速が、内側ノズルの内方を流通する内側気体流の流速より高速になるように構成するとともに、前記外側ノズルを囲むように液体噴射ノズルを配設したので、液体噴射流によって気体噴射流の拡がりを抑制するとともに、内側気体流はより高速の外側気体流によって包囲され、その高速の外側気体流によって内側気体流がより遠くまで液体噴射流との接触を回避し得る。その結果、内側気体流の減衰が抑制され、より遠くまで内側気体流の流速を維持することが可能となり、しかも内側気体流及び外側気体流が液体噴射流に包囲されることから、それらの噴射流が被処理面に当る前も当った後においても、粉粒体の飛散による粉塵を的確に抑制することが可能になる。したがって、本発明に係る噴射ノズルによれば、高速でエネルギの減衰がきわめて少なく、しかも粉粒体の飛散による粉塵が抑制された、粉粒体を混入した気体噴射流が得られ、その吹付けの際の大きな物理的作用によって、洗浄あるいは剥離作用やブラスト加工等において資する効果も大きい。なお、内側ノズルと外側ノズルとの間に形成される流路断面積が最小の最小流路部より下流側の流通路の流路断面積を下流側へ向けて徐々に拡大するように形成することにより、外側気体流の流速を超音速まで上昇させてエネルギの減衰の抑制作用を更に向上することも可能である。また、内側ノズルの内方に流速調整部材を配設することにより、内側気体流の流速を外側気体流との関係において適度の流速に調整することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例を示した縦断面図である。
【図2】同実施例の要部拡大縦断面図である。
【図3】同実施例の噴射口部分を示した拡大側面図である。
【図4】液体噴射口に関する変形例を示した要部拡大縦断面図である。
【図5】前記第1実施例の他の要部を示した要部拡大縦断面図である。
【図6】本発明の第2実施例の要部拡大縦断面図である。
【符号の説明】
1…外側ノズル、2…内側ノズル、3…液体噴射ノズル、4…気体流通路、5…内側流通路、6…外側流通路、7…気体噴射口、8…下流側端部、9…空間、10…接続口、11…液体供給路、12…液体噴射孔、13,14…雄ねじ部、15…リング状部材、16…リング状溝部、17〜19…Oリング、20…リング状部材、21…液体噴射口、22,23…テーパ面、24…最小流路部、25…最小径部、26…前方テーパ部、27…後方テーパ部、28…テーパ部、29…流速調整部材、30…外側ノズル、31…内側ノズル、32…流速調整部材、33…液体噴射口、34…液体供給路、35…内側流通路、36…接続部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an injection nozzle for injecting a pressurized gas flow mixed with an appropriate powder or granules such as an abrasive. More specifically, while preventing the scattering of the powder and the granular material mixed in the pressurized gas flow, it is possible to more effectively suppress the attenuation of the energy of the pressurized gas flow so as to avoid a decrease in the jet velocity. It relates to an improved injection nozzle.
[0002]
[Prior art]
With respect to an injection nozzle that injects a pressurized gas flow mixed with a particulate material such as an abrasive material, in order to suppress dust due to the scattering of the particulate material, surround the injected flow including the particulate material. A wet injection nozzle for forming a liquid injection flow as described above is conventionally known. When a water-soluble powder such as sodium bicarbonate is used in this wet injection nozzle, the liquid for forming a liquid jet flows into the flow path of the powder and particles in the nozzle, and the flow path There is a problem that it blocks. For this reason, a gap is provided between the flow path of the granular material in the nozzle and the flow path of the liquid, both ends of which are communicated to the outside, and the air is sucked from the outside at the other end by the negative pressure effect of the jet flow. An air layer is interposed between the jet flow containing the powder and the liquid jet and the liquid and the jet, and the liquid and the powder are mixed outside the nozzle to prevent the liquid from entering the nozzle. A technique of preventing the same is also disclosed (Patent Document 1).
[0003]
[Patent Document 1]
JP 2001-277120 A
[Problems to be solved by the invention]
By the way, the above-mentioned prior art is capable of suppressing dust due to scattering of the granular material, which is a problem of the spray nozzle using the granular material as the spraying medium, and the flow path of the granular material due to penetration of the liquid into the nozzle. This is extremely effective in preventing clogging, but after being ejected from the nozzle orifice to the outside, the jet flow of the powder is attenuated by contact and mixing with the surrounding liquid jet, and There is a technical problem that the jet velocity of the body is reduced and the physical action when sprayed on the surface to be treated is reduced. The present invention has been made in view of the above-described technical problems of the related art, and can suppress dust due to scattering of powder and particles, and a gas mixed with powder and particles injected from a nozzle orifice. It is an object of the present invention to provide an injection nozzle capable of suppressing a decrease in energy of an injection flow and maintaining a high-speed injection flow farther.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, in the invention of claim 1, in an injection nozzle for injecting a pressurized gas flow mixed with a granular material, an inner nozzle is disposed inside an outer nozzle, and the outer nozzle is provided with the inner nozzle. A liquid jet nozzle is arranged so that the flow rate of the outer gas flow flowing between the inner nozzle and the inner nozzle is higher than the flow rate of the inner gas flow flowing inside the inner nozzle. Technical means of installation. According to the present invention, the flow rate of the outer gas flow flowing between the outer nozzle and the inner nozzle is configured to be higher than the flow rate of the inner gas flow flowing inside the inner nozzle, and the outer nozzle is Since the liquid jet nozzle is disposed so as to surround it, the spread of the gas jet is suppressed by the liquid jet, and the inner gas flow is surrounded by the outer gas flow of higher speed, and the inner gas flow is Can avoid contact with the liquid jet stream farther. As a result, the attenuation of the inner gas flow is suppressed, the flow velocity of the inner gas flow can be maintained farther, and the inner gas flow and the outer gas flow are surrounded by the liquid jet flow. Even before and after the flow hits the surface to be treated, it is possible to suppress dust caused by scattering of the powder. In addition to the technical means of the first aspect of the invention, in the second aspect of the invention, the pressurized gas flow flowing inside the outer nozzle is divided into an outer gas flow and an inner gas flow by the inner nozzle. Technical means were adopted. According to the third aspect of the present invention, there is provided a technical means wherein the flow rate of the inner gas flow flowing inside the inner nozzle is larger than the flow rate of the outer gas flow flowing between the inner nozzle and the outer nozzle. It was adopted. According to the fourth aspect of the invention, the cross-sectional area of the flow passage formed between the inner nozzle and the outer nozzle is gradually increased toward the downstream side of the flow passage downstream of the flow path portion having the smallest cross-sectional area. In order to increase the speed of the outer gas flow, a technical means was adopted. The invention according to claim 5 employs a technical means in which a flow velocity adjusting member is provided inside the inner nozzle.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The injection nozzle according to the present invention is effective as means for removing dirt attached to various objects such as buildings, vehicles, and aircraft. Further, it can be applied as an injection nozzle for blasting. Regarding the specific configuration of the nozzle, various settings are possible, in short, the flow rate of the outer gas flow flowing between the outer nozzle and the inner nozzle is faster than the inner gas flow flowing inside the inner nozzle. In addition, it is only necessary to be able to form a liquid jet flow surrounding the outside of the outer gas flow, and to contact the liquid jet flow by injecting the inner gas flow while surrounding the inner gas flow with the outer gas flow at a higher speed. By avoiding the above, it is sufficient that the attenuation of the energy after the injection of the inner gas flow can be suppressed and the dust due to the scattering of the granular material can be suppressed. For example, regarding the way of supplying the outer gas flow flowing between the outer nozzle and the inner nozzle, the gas flow supplied into the nozzle is changed by the upstream end of the inner nozzle to the inner gas flow as in the following embodiment. And an external gas flow, or a gas supply pipe connected to an outer flow passage between the outer nozzle and the inner nozzle to supply the gas from the outside. Or a combination of these forms. When the gas flow in the nozzle is divided by the inner nozzle, if the outer gas flow is made faster than the inner gas flow, the inner gas flow necessarily has a higher pressure than the outer gas flow. When supplying pressurized gas to the inside and outside of the inside nozzle from separate supply sources, it is also possible to set the pressure of the outside gas flow high. By the way, the outer gas flow itself may be one in which the powdered material is mixed or one in which the powdered material is not mixed. As for the pressure of the liquid supplied to the liquid jet nozzle, a higher pressure is desirable because the gas jet flow is less attenuated, but it is sufficient that the liquid jet flow can travel substantially straight until the surface to be processed. The jet form of the liquid jet flow may be jetted in a divergent shape.
[0007]
Further, regarding the outer flow passage formed between the outer nozzle and the inner nozzle, the flow passage cross-sectional area of the flow passage downstream of the minimum flow passage portion having the smallest flow passage cross-sectional area in the middle thereof is directed to the downstream side. Although it is possible to form a supersonic outer gas flow by gradually expanding and forming a divergent shape, the present invention is not limited to this. Similarly, the inner flow passage inside the inner nozzle may be formed as a Laval nozzle having a medium and narrow divergent shape, but is not limited thereto. Further, in order to adjust the flow velocity of the inner gas flow to an appropriate flow rate in relation to the flow velocity of the outer gas flow, a flow velocity adjusting member may be provided in the inner flow passage inside the inner nozzle. In particular, when the inner flow passage is formed in a Laval nozzle shape, it is preferable to provide the inner flow passage upstream of the minimum diameter portion. Further, it is also possible to provide a liquid injection port at an appropriate portion of the flow rate adjusting member so that a liquid agent or the like can be further mixed into the inner gas flow mixed with the powder and granules. Incidentally, it is also possible to increase the number of inner nozzles provided inside the outer nozzles coaxially. In this case, the flow velocity of the outermost gas flow is set to the highest speed as compared with the inner gas flow. If the outermost gas flow is set to the highest speed, there is no particular restriction on the flow velocity between the inner gas flows inside. For example, a configuration in which the flow velocity is increased stepwise toward the outside, or a form in which a gas flow having a lower flow velocity than the inside is interposed in the middle is also possible. Furthermore, it is possible to further radially partition the flow passage in the inner nozzle or the flow passage between the inner nozzle and the outer nozzle. Similarly, it is possible to further radially partition the liquid ejecting nozzles or to use a plurality of liquid ejecting nozzles to surround the outer nozzle. The sectional shapes of the inner nozzle, the outer nozzle, and the liquid jet nozzle are not particularly limited, and may be circular or flat. That is, a circular jet flow or a flat jet flow may be used.
[0008]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view showing a first embodiment of the present invention, FIG. 2 is an enlarged longitudinal sectional view of an essential part thereof, and FIG. 3 is an enlarged side view showing an injection port portion. As shown in the figure, the ejection nozzle includes an outer nozzle 1, an inner nozzle 2 disposed inside the outer nozzle 1, and a liquid ejection nozzle 3 disposed outside to further surround the outer nozzle 1. In this embodiment, the inside of the outer nozzle 1 is divided into two parts by the inner nozzle 2, and the pressurized gas mixed with the powdery material connected to the upstream side of the outer nozzle 1 by the upstream end of the inner nozzle 2. The gas flow passage 4 connected to the supply pipe is divided into an inner flow passage 5 and an outer flow passage 6. As shown in the drawing, the inner nozzle 2 is set to be short so that its tip is located slightly inward from the tip of the outer nozzle 1. Thereby, as shown in FIG. 2, in the space 9 formed between the gas injection port 7 and the downstream end 8 of the inner nozzle 2, the periphery is regulated by the inner peripheral surface of the outer nozzle 1. Thus, a gas flow is formed in which the outer peripheral portion of the inner gas flow sent through the inner flow passage 5 is surrounded by the high-speed outer gas flow sent through the outer flow passage 6, and thereafter the gas flow is injected from the gas injection port 7 to the outside. As a result, a strong jet flow with less turbulence and spread at the time of jet flow formation can be formed. Further, as shown in FIG. 1, the liquid ejecting nozzle 3 of the present embodiment is disposed at a small diameter portion formed from the middle of the outer peripheral portion of the outer nozzle 1 to the downstream side, and provided on the outer peripheral portion of the liquid ejecting nozzle 3. Provided a connection port 10 for connecting a pressurized water supply pipe from the outside. The pressurized water supplied via the connection port 10 is ejected through the liquid supply path 11 formed between the outer periphery of the outer nozzle 1 and the inner periphery of the liquid ejection nozzle 3 as shown in FIG. The liquid is ejected from a number of liquid injection holes 12 formed at the tip of the nozzle 3 so as to surround the gas injection port 7, and the outer periphery of the inner gas flow is surrounded by a higher-speed outer gas flow. It was configured to be surrounded by a jet flow.
[0009]
As shown in FIG. 1, the liquid jet nozzle 3 of the present embodiment is configured such that its downstream end is screwed into a male screw portion 13 formed on the outer peripheral portion of the outer nozzle 1, so that the liquid ejecting nozzle 3 is It was configured to be fixed. Further, the ring-shaped member 15 is screwed to a male screw 14 formed on the outer peripheral portion of the tip of the liquid jet nozzle 3. As shown in FIG. 2, the ring-shaped member 15 has a ring-shaped groove 16 connected to the liquid supply path 11 formed between the outer peripheral portion of the outer nozzle 1 and the inner peripheral portion of the liquid jet nozzle 3. The plurality of liquid injection holes 12 are formed so as to communicate with the ring-shaped groove portion 16. In the figure, reference numerals 17 to 19 denote O-rings for sealing. Incidentally, in the above embodiment, a number of liquid injection holes 12 are provided so as to surround the gas injection ports 7, and the liquid injection ports surrounding the gas injection ports 7 as a whole are configured. As shown in an enlarged vertical sectional view of a main part of a modified example relating to the injection port, a gap is provided between the inner peripheral surface of the ring-shaped member 20 and the outer peripheral surface of the outer nozzle 1 to form the ring-shaped liquid injection port 21. May be configured.
[0010]
FIG. 5 is an enlarged vertical sectional view of a main part showing another main part of the first embodiment. As shown in the drawing, the upstream side of the outer passage 6 of the pressurized gas formed between the outer nozzle 1 and the inner nozzle 2 is an outer passage 6a having a constant flow passage cross-sectional area. On the downstream side of the outer flow passage 6a, the cross-sectional area of the flow passage formed between the tapered surface 22 formed on the inner surface of the outer nozzle 1 and the tapered surface 23 formed on the outer surface of the inner nozzle 2 gradually decreases. Outer passage 6b. Further, on the downstream side of the outer flow passage 6b, the downstream end of the outer flow passage 6b is formed as a minimum flow passage portion 24 having a minimum flow passage cross-sectional area. The inner surface or the outer surface of the inner nozzle 2 is formed in a gentle taper shape to form an outer flow passage 6c whose cross-sectional area gradually increases. In other words, the outer flow passage 6b having a gradually reduced taper cross-sectional area and the outer flow passage having a gradually expanding flow-sectional cross-sectional area across the minimum flow passage portion 24 having the smallest flow passage cross-sectional area. 6c was formed. As a result, the outer gas flow passing through the outer flow passage 6a is accelerated in the outer flow passage 6b, the flow velocity is increased to, for example, near the sonic speed in the minimum flow passage 24, and then further increased in the outer flow passage 6c. It is also possible to increase the injection speed to supersonic speed. During the speed increase in the outer flow passage 6c, the density of the gas flow decreases, and the inner gas flow is surrounded by the outer gas flow having a lower density. The outer flow passage 6c whose flow path cross-sectional area gradually expands in a divergent shape has a uniform diameter surface formed on the inner surface of the outer nozzle 1 and a gentle inner surface formed on the outer surface of the inner nozzle 2. If formed between the tapered surface and the tapered surface, the jet direction of the outer gas flow is directed slightly inward, which is effective in suppressing the attenuation of the energy of the inner gas flow. Further, the inner surface shape of the outer nozzle 1 forming the outer flow passage 6c is not made to have the same diameter, and is formed into a tapered or divergent taper shape in consideration of the relationship with the taper formed on the outer surface of the inner nozzle 2. Is also possible.
[0011]
As shown in FIGS. 1 and 5, the inner nozzle 2 is coaxially supported inside the outer nozzle 1 via a suitable support member (not shown) so as not to obstruct the flow of the outer gas flow. Further, the inner surface of the inner nozzle 2 of this embodiment is tapered by a front taper portion 26 having a large taper surface and a rear taper portion 27 having a gentle taper surface on the upstream side with the minimum diameter portion 25 interposed therebetween. It was narrowed down to a step, and the downstream side was formed in a divergent shape by a gentle taper portion 28. Further, by disposing a flow velocity adjusting member 29 upstream of the rear taper portion 27 and narrowing the cross-sectional area of the flow path in the inner flow passage 5, the flow velocity of the inner gas flow can be appropriately adjusted in relation to the outer gas flow. The flow rate was adjusted. The flow rate adjusting member 29 was supported inside the inner nozzle 2 via an appropriate support member (not shown) so as not to obstruct the flow of the inner gas flow.
[0012]
FIG. 6 is an enlarged vertical sectional view of a main part of the second embodiment of the present invention, in which the main part is enlarged. The outer nozzle 30 according to the present embodiment is provided with a liquid ejection port 33 on a flow rate adjusting member 32 disposed inside the inner nozzle 31, and a liquid supply path 34 connected to the liquid ejection port 33. It is characterized in that an appropriate liquid can be mixed into the inner gas flow flowing through the inner inner flow passage 35, and is basically different from the first embodiment in other points. There is no. In the drawing, reference numeral 36 denotes a connection portion for supplying liquid.
[0013]
【The invention's effect】
According to the present invention, the flow rate of the outer gas flow flowing between the outer nozzle and the inner nozzle is configured to be higher than the flow rate of the inner gas flow flowing inside the inner nozzle, and the outer nozzle The liquid jet nozzle is arranged so as to surround the gas jet, so that the spread of the gas jet flow is suppressed by the liquid jet flow, and the inner gas flow is surrounded by the outer gas flow of higher speed, and the inner gas flow is Contact with the liquid jet stream may be avoided to a greater extent with the stream. As a result, the attenuation of the inner gas flow is suppressed, the flow velocity of the inner gas flow can be maintained farther, and the inner gas flow and the outer gas flow are surrounded by the liquid jet flow. Even before and after the flow hits the surface to be processed, it is possible to accurately suppress dust due to scattering of the powder. Therefore, according to the injection nozzle of the present invention, it is possible to obtain a gas injection flow mixed with powder and granules in which the energy is reduced at a high speed and the dust is suppressed due to the scattering of the powder and granules. Due to the large physical action at the time of the cleaning, the effect contributing to the cleaning or peeling action, the blast processing and the like is also large. The cross-sectional area of the flow passage formed between the inner nozzle and the outer nozzle is formed so that the cross-sectional area of the flow passage downstream of the minimum flow passage portion gradually increases toward the downstream side. Thereby, the flow rate of the outer gas flow can be increased to the supersonic speed, and the effect of suppressing the energy attenuation can be further improved. Further, by disposing the flow velocity adjusting member inside the inner nozzle, the flow velocity of the inner gas flow can be adjusted to an appropriate flow velocity in relation to the outer gas flow.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a first embodiment of the present invention.
FIG. 2 is an enlarged longitudinal sectional view of a main part of the embodiment.
FIG. 3 is an enlarged side view showing an injection port portion of the embodiment.
FIG. 4 is an enlarged vertical sectional view of a main part showing a modification of the liquid ejection port.
FIG. 5 is an enlarged longitudinal sectional view of a main part showing another main part of the first embodiment.
FIG. 6 is an enlarged longitudinal sectional view of a main part of a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Outer nozzle, 2 ... Inner nozzle, 3 ... Liquid injection nozzle, 4 ... Gas flow path, 5 ... Inner flow path, 6 ... Outer flow path, 7 ... Gas injection port, 8 ... Downstream end, 9 ... Space Reference numeral 10: connection port, 11: liquid supply path, 12: liquid injection hole, 13, 14: male screw portion, 15: ring-shaped member, 16: ring-shaped groove portion, 17-19: O-ring, 20: ring-shaped member, Reference numeral 21: liquid injection port, 22, 23: tapered surface, 24: minimum flow path portion, 25: minimum diameter portion, 26: front taper portion, 27: rear taper portion, 28: taper portion, 29: flow rate adjusting member, 30 ... Outer nozzle, 31 ... Inner nozzle, 32 ... Flow rate adjusting member, 33 ... Liquid jet, 34 ... Liquid supply path, 35 ... Inner flow path, 36 ... Connection

Claims (5)

粉粒体を混入した加圧気体流を噴射する噴射ノズルにおいて、外側ノズルの内方に内側ノズルを配設して、それらの外側ノズルと内側ノズルとの間を流通する外側気体流の流速が前記内側ノズルの内方を流通する内側気体流の流速より高速になるように構成するとともに、前記外側ノズルを囲むように液体噴射ノズルを配設したことを特徴とする噴射ノズル。In an injection nozzle for injecting a pressurized gas flow mixed with powder and granules, an inner nozzle is disposed inside the outer nozzle, and the flow rate of the outer gas flow flowing between the outer nozzle and the inner nozzle is reduced. An injection nozzle, wherein the liquid nozzle is configured to be higher in speed than the flow rate of the inner gas flow flowing inside the inner nozzle, and a liquid injection nozzle is disposed so as to surround the outer nozzle. 前記外側ノズルの内方を流通する加圧気体流を前記内側ノズルにより外側気体流と内側気体流に分割するように構成した請求項1に記載の噴射ノズル。The injection nozzle according to claim 1, wherein the pressurized gas flow flowing inside the outer nozzle is divided into an outer gas flow and an inner gas flow by the inner nozzle. 前記内側ノズルの内方を流通する内側気体流の流量がその内側ノズルと外側ノズルとの間を流通する外側気体流の流量より大になるように構成した請求項1又は2に記載の噴射ノズル。The injection nozzle according to claim 1 or 2, wherein the flow rate of the inner gas flow flowing inside the inner nozzle is larger than the flow rate of the outer gas flow flowing between the inner nozzle and the outer nozzle. . 前記内側ノズルと外側ノズルとの間に形成される流路断面積が最小の流路部より下流側の流通路の流路断面積を下流側へ向けて徐々に拡大するように形成した請求項1〜3のいずれか一項に記載の噴射ノズル。The flow path cross-sectional area formed between the inner nozzle and the outer nozzle is formed so that the flow path cross-sectional area of the flow path downstream of the minimum flow path portion gradually increases toward the downstream side. The injection nozzle according to any one of claims 1 to 3. 前記内側ノズルの内方に流速調整部材を配設した請求項1〜4のいずれか一項に記載の噴射ノズル。The injection nozzle according to any one of claims 1 to 4, wherein a flow velocity adjusting member is disposed inside the inner nozzle.
JP2003156052A 2003-05-30 2003-05-30 Injection nozzle Expired - Fee Related JP4246550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003156052A JP4246550B2 (en) 2003-05-30 2003-05-30 Injection nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003156052A JP4246550B2 (en) 2003-05-30 2003-05-30 Injection nozzle

Publications (2)

Publication Number Publication Date
JP2004358285A true JP2004358285A (en) 2004-12-24
JP4246550B2 JP4246550B2 (en) 2009-04-02

Family

ID=34050245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003156052A Expired - Fee Related JP4246550B2 (en) 2003-05-30 2003-05-30 Injection nozzle

Country Status (1)

Country Link
JP (1) JP4246550B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297568A (en) * 2005-04-25 2006-11-02 Oosawa:Kk Blast nozzle and blast gun with the same
JP2009509725A (en) * 2005-09-26 2009-03-12 エルジー・ケム・リミテッド Laminated reactor
CN114761092A (en) * 2019-11-25 2022-07-15 罗森巴赫国际股份公司 Spray gun, in particular fire extinguishing spray gun for fire fighting

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297568A (en) * 2005-04-25 2006-11-02 Oosawa:Kk Blast nozzle and blast gun with the same
JP4545040B2 (en) * 2005-04-25 2010-09-15 株式会社オオサワ Blast nozzle and blast gun equipped with the same
JP2009509725A (en) * 2005-09-26 2009-03-12 エルジー・ケム・リミテッド Laminated reactor
JP4855471B2 (en) * 2005-09-26 2012-01-18 エルジー・ケム・リミテッド Laminated reactor
CN114761092A (en) * 2019-11-25 2022-07-15 罗森巴赫国际股份公司 Spray gun, in particular fire extinguishing spray gun for fire fighting

Also Published As

Publication number Publication date
JP4246550B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP6487041B2 (en) Atomizer nozzle
KR100553781B1 (en) Cleaning nozzle and cleaning apparatus
US5487695A (en) Blast nozzle combined with multiple tip water atomizer
CA2611961C (en) High velocity low pressure emitter
JP2006187752A (en) Special two-fluid washing nozzle
JPS5939270B2 (en) Guns that produce jets of particulate matter and fluids
KR20060097411A (en) Nozzle for cold spray and cold spray apparatus using the same
JPH09117697A (en) Spray coating device
KR100565815B1 (en) Injection apparatus for gas-liquid mixed flow
JP4580985B2 (en) Method and apparatus for generating jet of dry ice particles
JPH09220495A (en) Fluid injection nozzle
JP7293125B2 (en) Mixing chamber and handpiece
JP2002079145A (en) Cleaning nozzle and cleaning device
JP6444163B2 (en) Spray gun
JP4246550B2 (en) Injection nozzle
JP4239879B2 (en) Micro-mist generation method and apparatus
JP2000153247A (en) Cleaning stripping method and device therefor
JP3919386B2 (en) Method and apparatus for applying an adhesive to powder particles transported in a tube by an air current
JP2019209414A (en) Nozzle and dry ice injection device
JP2019084523A (en) Jet nozzle and jet method
JP5633784B2 (en) Shower equipment
JP4057292B2 (en) Injection nozzle
JP2004223409A (en) Apparatus for jetting gas/liquid mixed flow
JP2010137341A5 (en) INJECTION PROCESSING DEVICE AND INJECTION PROCESSING METHOD
JP5633785B2 (en) Shower equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090108

R150 Certificate of patent or registration of utility model

Ref document number: 4246550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees