JP2004356619A - Intermediate substrate, intermediate substrate with semiconductor element, substrate with intermediate substrate, and structure having semiconductor element, intermediate substrate and substrate - Google Patents

Intermediate substrate, intermediate substrate with semiconductor element, substrate with intermediate substrate, and structure having semiconductor element, intermediate substrate and substrate Download PDF

Info

Publication number
JP2004356619A
JP2004356619A JP2004045496A JP2004045496A JP2004356619A JP 2004356619 A JP2004356619 A JP 2004356619A JP 2004045496 A JP2004045496 A JP 2004045496A JP 2004045496 A JP2004045496 A JP 2004045496A JP 2004356619 A JP2004356619 A JP 2004356619A
Authority
JP
Japan
Prior art keywords
substrate
ppm
semiconductor element
thermal expansion
interposer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004045496A
Other languages
Japanese (ja)
Inventor
Takaharu Imai
隆治 今井
Masao Kuroda
正雄 黒田
Yasuhiro Sugimoto
康宏 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2004045496A priority Critical patent/JP2004356619A/en
Publication of JP2004356619A publication Critical patent/JP2004356619A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure having a semiconductor element, an intermediate substrate and a substrate with high reliability of connecting part of the semiconductor element. <P>SOLUTION: The structure 11 has a semiconductor element 21, the intermediate substrate 31 and a substrate 41. The semiconductor element 21 has a surface connecting terminal 22 having thermal expansion coefficient of 2.0 to less than 5.0 ppm/°C. The substrate 41 has a surface connecting pad 46 having thermal expansion coefficient of 5.0 ppm/°C or more. The intermediate substrate 31 has a intermediate substrate body 38 and a plurality of conductor pillars 35. A semiconductor element 21 is mounted on the first surface 32 of the intermediate substrate body 38, and a second surface 33 is mounted on the surface 42 of the substrate 41. The thermal expansion coefficient of the intermediate substrate body 38 is less than 5.0 ppm/°C. A plurality of conductor pillars 35 penetrate the first surface 32 and the second surface 33, and are connected to the surface connecting terminal 22 and the surface connecting pad 46. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、中継基板、半導体素子付き中継基板、中継基板付き基板、半導体素子と中継基板と基板とからなる構造体に関するものである。   The present invention relates to a relay substrate, a relay substrate with a semiconductor element, a substrate with a relay substrate, and a structure including a semiconductor element, a relay substrate, and a substrate.

近年、ICチップが実装された配線基板(ICチップ搭載基板やICパッケージなど)とマザーボード等のプリント基板とをじかに接続するのではなく、配線基板とマザーボードとの間にインターポーザと呼ばれる中継基板を介在させてそれらを互いに接続した構造体が各種知られている(例えば、特許文献1参照)。   In recent years, instead of directly connecting a wiring board on which an IC chip is mounted (an IC chip mounting board or an IC package) to a printed board such as a motherboard, a relay board called an interposer is interposed between the wiring board and the motherboard. Various structures are known which are connected to each other (for example, see Patent Document 1).

また、この種の構造体に用いられるICチップは、一般に熱膨張係数が2.0ppm/℃〜5.0ppm/℃程度の半導体材料(例えばシリコン等)を用いて形成される。一方、中継基板や配線基板については、それよりも熱膨張係数がかなり大きい樹脂材料等を用いて形成されることが多い。ただし、ICチップとIC搭載基板との間に中継基板を介在させた構造体については、現在知られていない。
特開2000−208661号公報(図2(d)等)
An IC chip used for this type of structure is generally formed using a semiconductor material (for example, silicon) having a coefficient of thermal expansion of about 2.0 ppm / ° C. to 5.0 ppm / ° C. On the other hand, the relay board and the wiring board are often formed using a resin material or the like having a considerably larger coefficient of thermal expansion. However, a structure in which a relay substrate is interposed between an IC chip and an IC mounting substrate is not known at present.
JP-A-2000-208661 (FIG. 2 (d) and the like)

ところで、最近では集積回路技術の進歩によりICチップの動作がますます高速化しているが、それに伴いICチップを大型化してより多くの演算回路を形成しようとする動向がある。しかし、ICチップの処理能力が向上すると発熱量も増大することから、熱応力の影響も次第に大きくなる。また、ICチップをIC搭載基板に実装する際には一般にはんだが使用されるが、はんだが溶融温度から常温に冷却する際には、ICチップとIC搭載基板との熱膨張係数差に起因して熱応力が発生する。   By the way, recently, the operation of the IC chip has been more and more accelerated by the progress of the integrated circuit technology, and accordingly, there is a trend to increase the size of the IC chip to form more arithmetic circuits. However, as the processing capability of the IC chip increases, the amount of heat generated also increases, so that the influence of thermal stress also gradually increases. In addition, solder is generally used when mounting an IC chip on an IC mounting board. However, when the solder is cooled from a melting temperature to a normal temperature, a difference in thermal expansion coefficient between the IC chip and the IC mounting board is caused. Thermal stress occurs.

そして、特にICチップの一辺の大きさが10.0mmを超えると、大きな熱応力がICチップとIC搭載基板との界面等に作用することで、チップ接合部分にクラック等が生じるおそれがある。また、ICチップの厚みが1.0mmよりも小さくなると、強度が弱まり、クラック等が生じるおそれがある。それゆえ、構造体に高い信頼性を付与できなくなるという問題がある。さらに、層間絶縁膜としてポーラスシリカ等のような低誘電体材料(いわゆるLow−K材)を採用した場合には、ICチップが脆くなってクラックがいっそう発生しやすくなることが予想される。   In particular, when the size of one side of the IC chip exceeds 10.0 mm, a large thermal stress acts on an interface between the IC chip and the IC mounting substrate, and a crack or the like may be generated at a chip bonding portion. Further, when the thickness of the IC chip is smaller than 1.0 mm, the strength is weakened, and cracks and the like may occur. Therefore, there is a problem that high reliability cannot be provided to the structure. Furthermore, when a low dielectric material (a so-called Low-K material) such as porous silica is used as the interlayer insulating film, it is expected that the IC chip becomes brittle and cracks are more likely to occur.

本発明は上記の課題に鑑みてなされたものであり、その目的は、半導体素子の接合部分における信頼性が高い、半導体素子と中継基板と基板とからなる構造体を提供することにある。また、本発明の別の目的は、上記の優れた構造体を実現するうえで好適な、中継基板、半導体素子付き中継基板、中継基板付き基板を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a structure including a semiconductor element, a relay substrate, and a substrate, which has high reliability at a joint portion of the semiconductor element. Another object of the present invention is to provide a relay substrate, a relay substrate with a semiconductor element, and a substrate with a relay substrate, which are suitable for realizing the above-described excellent structure.

そして、上記課題を解決する手段としては、熱膨張係数が2.0ppm/℃以上5.0ppm/℃未満であって面接続端子を有する半導体素子を備え、熱膨張係数が5.0ppm/℃以上であって面接続パッドを有する基板を備え、かつ、前記半導体素子が実装される第1面、及び前記基板の表面上に実装される第2面を有し、熱膨張係数が5.0ppm/℃未満である略板形状の中継基板本体と、前記第1面及び前記第2面間を貫通し、前記面接続端子及び前記面接続パッドと電気的に接続される複数の導体柱とを有する中継基板を備えたことを特徴とした、半導体素子と中継基板と基板とからなる構造体がある。   Means for solving the above problem include a semiconductor element having a thermal expansion coefficient of 2.0 ppm / ° C. or more and less than 5.0 ppm / ° C. and having a surface connection terminal, and a thermal expansion coefficient of 5.0 ppm / ° C. or more. A substrate having surface connection pads, and having a first surface on which the semiconductor element is mounted, and a second surface mounted on a surface of the substrate, and having a thermal expansion coefficient of 5.0 ppm / A relay board main body having a substantially plate shape having a temperature of less than 0 ° C., and a plurality of conductor pillars penetrating between the first surface and the second surface and electrically connected to the surface connection terminals and the surface connection pads. There is a structure comprising a semiconductor element, a relay board, and a substrate, which is provided with a relay board.

従って、この構造体の場合、熱膨張係数が5.0ppm/℃未満である略板形状の中継基板本体を用いたことにより、半導体素子との熱膨張係数差が小さくなり、半導体素子に直接大きな熱応力が作用しなくなる。よって、たとえ半導体素子が大型で発熱量が多いものであったとしても、クラック等が起こりにくい。ゆえに、構造体における半導体素子の接合部分等に高い信頼性を付与することができる。   Therefore, in the case of this structure, the use of the substantially plate-shaped relay substrate body having a thermal expansion coefficient of less than 5.0 ppm / ° C. reduces the difference between the thermal expansion coefficient and the semiconductor element and directly increases the semiconductor element. Thermal stress stops working. Therefore, even if the semiconductor element is large and generates a large amount of heat, cracks and the like hardly occur. Therefore, high reliability can be imparted to the junction of the semiconductor element in the structure.

半導体素子と中継基板と基板とからなる上記の構造体を実現するうえで好適なものとしては、熱膨張係数が2.0ppm/℃以上5.0ppm/℃未満であって面接続端子を有する半導体素子が実装されるべき第1面、及び第2面を有し、熱膨張係数が5.0ppm/℃未満である略板形状の中継基板本体と、前記第1面及び前記第2面間を貫通し、前記面接続端子と電気的に接続されるべき複数の導体柱とを備えることを特徴とした中継基板がある。さらに、熱膨張係数が2.0ppm/℃以上5.0ppm/℃未満であって面接続端子を有する半導体素子を備え、かつ、前記半導体素子が実装される第1面、及び第2面を有し、熱膨張係数が5.0ppm/℃未満である略板形状の中継基板本体と、前記第1面及び前記第2面間を貫通し、前記面接続端子と電気的に接続される複数の導体柱とを有する中継基板を備えたことを特徴とした半導体素子付き中継基板、も好適である。加えて、熱膨張係数が5.0ppm/℃以上であって面接続パッドを有する基板を備え、かつ、第1面、及び前記基板の表面上に実装される第2面を有し、熱膨張係数が5.0ppm/℃未満である略板形状の中継基板本体と、前記第1面及び前記第2面間を貫通し、前記面接続パッドと電気的に接続される複数の導体柱とを有する中継基板を備えたことを特徴とした中継基板付き基板、も好適である。   In order to realize the above structure including the semiconductor element, the relay substrate, and the substrate, a semiconductor having a thermal expansion coefficient of 2.0 ppm / ° C. or more and less than 5.0 ppm / ° C. and having a surface connection terminal is preferable. A substantially plate-shaped relay substrate body having a first surface on which an element is to be mounted and a second surface, and having a coefficient of thermal expansion of less than 5.0 ppm / ° C., and a space between the first surface and the second surface. There is a relay board characterized by being provided with a plurality of conductor pillars that penetrate and are to be electrically connected to the surface connection terminal. The semiconductor device further includes a semiconductor element having a thermal expansion coefficient of 2.0 ppm / ° C. or more and less than 5.0 ppm / ° C. and having a surface connection terminal, and has a first surface and a second surface on which the semiconductor element is mounted. A substantially plate-shaped relay board body having a coefficient of thermal expansion of less than 5.0 ppm / ° C., and a plurality of through-holes penetrating between the first surface and the second surface and electrically connected to the surface connection terminal. A relay board with a semiconductor element, which is provided with a relay board having conductor pillars, is also suitable. In addition, the semiconductor device includes a substrate having a thermal expansion coefficient of 5.0 ppm / ° C. or more and having surface connection pads, and has a first surface and a second surface mounted on the surface of the substrate, A substantially plate-shaped relay substrate body having a coefficient of less than 5.0 ppm / ° C., and a plurality of conductor pillars penetrating between the first surface and the second surface and electrically connected to the surface connection pad. A board with a relay board, characterized by comprising a relay board having the same, is also suitable.

ここで前記半導体素子としては、熱膨張係数が2.0ppm/℃以上5.0ppm/℃未満であって面接続端子を有するものが使用される。かかる半導体素子の例としては、熱膨張係数が2.6ppm/℃程度のシリコンからなる半導体集積回路チップ(ICチップ)などを挙げることができる。前記面接続端子とは、電気的接続のための端子であって、面接続によって接続を行うものを指す。なお、面接続とは、被接続物の平面上に線状や格子状(千鳥状も含む)にパッドあるいは端子を形成し、それら同士を接続する場合を指す。なお、前記半導体素子の大きさ及び形状は特に限定されないが、少なくとも一辺が10.0mm以上であることがよい。このような大型の半導体素子になると、発熱量も増大しやすく熱応力の影響も次第に大きくなるため、本願発明の課題が発生しやすくなるからである。また、前記半導体素子は、ポーラスな層を表層部に有していることがよい。このような半導体素子の場合、脆いポーラス層にクラックが起こりやすく、本願発明の課題が発生しやすいからである。   Here, as the semiconductor element, one having a thermal expansion coefficient of 2.0 ppm / ° C. or more and less than 5.0 ppm / ° C. and having a surface connection terminal is used. Examples of such a semiconductor element include a semiconductor integrated circuit chip (IC chip) made of silicon having a thermal expansion coefficient of about 2.6 ppm / ° C. The surface connection terminal refers to a terminal for electrical connection, which is connected by surface connection. Note that surface connection refers to a case where pads or terminals are formed in a line or lattice (including a staggered shape) on the plane of a connected object, and the pads or terminals are connected to each other. The size and shape of the semiconductor element are not particularly limited, but it is preferable that at least one side is 10.0 mm or more. This is because in such a large-sized semiconductor element, the amount of heat generation is likely to increase, and the influence of thermal stress is gradually increased, so that the problem of the present invention is likely to occur. Further, the semiconductor element preferably has a porous layer in a surface layer portion. This is because, in the case of such a semiconductor element, cracks are likely to occur in the brittle porous layer, and the problem of the present invention is likely to occur.

前記基板としては、熱膨張係数が5.0ppm/℃以上であって面接続パッドを有するものが使用される。前記基板としては、半導体素子やその他の電子部品などが実装される基板、特には半導体素子やその他の電子部品などが実装され、それらを電気的に接続する導体回路を備えた配線基板が挙げられる。熱膨張係数が5.0ppm/℃以上であるという条件を満たしていれば、基板の形成材料については特に限定されず、コスト性、加工性、絶縁性、機械的強度などを考慮して適宜選択することができる。前記基板としては、例えば、樹脂基板、セラミック基板、金属基板などが挙げられる。   As the substrate, a substrate having a thermal expansion coefficient of 5.0 ppm / ° C. or more and having surface connection pads is used. Examples of the substrate include a substrate on which a semiconductor element and other electronic components are mounted, in particular, a wiring substrate on which a semiconductor element and other electronic components are mounted and provided with a conductor circuit for electrically connecting them. . The material for forming the substrate is not particularly limited as long as it satisfies the condition that the coefficient of thermal expansion is 5.0 ppm / ° C. or more, and is appropriately selected in consideration of cost, workability, insulation, mechanical strength, and the like. can do. Examples of the substrate include a resin substrate, a ceramic substrate, and a metal substrate.

樹脂基板の具体例としては、EP樹脂(エポキシ樹脂)基板、PI樹脂(ポリイミド樹脂)基板、BT樹脂(ビスマレイミド−トリアジン樹脂)基板、PPE樹脂(ポリフェニレンエーテル樹脂)基板などがある。そのほか、これらの樹脂とガラス繊維(ガラス織布やガラス不織布)やポリアミド繊維等の有機繊維との複合材料からなる基板を使用してもよい。あるいは、連続多孔質PTFE等の三次元網目状フッ素系樹脂基材にエポキシ樹脂などの熱硬化性樹脂を含浸させた樹脂−樹脂複合材料からなる基板等を使用してもよい。前記セラミック基板の具体例としては、例えば、アルミナ基板、ベリリア基板、ガラスセラミック基板、結晶化ガラス等の低温焼成材料からなる基板などがある。前記金属基板の具体例としては、例えば、銅基板や銅合金基板、銅以外の金属単体からなる基板、銅以外の金属の合金からなる基板などがある。   Specific examples of the resin substrate include an EP resin (epoxy resin) substrate, a PI resin (polyimide resin) substrate, a BT resin (bismaleimide-triazine resin) substrate, and a PPE resin (polyphenylene ether resin) substrate. In addition, a substrate made of a composite material of these resins and organic fibers such as glass fiber (glass woven fabric or glass nonwoven fabric) or polyamide fiber may be used. Alternatively, a substrate made of a resin-resin composite material in which a thermosetting resin such as an epoxy resin is impregnated into a three-dimensional network-like fluororesin base material such as continuous porous PTFE may be used. Specific examples of the ceramic substrate include, for example, a substrate made of a low-temperature firing material such as an alumina substrate, a beryllia substrate, a glass ceramic substrate, and crystallized glass. Specific examples of the metal substrate include, for example, a copper substrate, a copper alloy substrate, a substrate made of a single metal other than copper, and a substrate made of an alloy of a metal other than copper.

また、面接続パッドとは、電気的接続のための端子用パッドであって、面接続によって接続を行うものを指す。かかる面接続パッドは例えば線状や格子状(千鳥状も含む)に形成される。   The surface connection pad refers to a terminal pad for electrical connection, which is connected by surface connection. Such surface connection pads are formed in, for example, a linear shape or a lattice shape (including a staggered shape).

前記中継基板は略板形状の中継基板本体を有している。中継基板本体の熱膨張係数は基板の熱膨張係数よりも低く、5.0ppm/℃未満である。なお、中継基板本体の熱膨張係数は、さらには2.0ppm/℃以上5.0ppm/℃未満であることがよく、特には2.0ppm/℃以上5.0ppm/℃未満の範囲内において前記半導体素子の熱膨張係数よりも大きな値であることがよりよい。その理由は、仮に中継基板本体の熱膨張係数が5.0ppm/℃を超えると、半導体素子との熱膨張係数差が十分に小さくならず、半導体素子に対する熱応力の影響を十分に低減できないからである。従って、例えば熱膨張係数が2.6ppm/℃程度のシリコン製ICチップを選択した場合には、熱膨張係数が3.0ppm/℃以上5.0ppm/℃未満の中継基板本体を用いることが好適であると言える。なお、上記の熱膨張係数の条件を満たしているものであれば、中継基板本体はセラミック製であっても金属製であってもよい。中継基板本体に使用可能な金属材料としては、例えばタングステン(熱膨張係数:4.4ppm/℃)などがある。   The relay board has a substantially board-shaped relay board body. The thermal expansion coefficient of the relay substrate body is lower than the thermal expansion coefficient of the substrate, and is less than 5.0 ppm / ° C. The thermal expansion coefficient of the main body of the relay board is more preferably 2.0 ppm / ° C. or more and less than 5.0 ppm / ° C., and particularly in the range of 2.0 ppm / ° C. or more and less than 5.0 ppm / ° C. It is better that the value is larger than the coefficient of thermal expansion of the semiconductor element. The reason is that if the thermal expansion coefficient of the relay substrate body exceeds 5.0 ppm / ° C., the difference in thermal expansion coefficient from the semiconductor element cannot be reduced sufficiently, and the influence of thermal stress on the semiconductor element cannot be reduced sufficiently. It is. Therefore, for example, when a silicon IC chip having a thermal expansion coefficient of about 2.6 ppm / ° C. is selected, it is preferable to use a relay substrate body having a thermal expansion coefficient of 3.0 ppm / ° C. or more and less than 5.0 ppm / ° C. It can be said that The relay substrate body may be made of ceramic or metal as long as it satisfies the above condition of the thermal expansion coefficient. As a metal material that can be used for the relay substrate body, for example, tungsten (coefficient of thermal expansion: 4.4 ppm / ° C.) is used.

ここで「熱膨張係数」とは、厚み方向(Z方向)に対して垂直な方向(XY方向)の熱膨張係数のことを意味し、0℃〜200℃の間のTMA(熱機械分析装置)にて測定した値のことをいう。「TMA」とは、熱機械的分析をいい、例えばJPCA−BU01に規定されるものをいう。   Here, the “thermal expansion coefficient” means a thermal expansion coefficient in a direction (XY direction) perpendicular to a thickness direction (Z direction), and is a TMA (thermomechanical analyzer) between 0 ° C. and 200 ° C. ) Means the value measured. “TMA” refers to thermomechanical analysis, for example, as defined in JPCA-BU01.

また前記中継基板本体は、上記のような低熱膨張性であるばかりでなく、高剛性であること(例えば高ヤング率であること)が好ましい。即ち、中継基板本体の剛性(例えばヤング率)は少なくとも半導体素子よりも高いことがよく、具体的にはヤング率が100GPa以上、さらには200GPa以上、特には300GPa以上であることがよい。その理由は、中継基板本体に高い剛性が付与されていれば、中継基板本体に大きな熱応力が加わったとしても、その熱応力に耐えることができるからである。従って、中継基板本体自身の反りや、半導体素子の接合部分のクラックなどを未然に防ぐことができる。ここで「ヤング率」とは、例えばJIS R 1602に規定する「ファインセラミックスの弾性率試験方法」による測定値をいい、より具体的には超音波パルス法による測定値をいう。超音波パルス法では、超音波パルスが試験片を伝播するときの速度に基づいて動的弾性率を測定する。   In addition, it is preferable that the relay board main body has high rigidity (for example, high Young's modulus) as well as low thermal expansion as described above. That is, the rigidity (for example, Young's modulus) of the relay substrate body is preferably higher than at least that of the semiconductor element. Specifically, the Young's modulus is preferably 100 GPa or more, more preferably 200 GPa or more, and particularly preferably 300 GPa or more. The reason is that if a high rigidity is given to the relay board main body, even if a large thermal stress is applied to the relay board main body, the relay board main body can withstand the thermal stress. Therefore, it is possible to prevent warpage of the relay substrate body itself and cracks at the junction of the semiconductor elements. Here, the "Young's modulus" refers to, for example, a value measured by the "elastic modulus test method for fine ceramics" specified in JIS R 1602, and more specifically, a value measured by an ultrasonic pulse method. In the ultrasonic pulse method, a dynamic elastic modulus is measured based on the speed at which an ultrasonic pulse propagates through a test piece.

さらに前記中継基板本体は、上記のような低熱膨張性、高剛性であるばかりでなく、高放熱性であることがより好ましい。ここで「高放熱性」とは、少なくとも放熱性(例えば熱伝導率)が基板よりも高いことを意味する。その理由は、放熱性の高い中継基板本体を用いれば、半導体素子が発生した熱を速やかに伝達して放散することができるため、熱応力の緩和を図ることができるからである。従って、大きな熱応力が作用しなくなり、中継基板本体自身の反りや、半導体素子の接合部分のクラックなどを未然に防ぐことができる。   Further, it is more preferable that the relay board main body not only has the above-described low thermal expansion property and high rigidity but also has high heat radiation property. Here, “high heat dissipation” means that at least heat dissipation (for example, thermal conductivity) is higher than that of the substrate. The reason is that if a relay board body having high heat dissipation is used, the heat generated by the semiconductor element can be quickly transmitted and dissipated, so that thermal stress can be reduced. Therefore, a large thermal stress does not act, and it is possible to prevent warpage of the relay substrate body itself and cracks at the joints of the semiconductor elements.

また、前記中継基板本体はさらに絶縁性を有していることがよい。その理由は、絶縁性を有しない中継基板本体では、導体柱の形成時にあらかじめ絶縁層を設ける必要があるが、絶縁性を有する中継基板本体ならそれが不要だからである。従って、構造の複雑化や工数の増加を回避することができるからである。   Further, it is preferable that the relay board main body further has an insulating property. The reason is that, in the case of the relay board body having no insulating property, it is necessary to provide an insulating layer in advance at the time of forming the conductor pillar, but in the case of the relay board body having the insulating property, it is unnecessary. Therefore, it is possible to avoid a complicated structure and an increase in man-hours.

以上のことからすると、中継基板本体は、窒化物系の絶縁性エンジニアリングセラミック材料を用いて形成されることが好適であり、特には窒化アルミニウム、窒化珪素、または、窒化アルミニウム及び窒化珪素の混合セラミック材料を用いて形成されることが最も好適である。ここに挙げた材料は、低熱膨張性、高剛性、高放熱性及び絶縁性を備えているからである。ちなみに、窒化アルミニウムの熱膨張係数は約4.4ppm/℃程度、ヤング率は約350GPa程度である。窒化珪素の熱膨張係数は約3.0ppm/℃程度、ヤング率は約300GPa程度である。   In view of the above, it is preferable that the relay substrate body be formed using a nitride-based insulating engineering ceramic material, and particularly, aluminum nitride, silicon nitride, or a mixed ceramic of aluminum nitride and silicon nitride. Most preferably, it is formed using a material. This is because the materials listed here have low thermal expansion, high rigidity, high heat dissipation, and insulation. Incidentally, aluminum nitride has a thermal expansion coefficient of about 4.4 ppm / ° C. and a Young's modulus of about 350 GPa. Silicon nitride has a thermal expansion coefficient of about 3.0 ppm / ° C. and a Young's modulus of about 300 GPa.

中継基板本体は、第1面及び第2面間を連通させる複数の貫通孔を有するとともに、その内部に導体柱を有している。貫通孔の直径は特に限定されないが、例えば125μm以下であることがよく、100μm以下であることがよりよい(ただし、0μmは含まず。)。隣接する前記貫通孔間の中心間距離も特に限定されないが、最も小さい所で例えば250μm以下であることがよく、200μm以下であることがよりよい(ただし、0μmは含まず。)。かかる直径や中心間距離があまりに大きすぎると、今後予想される半導体素子のファイン化に十分に対応できない可能性があるからである。換言すると、かかる直径や中心間距離をあまりに大きく設定すると、限られた面積内に多数の導体柱を形成できないからである。さらに好ましくは、貫通孔の直径は85μm以下、隣接する前記貫通孔間の中心間距離は最も小さい所で150μm以下であるとよい(ただし、0μmは含まず。)。   The relay board main body has a plurality of through-holes communicating between the first surface and the second surface, and has a conductor pillar therein. The diameter of the through-hole is not particularly limited, but is preferably, for example, 125 μm or less, and more preferably 100 μm or less (however, 0 μm is not included). The center-to-center distance between the adjacent through-holes is not particularly limited either, but is preferably 250 μm or less at the smallest point, and more preferably 200 μm or less (however, 0 μm is not included). If the diameter or the center-to-center distance is too large, it may not be possible to sufficiently cope with a finer semiconductor element expected in the future. In other words, if the diameter and the center-to-center distance are set too large, a large number of conductor columns cannot be formed within a limited area. More preferably, the diameter of the through-hole is 85 μm or less, and the center-to-center distance between the adjacent through-holes is 150 μm or less at the shortest point (however, 0 μm is not included).

前記中継基板が有する複数の導体柱は、第1面及び第2面間を貫通し、その一端が面接続端子に接続され、他端が面接続パッドに接続される。かかる導体柱は、中継基板本体に形成された複数の貫通孔内に、導電性金属を充填することにより形成される。前記導電性金属としては特に限定されないが、例えば銅、金、銀、白金、パラジウム、ニッケル、スズ、鉛、チタン、タングステン、モリブデン、タンタル、ニオブなどから選択される1種または2種以上の金属を挙げることができる。2種以上の金属からなる導電性金属としては、例えば、スズ及び鉛の合金であるはんだ等を挙げることができる。2種以上の金属からなる導電性金属として、鉛フリーのはんだ(例えば、Sn−Ag系はんだ、Sn−Ag−Cu系はんだ、Sn−Ag−Bi系はんだ、Sn−Ag−Bi−Cu系はんだ、Sn−Zn系はんだ、Sn−Zn−Bi系はんだ等)を用いても勿論よい。複数の貫通孔内に導電性金属を充填する具体的な手法としては、例えば、導電性金属を含む非固形状材料(例えば導電性金属ペースト)を作製しそれを印刷充填する手法があるほか、導電性金属めっきを施す手法などがある。   The plurality of conductor pillars of the relay board penetrate between the first surface and the second surface, one end of which is connected to the surface connection terminal, and the other end of which is connected to the surface connection pad. Such a conductor pillar is formed by filling a plurality of through holes formed in the relay substrate body with a conductive metal. The conductive metal is not particularly limited, but is, for example, one or more metals selected from copper, gold, silver, platinum, palladium, nickel, tin, lead, titanium, tungsten, molybdenum, tantalum, niobium, and the like. Can be mentioned. Examples of the conductive metal composed of two or more kinds of metals include solder, which is an alloy of tin and lead. Lead-free solder (for example, Sn-Ag solder, Sn-Ag-Cu solder, Sn-Ag-Bi solder, Sn-Ag-Bi-Cu solder) is used as the conductive metal composed of two or more metals. , Sn-Zn-based solder, Sn-Zn-Bi-based solder, etc.). As a specific method of filling the conductive metal in the plurality of through holes, for example, there is a method of preparing a non-solid material containing the conductive metal (for example, a conductive metal paste) and printing and filling it. There is a method of applying conductive metal plating.

例えばセラミック製中継基板本体の貫通孔内に導電性金属ペーストを充填して導体柱を形成する場合、セラミックとペースト中の金属とを同時に焼結させる方法(同時焼成法)を採用してもよく、あるいは先にセラミックを焼結させた後にペーストの充填及びペースト中の金属の焼結を行う方法(後焼成法)を採用してもよい。同時焼成法を採用した中継基板の製造方法としては、前記複数の貫通孔を有するセラミック未焼結体を作製する未焼結体作製工程と、前記複数の貫通孔内に前記導電性金属を充填する金属充填工程と、前記セラミック未焼結体及び前記導電性金属を加熱して焼結させる同時焼成工程とを含むことを特徴とする中継基板の製造方法、が好適である。   For example, when a conductive pillar is formed by filling a conductive metal paste into a through-hole of a ceramic relay board body, a method of simultaneously sintering ceramic and metal in the paste (simultaneous firing method) may be adopted. Alternatively, a method (post-firing method) in which the paste is filled and the metal in the paste is sintered after the ceramic is sintered first may be employed. As a method of manufacturing a relay substrate employing a simultaneous firing method, there are a green body manufacturing step of manufacturing the ceramic green body having the plurality of through holes, and filling the conductive metal in the plurality of through holes. Preferably, a method of manufacturing a relay substrate, comprising: a metal filling step of performing the following; and a co-firing step of heating and sintering the ceramic unsintered body and the conductive metal.

一方、後焼成法を採用した中継基板の製造方法としては、セラミック未焼結体を焼成して前記中継基板本体を作製する焼成工程と、前記中継基板本体における前記複数の貫通孔の内壁面にメタライズ層を形成するメタライズ工程と、前記メタライズ層が形成された前記複数の貫通孔内に前記導電性金属を充填する金属充填工程とを含むことを特徴とする中継基板の製造方法、が好適である。この製造方法において前記複数の貫通孔を形成する穴あけ工程は、前記焼成工程前に実施してもよく、前記焼成工程後に実施してもよい。   On the other hand, as a method of manufacturing a relay substrate employing a post-firing method, a firing step of firing the ceramic unsintered body to produce the relay substrate body, and an inner wall surface of the plurality of through holes in the relay substrate body. A metallizing step of forming a metallized layer, and a method of manufacturing a relay board, comprising: a metal filling step of filling the conductive metal into the plurality of through holes in which the metallized layer is formed, is there. In this manufacturing method, the drilling step of forming the plurality of through holes may be performed before the firing step, or may be performed after the firing step.

また、後焼成法を採用した中継基板の別の製造方法としては、セラミック未焼結体を焼成して前記中継基板本体を作製する第1次焼成工程と、前記中継基板本体の有する前記複数の貫通孔内に前記導電性金属を充填する金属充填工程と、充填された前記導電性金属を焼成して前記複数の導体柱とする第2次焼成工程とを含むことを特徴とする中継基板の製造方法、も好適である。この製造方法において前記複数の貫通孔を形成する穴あけ工程は、前記第1次焼成工程前に実施してもよく、前記第1次焼成工程後に実施してもよい。   Further, as another method of manufacturing a relay substrate employing a post-firing method, a first firing step of firing the ceramic unsintered body to produce the relay substrate main body, and the plurality of the plurality of relay substrate main bodies having A metal filling step of filling the conductive metal in the through hole, and a second firing step of firing the filled conductive metal to form the plurality of conductor columns, Manufacturing methods are also suitable. In this manufacturing method, the drilling step of forming the plurality of through holes may be performed before the first firing step, or may be performed after the first firing step.

同時焼成法及び後焼成法のいずれを採用するかについては、中継基板を構成するセラミックの種類等に依存するが、どちらの焼成方法も可能であって低コスト化を優先したい場合には、同時焼成法を採用することが有利である。後焼成法に比べて同時焼成法のほうが一般に工数が少なくて済み、その分だけ効率よく生産することが可能だからである。なお、セラミックが高温焼成セラミックであってかつ同時焼成法を採用するような場合、導体柱を構成する導電性金属としては、タングステン、モリブデン、タンタル及びニオブから選択される少なくとも1つの高融点金属であることが好適である。即ち、1000℃を超える焼成時の高温に遭遇したとしても酸化したり蒸発したりすることもなく、好適な焼結体と化して貫通孔内に残留しうるからである。セラミックが低温焼成セラミックであってかつ同時焼成法を採用するような場合には、導体柱を構成する導電性金属はとりわけ高融点金属である必要はない。よってこの場合には、タングステン等よりも融点は低いが導電性に優れる金属(例えば銅、銀、金等)を選択することができる。   Whether the simultaneous firing method or the post-firing method is adopted depends on the type of ceramic constituting the relay board, etc., but if both firing methods are possible and priority is given to cost reduction, the simultaneous firing method is preferred. It is advantageous to employ a firing method. This is because the co-firing method generally requires less man-hours than the post-firing method, and it is possible to produce efficiently by that much. In the case where the ceramic is a high-temperature fired ceramic and employs a simultaneous firing method, the conductive metal constituting the conductive pillar is at least one refractory metal selected from tungsten, molybdenum, tantalum and niobium. It is preferred that there be. That is, even if a high temperature during sintering exceeding 1000 ° C. is encountered, it does not oxidize or evaporate, but becomes a suitable sintered body and can remain in the through-hole. In the case where the ceramic is a low-temperature fired ceramic and employs a co-firing method, the conductive metal constituting the conductive pillar does not need to be a particularly high melting point metal. Therefore, in this case, a metal having a lower melting point than tungsten or the like but having excellent conductivity (eg, copper, silver, gold, or the like) can be selected.

中継基板を構成するセラミックが、金属材料との同時焼成が不可能なセラミック(例えば窒化珪素など)であれば、必然的に後焼成法が採用されることになるが、その場合には、貫通孔の内壁面に何らかのメタライズ層が形成されることがよい。貫通孔の内壁面(即ちセラミック焼結体からなる面)と導電性金属との間にメタライズ層が存在せず、両者が直接接触していると、両者間に高い密着強度を付与することが困難になる場合がある。これに対して、貫通孔の内壁面と導電性金属との間にメタライズ層が介在していると、両者間に高い密着強度を付与しやすくなる。それゆえ、貫通孔の内壁面と導電性金属との界面にクラック等が起こりにくくなり、セラミックと金属との界面での信頼性向上を図ることができる。一方、金属材料との同時焼成が可能なセラミックを採用した場合においては、メタライズ層は必ずしも必要ではないので、形成されてもされなくてもよい。   If the ceramic constituting the relay substrate is a ceramic (for example, silicon nitride or the like) that cannot be co-fired with a metal material, a post-firing method will necessarily be adopted. Some metallized layer is preferably formed on the inner wall surface of the hole. If there is no metallized layer between the inner wall surface of the through hole (that is, the surface made of the ceramic sintered body) and the conductive metal, and if both are in direct contact, high adhesion strength can be provided between the two. It can be difficult. On the other hand, when the metallized layer is interposed between the inner wall surface of the through hole and the conductive metal, it is easy to provide high adhesion strength between the two. Therefore, cracks and the like hardly occur at the interface between the inner wall surface of the through hole and the conductive metal, and reliability at the interface between the ceramic and the metal can be improved. On the other hand, when a ceramic that can be co-fired with a metal material is used, the metallized layer is not necessarily required, and may or may not be formed.

ここで貫通孔の内壁面にメタライズ層を形成する手法としては、従来周知の手法を採用することが可能であり、具体例としては、蒸着、CVD、PVD、スパッタ、イオンプレーティング等といった薄膜形成法などを挙げることができる。これらの中でも、特に蒸着やCVDのような等方性の薄膜形成法が好適である。メタライズ層を形成する別の手法として、例えば、活性化金属法などを採用してもよい。前記メタライズ層は、例えば、銅、金、銀、白金、パラジウム、ニッケル、スズ、鉛、チタン、タングステン、モリブデン、タンタル、ニオブなどから選択される1種または2種以上の金属によって形成される。メタライズ層の形成に使用される金属材料は、導体柱を構成する導電性金属と同じ材料であってもよく、異なっていてもよい。   Here, as a method of forming the metallized layer on the inner wall surface of the through hole, a conventionally well-known method can be employed. Specific examples include thin film formation such as vapor deposition, CVD, PVD, sputtering, and ion plating. And the like. Among these, an isotropic thin film forming method such as vapor deposition or CVD is particularly preferable. As another method of forming the metallized layer, for example, an activated metal method may be employed. The metallized layer is formed of one or more metals selected from, for example, copper, gold, silver, platinum, palladium, nickel, tin, lead, titanium, tungsten, molybdenum, tantalum, niobium, and the like. The metal material used for forming the metallized layer may be the same as or different from the conductive metal forming the conductive pillar.

前記中継基板は、前記貫通孔から露出する前記導体柱の少なくとも一方の端部表面にバンプを有することが好ましい。この場合、前記バンプは第1面側及び第2面側の両方に設けられていることが好ましい。その理由は、面接続端子や面接続パッドがフラットである場合、導体柱の端部にバンプが設けられていると、面接続端子や面接続パッドに対して導体柱が接続しやすくなるからである。前記バンプは、例えば、公知のはんだ材料を前記導体柱の端面に印刷してリフローすることにより形成されたはんだバンプであってもよい。なお、導体柱と面接続端子との接続、導体柱と面接続パッドとの接続については、両者の端面を対向させた状態で、公知のはんだや導電性樹脂などの導電材料を用いて接続する手法などを採用することができる。   The relay board preferably has a bump on at least one end surface of the conductor pillar exposed from the through hole. In this case, it is preferable that the bumps are provided on both the first surface side and the second surface side. The reason is that, when the surface connection terminals and the surface connection pads are flat, if the bumps are provided at the ends of the conductor columns, the conductor columns can be easily connected to the surface connection terminals and the surface connection pads. is there. The bump may be, for example, a solder bump formed by printing a known solder material on an end surface of the conductor pillar and performing reflow. The connection between the conductor pillar and the surface connection terminal and the connection between the conductor pillar and the surface connection pad are performed using a known conductive material such as solder or conductive resin with both end faces facing each other. Techniques and the like can be adopted.

前記中継基板本体は単層構造であっても複数層構造であってもよいが、どちらかと言えば単層構造であることがよく、さらには単層の絶縁層からなることが好ましい。その理由は、単層構造であれば構造が比較的簡単となり製造も容易になるので、低コスト化を達成しやすくなるからである。また、単層構造であれば、内部に界面が存在しないため、たとえ大きな熱応力が作用したときでも、クラックの発生に至らないからである。   The relay substrate body may have a single-layer structure or a multi-layer structure, but it is preferable that the relay substrate body has a single-layer structure, and more preferably, it is formed of a single-layer insulating layer. The reason is that a single-layer structure makes the structure relatively simple and easy to manufacture, so that it is easy to achieve low cost. In addition, in the case of a single-layer structure, since no interface exists inside, even when a large thermal stress acts, no crack is generated.

前記中継基板本体の厚さは特に限定されないが、例えば窒化珪素等を選択した場合における中継基板本体の厚さは0.1mm以上0.7mm以下であることが好ましく、特には0.1mm以上0.3mm以下であることがより好ましい。このような厚さ範囲内であると、構造体を構成したときに半導体素子接合部分に加わる熱応力が比較的小さくなり、中継基板本体自身の反りや、半導体素子の接合部分のクラックなどの防止に有利となる。ちなみに、中継基板本体の厚さが1.0mm以上になると、配線抵抗が上がったり、低背化の要求に応えられなくなったりするので、好ましくない。   Although the thickness of the relay substrate body is not particularly limited, for example, when silicon nitride or the like is selected, the thickness of the relay substrate body is preferably 0.1 mm or more and 0.7 mm or less, particularly 0.1 mm or more and 0 mm or less. 0.3 mm or less is more preferable. When the thickness is within such a range, the thermal stress applied to the semiconductor element bonding portion when the structure is formed becomes relatively small, thereby preventing warpage of the relay substrate body itself and cracking of the semiconductor element bonding portion. This is advantageous. By the way, if the thickness of the relay substrate body is 1.0 mm or more, it is not preferable because the wiring resistance is increased or it is impossible to meet the demand for a reduction in height.

前記中継基板本体の第1面上や第2面上には、半導体素子以外の電子部品や素子が1つ以上設けられていてもよい。前記電子部品の具体例としては、チップトランジスタ、チップダイオード、チップ抵抗、チップコンデンサ、チップコイルなどを挙げることができる。これらの電子部品は、能動部品であっても受動部品であってもよい。前記素子の具体例としては、薄膜トランジスタ、薄膜ダイオード、薄膜抵抗、薄膜コンデンサ、薄膜コイルなどを挙げることができる。これらの素子は、能動素子であっても受動素子であってもよい。そして、前記中継基板本体の第1面上や第2面上には、前記電子部品同士、前記素子同士、あるいは前記電子部品や前記素子と導体柱とを接続する配線層が形成されていてもよい。なお、かかる配線層は、前記中継基板本体の内部に形成されていてもよい。例えば、チップコンデンサや薄膜コンデンサを備えた中継基板の場合、低抵抗化、低インダクタンス化を図ることができるため、高性能な構造体を実現しやすくなる。   One or more electronic components or elements other than the semiconductor element may be provided on the first surface or the second surface of the relay board main body. Specific examples of the electronic component include a chip transistor, a chip diode, a chip resistor, a chip capacitor, and a chip coil. These electronic components may be active components or passive components. Specific examples of the element include a thin film transistor, a thin film diode, a thin film resistor, a thin film capacitor, a thin film coil, and the like. These elements may be active elements or passive elements. And, on the first surface or the second surface of the relay board main body, a wiring layer for connecting the electronic components to each other, the elements to each other, or connecting the electronic component or the element to the conductor pillar may be formed. Good. Note that such a wiring layer may be formed inside the relay substrate body. For example, in the case of a relay board provided with a chip capacitor or a thin film capacitor, low resistance and low inductance can be achieved, so that a high-performance structure can be easily realized.

[第1実施形態] [First Embodiment]

以下、本発明を具体化した第1実施形態を図1〜図4に基づき詳細に説明する。図1は、ICチップ(半導体素子)21と、インターポーザ(中継基板)31と、配線基板(基板)41とからなる本実施形態の半導体パッケージ(構造体)11を示す概略断面図である。図2は、半導体パッケージ11を構成するインターポーザ31を示す概略断面図である。図3は、半導体パッケージ11を構成するICチップ付きインターポーザ(半導体素子付き中継基板)61を示す概略断面図である。図4は、ICチップ付きインターポーザ61を配線基板41上に実装するときの状態を示す概略断面図である。   Hereinafter, a first embodiment of the present invention will be described in detail with reference to FIGS. FIG. 1 is a schematic cross-sectional view illustrating a semiconductor package (structure) 11 of the present embodiment including an IC chip (semiconductor element) 21, an interposer (relay substrate) 31, and a wiring substrate (substrate) 41. FIG. 2 is a schematic sectional view showing the interposer 31 constituting the semiconductor package 11. FIG. 3 is a schematic sectional view showing an interposer (relay board with semiconductor element) 61 with an IC chip constituting the semiconductor package 11. FIG. 4 is a schematic cross-sectional view showing a state when the interposer 61 with an IC chip is mounted on the wiring board 41.

図1に示されるように、本実施形態の半導体パッケージ11は、上記のように、ICチップ21と、インターポーザ31と、配線基板41とからなるLGA(ランドグリッドアレイ)である。なお、半導体パッケージ11の形態は、LGAのみに限定されず、例えばBGA(ボールグリッドアレイ)やPGA(ピングリッドアレイ)等であってもよい。MPUとしての機能を有するICチップ21は、10mm角の矩形平板状であって、熱膨張係数が2.6ppm/℃程度のシリコンからなる。かかるICチップ21の下面側表層には、図示しない回路素子が形成されている。また、ICチップ21の下面側には、Low−K材であるポーラスシリカからなる図示しない層間絶縁膜が形成されるとともに、複数のバンプ状の面接続端子22が格子状に設けられている。   As shown in FIG. 1, the semiconductor package 11 of the present embodiment is an LGA (land grid array) including the IC chip 21, the interposer 31, and the wiring board 41, as described above. The form of the semiconductor package 11 is not limited to the LGA alone, and may be, for example, a BGA (ball grid array), a PGA (pin grid array), or the like. The IC chip 21 having the function as the MPU is a rectangular flat plate of 10 mm square and made of silicon having a coefficient of thermal expansion of about 2.6 ppm / ° C. A circuit element (not shown) is formed on a lower surface layer of the IC chip 21. On the lower surface side of the IC chip 21, an interlayer insulating film (not shown) made of porous silica as a Low-K material is formed, and a plurality of bump-shaped surface connection terminals 22 are provided in a lattice shape.

前記配線基板41は、上面42及び下面43を有する矩形平板状の部材からなり、複数層の樹脂絶縁層44と複数層の導体回路45とを有する、いわゆる多層配線基板である。本実施形態の場合、具体的にはエポキシ樹脂をガラスクロスに含浸させてなる絶縁基材により樹脂絶縁層44が形成され、銅箔または銅めっき層により導体回路45が形成されている。かかる配線基板41の熱膨張係数は、13.0ppm/℃以上16.0ppm/℃未満となっている。配線基板41の上面42には、インターポーザ31側との電気的な接続を図るための複数の面接続パッド46が格子状に形成されている。配線基板41の下面43には、図示しないマザーボード側との電気的な接続を図るための複数の面接続パッド47が格子状に形成されている。なお、マザーボード接続用の面接続パッド47は、インターポーザ接続用の面接続パッド46よりも広いピッチとなっている。樹脂絶縁層44にはビアホール導体48が設けられていて、これらのビアホール導体48を介して、異なる層の導体回路45、面接続パッド46、面接続パッド47が相互に電気的に接続されている。また、配線基板41の上面42には、図3のICチップ付きインターポーザ61以外にも、半導体素子やその他の電子部品(いずれも図示略)が実装されている。   The wiring board 41 is a so-called multilayer wiring board, which is formed of a rectangular plate-like member having an upper surface 42 and a lower surface 43 and has a plurality of resin insulating layers 44 and a plurality of conductor circuits 45. In the case of the present embodiment, specifically, the resin insulating layer 44 is formed of an insulating base material obtained by impregnating a glass cloth with an epoxy resin, and the conductive circuit 45 is formed of a copper foil or a copper plating layer. The thermal expansion coefficient of the wiring board 41 is 13.0 ppm / ° C. or more and less than 16.0 ppm / ° C. On the upper surface 42 of the wiring board 41, a plurality of surface connection pads 46 for electrical connection with the interposer 31 side are formed in a lattice shape. On the lower surface 43 of the wiring board 41, a plurality of surface connection pads 47 for electrical connection with a motherboard (not shown) are formed in a lattice shape. The surface connection pads 47 for motherboard connection have a wider pitch than the surface connection pads 46 for interposer connection. Via-hole conductors 48 are provided in the resin insulation layer 44, and via these via-hole conductors 48, conductor circuits 45, surface connection pads 46, and surface connection pads 47 of different layers are electrically connected to each other. . A semiconductor element and other electronic components (both not shown) are mounted on the upper surface 42 of the wiring board 41 in addition to the interposer 61 with the IC chip shown in FIG.

前記インターポーザ31は、上面32(第1面)及び下面33(第2面)を有する矩形平板形状のインターポーザ本体38(中継基板本体)を有している。インターポーザ本体38は、単層構造をなす窒化アルミニウム基板からなる。かかる窒化アルミニウム基板の熱膨張係数は約4.4ppm/℃、ヤング率は約350GPaである。従って、インターポーザ本体38の熱膨張係数は、配線基板41の熱膨張係数よりも小さく、かつ、ICチップ21の熱膨張係数よりも大きな値となっている。即ち、本実施形態のインターポーザ31は、配線基板41よりも低い熱膨張性を備えており、むしろICチップ21に近い熱膨張性を備えていると言える。また、窒化アルミニウム基板のヤング率は、本実施形態にて用いたICチップ21のヤング率(即ち186GPa)よりも高いことから、本実施形態のインターポーザ31は高い剛性を備えている。   The interposer 31 has a rectangular flat plate-shaped interposer main body 38 (relay board main body) having an upper surface 32 (first surface) and a lower surface 33 (second surface). The interposer body 38 is made of an aluminum nitride substrate having a single-layer structure. Such an aluminum nitride substrate has a thermal expansion coefficient of about 4.4 ppm / ° C. and a Young's modulus of about 350 GPa. Therefore, the coefficient of thermal expansion of the interposer body 38 is smaller than the coefficient of thermal expansion of the wiring board 41 and larger than the coefficient of thermal expansion of the IC chip 21. That is, it can be said that the interposer 31 of the present embodiment has a lower thermal expansion property than the wiring board 41 and has a thermal expansion property closer to that of the IC chip 21. Further, since the Young's modulus of the aluminum nitride substrate is higher than the Young's modulus of the IC chip 21 used in the present embodiment (that is, 186 GPa), the interposer 31 of the present embodiment has high rigidity.

インターポーザ31を構成するインターポーザ本体38には、上面32及び下面33を貫通する複数のビア34(貫通孔)が格子状に形成されている。これらのビア34は、配線基板41が有する各面接続パッド46の位置に対応している。そして、かかるビア34内には、柱状のPb−Sn系はんだからなる導体柱35が設けられている。各導体柱35の上端面には略半球状をした上端面側バンプ36が設けられている。これらの上端面側バンプ36は上面32から突出しており、ICチップ21側の面接続端子22に接続されている。各導体柱35の下端面には略半球状をした下端面側バンプ37が設けられている。これらの下端面側バンプ37は下面33から突出しており、配線基板41側の面接続パッド46に接続されている。   A plurality of vias 34 (through holes) penetrating the upper surface 32 and the lower surface 33 are formed in a lattice shape in an interposer main body 38 constituting the interposer 31. These vias 34 correspond to the positions of the surface connection pads 46 of the wiring board 41. In the via 34, a conductor pillar 35 made of a pillar-shaped Pb-Sn-based solder is provided. An upper end surface side bump 36 having a substantially hemispherical shape is provided on the upper end surface of each conductor post 35. These upper end surface side bumps 36 protrude from the upper surface 32 and are connected to the surface connection terminals 22 on the IC chip 21 side. A substantially hemispherical lower end surface side bump 37 is provided on the lower end surface of each conductor post 35. These lower end surface side bumps 37 protrude from the lower surface 33 and are connected to the surface connection pads 46 on the wiring board 41 side.

従って、このような構造の半導体パッケージ11では、インターポーザ31の導体柱35を介して、配線基板41側とICチップ21側とが電気的に接続されている。ゆえに、インターポーザ31を介して、配線基板41−ICチップ21間で信号の入出力が行われるとともに、ICチップ21をMPUとして動作させるための電源が供給されるようになっている。   Accordingly, in the semiconductor package 11 having such a structure, the wiring board 41 side and the IC chip 21 side are electrically connected via the conductor pillar 35 of the interposer 31. Therefore, signals are input and output between the wiring board 41 and the IC chip 21 via the interposer 31, and power for operating the IC chip 21 as an MPU is supplied.

ここで、上記構造の半導体パッケージ11を製造する手順について説明する。   Here, a procedure for manufacturing the semiconductor package 11 having the above structure will be described.

まず、周知のセラミックグリーンシート形成技術によって、対応する位置に格子状にビア34(貫通孔)が透設された窒化アルミニウムグリーンシートを作製する。そして、ビア34の内周面にタングステンペーストを塗布した後、グリーンシートを還元雰囲気中で焼成し、窒化アルミニウム焼結体からなるインターポーザ本体38を作製する。このインターポーザ本体38においては、ビア34の内周面にタングステンを主成分とする下地金属層(図示略)が形成される。さらに、この下地金属層上に無電解ニッケル−金めっきを施した後、各ビア34の上端開口部に90%Pb−10%Snからなる高融点はんだボールを載置し、これを加熱して溶融させる。その結果、溶融した高融点はんだが重力で下方に移動してビア34内に注入され、ビア34内周面の金属層に溶着することにより、導体柱35が形成される。また、導体柱35の上端面及び下端面は表面張力の作用によって略半球状に盛り上がり、上端面側バンプ36及び下端面側バンプ37となる。その結果、図2に示すインターポーザ31が完成する。   First, by a well-known ceramic green sheet forming technique, an aluminum nitride green sheet in which vias 34 (through holes) are provided in a lattice pattern at corresponding positions is manufactured. Then, after applying a tungsten paste to the inner peripheral surface of the via 34, the green sheet is fired in a reducing atmosphere to produce an interposer body 38 made of an aluminum nitride sintered body. In the interposer body 38, a base metal layer (not shown) containing tungsten as a main component is formed on the inner peripheral surface of the via 34. Further, after electroless nickel-gold plating is performed on the base metal layer, a high melting point solder ball made of 90% Pb-10% Sn is placed on the upper end opening of each via 34, and this is heated. Let melt. As a result, the molten high melting point solder moves downward by gravity and is injected into the via 34, and is welded to the metal layer on the inner peripheral surface of the via 34, thereby forming the conductor pillar 35. In addition, the upper end surface and the lower end surface of the conductor pillar 35 are raised substantially hemispherically by the action of the surface tension, and become the upper end surface side bump 36 and the lower end surface side bump 37. As a result, the interposer 31 shown in FIG. 2 is completed.

次に、完成した前記インターポーザ31の上面32にICチップ21を載置する。このとき、ICチップ21側の面接続端子22と、インターポーザ31側の上端面側バンプ36とを位置合わせするようにする。そして、加熱して各上端面側バンプ36をリフローすることにより、上端面側バンプ36と面接続端子22とを接合する。その結果、図3に示すICチップ付きインターポーザ61が完成する。   Next, the IC chip 21 is mounted on the upper surface 32 of the completed interposer 31. At this time, the surface connection terminals 22 on the IC chip 21 side and the upper end surface side bumps 36 on the interposer 31 side are aligned. Then, by heating and reflowing the upper end side bumps 36, the upper end side bumps 36 and the surface connection terminals 22 are joined. As a result, the interposer 61 with an IC chip shown in FIG. 3 is completed.

次に、インターポーザ31側の下端面側バンプ37と、配線基板41側の面接続パッド46とを位置合わせして(図4参照)、配線基板41上に前記ICチップ付きインターポーザ61を載置する。そして、加熱して各下端面側バンプ37をリフローすることにより、下端面側バンプ37と面接続パッド46とを接合する。その結果、図1に示す半導体パッケージ11が完成する。   Next, the lower end surface side bump 37 on the interposer 31 side is aligned with the surface connection pad 46 on the wiring board 41 side (see FIG. 4), and the interposer 61 with the IC chip is mounted on the wiring board 41. . Then, by heating and reflowing each lower end surface side bump 37, the lower end surface side bump 37 and the surface connection pad 46 are joined. As a result, the semiconductor package 11 shown in FIG. 1 is completed.

従って、本実施形態によれば以下の効果を得ることができる。   Therefore, according to the present embodiment, the following effects can be obtained.

(1)この半導体パッケージ11(構造体)は、熱膨張係数が4.4ppm/℃である略板形状のインターポーザ本体38を用いて構成されている。よって、インターポーザ31とICチップ21との熱膨張係数の差が相当小さく(即ち1.8ppm/℃程度に)なっている。それゆえ、ICチップ21に直接大きな熱応力が作用しなくなる。よって、たとえICチップ21が大型で発熱量が多いものであったとしても、ICチップ21とインターポーザ31との界面にクラック等が起こりにくい。ゆえに、チップ接合部分等に高い信頼性を付与することができ、信頼性や耐久性に優れた半導体パッケージ11を実現することができる。   (1) This semiconductor package 11 (structure) is configured using a substantially plate-shaped interposer body 38 having a thermal expansion coefficient of 4.4 ppm / ° C. Therefore, the difference between the thermal expansion coefficients of the interposer 31 and the IC chip 21 is considerably small (that is, about 1.8 ppm / ° C.). Therefore, large thermal stress does not act directly on the IC chip 21. Therefore, even if the IC chip 21 is large and generates a large amount of heat, cracks and the like hardly occur at the interface between the IC chip 21 and the interposer 31. Therefore, high reliability can be given to the chip bonding portion and the like, and the semiconductor package 11 excellent in reliability and durability can be realized.

(2)また、本実施形態のインターポーザ本体38は単層の絶縁層(単層の窒化アルミニウム基板)からなる。このため、構造が比較的簡単であってインターポーザ31の製造も容易になることから、低コスト化を達成しやすくなる。また、単層構造であれば、内部に界面が存在しないため、たとえ大きな熱応力が作用したときでも、クラックの発生に至らない。よって、単層の絶縁層からなるインターポーザ本体38の使用は、信頼性や耐久性に優れた半導体パッケージ11の実現に向けて確実に貢献する。   (2) The interposer body 38 of the present embodiment is formed of a single-layer insulating layer (single-layer aluminum nitride substrate). For this reason, the structure is relatively simple, and the manufacture of the interposer 31 is also easy, so that the cost can be easily reduced. In addition, in the case of a single-layer structure, since no interface exists inside, even when a large thermal stress acts, no crack is generated. Therefore, the use of the interposer body 38 made of a single insulating layer certainly contributes to the realization of the semiconductor package 11 having excellent reliability and durability.

(3)本実施形態の半導体パッケージ11は、例えば、次のようにして製造されてもよい。まず、配線基板41の上面42にインターポーザ31をはんだ付け等により接合することで、インターポーザ付き配線基板71(中継基板付き基板)をあらかじめ作製する。その後、このインターポーザ付き配線基板71の上面32にICチップ21を接合し、所望の半導体パッケージ11とする(図5参照)。   (3) The semiconductor package 11 of the present embodiment may be manufactured, for example, as follows. First, the interposer 31 is joined to the upper surface 42 of the wiring board 41 by soldering or the like, thereby preparing the wiring board 71 with the interposer (substrate with relay board) in advance. After that, the IC chip 21 is bonded to the upper surface 32 of the wiring board 71 with the interposer to form a desired semiconductor package 11 (see FIG. 5).

(4)また、図6に示される本実施形態の変更例のように、インターポーザ31の上面32に配線層84を形成し、その配線層84の一部に形成された部品接続パッド83上に例えばチップコンデンサ81等のような電子部品を実装してもよい。かかる構成にすると、低抵抗化及び低インダクタンス化が図られるため、高性能な半導体パッケージ11を実現することができる。なお、前記配線層84は周知の手法(導電性ペーストの印刷、焼成、めっき、スパッタ、CVDなど)を用いて形成されることができる。さらに、このような電子部品の実装に代えて、例えば図7に示す本実施形態の別の変更例のように、薄膜コンデンサ85を周知の手法により形成してもよい。
[第2実施形態]
(4) Also, as in the modification of the present embodiment shown in FIG. 6, a wiring layer 84 is formed on the upper surface 32 of the interposer 31, and the wiring layer 84 is formed on the component connection pads 83 formed on a part of the wiring layer 84. For example, an electronic component such as a chip capacitor 81 may be mounted. With such a configuration, low resistance and low inductance are achieved, so that a high-performance semiconductor package 11 can be realized. The wiring layer 84 can be formed by using a known method (printing, baking, plating, sputtering, CVD, or the like of a conductive paste). Further, instead of mounting such electronic components, the thin-film capacitor 85 may be formed by a known method, for example, as another modified example of the present embodiment shown in FIG.
[Second embodiment]

以下、本発明を具体化した第2実施形態を図8,図9に基づいて詳細に説明する。なお、ここでは第1実施形態と異なる点について言及する。図8は、ICチップ(半導体素子)21と、インターポーザ(中継基板)101と、配線基板(基板)41とからなる本実施形態の半導体パッケージ(構造体)11を示す概略断面図である。図9は、本実施形態のインターポーザ101を示す概略断面図である。   Hereinafter, a second embodiment of the present invention will be described in detail with reference to FIGS. Here, points different from the first embodiment will be described. FIG. 8 is a schematic cross-sectional view showing a semiconductor package (structure) 11 of the present embodiment including an IC chip (semiconductor element) 21, an interposer (relay substrate) 101, and a wiring substrate (substrate) 41. FIG. 9 is a schematic sectional view showing the interposer 101 of the present embodiment.

図8,図9に示されるように、このインターポーザ101の構造は、上記第1実施形態の構造と若干異なっている。即ち、このインターポーザ101を構成するインターポーザ本体38は、単層構造をなす窒化アルミニウム基板ではなくて、積層構造をなす窒化珪素基板からなる。ちなみに、窒化珪素の熱膨張係数は約3.0ppm/℃、ヤング率は約300GPaである。よって、第1実施形態に比べて本実施形態のほうが低熱膨張、高ヤング率となっている。また、インターポーザ本体38における複数のビア34内には、Pb−Sn系はんだからなる導体柱35ではなくて、銀(Ag)からなる導体柱35が設けられている。従って、第1実施形態に比べて本実施形態の導体柱35のほうが低抵抗となっている。前記各導体柱35の両端面はいずれもフラットになっている。各導体柱35の上端面にはニッケル−金めっき層102が形成され、そのニッケル−金めっき層102の表面上には略半球状はんだからなる上端面側バンプ36が形成されている。一方、各導体柱35の下端面には、ニッケル−金めっき層102もバンプも形成されていない。このため、各導体柱35の下端面は、配線基板41側の各面接続パッド46上に設けられ基板側はんだバンプ103を介して、各々の面接続パッド46に接続されている。   As shown in FIGS. 8 and 9, the structure of the interposer 101 is slightly different from the structure of the first embodiment. That is, the interposer main body 38 constituting the interposer 101 is not a single-layer aluminum nitride substrate but a silicon nitride substrate having a laminated structure. Incidentally, the thermal expansion coefficient of silicon nitride is about 3.0 ppm / ° C., and the Young's modulus is about 300 GPa. Therefore, this embodiment has lower thermal expansion and higher Young's modulus than the first embodiment. In the plurality of vias 34 in the interposer main body 38, a conductor pillar 35 made of silver (Ag) is provided instead of the conductor pillar 35 made of Pb—Sn-based solder. Therefore, the conductor pillar 35 of the present embodiment has a lower resistance than the first embodiment. Both end surfaces of each of the conductor columns 35 are flat. A nickel-gold plating layer 102 is formed on the upper end surface of each conductor pillar 35, and an upper end surface-side bump 36 made of substantially hemispherical solder is formed on the surface of the nickel-gold plating layer 102. On the other hand, neither the nickel-gold plating layer 102 nor the bump is formed on the lower end surface of each conductor post 35. For this reason, the lower end surface of each conductor pillar 35 is provided on each surface connection pad 46 on the wiring board 41 side and is connected to each surface connection pad 46 via the board side solder bump 103.

本実施形態のインターポーザ101は後焼成法によって製造することが可能である。まず、複数枚の窒化珪素製グリーンシートを作製し、それぞれにおける所定位置にあらかじめパンチング加工を行い、ビア34を形成する(穴あけ工程)。パンチング加工以外の手法(例えばドリリング加工やレーザ加工等)により穴あけ工程を行っても構わない。次に、これらのグリーンシートを積層して圧着し、グリーンシート積層体とする(ラミネート工程)。次に、得られたグリーンシート積層体における不要部分(例えば外周部分)を適宜切断して所定の形状及び大きさとする(外形カット工程)。さらに、このグリーンシート積層体を窒化珪素が焼結しうる温度条件(1650℃〜1950℃)で所定時間焼成し、複数のビア34を有するインターポーザ本体38とする(第1次焼成工程)。続いて、従来周知のペースト印刷装置を用いてビア34内に銀ペーストを充填する金属充填工程を行った後、インターポーザ本体38をベルト炉にて850℃、15分の条件で焼成する(第2次焼成工程)。この工程を経ると、ビア34内に充填された銀ペーストが焼結して導体柱35となる。次に、必要に応じて、インターポーザ本体38の上面32及び下面33の表面研磨を行い、導体柱35の両端面をフラットな状態にする。次に、無電解ニッケルめっき及び無電解金めっきを順次行うことにより、各導体柱35の上端面の表面上に所定厚さのニッケル−金めっき層102を形成する。このようなニッケル−金めっき層102を形成する理由は、後工程にて形成される上端面側バンプ36と、導体柱35との密着性等を向上させるためである。各導体柱35の下端面にも、同様のニッケル−金めっき層102を形成してもよい。次に、インターポーザ本体38をペースト印刷装置にセットし、その上面32側に所定のメタルマスクを配置した状態で、95Sn/5Agという組成の鉛フリーはんだを含むはんだペーストを印刷する。このようなはんだ印刷工程を行った後、インターポーザ本体38を所定温度に加熱してはんだをリフローさせる。このようなリフロー工程を経ると、ニッケル−金めっき層102の表面上に上端面側バンプ36が形成され、図15のインターポーザ101が完成する。なお、第1次焼成工程の実施後かつ金属充填工程の実施前の時点で、各ビア34の内壁面にメタライズ層を設けるメタライズ工程を行ってもよい。   The interposer 101 of the present embodiment can be manufactured by a post-firing method. First, a plurality of green sheets made of silicon nitride are prepared, and punching is performed at predetermined positions in each of them to form vias 34 (drilling step). The drilling step may be performed by a method other than punching (for example, drilling or laser processing). Next, these green sheets are laminated and pressed to form a green sheet laminate (lamination step). Next, an unnecessary portion (for example, an outer peripheral portion) of the obtained green sheet laminate is appropriately cut into a predetermined shape and size (outer shape cutting step). Further, the green sheet laminate is fired for a predetermined time under a temperature condition (1650 ° C. to 1950 ° C.) at which silicon nitride can be sintered to obtain an interposer body 38 having a plurality of vias 34 (first firing step). Subsequently, after performing a metal filling step of filling a silver paste in the via 34 using a conventionally well-known paste printing apparatus, the interposer body 38 is fired in a belt furnace at 850 ° C. for 15 minutes (second). Next firing step). After this step, the silver paste filled in the via 34 is sintered to form the conductor pillar 35. Next, if necessary, the upper surface 32 and the lower surface 33 of the interposer main body 38 are polished to make both end surfaces of the conductor pillar 35 flat. Next, by sequentially performing electroless nickel plating and electroless gold plating, a nickel-gold plating layer 102 having a predetermined thickness is formed on the surface of the upper end surface of each conductor pillar 35. The reason why such a nickel-gold plating layer 102 is formed is to improve the adhesion between the upper end surface side bump 36 formed in a later step and the conductor pillar 35 and the like. A similar nickel-gold plating layer 102 may be formed on the lower end surface of each conductor pillar 35. Next, the interposer main body 38 is set in a paste printing apparatus, and a solder paste containing a lead-free solder having a composition of 95Sn / 5Ag is printed with a predetermined metal mask disposed on the upper surface 32 side. After performing such a solder printing process, the interposer main body 38 is heated to a predetermined temperature to reflow the solder. After such a reflow process, the upper end side bumps 36 are formed on the surface of the nickel-gold plating layer 102, and the interposer 101 of FIG. 15 is completed. Note that a metallizing step of providing a metallized layer on the inner wall surface of each via 34 may be performed after the first firing step and before the metal filling step.

さて、このような構造の半導体パッケージ11を評価するために以下のシミュレーション試験を行った。この試験では、インターポーザ本体38の厚さをいくつか設定して(0mm,0.1mm,0.2mm,0.4mm)、各試験サンプルを220℃−25℃のヒートサイクルに遭遇させ、そのときにチップ接合部分に加わる熱応力の大きさ(MPa)を測定するシミュレーションを行った。なお本試験では、ICチップ21のサイズを縦12.0mm×横10.0mm×厚さ0.7mmとし、配線基板41のサイズを縦45.0mm×横45.0mmとした。その結果は以下のとおりである。ただし、下記の「0mm(比較例)」とは、インターポーザ無しの意味である。   The following simulation test was performed to evaluate the semiconductor package 11 having such a structure. In this test, several thicknesses of the interposer main body 38 were set (0 mm, 0.1 mm, 0.2 mm, 0.4 mm), and each test sample was subjected to a heat cycle of 220 ° C.-25 ° C. A simulation for measuring the magnitude (MPa) of the thermal stress applied to the chip bonding portion was performed. In this test, the size of the IC chip 21 was 12.0 mm long × 10.0 mm wide × 0.7 mm thick, and the size of the wiring board 41 was 45.0 mm long × 45.0 mm wide. The results are as follows. However, the following “0 mm (comparative example)” means no interposer.

インターポーザ本体38の厚さ 熱応力の大きさ 評価
0mm(比較例) 317MPa ×
0.1mm 164MPa ◎
0.2mm 99MPa ◎
0.4mm 243MPa ○
Evaluation of thickness of interposer body 38 Thermal stress magnitude
0 mm (comparative example) 317 MPa ×
0.1mm 164MPa ◎
0.2mm 99MPa ◎
0.4mm 243MPa ○

以上のシミュレーション試験の結果からも明白なように、インターポーザ本体38の厚さを0.1mm以上0.7mm以下にする(特には0.1mm以上0.3mm以下にする)ことにより、チップ接合部分に加わる熱応力が確実に低減されることがわかった。また、厚さが1.0mm以上になると、配線抵抗が上がったり、低背化の要求に応えられなくなったりすることが予想された。   As is clear from the results of the above simulation test, by setting the thickness of the interposer body 38 to 0.1 mm or more and 0.7 mm or less (especially 0.1 mm or more to 0.3 mm or less), the chip bonding portion It has been found that the thermal stress applied to the substrate is surely reduced. Further, when the thickness is 1.0 mm or more, it is expected that the wiring resistance will increase or the demand for a reduction in height will not be met.

従って、本実施形態によれば以下の効果を得ることができる。   Therefore, according to the present embodiment, the following effects can be obtained.

(1)この半導体パッケージ11(構造体)は、窒化珪素からなる略板形状のインターポーザ本体38を用いて構成されている。よって、インターポーザ101とICチップ21との熱膨張係数の差が小さくなっている。それゆえ、ICチップ21に直接大きな熱応力が作用しなくなる。よって、たとえICチップ21が大型で発熱量が多いものであったとしても、ICチップ21とインターポーザ101との界面にクラック等が起こりにくい。ゆえに、チップ接合部分等に高い信頼性を付与することができ、信頼性や耐久性に優れた半導体パッケージ11を実現することができる。しかも、絶縁体部分に窒化珪素を用いかつ導体部分に銀を用いてインターポーザ101を構成しているため、第1実施形態のものよりもさらに高い信頼性及び高い性能を付与することができる。   (1) The semiconductor package 11 (structure) is configured using a substantially plate-shaped interposer body 38 made of silicon nitride. Therefore, the difference between the thermal expansion coefficients of the interposer 101 and the IC chip 21 is small. Therefore, large thermal stress does not act directly on the IC chip 21. Therefore, even if the IC chip 21 is large and generates a large amount of heat, cracks and the like hardly occur at the interface between the IC chip 21 and the interposer 101. Therefore, high reliability can be given to the chip bonding portion and the like, and the semiconductor package 11 excellent in reliability and durability can be realized. Moreover, since the interposer 101 is formed using silicon nitride for the insulator portion and silver for the conductor portion, higher reliability and higher performance can be provided as compared with the first embodiment.

次に、前述した実施形態によって把握される技術的思想を以下に列挙する。   Next, technical ideas grasped by the above-described embodiment will be listed below.

(1)熱膨張係数が2.0ppm/℃以上5.0ppm/℃未満であって面接続端子を有する半導体素子が実装されるべき第1面、及び第2面を有し、熱膨張係数が5.0ppm/℃未満である略板形状の中継基板本体と、前記第1面及び前記第2面間を貫通し、前記面接続端子と接続される複数の導体柱とを備えることを特徴とした中継基板。   (1) having a first surface and a second surface on which a semiconductor element having a thermal expansion coefficient of not less than 2.0 ppm / ° C. and less than 5.0 ppm / ° C. and having a surface connection terminal is to be mounted; A relay board body having a substantially plate shape of less than 5.0 ppm / ° C., and a plurality of conductor pillars penetrating between the first surface and the second surface and connected to the surface connection terminal. Relay board.

(2)前記中継基板本体は、絶縁材料からなることを特徴とする前記(1)に記載の中継基板。   (2) The relay board according to (1), wherein the relay board body is made of an insulating material.

(3)前記中継基板本体は、前記基板よりも低い熱膨張係数の材料からなることを特徴とする前記(1)に記載の中継基板。   (3) The relay substrate according to (1), wherein the relay substrate body is made of a material having a lower thermal expansion coefficient than the substrate.

(4)前記中継基板本体は、少なくともシリコンよりも剛性が高い材料からなることを特徴とする前記(1)に記載の中継基板。   (4) The relay board according to (1), wherein the relay board main body is made of a material having higher rigidity than at least silicon.

(5)前記中継基板本体は、低熱膨張係数かつ高剛性の材料からなることを特徴とする前記(1)に記載の中継基板。   (5) The relay board according to (1), wherein the relay board body is made of a material having a low coefficient of thermal expansion and high rigidity.

(6)前記中継基板本体は、ヤング率が100GPa以上の材料からなることを特徴とする前記(1)に記載の中継基板。   (6) The relay substrate according to (1), wherein the relay substrate body is made of a material having a Young's modulus of 100 GPa or more.

(7)前記中継基板本体は、ヤング率が300GPa以上の材料からなることを特徴とする前記(1)に記載の中継基板。   (7) The relay substrate according to (1), wherein the relay substrate body is made of a material having a Young's modulus of 300 GPa or more.

(8)前記中継基板本体は、ヤング率が200GPa以上の絶縁性セラミック材料からなることを特徴とする前記(1)に記載の中継基板。   (8) The relay substrate according to (1), wherein the relay substrate body is made of an insulating ceramic material having a Young's modulus of 200 GPa or more.

(9)前記中継基板本体は、ヤング率が300GPa以上の絶縁性セラミック材料からなることを特徴とする前記(1)に記載の中継基板。   (9) The relay substrate according to (1), wherein the relay substrate body is made of an insulating ceramic material having a Young's modulus of 300 GPa or more.

(10)前記中継基板本体は、窒化物系のエンジニアリングセラミックからなることを特徴とする前記(1)に記載の中継基板。   (10) The relay substrate according to (1), wherein the relay substrate body is made of a nitride-based engineering ceramic.

(11)前記中継基板本体は、窒化アルミニウム、窒化珪素、または、窒化アルミニウム及び窒化珪素の混合セラミック材料を用いて形成されることを特徴とする前記(1)に記載の中継基板。   (11) The relay substrate according to (1), wherein the relay substrate body is formed using aluminum nitride, silicon nitride, or a mixed ceramic material of aluminum nitride and silicon nitride.

(12)前記中継基板本体の前記第1面には、さらにチップコンデンサが実装されていることを特徴とする前記(1)に記載の中継基板。   (12) The relay board according to (1), wherein a chip capacitor is further mounted on the first surface of the relay board body.

(13)前記中継基板本体の前記第1面には、さらに薄膜コンデンサが形成されていることを特徴とする前記(1)に記載の中継基板。   (13) The relay board according to (1), wherein a thin film capacitor is further formed on the first surface of the relay board body.

(14)前記中継基板本体の前記第1面には、前記チップコンデンサまたは前記薄膜コンデンサと前記導体柱とを電気的に接続するための配線層が形成されていることを特徴とする前記(12)または(13)に記載の中継基板。   (14) A wiring layer for electrically connecting the chip capacitor or the thin-film capacitor to the conductor pillar is formed on the first surface of the relay board main body. ) Or the relay board according to (13).

(15)前記半導体素子における少なくとも一辺は10mm以上であることを特徴とする前記(1)に記載の中継基板。   (15) The relay board according to (1), wherein at least one side of the semiconductor element is 10 mm or more.

ICチップ(半導体素子)と、インターポーザ(中継基板)と、配線基板(基板)とからなる第1実施形態の半導体パッケージ(構造体)を示す概略断面図。FIG. 1 is a schematic cross-sectional view illustrating a semiconductor package (structure) according to a first embodiment including an IC chip (semiconductor element), an interposer (relay substrate), and a wiring substrate (substrate). 第1実施形態の半導体パッケージを構成するインターポーザを示す概略断面図。FIG. 2 is a schematic cross-sectional view illustrating an interposer included in the semiconductor package according to the first embodiment. 第1実施形態の半導体パッケージを構成するICチップ付きインターポーザ(半導体素子付き中継基板)を示す概略断面図。FIG. 2 is a schematic cross-sectional view showing an interposer with an IC chip (a relay board with a semiconductor element) that constitutes the semiconductor package of the first embodiment. 第1実施形態のICチップ付きインターポーザを配線基板上に実装するときの状態を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing a state when the interposer with an IC chip according to the first embodiment is mounted on a wiring board. 第1実施形態の変更例において、ICチップをインターポーザ付き配線基板(中継基板付き基板)上に実装するときの状態を示す概略断面図。FIG. 7 is a schematic cross-sectional view showing a state in which an IC chip is mounted on a wiring board with an interposer (a board with a relay board) in a modification of the first embodiment. チップコンデンサを備える第1実施形態の変更例の半導体パッケージを示す概略断面図。FIG. 9 is a schematic cross-sectional view illustrating a semiconductor package according to a modification of the first embodiment including a chip capacitor. 薄膜コンデンサを備える第1実施形態の変更例の半導体パッケージを示す概略断面図。FIG. 9 is a schematic cross-sectional view illustrating a semiconductor package according to a modification of the first embodiment including a thin-film capacitor. ICチップ(半導体素子)と、インターポーザ(中継基板)と、配線基板(基板)とからなる第2実施形態の半導体パッケージ(構造体)を示す概略断面図。FIG. 7 is a schematic cross-sectional view illustrating a semiconductor package (structure) according to a second embodiment including an IC chip (semiconductor element), an interposer (relay substrate), and a wiring substrate (substrate). 第2実施形態のインターポーザを示す概略断面図。FIG. 6 is a schematic cross-sectional view illustrating an interposer according to a second embodiment.

符号の説明Explanation of reference numerals

11…半導体素子と中継基板と基板とからなる構造体としての半導体パッケージ
21…半導体素子としてのICチップ
22…面接続端子
31,101…中継基板としてのインターポーザ
32…(中継基板本体の)第1面
33…(中継基板本体の)第2面
35…導体柱
37…中継基板本体としてのインターポーザ本体
41…基板としての配線基板
46…面接続パッド
61…半導体素子付き中継基板としてのICチップ
71…中継基板付き基板としてのインターポーザ付き配線基板
DESCRIPTION OF SYMBOLS 11 ... Semiconductor package as a structure which consists of a semiconductor element, a relay board, and a board 21 ... IC chip as a semiconductor element 22 ... Surface connection terminals 31, 101 ... Interposer as a relay board 32 ... First (of the relay board main body) Surface 33: Second surface (of relay board main body) 35: Conductor pillar 37: Interposer main body as relay board main body 41 ... Wiring board as substrate 46 ... Surface connection pad 61 ... IC chip as relay board with semiconductor element 71 ... Wiring board with interposer as board with relay board

Claims (5)

熱膨張係数が2.0ppm/℃以上5.0ppm/℃未満であって面接続端子を有する半導体素子が実装される第1面及び第2面を有し、熱膨張係数が5.0ppm/℃未満である略板形状の中継基板本体と、
前記第1面及び前記第2面を貫通し、前記面接続端子と接続される複数の導体柱と
を備えることを特徴とした中継基板。
A first surface and a second surface having a thermal expansion coefficient of 2.0 ppm / ° C. or more and less than 5.0 ppm / ° C. on which a semiconductor element having a surface connection terminal is mounted, and a thermal expansion coefficient of 5.0 ppm / ° C. A substantially board-shaped relay board body that is less than
A relay substrate, comprising: a plurality of conductor pillars penetrating the first surface and the second surface and connected to the surface connection terminal.
前記中継基板本体は単層の絶縁層からなることを特徴とする請求項1に記載の中継基板。   The relay board according to claim 1, wherein the relay board body is formed of a single insulating layer. 熱膨張係数が2.0ppm/℃以上5.0ppm/℃未満であって面接続端子を有する半導体素子を備え、かつ、
前記半導体素子が実装される第1面及び第2面を有し、熱膨張係数が5.0ppm/℃未満である略板形状の中継基板本体と、前記第1面及び前記第2面を貫通し、前記面接続端子と接続される複数の導体柱とを有する中継基板を備えた
ことを特徴とした半導体素子付き中継基板。
A semiconductor element having a coefficient of thermal expansion of 2.0 ppm / ° C. or more and less than 5.0 ppm / ° C. and having a surface connection terminal; and
A substantially plate-shaped relay substrate body having a first surface and a second surface on which the semiconductor element is mounted and having a thermal expansion coefficient of less than 5.0 ppm / ° C., and penetrating the first surface and the second surface; And a relay board having a semiconductor element, the relay board having a plurality of conductor columns connected to the surface connection terminals.
熱膨張係数が5.0ppm/℃以上であって面接続パッドを有する基板を備え、かつ、
第1面及び前記基板の表面上に実装される第2面を有し、熱膨張係数が5.0ppm/℃未満である略板形状の中継基板本体と、前記第1面及び前記第2面を貫通し、前記面接続パッドと接続される複数の導体柱とを有する中継基板を備えた
ことを特徴とした中継基板付き基板。
A substrate having a thermal expansion coefficient of 5.0 ppm / ° C. or more and having a surface connection pad, and
A substantially plate-shaped relay substrate body having a first surface and a second surface mounted on the surface of the substrate, and having a thermal expansion coefficient of less than 5.0 ppm / ° C .; and the first surface and the second surface And a relay board having a plurality of conductor pillars penetrating through and connecting to the surface connection pad.
熱膨張係数が2.0ppm/℃以上5.0ppm/℃未満であって面接続端子を有する半導体素子を備え、
熱膨張係数が5.0ppm/℃以上であって面接続パッドを有する基板を備え、かつ、
前記半導体素子が実装される第1面及び前記基板の表面上に実装される第2面を有し、熱膨張係数が5.0ppm/℃未満である略板形状の中継基板本体と、前記第1面及び前記第2面を貫通し、前記面接続端子及び前記面接続パッドと接続される複数の導体柱とを有する中継基板を備えた
ことを特徴とした、半導体素子と中継基板と基板とからなる構造体。
A semiconductor element having a thermal expansion coefficient of 2.0 ppm / ° C. or more and less than 5.0 ppm / ° C. and having a surface connection terminal;
A substrate having a thermal expansion coefficient of 5.0 ppm / ° C. or more and having a surface connection pad, and
A substantially plate-shaped relay substrate body having a first surface on which the semiconductor element is mounted and a second surface mounted on the surface of the substrate, and having a coefficient of thermal expansion of less than 5.0 ppm / ° C .; A semiconductor element, a relay board, a board, and a relay board having a plurality of conductor pillars penetrating through one surface and the second surface and connected to the surface connection terminal and the surface connection pad. Structure consisting of
JP2004045496A 2003-03-19 2004-02-20 Intermediate substrate, intermediate substrate with semiconductor element, substrate with intermediate substrate, and structure having semiconductor element, intermediate substrate and substrate Pending JP2004356619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004045496A JP2004356619A (en) 2003-03-19 2004-02-20 Intermediate substrate, intermediate substrate with semiconductor element, substrate with intermediate substrate, and structure having semiconductor element, intermediate substrate and substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003076535 2003-03-19
JP2003129127 2003-05-07
JP2004045496A JP2004356619A (en) 2003-03-19 2004-02-20 Intermediate substrate, intermediate substrate with semiconductor element, substrate with intermediate substrate, and structure having semiconductor element, intermediate substrate and substrate

Publications (1)

Publication Number Publication Date
JP2004356619A true JP2004356619A (en) 2004-12-16

Family

ID=34084252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004045496A Pending JP2004356619A (en) 2003-03-19 2004-02-20 Intermediate substrate, intermediate substrate with semiconductor element, substrate with intermediate substrate, and structure having semiconductor element, intermediate substrate and substrate

Country Status (1)

Country Link
JP (1) JP2004356619A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351935A (en) * 2005-06-17 2006-12-28 Shinko Electric Ind Co Ltd Semiconductor chip mounting substrate and semiconductor device using it
JP2011082293A (en) * 2009-10-06 2011-04-21 Shinko Electric Ind Co Ltd Interposer mounted wiring board, and electronic component device
US9837345B2 (en) 2015-07-17 2017-12-05 Ibiden Co., Ltd. Interposer and circuit substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351935A (en) * 2005-06-17 2006-12-28 Shinko Electric Ind Co Ltd Semiconductor chip mounting substrate and semiconductor device using it
JP2011082293A (en) * 2009-10-06 2011-04-21 Shinko Electric Ind Co Ltd Interposer mounted wiring board, and electronic component device
US9837345B2 (en) 2015-07-17 2017-12-05 Ibiden Co., Ltd. Interposer and circuit substrate

Similar Documents

Publication Publication Date Title
JP2004356618A (en) Intermediate substrate, intermediate substrate with semiconductor element, substrate with intermediate substrate, structure having semiconductor element, intermediate substrate, and substrate, and method for manufacturing intermediate substrate
US6312791B1 (en) Multilayer ceramic substrate with anchored pad
JP4310467B2 (en) Composite multilayer substrate and manufacturing method thereof
US7024764B2 (en) Method of making an electronic package
TWI257832B (en) Intermediate substrate, intermediate substrate with semiconductor element, substrate with intermediate substrate, and structure having semiconductor element, intermediate substrate and substrate
US20050269287A1 (en) Multilayer electronic component and method for producing the same
JP4509550B2 (en) Relay board, relay board with semiconductor element, board with relay board, structure comprising semiconductor element, relay board and board
CN101331605A (en) Module having built-in electronic parts and manufacture method thereof
JP2005216696A (en) Relay board and board with relay board
JP2004311598A (en) Substrate with reinforcement, wiring board consisting of semiconductor element, reinforcement and substrate
JP5535451B2 (en) Ceramic wiring board and manufacturing method thereof
JP2012074505A (en) Substrate for semiconductor mounting devices, and semiconductor mounting device
JP2007173862A (en) Structure comprising relay substrate, relay substrate with semiconductor element, substrate with relay substrate, and structure composed of semiconductor element, relay substrate, and substrate
JP2004221388A (en) Multilayer circuit board for mounting electronic component and its manufacturing method
JP2005243761A (en) Relay board, and substrate made of resin having the same
JP2004356619A (en) Intermediate substrate, intermediate substrate with semiconductor element, substrate with intermediate substrate, and structure having semiconductor element, intermediate substrate and substrate
JP2005039241A (en) Intermediate substrate with semiconductor element, substrate with intermediate substrate, and structure composed of semiconductor element, intermediate substrate, and substrate
JP4786914B2 (en) Composite wiring board structure
JP2005191075A (en) Relay substrate and its manufacturing method, and substrate therewith
JP4065264B2 (en) Substrate with relay substrate and method for manufacturing the same
JP2004356620A (en) Relay board, relay board with semiconductor device, board with relay board, and structure composed of semiconductor device, relay board, and board
JP2005039232A (en) Intermediate substrate with semiconductor element, substrate with intermediate substrate, and structure composed of semiconductor element, intermediate substrate, and substrate
JP2005011908A (en) Relay substrate, relay substrate with semiconductor element, substrate with relay substrate, and structure composed of semiconductor element, relay substrate and substrate
US20120155044A1 (en) Electronic circuit board and a related method thereof
JP2005039240A (en) Intermediate substrate, intermediate substrate with semiconductor element, substrate with intermediate substrate, and structure composed of semiconductor element, intermediate substrate, and substrate