JP2004351629A - Polylactic acid resin laminated film - Google Patents

Polylactic acid resin laminated film Download PDF

Info

Publication number
JP2004351629A
JP2004351629A JP2003148835A JP2003148835A JP2004351629A JP 2004351629 A JP2004351629 A JP 2004351629A JP 2003148835 A JP2003148835 A JP 2003148835A JP 2003148835 A JP2003148835 A JP 2003148835A JP 2004351629 A JP2004351629 A JP 2004351629A
Authority
JP
Japan
Prior art keywords
film
polylactic acid
laminated film
acrylic resin
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003148835A
Other languages
Japanese (ja)
Inventor
Kusato Hirota
草人 廣田
Isazumi Ueha
功純 上羽
Naoshi Minamiguchi
尚士 南口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003148835A priority Critical patent/JP2004351629A/en
Publication of JP2004351629A publication Critical patent/JP2004351629A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polylactic acid resin laminated film having excellent biodegradability and transparency, high mechanical strength and low temperature heat sealability. <P>SOLUTION: The polylactic acid resin laminated film is constituted by providing an acrylic resin layer having heat sealability on at least one side of a polylactic acid resin film. The polylactic acid resin film is a biaxially oriented film. The acrylic resin of the acrylic resin layer is constituted of an ethylenic unsaturated carboxylic acid and/or an anhydride thereof and an alkyl (meth)acrylate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、生分解性を有するポリ乳酸系樹脂積層フィルムに関する。より詳細には包装資材に適した透明性、機械的強度、ヒートシール性を備えた生分解性を有するポリ乳酸系樹脂積層フィルムに関するものである。
【0002】
【従来の技術】生分解性フィルムは、土壌中で生分解により徐々にフィルムの崩壊や分解が進み、最後には微生物の作用で無害な分解物へと変化するものである。その代表的なものとしてポリ乳酸系樹脂フィルムが知られている。
【0003】
ポリ乳酸系延伸フィルムは、他の生分解樹脂フィルムと比較して機械的強度や透明性に優れており、また従来広く使用されてきたオレフィン系樹脂フィルムに比べ、焼却時の発生熱量も小さく、環境負荷が小さい利点がある。また非石油原料である植物由来原料(トウモロコシなど)を使用して樹脂が合成されるため、炭素循環の点でも環境負荷が小さい利点がある(例えば特許文献1〜3参照)。
【0004】
一方、プラスチックフィルムを食品等の包装材料として利用する場合には、被包装物の密封のために、ヒートシール性が要求される。特に、高速で多数の包装体を作るために低いシール温度条件でヒートシールが可能な低温ヒートシール性が重要である。しかしながら、ポリ乳酸系樹脂フィルムは、低温で溶断シールは可能であるものの面シールでは、良好な接着強度、外観が得られない欠点があった。
【0005】
また、生分解樹脂フィルムとして、生分解性を有する芳香族ポリエステル樹脂配向フィルムの少なくとも一方の面にヒートシール性を有するアクリル系樹脂層が設けられたものがあるが、基材フィルムの樹脂は植物由来の原料を使用していないため、環境負荷が大きいという難点があった(特許文献4参照)。
【0006】
さらに、従来の配向ポリプロピレン(OPP)フィルムなどのポリオレフィン系延伸フィルムを基材とするの表面にヒートシール性フィルムは、フィルム基材のポリオレフィン系樹脂及び、ヒートシール層の樹脂が共に生分解性を有しておらず、前述のように焼却時の発熱量も大きかった。
【0007】
【特許文献1】特表平5−508819号公報
【0008】
【特許文献2】特開平6−23836号公報
【0009】
【特許文献3】特開平7−205278号公報
【0010】
【特許文献4】特開2001−205768号公報
【0011】
【発明が解決しようとする課題】本発明は、上記従来技術の問題点に鑑み、生分解性を有し、環境対応性に優れ、包装材料として必要な優れた透明性と高い機械的強度を有し、かつ優れたヒートシール性を有するフィルムを提供することを課題とする。
【0012】
【課題を解決するための手段】すなわち本発明は、ポリ乳酸系樹脂フィルムの少なくとも一方の面にヒートシール性を有するアクリル系樹脂層が設けられた積層フィルムである。
【0013】
【発明の実施の形態】
本発明の積層フィルムの基材層であるポリ乳酸系樹脂フィルムは、ポリ乳酸を主体とするポリマーからなるが、70重量%以上がポリ乳酸であることが好ましい。本発明に使用されるポリ乳酸系樹脂は、乳酸の単独重合体、または乳酸と他のヒドロキシカルボン酸またはラクトンとの共重合体、あるいはこれらの組成物である。乳酸としては、L−乳酸、D−乳酸、またはそれ等の混合物である。ヒドロキシカルボン酸としては、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、3−ヒドロキシ吉草酸、4−ヒドロキシ吉草酸、6−ヒドロキシカプロン酸等及びこれらの誘導体があげられる。ラクトンとしてはカプロラクトン等が代表的なものとして挙げられる。
【0014】
ポリ乳酸系樹脂の重合は、前述のモノマーおよびコモノマーを縮合重合法、開環重合法等の方法によって行うことができる。重量平均分子量は、5万〜30万の範囲が好ましい。
【0015】
フィルム成形に際しては、本発明の目的を損なわない範囲で、他の高分子材料、可塑剤、滑剤、無機充填剤、酸化防止剤、耐候安定剤、帯電防止剤、顔料、染料等を添加することができる。また、製造時、加工時、使用時の走行性や取扱い性の点で粒子を添加することができる。粒子の添加量としては0.01〜0.5重量%の範囲が好ましい。
【0016】
添加する粒子の種類としては、特に限定されないが、無機粒子、有機粒子、架橋高分子粒子などを挙げることができる。無機粒子としては、特に限定されないが炭酸カルシウム、カオリン、タルク、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、リン酸リチウム、リン酸カルシウム、リン酸マグネシウム、酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、フッ化リチウムなどが挙げられる。有機粒子としては、シュウ酸カルシウムやカルシウム、バリウム、亜鉛、マンガン、マグネシウム等のテレフタル酸塩などが挙げられる。架橋高分子粒子としては、ジビニルベンゼン、スチレン、アクリル酸、メタクリル酸等のビニル系モノマーの重合体が挙げられる。添加する粒子の平均粒径は、好ましくは0.01〜2μmが好ましい。
【0017】
本発明におけるポリ乳酸系樹脂には、必要に応じて、本発明の効果を損なわない範囲内であれば各種の添加剤が含まれていてもよい。例えば、難燃剤、酸化防止剤、熱安定剤、滑剤、結晶核剤、紫外線吸収剤を配合することができる。
【0018】
また、本発明の基材フィルムは、一軸延伸フィルムであっても二軸延伸フィルムであっても構わないが、良好な機械的強度が得られるため、二軸延伸フィルムであることが好ましい。特に、二軸延伸フィルムとする場合、延伸方法は、インフレーション延伸法、ステンター逐次二軸延伸法、ステンター同時二軸延伸法が用いられる。
【0019】
本基材フィルムの表面は、適切にコーティングできるようにコロナ放電処理などの表面処理されていることが好ましい。フィルム表面の表面張力のレベルが35ダイン/cm以上が好ましく、特に好ましくは40〜48ダイン/cmである。
【0020】
本発明で用いられるアクリル系樹脂層としては、ヒートシール性を有する樹脂であることが必要である。そのような樹脂は、アクリルモノマー、すなわち、アクリル酸、メタクリル酸、およびそれらの誘導体からなる群から選ばれたモノマーの重合体であるが、それは単独重合体であっても、あるいは共重合体であってもよい。共重合体の場合には、アクリルモノマー間の2成分または3成分以上の重合体の他に、他の不飽和カルボン酸あるいはその誘導体を共に共重合した重合体であってもよい。
【0021】
好ましい様態は、エチレン性不飽和カルボン酸および/またはその無水物5〜30重量%(a)と(メタ)アクリル酸アルキルエステル70〜95重量%(b)とを構成成分とするものである。エチレン性不飽和カルボン酸および/又はその無水物が30%を越えると耐水性が低下し、多湿条件下でヒートシール接着強度の低下やブロッキングが起こりやすくなり、5%未満では通常環境でのヒートシール接着強度が低下しやすくなる傾向があるためである。
【0022】
また、アクリル系樹脂は、重量平均分子量が3000〜50000で、ガラス転移点(Tg)が20〜70℃の範囲にある共重合体であることも好ましい。この場合には、低温でかつ広い温度領域でヒートシール性が十分に発揮され、また耐ブロッキング性も良好であるためである。本発明の共重合体の重量平均分子量は100、000以下、好ましくは3、000〜50、000の範囲である。重量平均分子量が50、000を越えると低温ヒートシール接着性が悪くなり、3、000未満では接着強度が低下する。分子量の調節はドデシルメルカプタンやラウリルメルカプタンなど公知の連鎖移動剤を共重合体100重量部に対して0.05〜5重量部添加することにより行うことができる。また、Tgは10〜40℃の範囲であることがより好ましい。
【0023】
アクリル系樹脂層の樹脂の製造方法としては、水溶性保護コロイドを使用し、連鎖移動剤の存在下でモノマーを懸濁重合する方法、連鎖移動剤の存在下でモノマーを乳化重合しする方法、また、有機溶媒又は水と有機溶剤との混合溶媒を使用し、連鎖移動剤の存在下で前記モノマーを溶液重合するなどの製造方法があげられる。
【0024】
本発明で用いるエチレン性不飽和カルボン酸および/又はその無水物としては、(メタ)アクリル酸、イタコン酸、クロトン酸、マレイン酸、無水マレイン酸等が挙げられる。特に(メタ)アクリル酸が好ましい。これらはそれぞれ単独で用いるだけでなく、2種以上併用してもよい。
【0025】
(メタ)アクリル酸アルキルエステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸アミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸−2−エチルヘキシル、(メタ)アクリル酸オクチル(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル(メタ)アクリル酸オクタデシル等があげられ、特に炭素原子数1〜8の(メタ)アクリル酸アルキルエステルが好ましい。
【0026】
さらに本発明の趣旨を損なわない範囲内において、適宜その他の重合性単量体として、ビニルエーテル、ビニルシアニド、芳香族ビニル化合物等や、架橋性単量体、例えばN−メチロール(メタ)アクリルアミド、N−メチロールイタコン酸アミド、N−メチロールクロトン酸アミド、N,N−ジメチロール(メタ)アクリルアミド、これらのメチロール基をメチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコールなどのアルコールでエーテル化した不飽和単量体;(メタ)アクリルアミド、クロトン酸アミド、イタコン酸アミド;2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、(メタ)アリルアルコールなどの側鎖に少なくとも1個の水酸基を有する不飽和単量体;グリシジル(メタ)アクリレート、アリルグリシジルエーテルなどのエポキシ基を側鎖に有する不飽和単量体等を用いても良い。
【0027】
なお、本発明ではヒートシール性を損なわない範囲内で、アクリル系樹脂に他の材料、例えばカルナバワックス、マイクロクリスタリンワックス、パラフィンワックス、ポリエチレンワックス等の滑剤、シリカ、珪藻土、珪酸カルシウム、ベントナイト、粘土等の無機微粒子やPMMA、ポリエチレンなどで代表される有機系粒子などのアンチブロッキング剤、その他帯電防止剤、紫外線吸収剤、酸化防止剤、着色剤、その他の添加剤を適宜添加することができる。
【0028】
また、本発明で用いられるアクリル系樹脂層は、その厚さが0.1〜5μmであることが好ましい。本発明の基材フィルムであるポリ乳酸系樹脂フィルムの厚さは、特に限定しないが、5μm〜25μmが包装材料として機械的特性が良好であることから好ましい。
アクリル系樹脂層は、前記ポリ乳酸系樹脂フィルムの片面あるいは両面に形成されており、その厚さは、基材層の持つ物性を損なうことなく必要なヒートシール接着強度を付与できる程度にできるだけ薄層であることが好ましく、用いるアクリル系樹脂の種類あるいは積層フィルムの用途によって調整される。通常、0.1〜7μm(塗布量に換算して、0.1〜7g/m)、好ましくは0.3〜3μm(塗布量に換算して、0.3〜3g/m)の範囲にあることが望ましい。この薄い被膜層は、それだけの厚さで十分なヒートシール接着強度が得られると共に、コーティング層にクラック等の形成を避けることができ、また基材層になっているポリ乳酸系樹脂フィルムの持つ優れた透明性や機械的強度をそのまま維持することができる。
【0029】
アクリル系樹脂層の形成方法は、薄くかつ均一な被膜を形成するために、コーティング法が好ましい。アクリル系樹脂は、水分散液の状態で製造し、そのままの状態でコーティングすることが好ましく、特にエマルジョンでのコーティングが望ましい。必要に応じてアルコール等の有機溶剤や柔軟剤等をコーティング液に適宜添加することができる。コーティング液中のアクリル系樹脂の濃度は、5〜40重量%が好ましい。
【0030】
コーティング方法は、ディッピング法、グラビアコーティング法、スクリーン印刷法、スプレー法等があげられる。特にグラビアコーティング法は高速度で均一被膜を成形する方法として適している。コーティング後の乾燥方法および条件に特に制限はないが、熱風乾燥機などを用い、乾燥温度は60〜120℃、乾燥時間は5秒〜1分程度が適当である。
【0031】
アクリル系樹脂のコーティング工程とポリ乳酸系樹脂フィルムの延伸工程とは、いずれを優先して行っても目的とする積層フィルムを得ることができる。すなわちポリ乳酸系樹脂フィルムを一軸ないし二軸に延伸した後にアクリル系樹脂をコーティングしても良いし、アクルル系樹脂をコーティングしてから延伸をおこなってもよい。
【0032】
上記の構成からなる積層フィルムは、生分解性、低環境負荷性、透明性と機械的強度に加えて、低温ヒートシール性、良好なヒートシール接着強度を有していることから、広く包装材として好適に利用することができる。
【0033】
さらに、本発明の積層フィルムに、用途に応じて、アクリル系樹脂層とは反対側の面に、他の生分解性プラスチック樹脂層やシェラック樹脂、セルロース系樹脂などの生分解性天然物層やインキ層を全面もしくは部分的に設けてもよい。その際、アンカ層、接着層を設けることも可能である。
【0034】
【実施例】
次に本発明を実施例を用いて説明するが、本発明はそれら実施例によって何ら限定されるものではない。なお、得られたフィルムの物性評価は、次の試験方法で行った。
【0035】
[物性評価方法]
(a)ヘイズ:JIS K6714に準拠した装置で測定した。測定面はアクリル系樹脂コーティング面の反対面である。
(b)ヒートシール接着強度:15mm幅の熱板を有するシーラーを用い、シール温度を90〜120℃の間で10℃間隔に設定し、圧力0.1MPa、時間0.5秒の条件でフィルムのアクリル系樹脂コーティング面同士の貼合せを行った。その後、サンプル幅を15mmにカットし、引張速度200mm/分の条件でT型に剥離し、強度を測定した。
(c)土壌分解性:フィルムを土壌中に5ケ月間放置し、フィルムの状態を観察した。
(d)ガラス転移温度(Tg):下記装置および条件でフィルム試料について比熱測定を行い、JIS K7121に従って決定した。
装置 :TA Instrument社製温度変調DSC 測定条件: 加熱温度 :270〜570K(RCS冷却法)
温度校正 :高純度インジウムおよびスズの融点 温度変調振幅:±1K 温度変調周期:60秒 昇温ステップ:5K 試料重量 :5mg 試料容器 :アルミニウム製開放型容器(22mg)
参照容器 :アルミニウム製開放型容器(18mg)
なお、ガラス転移温度は下記式により算出した。
ガラス転移温度=(補外ガラス転移開始温度+補外ガラス転移終了温度)/2
(実施例1)
ポリ乳酸系樹脂(D体=3%、密度 1.3g/cm、融点160℃、メルトフローレート10(g/10分190℃)を予備乾燥した後、210℃で溶融しTダイより押出し、厚さ200μmの未延伸フィルムを作成した。次に、逐次二軸延伸装置にて、このフィルムを60℃で3.0倍縦延伸し、次いで70℃で4.5倍に横延伸し、引き続き140℃で20秒間ヒートセットを行った。その後、フィルム片面にコロナ放電処理を施し、厚さ20μmの二軸延伸フィルムを得た。
【0036】
次に、アクリル酸エチル170部、メタクリル酸メチル170部、アクリル酸60部を乳化重合し平均分子量5000の共重合体を得た。この分散液を用い、このアクリル系共重合体樹脂100重量部に、直径2ミクロンのPMMA粒子2.5重量部を配合した水分散体(固形分濃度:40重量%)を準備した。前記のポリ乳酸系樹脂配向フィルムのコロナ放電処理面側に、このアクリル系樹脂水分散体をメイヤーバーを用いてコーティングした。その後、80℃で20秒間熱風乾燥炉内で水を蒸発させ、厚さ約1μm(塗布量:1.2g/m)の乾燥被膜を形成した。この積層フィルムの物性を測定した。結果を表1に示す。
【0037】
(比較例1)
実施例1で製造した厚み20μmのポリ乳酸系樹脂2軸延伸フィルムを、アクリル系樹脂等のコーティングを一切施すことなくそのまま用いて、実施例1と同様に物性測定を行った。その結果を表1に併せて示す。
【0038】
(比較例2)
市販のヒートシールポリプロピレンフィルム(東レ(株)製トレファンBO M304 20μm厚)を同様に測定した。その結果を表1に併せて示す。
【0039】
(比較例3)
実施例1の基材フィルムを市販のポリエチレンテレフタレート延伸フィルム(東レ(株)ルミラー P60 16μm厚)として、同様にコーティングした試料を作成し、測定した。結果を表1に併せて示す。
【0040】
(実施例2)
アクリル酸エチル120部、メタクリル酸メチル80部、アクリル酸30部を懸濁重合し平均分子量15000の共重合体を得た。これ以外は実施例1と同様に水分散体を作成しコーティングを行った。測定結果を表1に示す。
【0041】
(実施例3)
アクリル酸エチル30部、メタクリル酸メチル170部、アクリル酸30部を懸濁重合し平均分子量6000の共重合体を得た。これ以外は実施例1と同様に水分散対を作成しコーティングを行った。測定結果を表1に示す。
表1中の略語は次の通りである。PLA(ポリ乳酸系)、OPP(2軸配向ポリプロピレン)、PET(ポリエチレンテレフタレート)
【0042】
【表1】

Figure 2004351629
【0043】
【発明の効果】本発明の積層フィルムは生分解性を有し、環境対応性に優れ、包装材料として必要な優れた透明性と高い機械的強度と優れたヒートシール性を有するフィルムを提供するものである。[0001]
TECHNICAL FIELD The present invention relates to a biodegradable polylactic acid-based resin laminated film. More specifically, the present invention relates to a biodegradable polylactic acid-based resin laminated film having transparency, mechanical strength, and heat sealability suitable for packaging materials.
[0002]
2. Description of the Related Art Biodegradable films are gradually degraded and decomposed by biodegradation in soil, and finally change into harmless decomposition products by the action of microorganisms. As a typical example, a polylactic acid-based resin film is known.
[0003]
Polylactic acid-based stretched film is superior in mechanical strength and transparency compared to other biodegradable resin films, and generates less heat when incinerated than olefin-based resin films that have been widely used in the past. There is an advantage that the environmental load is small. In addition, since a resin is synthesized using a plant-derived raw material (such as corn) which is a non-petroleum raw material, there is an advantage that the environmental load is small in terms of carbon circulation (for example, see Patent Documents 1 to 3).
[0004]
On the other hand, when a plastic film is used as a packaging material for foods or the like, heat sealing properties are required for sealing an article to be packaged. In particular, low-temperature heat-sealing properties that enable heat-sealing under low sealing temperature conditions to produce a large number of packages at high speed are important. However, although the polylactic acid-based resin film can be melt-sealed at a low temperature, the face seal has a disadvantage that good adhesive strength and appearance cannot be obtained.
[0005]
Further, as a biodegradable resin film, there is a biodegradable aromatic polyester resin oriented film provided with an acrylic resin layer having a heat sealing property on at least one surface, but the resin of the base film is made of a plant. There is a drawback that the environmental burden is large because no raw material is used (see Patent Document 4).
[0006]
In addition, a heat-sealable film formed on a polyolefin-based stretched film such as a conventional oriented polypropylene (OPP) film has a biodegradable property on both the polyolefin-based resin of the film base and the resin of the heat-sealable layer. No, and as described above, the calorific value during incineration was also large.
[0007]
[Patent Document 1] Japanese Patent Publication No. Hei 5-508819
[Patent Document 2] JP-A-6-23836
[Patent Document 3] Japanese Patent Application Laid-Open No. 7-205278
[Patent Document 4] Japanese Patent Application Laid-Open No. 2001-205768
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, the present invention has biodegradability, excellent environmental compatibility, and excellent transparency and high mechanical strength required for packaging materials. It is an object of the present invention to provide a film having excellent heat sealing properties.
[0012]
That is, the present invention is a laminated film in which an acrylic resin layer having heat sealability is provided on at least one surface of a polylactic acid resin film.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The polylactic acid-based resin film, which is the base layer of the laminated film of the present invention, is composed of a polymer mainly composed of polylactic acid, and preferably 70% by weight or more is polylactic acid. The polylactic acid-based resin used in the present invention is a homopolymer of lactic acid, a copolymer of lactic acid and another hydroxycarboxylic acid or lactone, or a composition thereof. Lactic acid is L-lactic acid, D-lactic acid, or a mixture thereof. Examples of the hydroxycarboxylic acid include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 4-hydroxyvaleric acid, 6-hydroxycaproic acid, and the like, and derivatives thereof. Representative examples of lactone include caprolactone.
[0014]
The polymerization of the polylactic acid-based resin can be performed by a method such as a condensation polymerization method or a ring-opening polymerization method of the above-mentioned monomer and comonomer. The weight average molecular weight is preferably in the range of 50,000 to 300,000.
[0015]
At the time of film formation, other polymer materials, plasticizers, lubricants, inorganic fillers, antioxidants, weather stabilizers, antistatic agents, pigments, dyes, etc. are added within a range not to impair the purpose of the present invention. Can be. Further, particles can be added in terms of running properties and handling properties during production, processing and use. The addition amount of the particles is preferably in the range of 0.01 to 0.5% by weight.
[0016]
The type of particles to be added is not particularly limited, and examples thereof include inorganic particles, organic particles, and crosslinked polymer particles. As the inorganic particles, although not particularly limited, calcium carbonate, kaolin, talc, magnesium carbonate, barium carbonate, calcium sulfate, barium sulfate, lithium phosphate, calcium phosphate, magnesium phosphate, aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, Lithium fluoride and the like. Examples of the organic particles include terephthalates such as calcium oxalate, calcium, barium, zinc, manganese, and magnesium. Examples of the crosslinked polymer particles include polymers of vinyl monomers such as divinylbenzene, styrene, acrylic acid, and methacrylic acid. The average particle size of the particles to be added is preferably 0.01 to 2 μm.
[0017]
The polylactic acid-based resin in the present invention may contain various additives as needed as long as the effects of the present invention are not impaired. For example, a flame retardant, an antioxidant, a heat stabilizer, a lubricant, a crystal nucleating agent, and an ultraviolet absorber can be added.
[0018]
The substrate film of the present invention may be a uniaxially stretched film or a biaxially stretched film, but is preferably a biaxially stretched film because good mechanical strength can be obtained. In particular, in the case of forming a biaxially stretched film, as a stretching method, an inflation stretching method, a stenter sequential biaxial stretching method, and a stenter simultaneous biaxial stretching method are used.
[0019]
The surface of the present substrate film is preferably subjected to a surface treatment such as a corona discharge treatment so that it can be appropriately coated. The surface tension level of the film surface is preferably 35 dynes / cm or more, particularly preferably 40 to 48 dynes / cm.
[0020]
The acrylic resin layer used in the present invention needs to be a resin having heat sealing properties. Such a resin is an acrylic monomer, i.e., a polymer of a monomer selected from the group consisting of acrylic acid, methacrylic acid, and derivatives thereof, which may be a homopolymer or a copolymer. There may be. In the case of a copolymer, a polymer obtained by copolymerizing another unsaturated carboxylic acid or a derivative thereof together with a two-component or three-component or more polymer between acrylic monomers may be used.
[0021]
In a preferred embodiment, 5 to 30% by weight of the ethylenically unsaturated carboxylic acid and / or its anhydride (a) and 70 to 95% by weight of the alkyl (meth) acrylate (b) are constituents. When the amount of the ethylenically unsaturated carboxylic acid and / or anhydride exceeds 30%, the water resistance decreases, and the heat sealing adhesive strength tends to decrease and blocking tends to occur under humid conditions. This is because the adhesive strength of the seal tends to decrease.
[0022]
The acrylic resin is also preferably a copolymer having a weight average molecular weight of 3,000 to 50,000 and a glass transition point (Tg) in the range of 20 to 70 ° C. In this case, the heat sealing property is sufficiently exhibited at a low temperature and in a wide temperature range, and the blocking resistance is also good. The weight average molecular weight of the copolymer of the present invention is 100,000 or less, preferably in the range of 3,000 to 50,000. When the weight average molecular weight exceeds 50,000, the low-temperature heat seal adhesion becomes poor, and when it is less than 3,000, the adhesion strength decreases. The molecular weight can be adjusted by adding 0.05 to 5 parts by weight of a known chain transfer agent such as dodecyl mercaptan or lauryl mercaptan to 100 parts by weight of the copolymer. Further, Tg is more preferably in the range of 10 to 40 ° C.
[0023]
As a method for producing the resin of the acrylic resin layer, using a water-soluble protective colloid, a method of suspension polymerization of a monomer in the presence of a chain transfer agent, a method of emulsion polymerization of a monomer in the presence of a chain transfer agent, Further, there is a production method in which an organic solvent or a mixed solvent of water and an organic solvent is used, and the monomer is solution-polymerized in the presence of a chain transfer agent.
[0024]
Examples of the ethylenically unsaturated carboxylic acid and / or its anhydride used in the present invention include (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, and maleic anhydride. Particularly, (meth) acrylic acid is preferred. These may be used alone or in combination of two or more.
[0025]
Examples of the alkyl (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, propyl (meth) acrylate, amyl (meth) acrylate, and (meth) acrylic acid. Hexyl, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, and octadecyl (meth) acrylate, particularly Alkyl (meth) acrylates having 1 to 8 carbon atoms are preferred.
[0026]
Further, as long as the purpose of the present invention is not impaired, vinyl ether, vinyl cyanide, an aromatic vinyl compound, or the like, or a crosslinkable monomer such as N-methylol (meth) acrylamide, N- Methylolitaconamide, N-methylolcrotonamide, N, N-dimethylol (meth) acrylamide, unsaturated monomers obtained by etherifying these methylol groups with alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol and butyl alcohol A side chain such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, (meth) allyl alcohol; Small Unsaturated monomer having Kutomo one hydroxyl group; glycidyl (meth) acrylate, an epoxy group, such as allyl glycidyl ether may be used unsaturated monomers and the like having in a side chain.
[0027]
In the present invention, other materials such as carnauba wax, microcrystalline wax, paraffin wax, a lubricant such as polyethylene wax, silica, diatomaceous earth, calcium silicate, calcium silicate, bentonite, clay are used as long as the heat sealing property is not impaired. Anti-blocking agents such as inorganic fine particles such as inorganic particles and organic particles represented by PMMA and polyethylene, and other additives such as antistatic agents, ultraviolet absorbers, antioxidants, coloring agents, and other additives can be appropriately added.
[0028]
Further, the acrylic resin layer used in the present invention preferably has a thickness of 0.1 to 5 μm. The thickness of the polylactic acid-based resin film as the base film of the present invention is not particularly limited, but is preferably 5 μm to 25 μm because the mechanical properties of the packaging material are good.
The acrylic resin layer is formed on one or both surfaces of the polylactic acid resin film, and the thickness thereof is as thin as possible so as to provide the necessary heat seal adhesive strength without impairing the physical properties of the base material layer. It is preferably a layer, and is adjusted according to the type of the acrylic resin used or the use of the laminated film. Usually, 0.1 to 7 μm (0.1 to 7 g / m 2 , converted to coating amount), preferably 0.3 to 3 μm (0.3 to 3 g / m 2 , converted to coating amount). It is desirable to be within the range. With this thin coating layer, sufficient heat sealing adhesive strength can be obtained with such a thickness, the formation of cracks and the like in the coating layer can be avoided, and the polylactic acid resin film serving as the base layer has Excellent transparency and mechanical strength can be maintained as they are.
[0029]
The method for forming the acrylic resin layer is preferably a coating method in order to form a thin and uniform film. The acrylic resin is preferably produced in the form of an aqueous dispersion and coated as it is, and in particular, coating with an emulsion is desirable. If necessary, an organic solvent such as alcohol, a softener, and the like can be appropriately added to the coating liquid. The concentration of the acrylic resin in the coating liquid is preferably 5 to 40% by weight.
[0030]
Examples of the coating method include a dipping method, a gravure coating method, a screen printing method, and a spray method. In particular, the gravure coating method is suitable as a method for forming a uniform film at a high speed. The drying method and conditions after coating are not particularly limited, but a hot air drier or the like is used, the drying temperature is preferably from 60 to 120 ° C., and the drying time is preferably from about 5 seconds to about 1 minute.
[0031]
Either of the coating step of the acrylic resin and the stretching step of the polylactic acid-based resin film may be performed with priority to obtain a desired laminated film. That is, the acrylic resin may be coated after stretching the polylactic acid-based resin film uniaxially or biaxially, or the stretching may be performed after coating the acrylic resin-based resin.
[0032]
Since the laminated film having the above configuration has low-temperature heat sealability and good heat seal adhesive strength in addition to biodegradability, low environmental load, transparency and mechanical strength, it is widely used for packaging materials. It can be suitably used as
[0033]
Further, the laminated film of the present invention, depending on the application, on the surface opposite to the acrylic resin layer, other biodegradable plastic resin layer and shellac resin, biodegradable natural product layer such as cellulose resin and The ink layer may be provided entirely or partially. At that time, it is also possible to provide an anchor layer and an adhesive layer.
[0034]
【Example】
Next, the present invention will be described with reference to examples, but the present invention is not limited to these examples. In addition, the physical property evaluation of the obtained film was performed by the following test methods.
[0035]
[Physical property evaluation method]
(A) Haze: Measured by an apparatus based on JIS K6714. The measurement surface is the opposite surface of the acrylic resin coating surface.
(B) Heat seal adhesive strength: using a sealer having a hot plate having a width of 15 mm, setting the seal temperature between 90 and 120 ° C. at intervals of 10 ° C., and applying a pressure of 0.1 MPa and a time of 0.5 seconds to the film. Of the acrylic resin-coated surfaces were bonded together. Thereafter, the sample width was cut to 15 mm, peeled into a T-shape under the condition of a tensile speed of 200 mm / min, and the strength was measured.
(C) Soil degradability: The film was left in the soil for 5 months, and the state of the film was observed.
(D) Glass transition temperature (Tg): Specific heat was measured for a film sample using the following apparatus and conditions, and determined in accordance with JIS K7121.
Apparatus: Temperature modulation DSC manufactured by TA Instrument Measurement conditions: Heating temperature: 270 to 570K (RCS cooling method)
Temperature calibration: melting point of high-purity indium and tin Temperature modulation amplitude: ± 1K Temperature modulation cycle: 60 seconds Heating step: 5K Sample weight: 5mg Sample container: Aluminum open container (22mg)
Reference container: Aluminum open container (18mg)
In addition, the glass transition temperature was calculated by the following equation.
Glass transition temperature = (extrapolated glass transition start temperature + extrapolated glass transition end temperature) / 2
(Example 1)
After pre-drying a polylactic acid-based resin (D-form = 3%, density 1.3 g / cm 3 , melting point 160 ° C, melt flow rate 10 (g / 10 minutes 190 ° C), melt at 210 ° C and extrude from T-die. Next, an unstretched film having a thickness of 200 μm was prepared.Next, this film was longitudinally stretched 3.0 times at 60 ° C. and then transversely stretched 4.5 times at 70 ° C. in a sequential biaxial stretching apparatus. Subsequently, heat setting was performed for 20 seconds at 140 ° C. Thereafter, one surface of the film was subjected to corona discharge treatment to obtain a biaxially stretched film having a thickness of 20 μm.
[0036]
Next, 170 parts of ethyl acrylate, 170 parts of methyl methacrylate, and 60 parts of acrylic acid were emulsion-polymerized to obtain a copolymer having an average molecular weight of 5,000. Using this dispersion, an aqueous dispersion (solid content concentration: 40% by weight) was prepared by mixing 2.5 parts by weight of PMMA particles having a diameter of 2 microns with 100 parts by weight of the acrylic copolymer resin. The aqueous dispersion of acrylic resin was coated on the corona discharge treated surface side of the oriented film of polylactic acid resin using a Mayer bar. Thereafter, water was evaporated in a hot air drying oven at 80 ° C. for 20 seconds to form a dried film having a thickness of about 1 μm (coating amount: 1.2 g / m 2 ). The physical properties of the laminated film were measured. Table 1 shows the results.
[0037]
(Comparative Example 1)
Physical properties were measured in the same manner as in Example 1 except that the biaxially stretched polylactic acid-based resin film having a thickness of 20 μm manufactured in Example 1 was used without any coating with an acrylic resin or the like. The results are shown in Table 1.
[0038]
(Comparative Example 2)
A commercially available heat-sealed polypropylene film (Toray Co., Ltd., Tolephan BOM304 20 μm thick) was similarly measured. The results are shown in Table 1.
[0039]
(Comparative Example 3)
A sample coated in the same manner as the substrate film of Example 1 as a commercially available stretched polyethylene terephthalate film (Lumirror P60, Toray Industries, Inc., 16 μm thickness) was prepared and measured. The results are shown in Table 1.
[0040]
(Example 2)
120 parts of ethyl acrylate, 80 parts of methyl methacrylate, and 30 parts of acrylic acid were subjected to suspension polymerization to obtain a copolymer having an average molecular weight of 15,000. Except for this, an aqueous dispersion was prepared and coated in the same manner as in Example 1. Table 1 shows the measurement results.
[0041]
(Example 3)
30 parts of ethyl acrylate, 170 parts of methyl methacrylate, and 30 parts of acrylic acid were subjected to suspension polymerization to obtain a copolymer having an average molecular weight of 6,000. Except for this, an aqueous dispersion pair was prepared and coated in the same manner as in Example 1. Table 1 shows the measurement results.
The abbreviations in Table 1 are as follows. PLA (polylactic acid), OPP (biaxially oriented polypropylene), PET (polyethylene terephthalate)
[0042]
[Table 1]
Figure 2004351629
[0043]
The laminated film of the present invention provides a film having biodegradability, excellent environmental friendliness, and excellent transparency, high mechanical strength and excellent heat sealability required for packaging materials. Things.

Claims (5)

ポリ乳酸系樹脂フィルムの少なくとも一方の面にヒートシール性を有するアクリル系樹脂層が設けられた積層フィルム。A laminated film in which an acrylic resin layer having heat sealing properties is provided on at least one surface of a polylactic acid resin film. ポリ乳酸系樹脂フィルムが、二軸配向フィルムである請求項1記載のポリ乳酸系樹脂系積層フィルム。The polylactic acid-based resin-based laminated film according to claim 1, wherein the polylactic acid-based resin film is a biaxially oriented film. アクリル系樹脂が、エチレン性不飽和カルボン酸および/またはその無水物5〜30重量%と、(メタ)アクリル酸アルキルエステル70〜95重量%を構成成分とする請求項1または2記載の積層フィルム。The laminated film according to claim 1, wherein the acrylic resin comprises 5 to 30% by weight of an ethylenically unsaturated carboxylic acid and / or an anhydride thereof and 70 to 95% by weight of an alkyl (meth) acrylate. . アクリル系樹脂が、重量平均分子量が3、000〜50、000、かつ、ガラス転移点(Tg)が20〜70℃の範囲である請求項3記載の積層フィルム。The laminated film according to claim 3, wherein the acrylic resin has a weight average molecular weight of 3,000 to 50,000 and a glass transition point (Tg) of 20 to 70C. アクリル系樹脂層の厚さが0.1〜5μmである請求項1〜4のいずれかに記載の積層フィルム。The laminated film according to any one of claims 1 to 4, wherein the thickness of the acrylic resin layer is 0.1 to 5 m.
JP2003148835A 2003-05-27 2003-05-27 Polylactic acid resin laminated film Pending JP2004351629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003148835A JP2004351629A (en) 2003-05-27 2003-05-27 Polylactic acid resin laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003148835A JP2004351629A (en) 2003-05-27 2003-05-27 Polylactic acid resin laminated film

Publications (1)

Publication Number Publication Date
JP2004351629A true JP2004351629A (en) 2004-12-16

Family

ID=34045102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003148835A Pending JP2004351629A (en) 2003-05-27 2003-05-27 Polylactic acid resin laminated film

Country Status (1)

Country Link
JP (1) JP2004351629A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063864A1 (en) * 2005-11-30 2007-06-07 Toray Industries, Inc. Polylactic acid resin multilayer sheet and molded body made of same
JP2008155433A (en) * 2006-12-22 2008-07-10 Dainippon Printing Co Ltd Heat-sealable film having barrier properties
JP2008247018A (en) * 2007-03-07 2008-10-16 Du Pont Mitsui Polychem Co Ltd Laminate including polylactic resin layer
JP2010052307A (en) * 2008-08-29 2010-03-11 Toppan Cosmo Inc Easily adhesive biaxially stretched polylactic acid film
JP2010064341A (en) * 2008-09-10 2010-03-25 Toppan Cosmo Inc Decorative sheet
US7943218B2 (en) 2006-08-14 2011-05-17 Frito-Lay North America, Inc. Environmentally-friendly multi-layer flexible film having barrier properties
US7951436B2 (en) 2006-08-14 2011-05-31 Frito-Lay North America, Inc. Environmentally-friendly multi-layer flexible film having barrier properties
US8206796B2 (en) 2006-04-27 2012-06-26 Cryovac, Inc. Multilayer film comprising polylactic acid
KR101182712B1 (en) 2009-08-24 2012-09-13 성균관대학교산학협력단 Film comprising polylactic acid, manufacturing method and manufacturing device thereof
KR101267223B1 (en) * 2010-06-11 2013-05-24 성균관대학교산학협력단 Multi-layer film and method for preparing thereof
US9040120B2 (en) 2011-08-05 2015-05-26 Frito-Lay North America, Inc. Inorganic nanocoating primed organic film
US9090021B2 (en) 2012-08-02 2015-07-28 Frito-Lay North America, Inc. Ultrasonic sealing of packages
US9149980B2 (en) 2012-08-02 2015-10-06 Frito-Lay North America, Inc. Ultrasonic sealing of packages
US9162421B2 (en) 2012-04-25 2015-10-20 Frito-Lay North America, Inc. Film with compostable heat seal layer
US9163141B2 (en) 2006-04-27 2015-10-20 Cryovac, Inc. Polymeric blend comprising polylactic acid
US9267011B2 (en) 2012-03-20 2016-02-23 Frito-Lay North America, Inc. Composition and method for making a cavitated bio-based film
US9284104B2 (en) 2012-06-23 2016-03-15 Frito-Lay North America, Inc. Deposition of ultra-thin inorganic oxide coatings on packaging
KR102321870B1 (en) * 2020-06-17 2021-11-04 주식회사 한창제지 Biodegradable and recycleable PLA composition, and food packing paper using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732954A (en) * 1980-08-07 1982-02-22 Daicel Ltd Coating polyolefin film for integral packing
JPH09124812A (en) * 1995-10-26 1997-05-13 Daicel Chem Ind Ltd Composite film and its production
JP2000185380A (en) * 1998-12-22 2000-07-04 Tohcello Co Ltd Polylactic acid heat-sealable film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732954A (en) * 1980-08-07 1982-02-22 Daicel Ltd Coating polyolefin film for integral packing
JPH09124812A (en) * 1995-10-26 1997-05-13 Daicel Chem Ind Ltd Composite film and its production
JP2000185380A (en) * 1998-12-22 2000-07-04 Tohcello Co Ltd Polylactic acid heat-sealable film

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007063864A1 (en) * 2005-11-30 2009-05-07 東レ株式会社 Polylactic acid-based resin laminate sheet and molded body comprising the same
US7799412B2 (en) 2005-11-30 2010-09-21 Toray Industries, Inc. Polylactic acid-based resin laminate sheet and molded product therefrom
WO2007063864A1 (en) * 2005-11-30 2007-06-07 Toray Industries, Inc. Polylactic acid resin multilayer sheet and molded body made of same
US9163141B2 (en) 2006-04-27 2015-10-20 Cryovac, Inc. Polymeric blend comprising polylactic acid
US8206796B2 (en) 2006-04-27 2012-06-26 Cryovac, Inc. Multilayer film comprising polylactic acid
US7943218B2 (en) 2006-08-14 2011-05-17 Frito-Lay North America, Inc. Environmentally-friendly multi-layer flexible film having barrier properties
US7951436B2 (en) 2006-08-14 2011-05-31 Frito-Lay North America, Inc. Environmentally-friendly multi-layer flexible film having barrier properties
JP2008155433A (en) * 2006-12-22 2008-07-10 Dainippon Printing Co Ltd Heat-sealable film having barrier properties
JP2008247018A (en) * 2007-03-07 2008-10-16 Du Pont Mitsui Polychem Co Ltd Laminate including polylactic resin layer
JP2010052307A (en) * 2008-08-29 2010-03-11 Toppan Cosmo Inc Easily adhesive biaxially stretched polylactic acid film
JP2010064341A (en) * 2008-09-10 2010-03-25 Toppan Cosmo Inc Decorative sheet
KR101182712B1 (en) 2009-08-24 2012-09-13 성균관대학교산학협력단 Film comprising polylactic acid, manufacturing method and manufacturing device thereof
KR101267223B1 (en) * 2010-06-11 2013-05-24 성균관대학교산학협력단 Multi-layer film and method for preparing thereof
US9040120B2 (en) 2011-08-05 2015-05-26 Frito-Lay North America, Inc. Inorganic nanocoating primed organic film
US9267011B2 (en) 2012-03-20 2016-02-23 Frito-Lay North America, Inc. Composition and method for making a cavitated bio-based film
US9162421B2 (en) 2012-04-25 2015-10-20 Frito-Lay North America, Inc. Film with compostable heat seal layer
US9284104B2 (en) 2012-06-23 2016-03-15 Frito-Lay North America, Inc. Deposition of ultra-thin inorganic oxide coatings on packaging
US9090021B2 (en) 2012-08-02 2015-07-28 Frito-Lay North America, Inc. Ultrasonic sealing of packages
US9149980B2 (en) 2012-08-02 2015-10-06 Frito-Lay North America, Inc. Ultrasonic sealing of packages
KR102321870B1 (en) * 2020-06-17 2021-11-04 주식회사 한창제지 Biodegradable and recycleable PLA composition, and food packing paper using the same

Similar Documents

Publication Publication Date Title
JP2004351629A (en) Polylactic acid resin laminated film
EP2480710B1 (en) Multi-layer high moisture barrier polylactic acid film and its method of forming
EP1225196B1 (en) Biodegradable oriented film
WO2004000939A1 (en) Polylactic acid base polymer composition, molding thereof and film
WO2003037966A1 (en) Biaxially oriented polylactic acid-based resin films
JP2008062591A (en) Polylactic acid based multilayer film
JP2007204727A (en) Polylactic acid composition and molded product composed of the composition
WO2023068056A1 (en) Layered body, method for producing same, and molded article
JP2008169239A (en) Polyester film
JP2000185380A (en) Polylactic acid heat-sealable film
JP2010229393A (en) Polylactic acid-based film
JP2004256570A (en) Polylactic acid film
ES2836354T3 (en) Composition of sealing adhesive
JPH03262641A (en) Heat-sealable packaging film having stretchable primer
JP2000177072A (en) Polylactic acid gas barrier film
JP4467121B2 (en) Aromatic polyester resin laminated film
JP4060607B2 (en) Biodegradable protective film
JP2004262029A (en) Heat-sealable polylactic acid type biaxially stretched film
JP3902371B2 (en) Biodegradable laminated sheet
JP2007331154A (en) Polylactic acid-based biaxially stretched film and its manufacturing method
JP4288268B2 (en) Biodegradable laminated sheet
JP2008045070A (en) Composition for polylactic acid-based resin moisture-proof coating
JPH0354229A (en) Coating composition for forming heat-sealable coating film
JP4188093B2 (en) Heat shrinkable packaging material
JP2001205766A (en) Aromatic polyester resin laminated film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080723

A131 Notification of reasons for refusal

Effective date: 20080812

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20081009

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100427