JP2004353573A - Compound power-generating device - Google Patents

Compound power-generating device Download PDF

Info

Publication number
JP2004353573A
JP2004353573A JP2003152987A JP2003152987A JP2004353573A JP 2004353573 A JP2004353573 A JP 2004353573A JP 2003152987 A JP2003152987 A JP 2003152987A JP 2003152987 A JP2003152987 A JP 2003152987A JP 2004353573 A JP2004353573 A JP 2004353573A
Authority
JP
Japan
Prior art keywords
steam
generated
gas turbine
power
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003152987A
Other languages
Japanese (ja)
Inventor
Masafumi Shimoda
田 理 文 下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003152987A priority Critical patent/JP2004353573A/en
Publication of JP2004353573A publication Critical patent/JP2004353573A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound power-generating device capable of sufficiently and effectively utilizing generated steam while ensuring the required amount of generated steam. <P>SOLUTION: The compound power-generating device comprises incinerator boilers 21-2n to utilize exhaust gas from a garbage incinerator, a gas turbine power generator 6 connected to a gas turbine 7, a waste heat boiler having an auxiliary burner 8a to adjust the amount of generated steam and utilizing exhaust gas of the gas turbine 7, a steam turbine 4 to be driven by the steam generated by the incinerator boilers and the waste heat boiler via a common steam header 3, and a steam turbine generator 5 connected to the steam turbine 4, and controls the auxiliary burner 8a so that a part of the required power is supplied from the steam turbine generator 5, the balance is complemented by the gas turbine generator 6, and the steam pressure of the steam header 3 is substantially constant. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は複合発電装置に関する。より詳細には、本発明は、ごみ焼却炉排ガスを利用する焼却炉ボイラと、この焼却炉ボイラで発生された蒸気を導入する蒸気ヘッダと、この蒸気ヘッダから供給される蒸気によって駆動される蒸気タービンと、この蒸気タービンに連結され、要求電力の一部を負担する蒸気タービン発電機と、ガスタービンと、このガスタービンに連結され、要求電力の残部を負担するガスタービン発電機と、ガスタービンの排ガス熱を利用して発生した蒸気を蒸気ヘッダに導入する排熱ボイラとを備えた複合発電装置に関する。
【0002】
【従来の技術】
この種の複合発電装置は、ごみ焼却炉で発生する少なからぬ発生熱を有効利用する手段として着目されている。公知技術(例えば、特許文献1及び特許文献2参照)においては、ごみ焼却炉の発生熱を利用する焼却炉ボイラで発生させた蒸気を、ガスタービンの排ガスを利用した排熱ボイラの過熱器に導入することにより、効率の高いボイラ式発電設備を実現している。
【0003】
【特許文献1】
特開平5−321611号公報 (図1とその説明)
【特許文献2】
特開平6−317109号公報 (図1とその説明)
【0004】
【発明が解決しようとする課題】
しかしながら、公知の装置では、ごみ発電の特徴である発生蒸気量を任意に制御することができないこと、それに関連して、蒸気タービンに連結された発電機の発電電力を任意に制御することができないことの問題点が存在する。発電機出力をできるだけ一定値にするために蒸気タービンの入口圧力を制御しようとすると、蒸気圧力基準値つまりは発電機出力の基準値を相当低い所に設定し、タービンバイパス設備を用いて基準値を超えた分の蒸気をバイパスすることによって一定値にするほかなく、それでは、基準値を超える比較的大量の蒸気を、バイパス設備を通してバイパスすなわち捨てることによって圧力制御することになり、ごみ焼却炉で発生した発生蒸気を無駄にし、有効活用できないことになる。
【0005】
したがって、本発明の目的は、必要な発生蒸気量を確保した上で発生蒸気を十分に有効活用することができる複合発電装置を提供することである。
【0006】
【課題を解決するための手段】
上記目的を達成するために請求項1に係る発明は、ごみ焼却炉排ガスを利用する焼却炉ボイラと、この焼却炉ボイラで発生された蒸気を導入する蒸気ヘッダと、この蒸気ヘッダから供給される蒸気によって駆動される蒸気タービンと、この蒸気タービンに連結され、要求電力の一部を負担する蒸気タービン発電機と、ガスタービンと、このガスタービンに連結され、要求電力の残部を負担するガスタービン発電機と、ガスタービンの排ガス熱を利用して発生した蒸気を蒸気ヘッダに導入する排熱ボイラとを備えた複合発電装置において、排熱ボイラの発生蒸気量を調整するために排熱ボイラに設けられた助燃設備と、蒸気ヘッダの蒸気圧をほぼ一定に維持するように助燃設備の発生熱量を制御する助燃制御手段とを具備したことを特徴とする。
【0007】
本発明による複合発電装置においては、焼却炉ボイラから発生する蒸気により蒸気タービンを介して発電するとともに、ガスタービンにおいても発電する複合発電システムを採用する。焼却炉においては、燃料である一般ゴミの発生熱量は均一でなく、電気負荷の変動に必ずしも迅速には応動できないという特質を持っている。一方、発電設備としては、需要家の要求電力に応じた、制御された高品質の電力を供給することが要求される。したがって、負荷調整設備としてガスタービンによる発電が併用されるわけである。また、蒸気負荷においては、ガスタービン負荷に応じてガスタービン排熱ボイラから発生される蒸気量が変動し、蒸気タービン発電電力へ影響を及ぼす。これらの影響を吸収して安定な発電運転を可能とするために、本発明においては、ガスタービン排熱ボイラに助燃設備を設け、蒸気ヘッダの蒸気圧力を一定にするように助燃設備の発生熱量を制御することにより、蒸気タービンに供給するトータル蒸気量を可及的に一定にするものである。
【0008】
請求項2に係る発明は、請求項1に記載の複合発電装置において、助燃設備の燃料は流体燃料であり、助燃制御手段は助燃設備への供給燃料の流量を制御する助燃燃料流量制御手段であることを特徴とする。
【0009】
請求項3に係る発明は、請求項1または2に記載の複合発電装置において、ガスタービン発電機に対する電力設定値の変化分に所定の係数を乗じた値を助燃制御手段にフィードフォワードで与える手段を備えたことを特徴とする。
【0010】
【発明の実施の形態】
図1は本発明による複合発電装置のプラント系統図である。ごみを焼却するために複数の焼却炉11〜1nが設けられており、各焼却炉にはそれぞれ1対1の関係で焼却炉ボイラ21〜2nが設けられている。焼却炉ボイラ21〜2nは焼却炉11〜1nのごみ焼却熱により蒸気を発生し、発生した蒸気を、蒸気ヘッダ3を介して蒸気タービン4に供給しそれを駆動する。蒸気タービン4には蒸気タービン発電機5が連結されている。図1には1台の蒸気タービン4が示されているが、蒸気タービン4は1台であっても良いし複数台であっても良い。それに対応して、蒸気タービン発電機5も1台または複数台であり得る。
【0011】
他方、蒸気タービン発電機5の発電電力を補うために、ガスタービン7によって駆動されるガスタービン発電機6が設けられている。ガスタービン7の排ガスは排熱ボイラ8に導入される。排熱ボイラ8で発生された蒸気は蒸気ヘッダ3に送られ、ここで、焼却炉ボイラ21〜2nからの蒸気と合流される。排熱ボイラ8は助燃設備8aを有する。この助燃設備8aは、燃料源9から燃料流量制御装置10を介して供給される重油やガスなどの流体燃料により助燃される。ガスタービン7及びガスタービン発電機6も1台に限られることなく、場合によっては複数台であっても良い。
【0012】
蒸気タービン発電機5には、需要家からの要求電力Pcのうち、発電可能な電力に相当する電力設定値Psがまず設定され、ガスタービン発電機6には、その残余の部分に相当する電力設定値Pg(=Pc−Ps)が設定される。両タービン発電機5,6の発電電力は図示していない電力回線を介して需要家に供給される。焼却炉11〜1nのごみ焼却量に多少の変動を生じても、蒸気タービン発電機5ができるだけ一定電力を発生できるように、排熱ボイラ8の助けを借りて蒸気ヘッダ3の蒸気圧力はできるだけ一定に維持されるように制御される。そのため、排熱ボイラ8には助燃設備8aが設けられ、その発生熱が燃料流量制御装置10によって制御される。
【0013】
図2は、蒸気タービン4に蒸気を供給する蒸気ヘッダ3の蒸気圧力をできるだけ一定に維持できるように制御する制御装置の系統図を示すものである。需要家から要求電力Pcが与えられると、蒸気タービン発電機発電電力設定手段31において、要求電力Pc及びごみ焼却炉21〜2nの稼働状況を考慮して、まず蒸気タービン発電機5が発電すべき発電電力Psを決定し、それをヘッダ圧力設定手段32及び蒸気タービン発電機発電電力制御手段33に蒸気タービン発電機発電電力設定値として送出する。他方、要求電力Pcから蒸気タービン発電機発電電力設定値Psを差し引いた値、Pc−Ps=Pg を減算器34において算出し、これをガスタービン発電機発電電力設定値としてガスタービン発電機発電電力制御手段35に与える。
【0014】
蒸気タービン発電機発電電力制御手段33は、与えられた発電電力設定値Psを達成するように、蒸気タービン発電機5の発電電力Psrをフィードバック制御する。同様に、ガスタービン発電機発電電力制御手段35は、与えられた発電電力設定値Pgを達成するように、ガスタービン発電機6の発電電力Pgrをフィードバック制御する。
【0015】
すでに述べたように、蒸気ヘッダ3の蒸気圧力Hprは本来ごみ焼却炉21〜2nの稼働状況や発生熱量等の影響を大きく受ける。この影響は蒸気圧力Hprに対する外乱として作用し、蒸気タービン発電機5の発電電力を大きく変動させかねない。その外乱成分を補償し蒸気ヘッダ3の蒸気圧力Hprをできるだけ一定に維持するために、ガスタービン7の排熱を利用する排熱ボイラ8に設けた助燃設備8aを活用する。すなわち、蒸気タービン発電機発電電力設定手段31によって設定された発電電力設定値Psに基づいて、ヘッダ圧力設定手段32は発電電力設定値Psに対応するヘッダ圧力を演算し、それをヘッダ圧力設定値Hpとして助燃燃料流量制御手段36に送出する。助燃燃料流量制御手段36は、基本的には、ヘッダ圧力設定値Hpを達成するようにヘッダ圧力制御手段37を介して助燃設備8aの助燃燃料流量をフィードバック制御する。
【0016】
蒸気タービン発電機5及びガスタービン発電機6による総発電電力(=Ps+Pg)は需要家の要求電力Pcに従って適宜変更され得る。その場合、要求電力Pcから蒸気タービン発電機5の発電電力Psrを差し引いた値の電力をガスタービン発電機6の発電電力Pgrにより調節する。
【0017】
ところが、蒸気圧力制御系及び燃焼制御系の制御応答は一般に時定数が大きいという特質を持っている。そのため、ガスタービン7の排熱を利用する排熱ボイラ8への入熱量とその蒸気発生量は、ガスタービン7の出力すなわちガスタービン発電機6の発電電力Pgrが変化すると、その変化直後は制御系が応答しきれないため、そのまま蒸気ヘッダ3の蒸気圧力Hprを大きく変化させることになりかねない。したがって、応答性の良好な制御系を構成することは一般に難しいものとなる。
【0018】
そこで、ガスタービン発電機6に対する電力設定値Pgの変化分を迅速に捕捉し、フィードバック制御に先立って予め対策を講ずるべく、ガスタービン発電機6の発電電力設定値Pgを入力としてその変化分ΔPgを演算するΔPg演算手段38と、そこで算出された変化分ΔPgに所定の係数kを乗算して得られた積k・ΔPgを助燃燃料流量制御手段36にフィードフォワード制御分として加えるk・ΔPg演算手段39とを設けている。
【0019】
図2に示す制御装置によれば、蒸気ヘッダ3の蒸気圧力は助燃燃料流量制御手段36及びヘッダ圧力制御手段37により、蒸気圧力Hprを用いてフィードバック制御されるとともに、ガスタービン発電機6に対する電力設定値Pgの変化分を用いてフィードフォワード制御されるので、蒸気ヘッダ3の圧力を制御する制御系の応答性を改善し、電力設定値の急変時でも、電力需要の必要を満たしつつ蒸気ヘッダ3の圧力をできるだけ一定に維持し、発生蒸気を十分に有効活用することができる。
【0020】
【発明の効果】
本発明によれば、ガスタービン排熱ボイラに助燃設備を備え、蒸気タービン入口側の蒸気圧力をできるだけ一定値に維持し、要求電力を満たしながらガスタービン発電電力を制御し、トータルとして発生蒸気を有効活用することができる。
【図面の簡単な説明】
【図1】本発明を適用する複合発電装置のプラント系統図。
【図2】図1の複合発電装置を制御する制御装置の制御系統図。
【符号の説明】
11〜1n 焼却炉
21〜2n 焼却炉ボイラ
3 蒸気ヘッダ
4 蒸気タービン
5 蒸気タービン発電機
6 ガスタービン発電機
7 ガスタービン
8 排熱ボイラ
8a 助燃設備
9 燃料源
10 燃料流量制御装置
31 蒸気タービン発電機発電電力設定手段
32 ヘッダ圧力設定手段
33 蒸気タービン発電機発電電力制御手段
34 減算器
35 ガスタービン発電機発電電力制御手段
36 助燃燃料流量制御手段
37 ヘッダ圧力制御手段
38 ΔPg演算手段
39 k・ΔPg演算手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a combined power generation device. More specifically, the present invention relates to an incinerator boiler that uses refuse incinerator exhaust gas, a steam header that introduces steam generated in the incinerator boiler, and steam that is driven by steam supplied from the steam header. A turbine, a steam turbine generator connected to the steam turbine and sharing a part of required power, a gas turbine, a gas turbine generator connected to the gas turbine and sharing the rest of the required power, and a gas turbine And an exhaust heat boiler for introducing steam generated by utilizing exhaust gas heat into a steam header.
[0002]
[Prior art]
This type of combined cycle power generation system has attracted attention as a means for effectively utilizing considerable heat generated in a refuse incinerator. In a known technique (for example, see Patent Documents 1 and 2), steam generated in an incinerator boiler using heat generated by a refuse incinerator is sent to a superheater of a waste heat boiler using exhaust gas of a gas turbine. By introducing this, a highly efficient boiler-type power generation facility has been realized.
[0003]
[Patent Document 1]
JP-A-5-321611 (FIG. 1 and its description)
[Patent Document 2]
JP-A-6-317109 (FIG. 1 and its description)
[0004]
[Problems to be solved by the invention]
However, the known device cannot arbitrarily control the amount of generated steam, which is a characteristic of waste power generation, and in connection with that, it cannot arbitrarily control the power generated by a generator connected to a steam turbine. There is a problem of that. To control the inlet pressure of the steam turbine to keep the generator output as constant as possible, set the steam pressure reference value, that is, the reference value of the generator output to a considerably low place, and use the turbine bypass equipment to set the reference value. The pressure must be controlled by bypassing or discarding a relatively large amount of steam exceeding the reference value through a bypass facility. The generated steam is wasted and cannot be used effectively.
[0005]
Accordingly, it is an object of the present invention to provide a combined power generation device that can sufficiently utilize a generated steam while securing a necessary generated steam amount.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 provides an incinerator boiler that uses waste gas from an incinerator, a steam header that introduces steam generated in the incinerator boiler, and a steam header that supplies the steam from the steam header. A steam turbine driven by steam, a steam turbine generator connected to the steam turbine and sharing a part of required power, a gas turbine, and a gas turbine connected to the gas turbine and sharing the rest of the required power In a combined power generation system equipped with a generator and an exhaust heat boiler that introduces steam generated by using exhaust gas heat of a gas turbine into a steam header, the exhaust heat boiler is used to adjust the amount of steam generated by the exhaust heat boiler. The fuel cell system further comprises: provided auxiliary combustion equipment; and auxiliary combustion control means for controlling the amount of heat generated by the auxiliary combustion equipment so as to maintain the steam pressure of the steam header substantially constant.
[0007]
The combined power generation device according to the present invention employs a combined power generation system that generates power through a steam turbine using steam generated from an incinerator boiler and also generates power in a gas turbine. Incinerators have the characteristic that the amount of heat generated by general refuse as fuel is not uniform and cannot always respond quickly to changes in electrical load. On the other hand, power generation equipment is required to supply controlled, high-quality power in accordance with the power required by consumers. Therefore, the power generation by the gas turbine is also used as the load adjustment equipment. In the steam load, the amount of steam generated from the gas turbine exhaust heat boiler fluctuates according to the gas turbine load, which affects the power generated by the steam turbine. In order to absorb these influences and enable stable power generation operation, in the present invention, a gas turbine exhaust heat boiler is provided with an auxiliary combustion device, and the generated heat amount of the auxiliary combustion device is set so as to keep the steam pressure of the steam header constant. Is controlled to make the total steam amount supplied to the steam turbine as constant as possible.
[0008]
According to a second aspect of the present invention, in the combined power generation system according to the first aspect, the fuel of the auxiliary combustion equipment is a fluid fuel, and the auxiliary combustion control means is an auxiliary fuel flow control means for controlling a flow rate of fuel supplied to the auxiliary combustion equipment. There is a feature.
[0009]
According to a third aspect of the present invention, in the combined power generator according to the first or second aspect, a value obtained by multiplying a change in a power set value for the gas turbine generator by a predetermined coefficient is provided to the auxiliary combustion control means in a feedforward manner. It is characterized by having.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a plant system diagram of a combined cycle power plant according to the present invention. A plurality of incinerators 11 to 1n are provided for incinerating refuse, and each incinerator is provided with an incinerator boiler 21 to 2n in a one-to-one relationship. The incinerator boilers 21 to 2n generate steam by the waste incineration heat of the incinerators 11 to 1n, supply the generated steam to the steam turbine 4 via the steam header 3, and drive the steam turbine. A steam turbine generator 5 is connected to the steam turbine 4. Although one steam turbine 4 is shown in FIG. 1, one or more steam turbines 4 may be provided. Correspondingly, one or more steam turbine generators 5 may be provided.
[0011]
On the other hand, a gas turbine generator 6 driven by a gas turbine 7 is provided to supplement the power generated by the steam turbine generator 5. The exhaust gas from the gas turbine 7 is introduced into a waste heat boiler 8. The steam generated in the waste heat boiler 8 is sent to the steam header 3 where it is combined with the steam from the incinerator boilers 21 to 2n. The exhaust heat boiler 8 has an auxiliary combustion facility 8a. The auxiliary combustion equipment 8a is assisted by fluid fuel such as heavy oil or gas supplied from a fuel source 9 via a fuel flow control device 10. The number of gas turbines 7 and gas turbine generators 6 is not limited to one, but may be plural in some cases.
[0012]
In the steam turbine generator 5, a power set value Ps corresponding to the power that can be generated out of the required power Pc from the consumer is first set, and in the gas turbine generator 6, the power corresponding to the remaining portion is set. A set value Pg (= Pc-Ps) is set. The power generated by the two turbine generators 5 and 6 is supplied to consumers via a power line (not shown). The steam pressure of the steam header 3 can be reduced as much as possible with the help of the exhaust heat boiler 8 so that the steam turbine generator 5 can generate as much constant power as possible even if the amount of incineration of the incinerators 11 to 1n fluctuates somewhat. It is controlled to be kept constant. Therefore, the exhaust heat boiler 8 is provided with the auxiliary combustion equipment 8a, and the generated heat is controlled by the fuel flow control device 10.
[0013]
FIG. 2 is a system diagram of a control device for controlling the steam pressure of the steam header 3 for supplying steam to the steam turbine 4 so as to be maintained as constant as possible. When the required power Pc is given from the customer, the steam turbine generator 5 should first generate power in the steam turbine generator generated power setting means 31 in consideration of the required power Pc and the operation state of the incinerators 21 to 2n. The generated power Ps is determined and sent to the header pressure setting means 32 and the steam turbine generator generated power control means 33 as a steam turbine generator generated power set value. On the other hand, a value obtained by subtracting the steam turbine generator power generation set value Ps from the required power Pc, that is, Pc−Ps = Pg, is calculated by the subtractor 34, and this is set as the gas turbine generator power generation set value. It is given to the control means 35.
[0014]
The steam turbine generator generated power control means 33 performs feedback control of the generated power Psr of the steam turbine generator 5 so as to achieve the given generated power set value Ps. Similarly, the gas turbine generator generated power control means 35 performs feedback control of the generated power Pgr of the gas turbine generator 6 so as to achieve the given generated power set value Pg.
[0015]
As described above, the steam pressure Hpr of the steam header 3 is largely affected by the operating conditions of the incinerators 21 to 2n and the amount of heat generated. This effect acts as a disturbance to the steam pressure Hpr, and may greatly change the power generated by the steam turbine generator 5. In order to compensate for the disturbance component and maintain the steam pressure Hpr of the steam header 3 as constant as possible, the auxiliary combustion equipment 8a provided in the exhaust heat boiler 8 utilizing the exhaust heat of the gas turbine 7 is utilized. That is, based on the generated power set value Ps set by the steam turbine generator generated power setting means 31, the header pressure setting means 32 calculates the header pressure corresponding to the generated power set value Ps, and calculates the header pressure. It is sent to the auxiliary fuel flow control means 36 as Hp. Basically, the auxiliary fuel flow control means 36 performs feedback control of the auxiliary fuel flow of the auxiliary equipment 8a via the header pressure control means 37 so as to achieve the header pressure set value Hp.
[0016]
The total power generated by the steam turbine generator 5 and the gas turbine generator 6 (= Ps + Pg) can be appropriately changed according to the power Pc required by the customer. In that case, power of a value obtained by subtracting the generated power Psr of the steam turbine generator 5 from the required power Pc is adjusted by the generated power Pgr of the gas turbine generator 6.
[0017]
However, the control response of the steam pressure control system and the combustion control system generally has a characteristic that the time constant is large. Therefore, the amount of heat input to the exhaust heat boiler 8 using the exhaust heat of the gas turbine 7 and the amount of generated steam are controlled immediately after the output of the gas turbine 7, that is, the generated power Pgr of the gas turbine generator 6 changes. Since the system cannot respond, the steam pressure Hpr of the steam header 3 may be largely changed as it is. Therefore, it is generally difficult to configure a control system having good responsiveness.
[0018]
Therefore, in order to quickly capture a change in the power set value Pg with respect to the gas turbine generator 6 and take a measure in advance prior to the feedback control, the change ΔPg is input by using the generated power set value Pg of the gas turbine generator 6 as an input. And a product k · ΔPg obtained by multiplying the calculated change amount ΔPg by a predetermined coefficient k to the auxiliary fuel flow rate control means 36 as a feedforward control amount. Means 39 are provided.
[0019]
According to the control device shown in FIG. 2, the steam pressure of the steam header 3 is feedback-controlled by the auxiliary fuel flow rate control means 36 and the header pressure control means 37 using the steam pressure Hpr, and the power to the gas turbine generator 6 is controlled. Since the feedforward control is performed using the change in the set value Pg, the responsiveness of the control system for controlling the pressure of the steam header 3 is improved. The pressure of No. 3 can be maintained as constant as possible, and the generated steam can be fully utilized.
[0020]
【The invention's effect】
According to the present invention, a gas turbine exhaust heat boiler is provided with an auxiliary combustion system, the steam pressure at the steam turbine inlet side is maintained as constant as possible, the gas turbine power generation is controlled while satisfying the required power, and the generated steam is totally generated. It can be used effectively.
[Brief description of the drawings]
FIG. 1 is a plant system diagram of a combined cycle power generation device to which the present invention is applied.
FIG. 2 is a control system diagram of a control device that controls the combined power generation device of FIG.
[Explanation of symbols]
11 to 1n Incinerator 21 to 2n Incinerator boiler 3 Steam header 4 Steam turbine 5 Steam turbine generator 6 Gas turbine generator 7 Gas turbine 8 Waste heat boiler 8a Auxiliary equipment 9 Fuel source 10 Fuel flow control device 31 Steam turbine generator Generated power setting means 32 Header pressure setting means 33 Steam turbine generator generated power control means 34 Subtractor 35 Gas turbine generator generated power control means 36 Auxiliary fuel flow rate control means 37 Header pressure control means 38 ΔPg calculation means 39 k · ΔPg calculation means

Claims (3)

ごみ焼却炉排ガスを利用する焼却炉ボイラと、この焼却炉ボイラで発生された蒸気を導入する蒸気ヘッダと、この蒸気ヘッダから供給される蒸気によって駆動される蒸気タービンと、この蒸気タービンに連結され、要求電力の一部を負担する蒸気タービン発電機と、ガスタービンと、このガスタービンに連結され、前記要求電力の残部を負担するガスタービン発電機と、前記ガスタービンの排ガス熱を利用して発生した蒸気を前記蒸気ヘッダに導入する排熱ボイラとを備えた複合発電装置において、
前記排熱ボイラの発生蒸気量を調整するために前記排熱ボイラに設けられた助燃設備と、前記蒸気ヘッダの蒸気圧をほぼ一定に維持するように前記助燃設備の発生熱量を制御する助燃制御手段とを具備したことを特徴とする複合発電装置。
An incinerator boiler that uses refuse incinerator exhaust gas, a steam header that introduces steam generated by the incinerator boiler, a steam turbine that is driven by steam supplied from the steam header, and is connected to the steam turbine. A steam turbine generator that bears part of the required power, a gas turbine, and a gas turbine generator that is connected to the gas turbine and bears the rest of the required power, and that uses the exhaust gas heat of the gas turbine. In a combined power generation device having a waste heat boiler for introducing the generated steam into the steam header,
Auxiliary combustion equipment provided in the exhaust heat boiler for adjusting the amount of steam generated by the exhaust heat boiler, and auxiliary combustion control for controlling the amount of heat generated by the auxiliary heat equipment so as to maintain the steam pressure of the steam header substantially constant And a power generating means.
前記助燃設備の燃料は流体燃料であり、前記助燃制御手段は前記助燃設備への供給燃料の流量を制御する助燃燃料流量制御手段であることを特徴とする請求項1に記載の複合発電装置。2. The combined power generator according to claim 1, wherein the fuel of the auxiliary combustion equipment is a fluid fuel, and the auxiliary combustion control means is an auxiliary fuel flow control means that controls a flow rate of fuel supplied to the auxiliary combustion equipment. 3. 前記ガスタービン発電機に対する電力設定値の変化分に所定の係数を乗じた値を前記助燃制御手段にフィードフォワードで与える手段を備えたことを特徴とする請求項1または2に記載の複合発電装置。3. The combined power generation device according to claim 1, further comprising a unit that feeds a value obtained by multiplying a change in a power set value for the gas turbine generator by a predetermined coefficient to the auxiliary combustion control unit in a feedforward manner. 4. .
JP2003152987A 2003-05-29 2003-05-29 Compound power-generating device Pending JP2004353573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003152987A JP2004353573A (en) 2003-05-29 2003-05-29 Compound power-generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003152987A JP2004353573A (en) 2003-05-29 2003-05-29 Compound power-generating device

Publications (1)

Publication Number Publication Date
JP2004353573A true JP2004353573A (en) 2004-12-16

Family

ID=34048072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003152987A Pending JP2004353573A (en) 2003-05-29 2003-05-29 Compound power-generating device

Country Status (1)

Country Link
JP (1) JP2004353573A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250060A (en) * 2005-03-11 2006-09-21 Tokyo Gas Co Ltd Power generation system and its control method
KR100845270B1 (en) 2007-04-17 2008-07-09 주식회사 포스코 Auxiliary combustion system of gas turbine combined power plant
JP2015052427A (en) * 2013-09-06 2015-03-19 株式会社東芝 Steam turbine plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250060A (en) * 2005-03-11 2006-09-21 Tokyo Gas Co Ltd Power generation system and its control method
JP4525978B2 (en) * 2005-03-11 2010-08-18 東京瓦斯株式会社 Power generation system
KR100845270B1 (en) 2007-04-17 2008-07-09 주식회사 포스코 Auxiliary combustion system of gas turbine combined power plant
JP2015052427A (en) * 2013-09-06 2015-03-19 株式会社東芝 Steam turbine plant

Similar Documents

Publication Publication Date Title
JP5279710B2 (en) Ship equipped with propulsion system with waste heat recovery and driving method thereof
CA2914954C (en) Model-based combined cycle power plant load control
US6442924B1 (en) Optimized steam turbine peaking cycles utilizing steam bypass and related process
EP1701006A3 (en) Electric power-generating and desalination combined plant and operation method of the same
KR101009852B1 (en) Waste heat steam generator
US20100229523A1 (en) Continuous combined cycle operation power plant and method
JP2007143225A (en) Control system
JP2010249502A (en) System and method including combined cycle plant
JP2004353573A (en) Compound power-generating device
JP2001342848A (en) Waste heat recovering method in gas turbine power generation system
JP2013083226A (en) Control method and control device for waste heat boiler system
JP2006266085A (en) Regenerative cycle type gas turbine power generation system
JP2007332817A (en) Steam injection gas turbine and control method
JP2021088977A (en) Waste heat storage system
JP2010121461A (en) Combined power generating method and device using twin tower gasification device
JP2002317609A (en) Exhaust heat recovery plant
JP4389266B2 (en) Cogeneration plant and its operation method
JP4530514B2 (en) Generator control device
JP3758240B2 (en) Air flow control method and apparatus for exhaust recombustion type combined cycle plant
JP2839668B2 (en) Output control device of cogeneration plant
JP3697731B2 (en) Main steam temperature controller in exhaust recombustion combined cycle plant
JP3699735B2 (en) Control device for gas turbine equipment
JPH1113418A (en) Running method for refuse burning power plant
JPH1037802A (en) Heat recovery method for exhaust gas of prime mover
JP3776697B2 (en) Method and apparatus for supplying steam for load in a cogeneration system