JP2004353743A - Self-aligning roller bearing - Google Patents

Self-aligning roller bearing Download PDF

Info

Publication number
JP2004353743A
JP2004353743A JP2003151316A JP2003151316A JP2004353743A JP 2004353743 A JP2004353743 A JP 2004353743A JP 2003151316 A JP2003151316 A JP 2003151316A JP 2003151316 A JP2003151316 A JP 2003151316A JP 2004353743 A JP2004353743 A JP 2004353743A
Authority
JP
Japan
Prior art keywords
rolling element
outer ring
raceway surface
inner ring
element raceway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003151316A
Other languages
Japanese (ja)
Other versions
JP4349000B2 (en
Inventor
Hidekazu Takahashi
英一 高橋
Kazuo Sekino
和雄 関野
Takashi Murai
隆司 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2003151316A priority Critical patent/JP4349000B2/en
Publication of JP2004353743A publication Critical patent/JP2004353743A/en
Application granted granted Critical
Publication of JP4349000B2 publication Critical patent/JP4349000B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/54Surface roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a self-aligning roller bearing capable of improving a bearing life. <P>SOLUTION: Arithmetic average roughness at a width direction and a longitudinal direction for rolling body raceways of an outer ring 11 and/or an inner ring 12 is set within a range from 0.2 to 0.5 μm. A ratio of arithmetic average roughness at a width direction and a longitudinal direction for rolling body raceways of the outer ring 11 and/or the inner ring 12 is set within a range from 0.8 to 1.20. Further, an average depth of prominent trough sections of a surface roughness curve is set to be 0.45 μm or more at a width direction and a longitudinal direction of the rolling body raceways of the outer ring 11 and/or the inner ring 12. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば製紙機械、印刷機、風車等の各種産業機械で用いられる自動調心ころ軸受に関する。
【0002】
【従来の技術】
自動調心ころ軸受は、一般に、外輪の内周面に形成された転動体軌道面と内輪の外周面に形成された転動体軌道面の断面を円弧状に形成し、これらの軌道面を転動する転動体として樽形ころを使用している。従って、このような自動調心ころ軸受は、外輪や内輪の姿勢が取付け誤差や衝撃荷重などにより変化しても軌道面と樽形ころとの接触状態がほとんど変化しないため、異常な負荷荷重の発生を防止できると共にラジアル負荷能力を大きく確保できるという利点を有している。
【0003】
【発明が解決しようとする課題】
しかし、このような自動調心ころ軸受は、樽形ころが外輪と内輪の両軌道面間にその自転軸を外輪及び内輪の軸方向に対してある角度に傾斜させて配置されており、これに加えて、ラジアル方向とアキシアル方向の両方向の負荷荷重を受けることが多いため、外輪及び内輪の軌道面上を樽形ころがスキューを起しながら転動したりすることがあり、その結果、外輪及び内輪の軌道面上を樽形ころが滑り易い。特に、潤滑条件が悪化すると、上述した傾向が強まり、その結果、転動体軌道面の早期剥離や軸受の異常発熱を招き、軸受寿命が著しく低下するという問題があった。
本発明は、このような問題点に着目してなされたものであり、軸受寿命の向上を図ることのできる自動調心ころ軸受を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記の目的を達成するために、請求項1の発明は、内周面に転動体軌道面を有する外輪と、この外輪の前記転動体軌道面と対向する転動体軌道面を外周面に有する内輪と、前記外輪の転動体軌道面と前記内輪の転動体軌道面との転動自在に配置された複数の樽形ころとを備えた自動調心ころ軸受において、前記外輪および/又は前記内輪の転動体軌道面の幅方向と長手方向における算術平均粗さ(JIS B0601)を0.2μm以上0.5μm以下に設定するとともに、前記外輪および/又は前記内輪の転動体軌道面の幅方向と長手方向における算術平均粗さの比を0.80〜1.20の範囲内に設定し、かつ前記外輪および/又は前記内輪の転動体軌道面の幅方向と長手方向における表面粗さ曲線の突出谷部平均深さ(JIS B0671−2)を0.45μm以上としたことを特徴とする。
請求項2の発明は、請求項1記載の自動調心ころ軸受において、前記外輪および/又は前記内輪の転動体軌道面の幅方向と長手方向における輪郭曲線要素の平均長さ(JIS B0671−3)を30μm以下としたことを特徴とする。
【0005】
【発明の実施の形態】
以下、図1乃至図6を参照して本発明の実施の形態について説明する。
図1は本発明の一実施形態に係る自動調心ころ軸受の一部を示す断面図であり、同図に示されるように、本実施形態に係る自動調心ころ軸受は、外輪11および内輪12を備えて構成されている。
外輪11は内輪12の外径より小さい内径で円環状に形成されており、この外輪11の内周面には転動体軌道面13a,13bが形成されている。これらの転動体軌道面13a,13bは外輪11の軸方向に沿う断面が円弧状に形成されており、外輪11の内径より小さい外径で円環状に形成された内輪12の外周面には転動体軌道面13c,13dが形成されている。
【0006】
転動体軌道面13c,13dは、転動体軌道面13a,13bと同様に、内輪12の軸方向に沿う断面が円弧状に形成されており、これらの転動体軌道面13a〜13d間には、複数のころ14がその中心軸線を外輪11及び内輪12の軸方向に対して斜めに傾斜させて設けられている。
ころ14は、転動体軌道面13a〜13dとほぼ同じ曲率半径で樽形に形成されている。また、各ころ14は保持器15a又は15bに保持されており、転動体軌道面13aと13cとの間に配置された樽形ころ14の中心軸線は、転動体軌道面13bと13dとの間に配置された樽形ころ14の中心軸線と軸受の中央部でクロスしている。
【0007】
外輪11の転動体軌道面13a,13bは、JIS B0601で規定される算術平均粗さをRa、JIS B0671−2で規定される表面粗さ曲線の突出谷部平均深さ(突出谷部深さを基準長さ毎に算出した平均値)をRvk、JISB0671−3で規定される輪郭曲線要素の平均長さをRSmとすると、
条件1;0.2μm≦Ra及びRa≦0.5μm
条件2;Ra/Ra及びRa/Ra=0.80〜1.20
条件3;Rvk及びRvk≧0.45μm
条件4;RSm及びRSm≦30μm
ただし、Ra;転動体軌道面の幅方向(外輪軸方向)における算術平均粗さRa;転動体軌道面の長手方向(外輪周方向)における算術平均粗さ
Rvk;転動体軌道面の幅方向(外輪軸方向)における突出谷部平均深さ
Rvk;転動体軌道面の長手方向(外輪周方向)における突出谷部平均深さ
RSm;転動体軌道面の幅方向(外輪軸方向)における輪郭曲線要素の平均長さ
RSm;転動体軌道面の長手方向(外輪周方向)における輪郭曲線要素の平均長さ
を満たす表面粗さに仕上げられている。
【0008】
なお、上記の条件1〜4を満たす表面粗さに仕上げる方法としては、たとえば、図2に示すように、外輪11の転動体軌道面13a,13bに幅及び深さがミクロンオーダーの多数の潤滑油溜り溝16を網目状に形成する方法などが考えられる。
このように、転動体軌道面13a,13bの幅方向と長手方向における算術平均粗さRa,Raを0.2μm以上0.5μm以下に設定するとともに、転動体軌道面13a,13bの幅方向と長手方向における算術平均粗さRa,Raの比を0.80〜1.20の範囲内に設定し、かつ転動体軌道面13a,13bの幅方向と長手方向における表面粗さ曲線の突出谷部平均深さRvk,Rvkを0.45μm以上に設定するとともに、転動体軌道面13a,13bの幅方向と長手方向における輪郭曲線要素の平均長さを30μm以下に設定することで、転動体軌道面13a,13bと樽形ころ14との間に隙間が形成され、この隙間が潤滑油溜りとして機能するので、転動体軌道面と樽形ころとの接触部に油膜を形成することができる。これにより、高荷重や低速回転域でも樽形ころと転動体軌道面が金属接触することを抑制できるので、転動体軌道面の剥離や異常発熱による軸受寿命の低下を防止することができる。
【0009】
なお、上述した実施の形態では外輪の転動体軌道面を条件1〜4を満たす表面粗さに仕上げたが、内輪の転動体軌道面を条件1〜4を満たす表面粗さに仕上げてもよいし、あるいは外輪及び内輪の両方の転動体軌道面を条件1〜4を満たす表面粗さに仕上げてもよい。
表1に、本発明の実施例と比較例を示す。
【0010】
【表1】

Figure 2004353743
【0011】
表1において、実施例Aは外輪の転動体軌道面をRa=0.262μm、Ra=0.251μm、Ra/Ra=1.044、Rvk=0.581μm、Rvk=0.560μm、RSm=21.26μm、RSm=12.52μmを満たす表面粗さ(図3参照)に仕上げた自動調心ころ軸受を示し、実施例Bは外輪の転動体軌道面をRa=0.375μm、Ra=0.346μm、Ra/Ra=1.084、Rvk=0.689μm、Rvk=0.739μm、RSm=16.00μm、RSm=16.49μmを満たす表面粗さ(図4参照)に仕上げた自動調心ころ軸受を示している。また、比較例Cは外輪の転動体軌道面をRa=0.100μm、Ra=0.107μm、Ra/Ra=0.934、Rvk=0.154μm、Rvk=0.256μm、RSm=37.57μm、RSm=222.20μmを満たす表面粗さ(図5参照)に仕上げた自動調心ころ軸受を示している。なお、図3〜図5および表1の表面粗さは、下記の測定条件で各パラメータの値を算出したものである。
【0012】
[測定条件]
測定機:TH(テーラーホブソン社)製フォームタリサーフ
フィルター:ガウシアンフィルター
カットオフ値:0.8mm
評価長さ:4.0mm
本発明者らは、表1に示す3つの自動調心ころ軸受(外径100mm、内径55mm、ころ直径11.8mm、ころ長さ9.5mm)を使用して、軸受の転がり疲労寿命試験を下記の試験条件で行った。その試験結果を図6に示す。
【0013】
[試験条件]
軸受荷重 Fr=4600kg
回転数 1500min−1
使用潤滑油 RO♯68
図6において、■は実施例A、▲は実施例B、●は比較例3をそれぞれ示しており、この図からわかるように、実施例A及びBのものは比較例3のものに比べて転がり疲労寿命が高い値となっている。これは、表1から分かるように、転動体軌道面の算術平均粗さRa,Raを0.2μm以上0.5m以下に設定するとともに、算術平均粗さRa,Raの比を0.80〜1.20の範囲内に設定し、かつ突出谷部平均深さRvk,Rvkを0.45μm以上に設定するとともに、輪郭曲線要素の平均長さRSm,RSmを30μm以下に設定したためである。
【0014】
したがって、外輪および/又は内輪の転動体軌道面の幅方向と長手方向における算術平均粗さRa,Raを0.2μm以上0.5μm以下に設定するとともに、外輪および/又は内輪の転動体軌道面の幅方向と長手方向における算術平均粗さRa,Raの比を0.80〜1.20の範囲内に設定し、かつ外輪および/又は内輪の転動体軌道面の幅方向と長手方向における表面粗さ曲線の突出谷部平均深さRvk,Rvkを0.45μm以上に設定するとともに、外輪および/又は内輪の転動体軌道面の幅方向と長手方向における輪郭曲線要素の平均長さRSm,RSmを30μm以下に設定することにより、転動体転動面に潤滑油を溜めておくことが可能となるので、転動体軌道面の剥離や異常発熱による軸受寿命の低下を防止することができる。
【0015】
【発明の効果】
以上説明したように、本発明に係る自動調心ころ軸受によれば、外輪および/内輪の転動体軌道面に転動体転動面に潤滑油を溜めておくことが可能となるので、転動体軌道面の剥離や異常発熱による軸受寿命の低下を防止することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る自動調心ころ軸受の一部を示す断面図である。
【図2】図1の自動調心ころ軸受の外輪側転動体軌道面を示す図である。
【図3】表1における実施例Aの外輪軌道面粗さ曲線を示す図である。
【図4】表1における実施例Bの外輪軌道面粗さ曲線を示す図である。
【図5】表1における比較例Cの外輪軌道面粗さ曲線を示す図である。
【図6】実施例A、B及び比較例Cの転がり寿命試験結果を示す図である。
【符号の説明】
11 外輪
12 内輪
13a〜13d 転動体軌道面
14 樽形ころ
15a,15b 保持器
16 潤滑油溜り溝[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a self-aligning roller bearing used in various industrial machines such as a paper machine, a printing machine, and a windmill.
[0002]
[Prior art]
Generally, spherical roller bearings are formed by forming a cross section of a rolling element raceway surface formed on an inner peripheral surface of an outer ring and a rolling element raceway surface formed on an outer peripheral surface of an inner ring into an arc shape, and rolling these raceway surfaces. Barrel rollers are used as moving rolling elements. Therefore, in such a spherical roller bearing, even if the posture of the outer ring or the inner ring changes due to an installation error, an impact load, or the like, the contact state between the raceway surface and the barrel roller hardly changes, so that an abnormal load load is applied. This has the advantage that generation can be prevented and a large radial load capability can be ensured.
[0003]
[Problems to be solved by the invention]
However, in such a self-aligning roller bearing, the barrel roller is disposed between both raceways of the outer ring and the inner ring so that its rotation axis is inclined at an angle with respect to the axial direction of the outer ring and the inner ring. In addition, in many cases, a load is applied in both the radial direction and the axial direction.Therefore, barrel rollers may roll on the raceway surfaces of the outer ring and the inner ring while causing skew, and as a result, The barrel rollers are easy to slide on the raceways of the outer ring and the inner ring. In particular, when the lubrication conditions are deteriorated, the above-mentioned tendency is strengthened. As a result, there is a problem in that the rolling element raceway surface is separated at an early stage and abnormal heat generation of the bearing is caused, and the bearing life is remarkably reduced.
The present invention has been made in view of such a problem, and an object of the present invention is to provide a self-aligning roller bearing that can improve the life of the bearing.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 includes an outer ring having a rolling element raceway surface on an inner peripheral surface, and an inner ring having a rolling element raceway surface facing the rolling element raceway surface of the outer ring on an outer peripheral surface. A self-aligning roller bearing comprising: a plurality of barrel rollers rotatably arranged between a rolling element raceway surface of the outer ring and a rolling element raceway surface of the inner ring; The arithmetic mean roughness (JIS B0601) in the width direction and the longitudinal direction of the rolling element raceway surface is set to 0.2 μm or more and 0.5 μm or less, and the width direction and the longitudinal direction of the rolling element raceway surface of the outer ring and / or the inner ring are set. The ratio of the arithmetic average roughness in the direction is set within the range of 0.80 to 1.20, and the protruding valley of the surface roughness curve in the width direction and the longitudinal direction of the rolling element raceway surface of the outer ring and / or the inner ring. Part average depth (JIS B0671 2), characterized in that the 0.45μm or more.
According to a second aspect of the present invention, in the self-aligning roller bearing according to the first aspect, an average length (JIS B0671-3) of a contour curve element in a width direction and a longitudinal direction of a rolling element raceway surface of the outer ring and / or the inner ring. ) Is 30 μm or less.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a sectional view showing a part of a self-aligning roller bearing according to one embodiment of the present invention. As shown in the drawing, the self-aligning roller bearing according to the present embodiment includes an outer ring 11 and an inner ring. 12 is provided.
The outer race 11 is formed in an annular shape with an inner diameter smaller than the outer diameter of the inner race 12, and rolling element raceway surfaces 13a and 13b are formed on the inner peripheral surface of the outer race 11. The rolling element raceway surfaces 13a and 13b have an arc-shaped cross section along the axial direction of the outer ring 11, and the outer peripheral surface of the inner ring 12 formed in an annular shape with an outer diameter smaller than the inner diameter of the outer ring 11 is provided on the outer peripheral surface. Moving body raceway surfaces 13c and 13d are formed.
[0006]
The rolling element raceway surfaces 13c and 13d have a circular cross section along the axial direction of the inner race 12, like the rolling element raceway surfaces 13a and 13b, and the rolling element raceway surfaces 13a to 13d have A plurality of rollers 14 are provided with their central axes inclined obliquely with respect to the axial direction of the outer ring 11 and the inner ring 12.
The roller 14 is formed in a barrel shape with substantially the same radius of curvature as the rolling element raceway surfaces 13a to 13d. Each roller 14 is held by a cage 15a or 15b, and the center axis of the barrel roller 14 disposed between the rolling element raceway surfaces 13a and 13c is between the rolling element raceway surfaces 13b and 13d. At the center of the bearing and the central axis of the barrel roller 14 disposed at the center of the bearing.
[0007]
The rolling element raceway surfaces 13a and 13b of the outer race 11 have an arithmetic average roughness defined by JIS B0601 as Ra, and a protruded valley average depth (protruded valley depth) of a surface roughness curve specified by JIS B0671-2. Is the average value calculated for each reference length), and the average length of the contour curve element defined by JISB0671-3 is RSm.
Condition 1: 0.2 μm ≦ Ra 1 and Ra 2 ≦ 0.5 μm
Condition 2; Ra 1 / Ra 2 and Ra 2 / Ra 1 = 0.80~1.20
Condition 3: Rvk 1 and Rvk 2 ≧ 0.45 μm
Condition 4: RSm 1 and RSm 2 ≦ 30 μm
However, Ra 1 ; arithmetic average roughness Ra 2 in the width direction (outer ring axis direction) of the rolling element raceway surface; arithmetic average roughness Rvk 1 in the longitudinal direction (outer ring circumferential direction) of the rolling element raceway surface; Protruding valley average depth Rvk 2 in the width direction (outer ring axis direction); protruding valley average depth RSm 1 in the longitudinal direction of the rolling element raceway (outer ring circumferential direction); width direction of rolling element raceway (outer ring axial direction) ) Average length RSm 2 ; finished to a surface roughness that satisfies the average length of the contour curve element in the longitudinal direction (outer ring circumferential direction) of the rolling element raceway surface.
[0008]
As a method of finishing the surface to satisfy the above conditions 1 to 4, for example, as shown in FIG. 2, a large number of lubrications having a width and a depth on the order of microns are provided on the rolling element raceway surfaces 13a and 13b of the outer race 11. A method of forming the oil sump groove 16 in a mesh shape or the like can be considered.
As described above, the arithmetic mean roughnesses Ra 1 and Ra 2 in the width direction and the longitudinal direction of the rolling element raceway surfaces 13a and 13b are set to 0.2 μm or more and 0.5 μm or less, and the widths of the rolling element raceway surfaces 13a and 13b are set. The ratio of the arithmetic average roughness Ra 1 , Ra 2 in the direction and the longitudinal direction is set in the range of 0.80 to 1.20, and the surface roughness curve of the rolling element raceway surfaces 13a, 13b in the width direction and the longitudinal direction. projecting valley average depth of Rvk 1, sets the Rvk 2 above 0.45 [mu] m, by setting rolling element raceway surfaces 13a, the average length of the profile elements in the width direction and the longitudinal direction of the 13b to 30μm or less Thus, a gap is formed between the rolling element raceway surfaces 13a, 13b and the barrel rollers 14, and this gap functions as a lubricating oil reservoir, so that an oil film is formed on the contact portion between the rolling element raceway surfaces and the barrel rollers. This Can. As a result, metal contact between the barrel-shaped rollers and the raceway surface of the rolling element can be suppressed even in a high load or low-speed rotation region, so that the bearing life can be prevented from being shortened due to peeling of the rolling element raceway surface or abnormal heat generation.
[0009]
In the above-described embodiment, the rolling element raceway surface of the outer ring is finished to a surface roughness satisfying the conditions 1 to 4, but the rolling element raceway surface of the inner ring may be finished to a surface roughness satisfying the conditions 1 to 4. Alternatively, the raceway surfaces of both the outer ring and the inner ring may be finished to a surface roughness satisfying the conditions 1 to 4.
Table 1 shows examples of the present invention and comparative examples.
[0010]
[Table 1]
Figure 2004353743
[0011]
In Table 1, in Example A, the rolling element raceway surfaces of the outer ring were Ra 1 = 0.262 μm, Ra 2 = 0.251 μm, Ra 1 / Ra 2 = 1.044, Rvk 1 = 0.581 μm, and Rvk 2 = 0. A self-aligning roller bearing finished to a surface roughness (see FIG. 3) satisfying .560 μm, RSm 1 = 21.26 μm, and RSm 2 = 12.52 μm is shown. In Example B, the rolling element raceway surface of the outer ring is Ra 1 = 0.375 µm, Ra 2 = 0.346 µm, Ra 1 / Ra 2 = 1.084, Rvk 1 = 0.689 µm, Rvk 2 = 0.739 µm, RSm 1 = 16.00 µm, RSm 2 = 16.49 µm. 5 shows a self-aligning roller bearing finished to a satisfying surface roughness (see FIG. 4). In Comparative Example C, the rolling element raceway surfaces of the outer ring were Ra 1 = 0.100 μm, Ra 2 = 0.107 μm, Ra 1 / Ra 2 = 0.934, Rvk 1 = 0.154 μm, and Rvk 2 = 0.256 μm. , RSm 1 = 37.57 μm, and RSm 2 = 222.20 μm, which shows a spherical roller bearing finished to a surface roughness (see FIG. 5). The surface roughness in FIGS. 3 to 5 and Table 1 is obtained by calculating the value of each parameter under the following measurement conditions.
[0012]
[Measurement condition]
Measuring machine: TH (Taylor Hobson) Form Talysurf Filter: Gaussian filter Cutoff value: 0.8 mm
Evaluation length: 4.0mm
The present inventors conducted a rolling fatigue life test of the bearing using three self-aligning roller bearings (outer diameter 100 mm, inner diameter 55 mm, roller diameter 11.8 mm, roller length 9.5 mm) shown in Table 1. The test was performed under the following test conditions. FIG. 6 shows the test results.
[0013]
[Test condition]
Bearing load Fr = 4600kg
Rotation speed 1500 min -1
Lubricating oil used RO♯68
In FIG. 6, Δ indicates Example A, は indicates Example B, and ● indicates Comparative Example 3. As can be seen from this figure, those of Examples A and B are compared with those of Comparative Example 3. The rolling fatigue life is a high value. This means that, as can be seen from Table 1, the arithmetic mean roughness Ra 1 , Ra 2 of the rolling element raceway surface is set to 0.2 μm or more and 0.5 m or less, and the ratio of the arithmetic mean roughness Ra 1 , Ra 2 is set. The values are set in the range of 0.80 to 1.20, and the average depths Rvk 1 and Rvk 2 of the protruding valleys are set to 0.45 μm or more, and the average lengths RSm 1 and RSm 2 of the contour curve elements are set to 30 μm. This is because it was set as follows.
[0014]
Therefore, the arithmetic mean roughness Ra 1 , Ra 2 in the width direction and the longitudinal direction of the raceway surface of the outer ring and / or the inner ring is set to 0.2 μm or more and 0.5 μm or less, and the rolling element of the outer ring and / or the inner ring is set. The ratio of the arithmetic average roughness Ra 1 , Ra 2 in the width direction and the longitudinal direction of the raceway surface is set within a range of 0.80 to 1.20, and the ratio between the width direction of the rolling element raceway surface of the outer ring and / or the inner ring is The average depths Rvk 1 and Rvk 2 of the protruding valleys of the surface roughness curve in the longitudinal direction are set to 0.45 μm or more, and the contour curve elements in the width direction and the longitudinal direction of the rolling element raceway surfaces of the outer ring and / or the inner ring are set. by setting the average length RSm 1, RSm 2 to 30μm or less, rolling it becomes possible to keep pooled lubricant to element rolling surface, the rolling of the rolling elements raceway surfaces peeling or abnormal heat generation due to the bearing life It is possible to prevent the bottom.
[0015]
【The invention's effect】
As described above, according to the self-aligning roller bearing according to the present invention, it is possible to store lubricating oil on the rolling element rolling surfaces on the rolling element raceway surfaces of the outer ring and / or the inner ring. It is possible to prevent the bearing life from being shortened due to peeling of the raceway surface or abnormal heat generation.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a part of a spherical roller bearing according to an embodiment of the present invention.
FIG. 2 is a view showing a raceway surface of an outer race-side rolling element of the self-aligning roller bearing of FIG. 1;
FIG. 3 is a view showing an outer raceway surface roughness curve of Example A in Table 1.
4 is a diagram showing an outer raceway surface roughness curve of Example B in Table 1. FIG.
5 is a diagram showing an outer raceway surface roughness curve of Comparative Example C in Table 1. FIG.
FIG. 6 is a diagram showing the results of a rolling life test of Examples A and B and Comparative Example C.
[Explanation of symbols]
Reference Signs List 11 outer ring 12 inner rings 13a to 13d rolling element raceway surface 14 barrel rollers 15a, 15b cage 16 lubricating oil sump groove

Claims (2)

内周面に転動体軌道面を有する外輪と、この外輪の前記転動体軌道面と対向する転動体軌道面を外周面に有する内輪と、前記外輪の転動体軌道面と前記内輪の転動体軌道面との転動自在に配置された複数の樽形ころとを備えた自動調心ころ軸受において、
前記外輪および/又は前記内輪の転動体軌道面の幅方向と長手方向における算術平均粗さ(JIS B0601)を0.2μm以上0.5μm以下に設定するとともに、前記外輪および/又は前記内輪の転動体軌道面の幅方向と長手方向における算術平均粗さの比を0.80〜1.20の範囲内に設定し、かつ前記外輪および/又は前記内輪の転動体軌道面の幅方向と長手方向における表面粗さ曲線の突出谷部平均深さ(JIS B0671−2)を0.45μm以上としたことを特徴とする自動調心ころ軸受。
An outer ring having a rolling element raceway surface on an inner peripheral surface; an inner ring having a rolling element raceway surface facing the rolling element raceway surface of the outer ring on an outer peripheral surface; a rolling element raceway surface of the outer ring and a rolling element raceway of the inner ring In a self-aligning roller bearing having a plurality of barrel-shaped rollers arranged to be able to roll freely with a surface,
The arithmetic mean roughness (JIS B0601) in the width direction and the longitudinal direction of the raceway surface of the rolling element of the outer ring and / or the inner ring is set to 0.2 μm or more and 0.5 μm or less, and the rolling of the outer ring and / or the inner ring is performed. The ratio of the arithmetic average roughness in the width direction and the longitudinal direction of the moving body raceway surface is set in the range of 0.80 to 1.20, and the width direction and the longitudinal direction of the rolling body raceway surface of the outer ring and / or the inner ring are set. 2. The self-aligning roller bearing according to claim 1, wherein the protruding valley average depth (JIS B0671-2) of the surface roughness curve is 0.45 μm or more.
請求項1記載の自動調心ころ軸受において、前記外輪および/又は前記内輪の転動体軌道面の幅方向と長手方向における輪郭曲線要素の平均長さ(JIS B0671−3)を30μm以下としたことを特徴とする自動調心ころ軸受。2. The self-aligning roller bearing according to claim 1, wherein an average length (JIS B0671-3) of a contour curve element in a width direction and a longitudinal direction of a rolling element raceway surface of the outer ring and / or the inner ring is set to 30 μm or less. Spherical roller bearing characterized by:
JP2003151316A 2003-05-28 2003-05-28 Spherical roller bearing Expired - Lifetime JP4349000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003151316A JP4349000B2 (en) 2003-05-28 2003-05-28 Spherical roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003151316A JP4349000B2 (en) 2003-05-28 2003-05-28 Spherical roller bearing

Publications (2)

Publication Number Publication Date
JP2004353743A true JP2004353743A (en) 2004-12-16
JP4349000B2 JP4349000B2 (en) 2009-10-21

Family

ID=34046872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003151316A Expired - Lifetime JP4349000B2 (en) 2003-05-28 2003-05-28 Spherical roller bearing

Country Status (1)

Country Link
JP (1) JP4349000B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009178719A (en) * 2008-01-29 2009-08-13 Kyocera Corp Capstan roll and wire drawing machine
JP2014101896A (en) * 2012-11-16 2014-06-05 Nsk Ltd Rolling bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009178719A (en) * 2008-01-29 2009-08-13 Kyocera Corp Capstan roll and wire drawing machine
JP2014101896A (en) * 2012-11-16 2014-06-05 Nsk Ltd Rolling bearing

Also Published As

Publication number Publication date
JP4349000B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
JP5935370B2 (en) Roller bearing
JP2007051715A (en) Tapered roller bearing, tapered roller bearing device, and vehicular pinion shaft supporting device using it
JP2005061614A (en) Thrust needle roller bearing
US7771122B2 (en) Cage for rolling bearing and rolling bearing having the same
JP2007051703A (en) Tapered roller bearing and bearing device for transmission using it
US9011018B2 (en) Roller bearing
JP2008223942A (en) Rolling bearing
JP2009204125A (en) Rolling bearing
JP2011021623A (en) Outer ring of roller bearing, and roller bearing
JP2018105500A (en) Thrust roller bearing and bearing ring for the same
JP2004183783A (en) Rolling bearing
JP2004353743A (en) Self-aligning roller bearing
JP2008039142A (en) Tapered roller bearing
JP2007071292A (en) Roller bearing
JP2014105809A (en) Retainer for rolling bearing
CN108779796A (en) The roller bearing contacted with the enhancing of flange with roller end
JP2010196861A (en) Roll bearing
JP2007177938A (en) Thrust supporting mechanism
JP4206715B2 (en) Tapered roller bearing
JP2007100775A (en) Thrust cylindrical roller bearing
JP2010156425A (en) Self-aligning roller bearing
JP4269809B2 (en) Spherical roller bearing
JP2004011821A (en) Cylindrical roller bearing
WO2023048135A1 (en) Tapered roller bearing
JP2006349015A (en) Tapered roller bearing and method of designing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4349000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

EXPY Cancellation because of completion of term