JP2004183783A - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP2004183783A
JP2004183783A JP2002351497A JP2002351497A JP2004183783A JP 2004183783 A JP2004183783 A JP 2004183783A JP 2002351497 A JP2002351497 A JP 2002351497A JP 2002351497 A JP2002351497 A JP 2002351497A JP 2004183783 A JP2004183783 A JP 2004183783A
Authority
JP
Japan
Prior art keywords
rolling
rolling bearing
contour curve
roller
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002351497A
Other languages
Japanese (ja)
Inventor
Hidekazu Takahashi
英一 高橋
Juntaro Sawara
淳太郎 佐原
Yasuyuki Muto
泰之 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002351497A priority Critical patent/JP2004183783A/en
Publication of JP2004183783A publication Critical patent/JP2004183783A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To elongate the service life of a rolling bearing by preventing the damage such as peeling and separation of a rolling surface under a condition of very small amount of oil or shortage in lubrication. <P>SOLUTION: In this thrust needle roller bearing provided with a plurality of needle rollers between an inner ring 2 and an outer ring 4, very small voids are formed on the roller rolling surfaces, contact parts are finished smooth, and an average value (JIS B0601:2001Rq, Rp, JIS B0671-2, 3:2002Rvk) obtained by calculating a square root height of outline curve Rq (μm), the maximum crest height of outline curve Rp (μm), and a projecting trough depth Rvk (μm) by every standard length, satisfies the relationship of Rvk ≥ 0.3, and Rp/Rq ≤ 1.4 on the rolling surface. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば自動車の自動変速機用の針状ころ軸受、空調機用コンプレッサの軸受等に好適な転がり軸受に関する。
【0002】
【従来の技術】
従来のこの種の転がり軸受としては、転動表面に微小なくぼみを無数にランダムに設け、面粗さのパラメータであるスキューネスRskの値を−1.6以下とすることにより、油溜まりによる油膜形成率を高めて軸受寿命の向上を図るようにしたものが知られている(例えば特許文献1参照)。
【0003】
【特許文献1】
特許第2724219号公報
【0004】
【発明が解決しようとする課題】
上記特許文献1のように、転動表面にスキューネスRskの値を−1.6以下とした油溜りを付ける表面加工を施すだけではなかなか寿命が延びない用途があることもわかってきた。これは接触部の平滑さを規定していないことに問題あり、本当は油溜りと接触部の平滑さの関係が重要である。
【0005】
自動変速機用針状ころ軸受等の微量油潤滑において表面を粗くして油溜りを形成した場合、表面接触部の油膜パラメータ( 油膜厚さと粗さの比) が小さく、特に突起の頻度が多ければ、スキューネスRskが−1.6以下の負値をとる場合でも金属接触比率が高まりピーリング等による寿命低下をもたらす。
また、自動変速機用や空調機のコンプレッサ用の転がり軸受では潤滑がプアである上に針状ころ軸受であってもしばしば大きな面圧がかかることがあって摩耗が進行しやすく寿命が延びにくい。
【0006】
更に、スキューネスRskの値は深い傷が一つあってもパラメータが大幅に負の値を表示してしまう。
本発明はこのような技術的背景を鑑みてなされたものであり、微量油又は枯渇潤滑下において寿命延長を図ることができる転がり軸受を提供することを目的とする。
【0007】
【課題を解決するための手段】
微量油または枯渇潤滑下で、しかも転動体のスキューによる滑り摩擦が避けられず、転走面の粗さも仕上げ研磨面ほど小さくない場合、転動表面は、一定量の油溜りとなるくぼみを有すると同時に、接触面はできるだけ平滑で突起の少ないことが望ましい。
【0008】
本発明における転動表面の粗さ曲線Rgは、平坦な接触部が平均線より上に現れ、平均線より下の曲線は油溜りを表す谷によるものが支配する。また、曲線部の大半は、平均線より上にくる。
本発明者等は、多数の転動体の加工と粗さ測定、表面観察、軸受回転試験の結果から、転動表面において、突出谷部深さRvkと輪郭曲線の二乗平方根高さRq、輪郭曲線の最大山高さRpの関係が次の(1)及び(2)の条件を満たせば、油溜りと接触部の平滑さを両立させることができることを見出した。
(1)粗さの負荷曲線から求められる突出谷部深さRvk≧0.3μmとして油溜りを確保する。
(2)基準長さの輪郭曲線の最大山高さRpと輪郭曲線の二乗平方根高さRqとの値の比をRp/Rq≦1.4とすることで接触部の突起を抑え平滑さを出す。
【0009】
即ち、請求項1に係る発明は、内輪と外輪との間に複数の転動体が配設された転がり軸受において、
少なくとも一つの転動表面に微小なくぼみを設けると共に、接触部を平滑に仕上げ、且つ前記転動表面において、輪郭曲線の二乗平方根高さRq(μm)、輪郭曲線の最大山高さRp(μm)、突出谷部深さRvk(μm)を基準長さ毎に算出した平均値(JIS B0601:2001Rq,Rp、JIS B0671−2,3:2002Rvk)がRvk≧0.3、Rp/Rq≦1.4の関係を満たすことを特徴とする。
【0010】
また、転動表面の油溜りを示す谷の最大深さRvは、ガウスフィルタによる粗さ曲線において、評価長さをle、基準長さをλとし、leをλの整数倍に取ればle/λ=n区間における最大谷深さの平均がRvとして規定される。同様にRpは基準長さにおける最大山高さの平均値である。
本発明者等は、多数の転動体の加工と粗さ測定、表面観察、軸受回転試験の結果から、転動表面において、輪郭曲線の二乗平方根高さRqと輪郭曲線の最大山高さRp、最大谷深さRvの関係が次の(3)及び(4)の関係を満たせば、油溜りと接触部の平滑さを両立させることができることを見出した。
(3)Rp/Rq≦1.4
(4)Rv/Rp≧3.8
(JIS B0601−1994/2001Rq,Rp,Rv)
即ち、請求項2に係る発明は、内輪と外輪との間に複数の転動体が配設された転がり軸受において、
少なくとも一つの転動表面に微小なくぼみを設けると共に、接触部を平滑に仕上げ、且つ前記転動表面において、輪郭曲線の二乗平方根高さRq(μm)、輪郭曲線の最大山高さRp(μm)、最大谷深さRv(μm)を基準長さ毎に算出した平均値(JIS B0601−1994/2001Rq,Rp,Rv)がRp/Rq≦1.4、Rv/Rp≧3.8の関係を満たすことを特徴とする。
【0011】
上記各構成によれば、微量油または枯渇潤滑下の環境においても、転動表面のくぼみに溜った油と接触部の平滑さの効果で油膜による相手面との分離を確保できるので、軸受寿命を延ばすことができる。なお、上記のような転動表面は、特許第3083160号公報に見られる特殊なバレル研磨法や通常の仕上げ研磨と組み合わせる方法などで形成することができる。
【0012】
更に、請求項3に係る発明は、請求項1又は2において、前記転動体が円筒ころ又は針状ころであることを特徴とする。
更に、請求項4に係る発明は、請求項3において、前記円筒ころ又は前記針状ころの輪郭曲線要素の平均長さRSm(μm)が30以上であることを特徴とする。輪郭曲線要素の平均長さRSmは、粗さ曲線において平均線を横切る頻度を表しているが、接触面が平滑であればあるほど油溜りの谷以外では平均線を横切る回数は少ない。従って、好ましくはRSm≧30μm、より好ましくはRSm≧40μmとする。
【0013】
更に、請求項5に係る発明は、請求項3又は4において、前記転動体が針状ころとされたスラスト軸受であって、輪郭曲線の二乗平方根高さRqが回転輪と静止輪とで異なることを特徴とする。
更に、請求項6に係る発明は、請求項3〜5のいずれか一項において、ころの材料が高炭素クロム軸受鋼で浸炭窒化され、表面付加濃度がそれぞれC:0.1重量%以上0.5重量%以下、N:0.1重量%以上であることを特徴とする。
【0014】
更に、請求項7に係る発明は、請求項3〜6のいずれか一項において、内外輪の少なくとも一方の材料がC:0.12〜0.23重量%、Cr:0.85〜1.25重量%、Mo:0.15〜0.35重量%の鋼(SCM415、420)であることを特徴とする。
更に、請求項8に係る発明は、請求項3〜7のいずれか一項において、内外輪の少なくとも一方の表層部が浸炭窒化されていることを特徴とする。
【0015】
更に、請求項9に係る発明は、請求項3〜8のいずれか一項において、保持器が浸炭窒化されていることを特徴とする。
更に、請求項10に係る発明は、請求項9において、保持器の材料がSCMであることを特徴とする。
【0016】
【発明の実施の形態】
以下、本発明の実施形態を図を参照して説明する。
( 第1の実施の形態)
図1は試験軸受としてのスラスト針状ころ軸受1を組み込んだ回転試験機の断面図である。このスラスト針状ころ軸受1は、ころ直径φ3mm、長さ6mmの針状ころ3とされ、内輪2の軌道面と外輪4の軌道面は、輪郭曲線の二乗平方根高さRqが0.10〜0.26μmに研磨されている。針状ころ3の数は25個で保持器5によって周方向に等配に保持されている。軸受の外径は64mm、内径は40mmである。
【0017】
表1に本発明例1,2及び比較例1,2における針状ころのころ転動面の表面粗さのパラメータ(輪郭曲線の二乗平方根高さRq(μm)/輪郭曲線の最大山高さRp(μm)、突出谷部深さRvk(μm)、輪郭曲線要素の平均長さRSm(μm))の平均値を示す(JIS B0601:2001Rq,Rp、JIS B0671−2,3:2002Rvk)。
算出の基準長さは0.25mm、測定長さは1.25mmでガウシアンフィルタを用いて各パラメータの値を算出して平均した。
【0018】
【表1】

Figure 2004183783
【0019】
図2及び図3にそれぞれ本発明例1及び本発明例2のころ転動表面の粗さ曲線の例を、図4及び図5にそれぞれ比較例1及び比較例2のころ転動表面の粗さ曲線の例を示す。各図で高さゼロを表す横軸は粗さの平均線である。
本発明例1及び本発明例2のころ転動表面は、微小なくぼみをつけるバレル加工後に仕上げのバレル加工を施して接触部の突起を除去して平滑にしている。また、Rp/Rqが1.4以下で、輪郭曲線要素の平均長さRSmを40以上に調整して加工した。これらのころ転動表面を光干渉顕微鏡で観察した画像では油溜りとなるくぼみが得られた上に接触部は平滑であった。
【0020】
比較例1及び比較例2では、ころ転動表面に油溜りをつける加工も、表面突起を除去する仕上げ加工も特に施していない。これらのころ転動表面も光干渉顕微鏡で観察したが、画像では特に接触部の平滑さが十分に得られていないことがわかった。
ころ転動表面の微小くぼみによる油溜りと接触部の突起の関係を求めるために本発明例1,2及び比較例1,2のころ転動表面の粗さ曲線において,粗さの高さ分布における標準偏差をσとしたとき、σ以上の高さの山の数、−3σ以下の深さの谷の数をカウントした結果を図6に示す。
【0021】
求め方としてピークの値を損なわないように平滑化したのち微分値が0になる点を求め、さらにこの中でσ以上の点と−3σ以下の点をカウントした。
1mmあたりのσ以上の山の数をNp、−3σ以下の谷の数をNvとした。図6から、本発明例1,2は比較例1,2に比べ、突起を示すNpが格段に少ない。また、比較例1,2は油溜りを示すNvの数も比較的少ない。
【0022】
次に、針状ころがSUJ2、内外輪がSCM415の浸炭窒化、保持器がSCM415の浸炭窒化とし、本発明例1,2及び比較例1,2の針状ころを組み込んだスラスト針状ころ軸受の回転試験を図1の試験機を用いて行った。
軸受荷重はスラスト負荷5.2kN、回転速度6000min−1とし、潤滑油にはATFを使用した。
【0023】
100時間試験後、ころ転動表面の接触部中央の直径を測り、摩耗量を測定した。本発明例1の摩耗量を1としたときの摩耗量の比較を図7に示す。
図7から、本発明例1,2と比較例1,2の摩耗の違いははっきりしており、表1のパラメータでも区別ができる。本発明例1,2のように、Rvkが0.3μm以上、RSmが30( 好ましくは40)μm以上、Rp/Rqが1.4以下のものは比較例1,2と比較して摩耗が大幅に少なかった。また、比較例1,2ではピーリングと剥離が多数発生し破損したが、本発明例1,2では軽微な摩耗を示したにすぎなかった。
(第2の実施の形態)
第1の実施の形態と同様に、図1の回転試験機を用いる。この試験機に組み込まれた試験軸受としてのスラスト針状ころ軸受1は、ころ直径φ3mm、長さ6mmの針状ころ3とされ、内輪2の軌道面と外輪4の軌道面は、輪郭曲線の二乗平方根高さRqが0.18〜0.24μmに研磨されている。針状ころ3の数は25個で保持器5によって周方向に等配に保持されている。軸受の外径は64mm、内径は40mmである。
【0024】
表2に、本発明例3,4及び比較例3〜5におけるころ転動面の表面粗さのパラメータ(輪郭曲線の二乗平方根高さRq(μm)、輪郭曲線の最大山高さRp(μm)、最大谷深さRv(μm))の平均値を示す。
【0025】
【表2】
Figure 2004183783
【0026】
算出の基準長さは0.25mmで測定長さの中で0.25mm毎に各パラメータの値を算出して平均した。表2において、Rskはスキューネス、Rkuはクルトシスを表す(JIS B0601−1994/2001Rq,Rp,Rv,Rsk)。
図8及び図9に本発明例3及び本発明例4におけるころ転動表面の粗さ曲線の例を、図10〜図12に比較例3〜比較例5のころ転動表面の粗さ曲線の例を示す。なお、各図で高さゼロを表す横軸は粗さの平均線である。また、Rp,Rvに対応する山の高さ、谷の深さは、この平均線からの距離である。
【0027】
本発明例3,4は、ころ転動表面に微小くぼみをつけるバレル加工後に仕上げのバレル加工を施して接触部突起を除去して平滑にしたものである。Rv/Rpが3.8を下回らないように、且つRp/Rqが1.4を越えないように調整加工した。これらのころ転動表面を光干渉顕微鏡で観察した画像では、油溜りとなるくぼみが得られた上に接触部は平滑であった。
【0028】
比較例3〜5では、ころ転動表面に油溜りをつける加工も、表面突起を除去する仕上げ加工も本発明例3,4より不十分であった。光干渉顕微鏡の画像では、特に接触部の平滑さが十分に得られていないことがわかった。
ころ転動表面の油溜りと接触部の突起の関係を求めるために、本発明例3,4及び比較例3〜5の粗さ曲線において、粗さの高さ分布における標準偏差をσとしたとき、σ以上の高さの山の数、−3σ以下の深さの谷の数をカウントした結果を図13に示す。
【0029】
求め方としてピークの値を損なわないように平滑化したのち微分値が0になる点を求め、さらにこの中でσ以上の点と−3σ以下の点をカウントした。1mmあたりのσ以上の山の数をNp、−3σ以下の谷の数をNvとした。
図13から、本発明例3,4は比較例3〜5に比べ、突起を示すNpが格段に少ない。また、比較例3,4は油溜りを示すNvの数も比較的少ない。
【0030】
次に、針状ころがSUJ2、内外輪がSCM415の浸炭窒化、保持器がSCM415の浸炭窒化とし、本発明例3,4及び比較例3〜5の針状ころを組み込んだスラスト針状ころ軸受の回転試験を図1の試験機を用いて行った。
軸受荷重はスラスト負荷5.2kN、回転速度は6000min−1とし、潤滑油にはATFを使用した。
【0031】
100時間試験後、ころ転動表面の接触部中央の直径を測り摩耗量を測定した。本発明例3の摩耗量を1としたときの摩耗量の比較を図14に示す。
図14から、本発明例3,4と比較例3〜5の摩耗の違いははっきりしていて、表2のパラメータでも区別ができる。比較例3〜5おいては、Rskの負の絶対値が大きいものがいいわけではない。本発明例3,4のように、Rp/Rqが1.4以下、Rv/Rpが3.8以上のものが摩耗が少なかった。
【0032】
なお、本発明は上記各実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。
例えば、上記各実施の形態では、転がり軸受としてスラスト針状ころ軸受を例に採ったが、他の転がり軸受に本発明を適用してもよいのは勿論である。
また、上記各実施の形態では、ころの転動表面に本発明を適用した場合を例に採ったが、内外輪の転動表面に本発明を適用してもよい。
【0033】
【発明の効果】
上記の説明から明らかなように、本発明によれば、微量油又は枯渇潤滑下においても、転動表面での油膜の形成と金属接触の防止で有利になり、ピーリングやはくりなどの損傷を防して寿命延長を図ることができる。
【図面の簡単な説明】
【図1】スラスト針伏ころ軸受を組み込んだ回転試験機の断面図である。
【図2】本発明例1のころ転動面粗さ曲線を示すグラフ図である。
【図3】本発明例2のころ転動面粗さ曲線を示すグラフ図である。
【図4】比較例1のころ転動面粗さ曲線を示すグラフ図である。
【図5】比較例2のころ転動面粗さ曲線を示すグラフ図である。
【図6】本発明例及び比較例において、粗さの高さ分布における標準偏差をσとしたとき、σ以上の高さの山の数、−3σ以下の深さの谷の数をカウントしたグラフ図である。
【図7】本発明例及び比較例における摩耗量の比較を示すグラフ図である。
【図8】本発明例3のころ転動面粗さ曲線を示すグラフ図である。
【図9】本発明例4のころ転動面粗さ曲線を示すグラフ図である。
【図10】比較例3のころ転動面粗さ曲線を示すグラフ図である。
【図11】比較例4のころ転動面粗さ曲線を示すグラフ図である。
【図12】比較例5のころ転動面粗さ曲線を示すグラフ図である。
【図13】本発明例及び比較例において、粗さの高さ分布における標準偏差をσとしたとき、σ以上の高さの山の数、−3σ以下の深さの谷の数をカウントしたグラフ図である。
【図14】本発明例及び比較例における摩耗量の比較を示すグラフ図である。
【符号の説明】
1…スラスト針状ころ軸受(転がり軸受)
2…内輪
3…針状ころ(転動体)
4…外輪
5…保持器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rolling bearing suitable for, for example, a needle roller bearing for an automatic transmission of an automobile, a bearing of a compressor for an air conditioner, and the like.
[0002]
[Prior art]
As a conventional rolling bearing of this type, an infinite number of minute depressions are randomly formed on a rolling surface, and a value of a skewness Rsk, which is a parameter of surface roughness, is set to −1.6 or less, so that an oil film due to an oil pool is formed. There has been known one in which the formation rate is increased to improve the bearing life (for example, see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent No. 2724219
[Problems to be solved by the invention]
It has also been found that, as in Patent Document 1, there is an application in which the service life is not easily extended simply by performing a surface treatment for providing an oil sump with a skewness Rsk of -1.6 or less on the rolling surface. This is a problem in that the smoothness of the contact portion is not specified, and in fact, the relationship between the oil reservoir and the smoothness of the contact portion is important.
[0005]
When oil is formed by roughening the surface in a minute amount of oil lubrication such as needle roller bearings for automatic transmissions, the oil film parameter (ratio of oil film thickness to roughness) at the surface contact area is small, and the frequency of protrusions is particularly high. For example, even when the skewness Rsk takes a negative value of -1.6 or less, the metal contact ratio increases and the life is shortened due to peeling or the like.
In addition, in rolling bearings for automatic transmissions and compressors for air conditioners, lubrication is poor, and even needle roller bearings are often subjected to a large surface pressure. .
[0006]
Furthermore, the value of the skewness Rsk is such that even if there is one deep flaw, the parameter will show a significantly negative value.
The present invention has been made in view of such a technical background, and an object of the present invention is to provide a rolling bearing capable of extending the life under a trace amount of oil or depleted lubrication.
[0007]
[Means for Solving the Problems]
Under a small amount of oil or depleted lubrication, if the sliding friction due to the skew of the rolling elements is inevitable, and the roughness of the rolling surface is not as small as that of the finished polished surface, the rolling surface will have a recess that creates a certain amount of oil pool. At the same time, it is desirable that the contact surface be as smooth as possible and have few protrusions.
[0008]
In the roughness curve Rg of the rolling surface in the present invention, a flat contact portion appears above the average line, and a curve below the average line is dominated by a valley representing an oil sump. In addition, most of the curved portions are above the average line.
Based on the results of machining and roughness measurement, surface observation, and bearing rotation test of a large number of rolling elements, the present inventors have found that on the rolling surface, the protruding valley depth Rvk, the square root height Rq of the contour curve, the contour curve It has been found that if the relationship of the maximum peak height Rp satisfies the following conditions (1) and (2), both the oil sump and the smoothness of the contact portion can be achieved.
(1) The oil pool is secured by setting the protruding valley depth Rvk ≧ 0.3 μm obtained from the roughness load curve.
(2) By setting the ratio of the maximum peak height Rp of the contour curve of the reference length to the root-mean-square height Rq of the contour curve to be Rp / Rq ≦ 1.4, the protrusion of the contact portion is suppressed and smoothness is obtained. .
[0009]
That is, the invention according to claim 1 is a rolling bearing in which a plurality of rolling elements are disposed between an inner ring and an outer ring,
At least one rolling surface is provided with a minute recess, and the contact portion is finished smoothly. On the rolling surface, the root height Rq (μm) of the contour curve and the maximum peak height Rp (μm) of the contour curve are provided. And the average value (JIS B0601: 2001 Rq, Rp, JIS B0671-2, 3: 2002 Rvk) calculated for each of the reference valley depths Rvk (μm) as Rvk ≧ 0.3, Rp / Rq ≦ 1. 4 is satisfied.
[0010]
Further, the maximum depth Rv of the valley indicating the oil pool on the rolling surface can be calculated as follows: In a roughness curve by a Gaussian filter, the evaluation length is le, the reference length is λ, and if le is an integral multiple of λ, le / The average of the maximum valley depths in the λ = n section is defined as Rv. Similarly, Rp is the average value of the maximum peak heights at the reference length.
From the results of machining and roughness measurement, surface observation, and bearing rotation test of a large number of rolling elements, the present inventors have found that, on the rolling surface, the square root height Rq of the contour curve and the maximum peak height Rp of the contour curve, It has been found that if the relationship between the valley depths Rv satisfies the following relationships (3) and (4), both the oil reservoir and the smoothness of the contact portion can be achieved.
(3) Rp / Rq ≦ 1.4
(4) Rv / Rp ≧ 3.8
(JIS B0601-1994 / 2001 Rq, Rp, Rv)
That is, the invention according to claim 2 is a rolling bearing in which a plurality of rolling elements are disposed between an inner ring and an outer ring,
At least one rolling surface is provided with a minute recess, and the contact portion is finished smoothly. On the rolling surface, the root height Rq (μm) of the contour curve and the maximum peak height Rp (μm) of the contour curve are provided. , The average value (JIS B0601-1994 / 2001 Rq, Rp, Rv) calculated for the maximum valley depth Rv (μm) for each reference length indicates the relationship of Rp / Rq ≦ 1.4 and Rv / Rp ≧ 3.8. It is characterized by satisfying.
[0011]
According to each of the above-described configurations, even in an environment under a small amount of oil or depleted lubrication, the oil accumulated in the depression on the rolling surface and the smoothness of the contact portion can ensure the separation from the mating surface due to the effect of the oil film. Can be extended. The rolling surface as described above can be formed by a special barrel polishing method disclosed in Japanese Patent No. 3083160 or a method combined with ordinary finish polishing.
[0012]
Furthermore, the invention according to claim 3 is characterized in that, in claim 1 or 2, the rolling element is a cylindrical roller or a needle roller.
Furthermore, the invention according to claim 4 is characterized in that, in claim 3, the average length RSm (μm) of the contour curve element of the cylindrical roller or the needle roller is 30 or more. The average length RSm of the contour curve element indicates the frequency of traversing the average line in the roughness curve, but the smoother the contact surface, the less the number of times of traversing the average line other than the oil sump valley. Therefore, preferably, RSm ≧ 30 μm, and more preferably, RSm ≧ 40 μm.
[0013]
Further, the invention according to claim 5 is the thrust bearing according to claim 3 or 4, wherein the rolling element is a needle roller, and the root-square height Rq of the contour curve is different between the rotating wheel and the stationary wheel. It is characterized by the following.
The invention according to claim 6 is the invention according to any one of claims 3 to 5, wherein the roller material is carbonitrided with high carbon chromium bearing steel, and the surface addition concentration is C: 0.1% by weight or more, respectively. 0.5% by weight or less and N: 0.1% by weight or more.
[0014]
Further, in the invention according to claim 7, in any one of claims 3 to 6, at least one material of the inner and outer rings is C: 0.12 to 0.23% by weight, Cr: 0.85 to 1. 25% by weight, Mo: 0.15 to 0.35% by weight of steel (SCM415, 420).
Further, the invention according to claim 8 is characterized in that, in any one of claims 3 to 7, at least one surface layer of the inner and outer rings is carbonitrided.
[0015]
Furthermore, the invention according to claim 9 is characterized in that, in any one of claims 3 to 8, the cage is carbonitrided.
Further, the invention according to claim 10 is characterized in that, in claim 9, the material of the retainer is SCM.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a cross-sectional view of a rotation tester incorporating a thrust needle roller bearing 1 as a test bearing. The thrust needle roller bearing 1 is a needle roller 3 having a roller diameter of 3 mm and a length of 6 mm. The raceway surface of the inner ring 2 and the raceway surface of the outer ring 4 have a square root height Rq of the contour curve of 0.10 to 0.10. Polished to 0.26 μm. The number of the needle rollers 3 is 25, and the needle rollers 3 are equally spaced in the circumferential direction by the cage 5. The outer diameter of the bearing is 64 mm and the inner diameter is 40 mm.
[0017]
Table 1 shows the parameters of the surface roughness of the roller rolling surface of the needle rollers in Examples 1 and 2 of the present invention and Comparative Examples 1 and 2 (root height Rq (μm) of the contour curve / maximum peak height Rp of the contour curve). (Μm), the average value of the protruding valley depth Rvk (μm), and the average length of the contour curve element RSm (μm) are shown (JIS B0601: 2001 Rq, Rp, JIS B0671-2, 3: 2002 Rvk).
The reference length for the calculation was 0.25 mm, and the measurement length was 1.25 mm. The values of each parameter were calculated using a Gaussian filter and averaged.
[0018]
[Table 1]
Figure 2004183783
[0019]
FIGS. 2 and 3 show examples of the roughness curves of the roller rolling surfaces of the inventive examples 1 and 2, respectively. FIGS. 4 and 5 show the roughness of the roller rolling surfaces of the comparative examples 1 and 2, respectively. 3 shows an example of a curve. The horizontal axis representing zero height in each figure is the average line of roughness.
The roller rolling surfaces of Inventive Example 1 and Inventive Example 2 are smoothed by removing the projections of the contact portions by performing a finishing barrel process after the barrel process for forming minute recesses. In addition, Rp / Rq was 1.4 or less, and the average length RSm of the contour curve element was adjusted to 40 or more. In the images obtained by observing the rolling surfaces of these rollers with an optical interference microscope, depressions serving as oil pools were obtained and the contact portions were smooth.
[0020]
In Comparative Example 1 and Comparative Example 2, neither a process of forming an oil sump on the roller rolling surface nor a finishing process of removing surface protrusions was particularly performed. The rolling surfaces of these rollers were also observed with an optical interference microscope, and the images revealed that the contact portions were not particularly sufficiently smooth.
In order to determine the relationship between the oil sump due to the minute dents on the roller rolling surface and the protrusions of the contact portion, the height distribution of the roughness was determined in the roughness curves of the roller rolling surfaces of Examples 1 and 2 of the present invention and Comparative Examples 1 and 2. The result of counting the number of peaks having a height equal to or larger than σ and the number of valleys having a depth equal to or smaller than -3σ is shown in FIG.
[0021]
As a calculation method, after smoothing so as not to impair the value of the peak, a point at which the differential value becomes 0 was determined, and further, a point equal to or higher than σ and a point equal to or lower than -3σ were counted.
The number of peaks equal to or more than σ per 1 mm was Np, and the number of valleys equal to or less than -3σ was Nv. As shown in FIG. 6, the present invention examples 1 and 2 have significantly less Np indicating a protrusion than the comparative examples 1 and 2. Further, in Comparative Examples 1 and 2, the number of Nvs indicating the oil pool is relatively small.
[0022]
Next, a thrust needle roller bearing incorporating the needle rollers of Examples 1 and 2 of the present invention and Comparative Examples 1 and 2 with the needle rollers being SUJ2, the inner and outer rings being carbonitrided by SCM415, and the cage being carbonitrided by SCM415. Was performed using the testing machine shown in FIG.
The bearing load was set at a thrust load of 5.2 kN, a rotation speed of 6000 min- 1, and ATF was used as a lubricating oil.
[0023]
After the test for 100 hours, the diameter of the center of the contact portion of the roller rolling surface was measured, and the wear amount was measured. FIG. 7 shows a comparison of the wear amount when the wear amount of Example 1 of the present invention is set to 1.
From FIG. 7, the difference in wear between Inventive Examples 1 and 2 and Comparative Examples 1 and 2 is clear, and the parameters in Table 1 can be distinguished. As in Examples 1 and 2 of the present invention, those having an Rvk of 0.3 μm or more, an RSm of 30 (preferably 40) μm or more, and an Rp / Rq of 1.4 or less have more wear than Comparative Examples 1 and 2. It was significantly less. In Comparative Examples 1 and 2, peeling and peeling occurred many times, resulting in breakage. However, Examples 1 and 2 of the present invention showed only slight wear.
(Second embodiment)
As in the first embodiment, the rotation tester shown in FIG. 1 is used. A thrust needle roller bearing 1 as a test bearing incorporated in this testing machine is a needle roller 3 having a roller diameter of 3 mm and a length of 6 mm, and the raceway surface of the inner ring 2 and the raceway surface of the outer ring 4 have contour curves. The square root height Rq is polished to 0.18 to 0.24 μm. The number of the needle rollers 3 is 25, and the needle rollers 3 are equally spaced in the circumferential direction by the cage 5. The outer diameter of the bearing is 64 mm and the inner diameter is 40 mm.
[0024]
Table 2 shows the parameters of the surface roughness of the roller rolling surface in Examples 3 and 4 of the present invention and Comparative Examples 3 to 5 (root height Rq (μm) of the contour curve, maximum peak height Rp (μm) of the contour curve). , The maximum valley depth Rv (μm)).
[0025]
[Table 2]
Figure 2004183783
[0026]
The reference length for the calculation was 0.25 mm, and the values of each parameter were calculated and averaged every 0.25 mm in the measured length. In Table 2, Rsk represents skewness, and Rku represents kurtosis (JIS B0601-1994 / 2001 Rq, Rp, Rv, Rsk).
8 and 9 show examples of the roughness curves of the roller rolling surfaces in Examples 3 and 4 of the present invention, and FIGS. 10 to 12 show the roughness curves of the roller rolling surfaces of Comparative Examples 3 to 5. Here is an example. In each figure, the horizontal axis representing zero height is the average line of roughness. The height of the peak and the depth of the valley corresponding to Rp and Rv are distances from the average line.
[0027]
In Examples 3 and 4 of the present invention, after finishing the barrel processing for forming minute depressions on the roller rolling surface, a finish barrel processing was performed to remove contact portion projections and smooth the surface. Adjustment processing was performed so that Rv / Rp did not fall below 3.8 and Rp / Rq did not exceed 1.4. In the images obtained by observing the rolling surfaces of these rollers with an optical interference microscope, depressions serving as oil pools were obtained and the contact portions were smooth.
[0028]
In Comparative Examples 3 to 5, the process of forming an oil reservoir on the roller rolling surface and the finishing process of removing surface protrusions were insufficient compared to Examples 3 and 4 of the present invention. It was found from the image of the light interference microscope that the contact portion was not particularly sufficiently smooth.
In order to determine the relationship between the oil sump on the roller rolling surface and the protrusion of the contact portion, the standard deviation in the height distribution of the roughness was defined as σ in the roughness curves of Examples 3 and 4 of the present invention and Comparative Examples 3 to 5. FIG. 13 shows the result of counting the number of peaks having a height of σ or more and the number of valleys having a depth of -3σ or less.
[0029]
As a calculation method, after smoothing so as not to impair the value of the peak, a point at which the differential value becomes 0 was determined, and further, a point equal to or higher than σ and a point equal to or lower than -3σ were counted. The number of peaks equal to or more than σ per 1 mm was Np, and the number of valleys equal to or less than -3σ was Nv.
From FIG. 13, Np indicating the protrusion is much smaller in the inventive examples 3 and 4 than in the comparative examples 3 to 5. Further, Comparative Examples 3 and 4 also have a relatively small number of Nvs indicating oil pools.
[0030]
Next, the needle roller is SUJ2, the inner and outer rings are carbonitrided by SCM415, the cage is carbonitrided by SCM415, and the thrust needle roller bearing incorporating the needle rollers of Examples 3 and 4 of the present invention and Comparative Examples 3 to 5. Was performed using the testing machine shown in FIG.
The bearing load was 5.2 kN, the rotational speed was 6000 min- 1, and ATF was used as the lubricating oil.
[0031]
After the test for 100 hours, the diameter of the center of the contact portion of the roller rolling surface was measured to measure the amount of wear. FIG. 14 shows a comparison of the wear amount when the wear amount of Example 3 of the present invention is set to 1.
From FIG. 14, the difference in wear between Inventive Examples 3 and 4 and Comparative Examples 3 to 5 is clear, and can be distinguished by the parameters in Table 2. In Comparative Examples 3 to 5, it is not preferable that the negative absolute value of Rsk is large. As in Invention Examples 3 and 4, those having an Rp / Rq of 1.4 or less and an Rv / Rp of 3.8 or more showed less wear.
[0032]
Note that the present invention is not limited to the above embodiments, and can be appropriately changed without departing from the gist of the present invention.
For example, in each of the above embodiments, a thrust needle roller bearing is taken as an example of a rolling bearing, but the present invention may of course be applied to other rolling bearings.
Further, in each of the above embodiments, the case where the present invention is applied to the rolling surfaces of the rollers is taken as an example, but the present invention may be applied to the rolling surfaces of the inner and outer rings.
[0033]
【The invention's effect】
As is apparent from the above description, according to the present invention, even under a trace amount of oil or depleted lubrication, it is advantageous in the formation of an oil film on the rolling surface and prevention of metal contact, thereby preventing damage such as peeling and peeling. Can be extended to extend the life.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a rotation tester incorporating a thrust needle roller bearing.
FIG. 2 is a graph showing a roller rolling surface roughness curve of Example 1 of the present invention.
FIG. 3 is a graph showing a roller rolling surface roughness curve of Example 2 of the present invention.
4 is a graph showing a roller rolling surface roughness curve of Comparative Example 1. FIG.
FIG. 5 is a graph showing a roller rolling surface roughness curve of Comparative Example 2.
FIG. 6 shows the number of peaks having a height of σ or more and the number of valleys having a depth of -3σ or less when the standard deviation in the height distribution of roughness is σ in the present invention example and the comparative example. FIG.
FIG. 7 is a graph showing a comparison of the amount of wear between the present invention example and a comparative example.
FIG. 8 is a graph showing a roller rolling surface roughness curve of Example 3 of the present invention.
FIG. 9 is a graph showing a roller rolling surface roughness curve of Example 4 of the present invention.
FIG. 10 is a graph showing a roller rolling surface roughness curve of Comparative Example 3.
FIG. 11 is a graph showing a roller rolling surface roughness curve of Comparative Example 4.
FIG. 12 is a graph showing a roller rolling surface roughness curve of Comparative Example 5.
FIG. 13 shows the number of peaks having a height of σ or more and the number of valleys having a depth of -3σ or less when the standard deviation in the roughness height distribution is σ in the present invention example and the comparative example. FIG.
FIG. 14 is a graph showing a comparison of the amount of wear between the present invention example and the comparative example.
[Explanation of symbols]
1: Thrust needle roller bearing (rolling bearing)
2 ... Inner ring 3 ... Needle roller (rolling element)
4 ... Outer ring 5 ... Cage

Claims (10)

内輪と外輪との間に複数の転動体が配設された転がり軸受において、
少なくとも一つの転動表面に微小なくぼみを設けると共に、接触部を平滑に仕上げ、且つ前記転動表面において、輪郭曲線の二乗平方根高さRq(μm)、輪郭曲線の最大山高さRp(μm)、突出谷部深さRvk(μm)を基準長さ毎に算出した平均値(JIS B0601:2001Rq,Rp、JIS B0671−2,3:2002Rvk)がRvk≧0.3、Rp/Rq≦1.4の関係を満たすことを特徴とする転がり軸受。
In a rolling bearing in which a plurality of rolling elements are disposed between an inner ring and an outer ring,
At least one rolling surface is provided with a fine recess, and the contact portion is finished smoothly. On the rolling surface, the root height Rq (μm) of the contour curve and the maximum peak height Rp (μm) of the contour curve are provided. , The average value (JIS B0601: 2001 Rq, Rp, JIS B0671-2, 3: 2002 Rvk) calculated for each of the reference valley depths Rvk (μm) is Rvk ≧ 0.3, Rp / Rq ≦ 1. A rolling bearing characterized by satisfying the relationship of (4).
内輪と外輪との間に複数の転動体が配設された転がり軸受において、
少なくとも一つの転動表面に微小なくぼみを設けると共に、接触部を平滑に仕上げ、且つ前記転動表面において、輪郭曲線の二乗平方根高さRq(μm)、輪郭曲線の最大山高さRp(μm)、最大谷深さRv(μm)を基準長さ毎に算出した平均値(JIS B0601−1994/2001Rq,Rp,Rv)がRp/Rq≦1.4、Rv/Rp≧3.8の関係を満たすことを特徴とする転がり軸受。
In a rolling bearing in which a plurality of rolling elements are disposed between an inner ring and an outer ring,
At least one rolling surface is provided with a fine recess, and the contact portion is finished smoothly. On the rolling surface, the root height Rq (μm) of the contour curve and the maximum peak height Rp (μm) of the contour curve are provided. , The average value (JIS B0601-1994 / 2001 Rq, Rp, Rv) calculated for the maximum valley depth Rv (μm) for each reference length indicates the relationship of Rp / Rq ≦ 1.4 and Rv / Rp ≧ 3.8. A rolling bearing characterized by satisfying.
前記転動体が円筒ころ又は針状ころであることを特徴とする請求項1又は2記載の転がり軸受。3. The rolling bearing according to claim 1, wherein the rolling element is a cylindrical roller or a needle roller. 前記円筒ころ又は前記針状ころの輪郭曲線要素の平均長さRSm(μm)が30以上であることを特徴とする請求項3記載の転がり軸受。The rolling bearing according to claim 3, wherein an average length RSm (μm) of the contour curve element of the cylindrical roller or the needle roller is 30 or more. 前記転動体が針状ころとされたスラスト軸受であって、輪郭曲線の二乗平方根高さRqが回転輪と静止輪とで異なることを特徴とする請求項3又は4記載の転がり軸受。The rolling bearing according to claim 3 or 4, wherein the rolling element is a thrust bearing having needle rollers, and a root-square height Rq of a contour curve is different between a rotating wheel and a stationary wheel. ころの材料が高炭素クロム軸受鋼で浸炭窒化され、表面付加濃度がそれぞれC:0.1重量%以上0.5重量%以下、N:0.1重量%以上であることを特徴とする請求項3〜5のいずれか一項に記載の転がり軸受。The roller material is carbonitrided with high carbon chromium bearing steel, and the surface addition concentration is C: 0.1% by weight or more and 0.5% by weight or less, and N: 0.1% by weight or more. Item 6. The rolling bearing according to any one of items 3 to 5. 内外輪の少なくとも一方の材料がC:0.12〜0.23重量%、Cr:0.85〜1.25重量%、Mo:0.15〜0.35重量%の鋼(SCM415、420)であることを特徴とする請求項3〜6のいずれか一項に記載の転がり軸受。At least one material of the inner and outer races is C: 0.12 to 0.23% by weight, Cr: 0.85 to 1.25% by weight, Mo: 0.15 to 0.35% by weight (SCM415, 420) The rolling bearing according to any one of claims 3 to 6, wherein 内外輪の少なくとも一方の表層部が浸炭窒化されていることを特徴とする請求項3〜7のいずれか一項に記載の転がり軸受。The rolling bearing according to any one of claims 3 to 7, wherein at least one surface portion of the inner and outer rings is carbonitrided. 保持器が浸炭窒化されていることを特徴とする請求項3〜8のいずれか一項に記載の転がり軸受。The rolling bearing according to any one of claims 3 to 8, wherein the cage is carbonitrided. 保持器の材料がSCMであることを特徴とする請求項9記載の転がり軸受。The rolling bearing according to claim 9, wherein the material of the cage is SCM.
JP2002351497A 2002-12-03 2002-12-03 Rolling bearing Pending JP2004183783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351497A JP2004183783A (en) 2002-12-03 2002-12-03 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002351497A JP2004183783A (en) 2002-12-03 2002-12-03 Rolling bearing

Publications (1)

Publication Number Publication Date
JP2004183783A true JP2004183783A (en) 2004-07-02

Family

ID=32753395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351497A Pending JP2004183783A (en) 2002-12-03 2002-12-03 Rolling bearing

Country Status (1)

Country Link
JP (1) JP2004183783A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077852A (en) * 2004-09-08 2006-03-23 Jtekt Corp Rolling/sliding component
JP2006275099A (en) * 2005-03-28 2006-10-12 Ntn Corp Tripod type constant velocity universal joint
JP2007177936A (en) * 2005-12-28 2007-07-12 Ntn Corp Thrust receiving mechanism
JP2007255277A (en) * 2006-03-23 2007-10-04 Jtekt Corp Cam follower
JP2009178719A (en) * 2008-01-29 2009-08-13 Kyocera Corp Capstan roll and wire drawing machine
JP2010249215A (en) * 2009-04-15 2010-11-04 Nsk Ltd Roll bearing for hydrogen atmosphere
JP2011137492A (en) * 2009-12-28 2011-07-14 Honda Motor Co Ltd Method for producing pulley for belt-type continuously variable transmission
JP2015218851A (en) * 2014-05-20 2015-12-07 日本精工株式会社 Rolling device
CN113631821A (en) * 2019-03-25 2021-11-09 日本精工株式会社 Tapered roller bearing
JP7517086B2 (en) 2019-11-21 2024-07-17 株式会社ジェイテクト Thrust roller bearing

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077852A (en) * 2004-09-08 2006-03-23 Jtekt Corp Rolling/sliding component
JP2006275099A (en) * 2005-03-28 2006-10-12 Ntn Corp Tripod type constant velocity universal joint
JP2007177936A (en) * 2005-12-28 2007-07-12 Ntn Corp Thrust receiving mechanism
JP2007255277A (en) * 2006-03-23 2007-10-04 Jtekt Corp Cam follower
JP2009178719A (en) * 2008-01-29 2009-08-13 Kyocera Corp Capstan roll and wire drawing machine
JP2010249215A (en) * 2009-04-15 2010-11-04 Nsk Ltd Roll bearing for hydrogen atmosphere
JP2011137492A (en) * 2009-12-28 2011-07-14 Honda Motor Co Ltd Method for producing pulley for belt-type continuously variable transmission
US8517801B2 (en) 2009-12-28 2013-08-27 Honda Motor Co., Ltd. Method for producing pulley for belt-type continuously variable transmission
JP2015218851A (en) * 2014-05-20 2015-12-07 日本精工株式会社 Rolling device
CN113631821A (en) * 2019-03-25 2021-11-09 日本精工株式会社 Tapered roller bearing
US11846317B2 (en) 2019-03-25 2023-12-19 Nsk Ltd. Tapered roller bearing
CN113631821B (en) * 2019-03-25 2024-03-19 日本精工株式会社 Tapered roller bearing
JP7517086B2 (en) 2019-11-21 2024-07-17 株式会社ジェイテクト Thrust roller bearing

Similar Documents

Publication Publication Date Title
JP2724219B2 (en) Rolling bearing
JPH0587688B2 (en)
US11586787B2 (en) Friction design method and surface roughness control method for sliding member and production method for sliding mechanism
US5967672A (en) Machine parts making rolling or sliding surfaces formed with discontinuous grooves
JP2004183783A (en) Rolling bearing
JP4754234B2 (en) Rolling bearing
JP2007051703A (en) Tapered roller bearing and bearing device for transmission using it
JP2634495B2 (en) Bearings for automatic transmission
JP2017150597A (en) Rolling bearing, rolling device and manufacturing method of rolling device
WO2008050378A1 (en) Gear and gear drive unit
KR102647465B1 (en) conical roller bearings
JP2004324670A (en) Roller bearing
CN112824693A (en) Thrust roller bearing
JP2591616Y2 (en) Tooth wheel
JP2758518B2 (en) Rolling roller
WO2003022482A1 (en) Surface treatment method
JP2999544B2 (en) Needle roller bearings for starters
JP2003176826A (en) Rolling bearing
JPH04266410A (en) Bearing of roll for rolling
JPH04321816A (en) Gear box bearing of helicopter
JP2008019965A (en) Planetary gear device and rolling bearing
JP2015094402A (en) Roller bearing
JP2004353743A (en) Self-aligning roller bearing
JP2019157978A (en) Rolling device, rolling bearing and manufacturing method thereof
WO2024116493A1 (en) Crossed roller bearing and method for manufacturing crossed roller bearing