JP2004347182A - Explosive loading method - Google Patents

Explosive loading method Download PDF

Info

Publication number
JP2004347182A
JP2004347182A JP2003142664A JP2003142664A JP2004347182A JP 2004347182 A JP2004347182 A JP 2004347182A JP 2003142664 A JP2003142664 A JP 2003142664A JP 2003142664 A JP2003142664 A JP 2003142664A JP 2004347182 A JP2004347182 A JP 2004347182A
Authority
JP
Japan
Prior art keywords
explosive
loading
water
explosives
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003142664A
Other languages
Japanese (ja)
Inventor
Tomohiro Ogata
智博 緒方
Takuya Taguchi
琢也 田口
Shigeyuki Sasaki
重幸 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2003142664A priority Critical patent/JP2004347182A/en
Publication of JP2004347182A publication Critical patent/JP2004347182A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To shorten the loading time of explosives and improve the working efficiency in a blasting work. <P>SOLUTION: When the water-in-oil type emulsion explosive formed in particles is loaded in a blasting hole using an explosive loader, the explosive loading specific gravity inside the blasting hole is varied by changing the loading speed of the explosive. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は爆薬装填方法に関する。更に詳しくは隧道掘進、採石、採鉱等の産業用***作業に利用される油中水滴型エマルション爆薬の装填方法に関するものである。
【0002】
【従来の技術】
***作業に用いられる産業用爆薬として、ダイナマイト、含水爆薬、硝安爆薬、硝安油剤爆薬(以下ANFO爆薬と呼ぶ)等が良く知られている。これらの爆薬のうち含水爆薬は、組成物中に危険度の高い火薬成分が含まれてないことから従来のダイナマイトよりも比較的安全であり、産業用爆薬として広く用いられるようになっている。この含水爆薬はスラリー爆薬として特許文献1にて公開されて以来、さまざまな改良が行われてきており、現在では耐水性、安全性の点で、従来の爆薬より優れた性能を有しているものが得られている。
【0003】
他方、発破現場においては、爆薬の装填時間の短縮や装填作業中、切羽付近の落石等からの危険を回避する安全性確保という観点から、爆薬の装薬作業の機械化が要望されるようになってきている。爆薬の機械装填を行うためには、使用される爆薬がより安全である必要があり、ANFO爆薬を装填機等によって機械装填する方法が鉱山や採石場等で実用化されている。
【0004】
ところがANFO爆薬は、油中水滴型エマルション爆薬と比較すると、発破後の残留ガス組成が悪いため十分な排気装置を設ける必要がある。また、発破孔中に水が存在する場合、ANFO爆薬が水に溶解して所定の爆薬性能が得られなくなるために、使用することが困難になる。このため水が存在する発破孔や湧水孔においては、あらかじめ発破孔中の水を排出してからポリチューブ等を挿入した後、そのポリチューブ内にANFO爆薬を装填するといった煩雑な方法が行われる場合がある。また油中水滴型エマルション爆薬については、例えば諸外国において、非特許文献1にあるように、バルクエマルション爆薬と呼ばれる油中水滴型エマルション爆薬を、エア駆動のモノポンプ等を利用して、直接発破孔に自動装填するバルクエマルション爆薬システムと呼ばれる方法がすでに実用化されている。しかしバルクエマルション爆薬システムにおいては、高粘度の油中水滴型エマルション爆薬を使用するために、装薬作業後の清掃作業や残留爆薬の管理がきわめて煩雑になるため高コスト化を招く恐れがある。また、バルクエマルション爆薬を装填するためには、安全性の確保のためにも高価な装填用機械が必要となる。
【0005】
また、現在トンネルなどでは周辺孔の余掘りを防ぐために、スムースブラスティング工法などの様々な制御発破が行われているが、これらの制御発破はトンネル中心部に威力のある爆薬、周辺孔に威力を抑えた爆薬というように、異なる爆薬種を使用したり、直径を通常のものより細くしたサイズのものを使用しており、爆薬装填時の作業効率はあまり良いとは言えない。機械装填が可能なANFO爆薬を用いても威力の調整は不可能であり、スムースブラスティング等の制御発破を行う場合は数種の爆薬種を使用する必要があり、作業が非常に煩雑になるのが現状である。
【0006】
このため、空気装填機のように比較的簡単な機械で装薬が可能で、比較的多くの水が存在する発破孔でも使用可能で、安全性の高い爆薬が要望されている。これらの問題を解決する爆薬として、例えば特許文献2、特許文献3、特許文献4、特許文献5に記載された、顆粒あるいは粒状の油中水滴型エマルション爆薬の開発が進められているが未だ充分とは言えない。
【0007】
【特許文献1】
米国特許第3,161,551号公報
【特許文献2】
特開平7−223888号公報(特許請求の範囲)
【特許文献3】
特開平11−278975号公報(特許請求の範囲)
【特許文献4】
特開2001−172096号公報(特許請求の範囲)
【特許文献5】
特開2001−206797号公報(特許請求の範囲)
【非特許文献1】
「効果的なトンネル技術に関する検討報告書」(社)日本トンネル技術協会発行
【0008】
【発明が解決しようとする課題】
本発明は、発破作業における爆薬の装填時間の短縮、装填作業の自動化、作業効率の向上が可能な爆薬装填方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者等は、このような課題を解決するために鋭意研究を重ねた結果、粒状に成型された油中水滴型エマルション爆薬を、爆薬装填機を用いて装薬する際の装薬速度を変化させ、発破孔内の爆薬装填比重を所望の範囲に変化させることで、爆薬の威力を調整でき、同一種の爆薬を使用しながら、例えばトンネル掘進での周辺孔のスムースブラスティングが可能となることを見出し、本発明を完成させたものである。
【0010】
すなわち本発明は、
(1)粒状に成型した油中水滴型エマルション爆薬を、爆薬装填機を用いて発破孔内に装填する際に、爆薬の装填速度を変化させることで発破孔内の爆薬装填比重を変化させることを特徴とする爆薬装填方法、
(2)爆薬の成型体一粒当たりの平均重量が0.03〜5.0gである上記(1)記載の装填方法、
(3)爆薬装填機が空気装填機である上記(1)または(2)記載の装填方法、(4)空気装填機が圧力容器を含む装置である上記(3)に記載の装填方法、に関する。
【0011】
以下、本発明を詳細に説明する。
本発明に使用される爆薬装填機は、爆薬を入れる容器、装薬ホース、爆薬供給装置から構成されていれば、どのような形態のものでも構わない。例えば、ANFO装填機のような爆薬を入れる圧力容器、装薬ホース、空気圧送装置から構成されている空気装填機が好ましい具体例として挙げられる。
【0012】
空気装填機は圧力容器と装薬ホースの接続部付近に、圧力容器からの圧縮空気とは別に、装薬ホースに圧縮空気を送るための装置を備えたものが好ましい。例えば、圧力容器と装薬ホースの接続部に2重管を使用し、2重管の内側には圧力容器からの爆薬、外側には圧縮空気を同時に送るような構造を有するものが挙げられる。圧力容器からの圧縮空気のみでの爆薬の輸送では、装薬ホース内で爆薬が閉塞するという問題が生じる場合がある。しかし、圧力容器とは別に圧縮空気のみを装薬ホース内に送ることで、装薬ホース内の爆薬の占有比率を下げて爆薬を輸送することが可能であり、爆薬の閉塞という問題を解消できる。
【0013】
装薬ホースは内径が15〜40mmのものが使用される。装薬ホースは、発破孔の径に合わせて適宜異なる外径のものを接続してもよいが、装薬中の詰まりを防ぐために装薬ホースの先端のみ外径を小さくするのが好ましい。。
【0014】
本発明においては、装薬速度を変化させ、粒状に成型された油中水滴型エマルション爆薬(以下、単に粒状爆薬という場合もある)を発破孔壁に衝突させる衝撃力を調整することにより、粒状爆薬を変形させ充填密度、即ち装薬比重を所望の程度に変化させる。装薬速度の方法に特に制限はないが、本発明の好ましい実施態様である空気装填機を使用した場合、装填圧力を適度に調整すればよい。この場合、上記したように装薬ホース内で爆薬が閉塞するという問題をさけるために、好ましくは圧力容器からの圧縮空気とは別に、装薬ホースに圧縮空気を送る装置を備えた装置を使用する。
【0015】
本発明における装薬速度は、爆薬の1分当りの供給量を指し、通常約10〜40kg/分程度の範囲で変化させるのが好ましい。この範囲の爆薬供給速度に調整するには、例えば前記本発明における好ましい装填機を使用した場合、圧力容器内の圧力が0.1〜0.5MPa、好ましくは0.2〜0.4MPaに、また、圧力容器とは別に装薬ホース内に送られる圧縮空気が0.05〜0.7MPa、好ましくは0.2〜0.5MPaにそれぞれ設定される。
【0016】
本発明に使用される粒状爆薬は、油中水滴型エマルション爆薬であって、前記のような装填機で装填でき、装填時の衝撃力で変形するものであれば特に制限はない。このような粒状爆薬としては、例えば酸化剤、水、乳化剤、微小中空球体及び油類を含有する爆薬の油類の全部または一部を樹脂に置換したものや、油中水滴型エマルション爆薬に付着防止剤をまぶしたもの等を挙げることができる。
【0017】
以下、本発明に使用する好ましい粒状爆薬につき説明する。
粒状爆薬の酸化剤はその水溶液として用いるのが好ましく、使用しうる酸化剤の具体例としては、硝酸アンモニウム、硝酸ナトリウムのようなアルカリ金属硝酸塩類、硝酸カルシウムのようなアルカリ土類金属硝酸塩類、塩素酸ナトリウムのようなアルカリ金属塩素酸塩類、塩素酸カルシウムのようなアルカリ土類金属塩素酸塩類、過塩素酸カリウムのようなアルカリ金属過塩素酸塩類、過塩素酸カルシウムのようなアルカリ土類金属過塩素酸塩類、過塩素酸アンモニウム等が挙げられ、これらは単独または混合して使用することができる。これらの酸化剤のうち特に好ましいものは硝酸アンモニウム及び硝酸ナトリウムである。
【0018】
粒状爆薬の酸化剤水溶液には、所望により硝酸モノメチルアミン、硝酸モノエチルアミン、硝酸ヒドラジン、二硝酸ジメチルアミン等の水溶性アミン硝酸塩類、硝酸メタノールアミン、硝酸エタノールアミン等の水溶性アルカノールアミン硝酸塩類及び水溶性の一硝酸エチレングリコール等を補助鋭感剤として添加することが可能である。
【0019】
粒状爆薬の酸化剤水溶液中における水の含有量は、酸化剤水溶液の結晶析出温度が30〜90℃になるような量だけ使用されることが好ましく、通常酸化剤水溶液に対して5〜40重量%、好ましくは7〜30重量%の範囲で使用される。
酸化剤水溶液中には結晶析出温度を下げるためにメチルアルコール、エチルアルコール、ホルムアマイド、エチレングリコール、グリセリン等の水溶性有機溶剤が補助溶媒として使用可能である。酸化剤水溶液は爆薬中に50〜95重量%の範囲で含有される。
【0020】
粒状爆薬の乳化剤としては、通常油中水滴型エマルション爆薬に使用される乳化剤、例えば、ステアリン酸アルカリ金属塩、ステアリン酸アンモニウム塩、ステアリン酸カルシウム塩、ポリオキシエチレンエーテル塩、ソルビタン脂肪酸エステル、ソルビトール脂肪酸エステル類等が挙げられ、これらは1種または2種以上の混合物として使用される。乳化剤は爆薬中に0.1〜10重量%、好ましくは0.5〜5重量%の範囲で含有される。
【0021】
粒状爆薬に含有される油類の具体例としては、軽油、灯油、ミネラルオイル、潤滑油、重油等の石油系油類、パラフィンワックス、マイクロクリスタリンワックス等の石油系ワックス類、その他疎水性の植物油、植物性ワックス、動物油、動物性ワックス類が挙げられ、これらは単独または2種類以上混合して用いることができる。油類は爆薬中に0.1〜20重量%好ましくは1〜10重量%の範囲で含有される。
【0022】
粒状爆薬の油類の一部または全部を油溶性または油類と相溶性を示す樹脂に置換することができる。用いる樹脂の特性としては、油中水滴型エマルション爆薬を射出成型でき、油中水滴型エマルションの安定性を保つためにエマルション基材と反応しないような樹脂であれば良い。常温で液体または低融点の熱硬化性樹脂や常温では固体で加熱すると流動性を示す熱可塑性樹脂や合成ゴムなどが好ましく、具体例としてはフェノール樹脂、石油樹脂、ポリエチレン、エチレン酢酸ビニル共重合体、ポリブタジエン、スチレンブタジエンゴム等が挙げられる。また、爆薬の製造においては溶融させた樹脂を用いるため、JIS K7210に記された「熱可塑性プラスチックの流れ試験法」に基づき測定されたメルトフローレートが10g/10min.以上、好ましくは15g/10min.以上であるものを使用することが好ましい。これらの樹脂は、酸化剤、油類、乳化剤からなる混合物(油中水滴型エマルション基材)中に含まれる油類の一部として混合して用いることもできるし、油中水滴型エマルション爆薬に添加物として混合することもできる。
【0023】
粒状爆薬には、適切な量の微小中空球体を含有せしめることによって***起爆性からブースター起爆にいたる広範囲な感度性能が得られる。微小中空球体としては、例えば、ガラスマイクロバルーン、シラスバルーン等の無機質中空球体、発泡スチレン、樹脂バルーン等の有機質中空球体の1種または2種以上の混合物が使用される。微小中空球体の量は、当該爆薬の用途に応じ広い範囲で変化し、また微小中空球体の比重にもよるので一概には言えないが、通常、当該爆薬の比重を1.4g/cc以下、好ましくは1.3g/cc以下になるような量が使用される。
【0024】
粒状爆薬には、アルミニウム粉、マグネシウム粉等の金属粉末、木粉、澱粉等の有機粉末の添加も可能である。
粒状爆薬の形状については、特に限定されるものではなく、球状、円柱状、円盤状、角柱状等いずれでもよく、成型に使用する成型機によって任意の形に成型される。例えば、一般に良く使われる押出し成型機によって柱状に成型する方法や、造粒機等で球状化する方法等が挙げられる。成型物の大きさとしては、爆薬の成型体一粒当たりの平均重量が0.03〜5gとなる大きさに成型されることが望ましい。爆薬の大きさは、その形状により一概には言えないが、円柱状の場合直径3〜10mm程度、長さ5〜15mm程度が好ましい。
【0025】
粒状爆薬には、成型後に必要に応じて付着防止剤をその表面に付着させこともできる。付着防止剤には平均粒径が500μm以下、好ましくは平均粒径が300μm以下の粉体が使用される。使用しうる粉体の具体例としては、炭酸カルシウム、炭酸マグネシウム等の金属塩類、酸化ケイ素、アルミナ等の金属酸化物類、タルク、カオリン、ベントナイト等の鉱物類、脂肪酸アミド、樹脂中空球体等の有機粉体、ガラス粉体等が挙げられる。使用される付着防止剤の量は、添加量が少なすぎると防止効果が十分でなく、多すぎると爆薬性能を低下させる恐れがある。用いる粉体の比重により変化するため一概には言えないが、粒状爆薬に対して、外割で通常0.03〜5重量%、程度付着させる。
【0026】
粒状爆薬は、例えば次のようにして製造される。前記の酸化剤及び、必要により、前記の補助鋭感剤を約85〜95℃で水に溶解させ酸化剤水溶液を得る。次いで約85〜95℃に加熱された油類(油溶性または油類との相溶性を示す樹脂を併用する場合もある)と乳化剤の混合物に、十分撹拌しながら前述の酸化剤水溶液を徐々に添加する。できあがった油中水滴型エマルションに微小中空球体、必要に応じて他の添加剤、油溶性または油類との相溶性を示す樹脂を加えて、捏和機で混合し、油中水滴型エマルション爆薬を得る。この油中水滴型エマルション爆薬を押し出し成型機等で成型した後、必要に応じて付着防止剤として粉体を混合し粒状爆薬を得る。得られた粒状爆薬は、粒状を呈しているので、爆薬装填機を用いて容易に発破孔に装填することができる。また耐水性が高く、かつ比重が1よりも大きいので、縦穴の水孔に装填された場合でも、乾燥孔と同様に支障なく使用することができる。
【0027】
本発明では、粒状爆薬は、貯蔵時や輸送中など爆薬に自重が掛かる場合や爆薬装填機等の装薬タンク内でも静圧下では塊化しにくい特性を持ち、動圧下では容易に変形する可塑性を有しているものを使用する。例えば、爆薬上部10cmの位置から10gの重りを落下させた程度で容易に変形するものが好ましい。このように可塑性を有しているため、同じ粒状形態を呈しているANFO爆薬とは異なり、発破孔内で容易に装填比重を変化させることが可能である。
【0028】
本発明で使用する粒状爆薬は、粒状に成型され上記特性を有するものであるが、装填比重が小さい、例えば0.5〜0.75g/ccの場合は爆轟速度が2500〜3500m/s、装填比重が大きい、例えば0.75〜0.95g/ccの場合は爆轟速度が3500〜4500m/sと変化するものを使用するのが好ましい。
【0029】
本発明の装填方法において、上記好ましい粒状爆薬を使用すると爆薬装填比重が0.6〜1.10g/ccの範囲で調整可能である。なお、発破現場で所望する爆薬装填比重で装填するには、予め発破孔と同じサイズの鋼管に速度を変えて装薬し、装薬速度に対する装填比重をキャリブレーションしておけばよい。
【0030】
【実施例】
本発明を実施例を挙げて更に詳しく説明するが、本発明がこれらの実施例に限定されるものではない。
【0031】
実施例1
硝酸アンモニウム74.3重量部、硝酸ナトリウム4.8重量部、水10.5重量部からなる90℃の酸化剤水溶液を、マイクロクリスタリンワックス1.9重量部、エチレン酢酸ビニルコポリマー0.8重量部、ソルビタンモノオレエート2.9重量部の混合物に加え、十分撹拌混合して油中水滴型エマルションを得た。これに微小中空粒子としてガラスマイクロバルーン3.8重量部を加えて撹拌混合し、油中水滴型エマルション爆薬を得た。この油中水滴型エマルション爆薬をダイスが5mm径の押出し成型機で成型し、8mmの長さになるようにナイフで切断した後、タルク1.0重量部を加えて混合し、粒状爆薬を得た。この粒状爆薬を、圧力容器と装薬ホース(内径32mm、長さ30m)を備えたANFO装填機(KY−1;(株)カヤテック製)に圧力容器とは別に圧縮空気を送るための空気圧送装置を取り付けた装填機を使用して圧力容器内の圧力を0.5MPa、圧力容器とは別に送る圧縮空気の圧力を0.3MPaに設定し、内径48mm、長さ1m、肉厚5mmの鋼管中に装薬し、その装薬状況の確認及びドートリッシュ法にて爆轟速度の測定を実施した。
【0032】
実施例2
実施例1と同じ粒状爆薬を使用して、実施例1と同様な空気装填機(圧力容器内の圧力を0.3MPa、圧力容器とは別に送る圧縮空気の圧力を0.3MPa、装薬ホースの内径25mm、長さ30m)を用いて、内径48mm、長さ1m、肉厚5mmの鋼管中に装薬し、その装薬状況の確認及びドートリッシュ法にて爆轟速度の測定を実施した。
【0033】
実施例3
実施例1と同じ粒状爆薬を使用して、実施例1と同様な空気装填機(圧力容器内の圧力を0.2MPa、圧力容器とは別に送る圧縮空気の圧力を0.2MPa、装薬ホースの内径25mm、長さ30m)を用いて、内径48mm、長さ1m、肉厚5mmの鋼管中に装薬し、その装薬状況の確認及びドートリッシュ法にて爆轟速度の測定を実施した。
【0034】
実施例4
実施例1と同じ粒状爆薬を実施例1同様の空気装填機の圧力容器に入れ、容器内に0.7MPaの荷重を掛けた後、圧力容器内の圧力を0.3MPa、圧力容器とは別に送る圧縮空気の圧力を0.3MPaに設定し、内径32mm、長さ30mの装薬ホースを用いて、通常の装薬ができるか確認した。
【0035】
表1に実施例1〜4の装填比重、装薬速度、爆轟速度について示す。
【0036】
【表1】

Figure 2004347182
【0037】
【発明の効果】
本発明の爆薬装填方法は、油中水滴型エマルション爆薬を、爆薬装填機を用いて装薬する際の装薬時間の短縮及び作業効率を向上させることができ、スムースブラスティング工法などの様々な発破パターンを一つの爆薬で実施することが可能である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for loading explosives. More specifically, the present invention relates to a method of loading a water-in-oil emulsion explosive used for industrial blasting operations such as tunnel excavation, quarrying, and mining.
[0002]
[Prior art]
As industrial explosives used for the blasting operation, dynamite, hydrous explosives, nitrite explosives, nitrate oil explosives (hereinafter referred to as ANFO explosives) and the like are well known. Among these explosives, hydrous explosives are relatively safer than conventional dynamite because they do not contain a high-risk explosive component in the composition, and have been widely used as industrial explosives. This water-containing explosive has been improved in various ways since it was published in Patent Document 1 as a slurry explosive, and now has better performance than conventional explosives in terms of water resistance and safety. Things have been obtained.
[0003]
On the other hand, at the blasting site, there has been a demand for mechanization of explosive charging work from the viewpoint of shortening the charging time of explosives and ensuring safety to avoid danger from falling rocks near the face during loading work. Is coming. In order to carry out mechanical loading of explosives, it is necessary for the explosives to be used to be safer, and a method of mechanically loading an ANFO explosive with a loading machine or the like has been put to practical use in mines and quarries.
[0004]
However, the ANFO explosive has a poor residual gas composition after blasting as compared with the water-in-oil type emulsion explosive, so it is necessary to provide a sufficient exhaust device. Further, when water is present in the blast hole, the ANFO explosive dissolves in water and the predetermined explosive performance cannot be obtained, so that it becomes difficult to use the explosive. Therefore, in blast holes and spring holes where water exists, a complicated method such as discharging the water in the blast hole in advance, inserting a polytube or the like, and then loading an ANFO explosive into the polytube is performed. May be asked. As for the water-in-oil emulsion explosive, for example, in various countries, as described in Non-Patent Document 1, a water-in-oil emulsion explosive called a bulk emulsion explosive is directly blasted using an air-driven monopump or the like. A method called a bulk emulsion explosive system for automatic loading into a tank has already been put to practical use. However, in the bulk emulsion explosive system, since a high viscosity water-in-oil emulsion explosive is used, cleaning work after charging operation and management of residual explosives become extremely complicated, which may lead to an increase in cost. In addition, in order to load a bulk emulsion explosive, an expensive loading machine is required to ensure safety.
[0005]
Currently, various control blasting methods such as the smooth blasting method are performed in tunnels and other places in order to prevent excavation of peripheral holes, but these control blasts are effective in explosives at the center of the tunnel and at peripheral holes. The use of explosives of different types, such as reduced explosives, or the use of smaller-sized explosives than conventional ones, is not very efficient when loading explosives. Even with the use of machine-loadable ANFO explosives, it is impossible to adjust the power, and when performing control blasting such as smooth blasting, it is necessary to use several types of explosives, which makes the operation very complicated is the current situation.
[0006]
For this reason, there is a demand for a highly safe explosive that can be charged with a relatively simple machine such as an air loading machine and can be used in a blast hole where a relatively large amount of water exists. As explosives for solving these problems, for example, granular or granular water-in-oil emulsion explosives described in Patent Literature 2, Patent Literature 3, Patent Literature 4, and Patent Literature 5 have been developed, but are still insufficient. It can not be said.
[0007]
[Patent Document 1]
US Patent No. 3,161,551 [Patent Document 2]
JP-A-7-223888 (Claims)
[Patent Document 3]
JP-A-11-278975 (Claims)
[Patent Document 4]
Japanese Patent Application Laid-Open No. 2001-172096 (Claims)
[Patent Document 5]
Japanese Patent Application Laid-Open No. 2001-206797 (Claims)
[Non-patent document 1]
"Review Report on Effective Tunneling Technology" Published by Japan Tunneling Technology Association [0008]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide an explosive loading method capable of reducing explosive loading time in blasting operation, automating the loading operation, and improving work efficiency.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve such a problem, and as a result, the charging speed at which a water-in-oil type emulsion explosive formed into a granular shape is charged using an explosive loading machine is reduced. By changing the specific gravity of the explosive in the blast hole to a desired range, the power of the explosive can be adjusted, and the same type of explosive can be used for smooth blasting of peripheral holes, for example, in tunnel excavation. The present invention has been completed, and the present invention has been completed.
[0010]
That is, the present invention
(1) Changing the explosive loading specific gravity in the blast hole by changing the loading speed of the explosive when loading the granulated water-in-oil emulsion explosive into the blast hole using an explosive loading machine. Explosive loading method, characterized by
(2) The loading method according to the above (1), wherein the average weight of the explosive per molded article is 0.03 to 5.0 g;
(3) The charging method according to (1) or (2), wherein the explosive loading device is an air loading device, and (4) the charging method according to (3), wherein the air loading device is a device including a pressure vessel. .
[0011]
Hereinafter, the present invention will be described in detail.
The explosive loading machine used in the present invention may be of any form as long as it comprises a container for storing explosives, a charging hose, and an explosive supply device. For example, a preferred embodiment is a pneumatic loading machine composed of a pressure vessel for charging an explosive, such as an ANFO loading machine, a charging hose, and a pneumatic feeding device.
[0012]
The air loading machine is preferably provided with a device for sending compressed air to the charging hose separately from the compressed air from the pressure container near the connection between the pressure container and the charging hose. For example, there is a structure in which a double pipe is used for a connection portion between the pressure vessel and the charging hose, and a structure in which explosives from the pressure vessel are sent inside the double pipe and compressed air is sent simultaneously outside the double pipe. Transporting explosives with only compressed air from a pressure vessel may cause the problem of explosive blockage in the charge hose. However, by sending only compressed air into the charge hose separately from the pressure vessel, it is possible to reduce the occupation ratio of the explosive in the charge hose and transport the explosive, thereby eliminating the problem of the explosive blockage. .
[0013]
A charge hose having an inner diameter of 15 to 40 mm is used. As the charging hose, one having an outer diameter that is appropriately different according to the diameter of the blast hole may be connected, but it is preferable to reduce the outer diameter only at the tip of the charging hose in order to prevent clogging during charging. .
[0014]
In the present invention, the granularity is adjusted by changing the charging speed and adjusting the impact force that causes the water-in-oil type emulsion explosive formed into a granular shape (hereinafter, sometimes simply referred to as a granular explosive) to collide with the blast hole wall. The explosive is deformed to change the packing density, that is, the charge specific gravity, to a desired degree. There is no particular limitation on the method of the charging speed, but when using an air charging machine which is a preferred embodiment of the present invention, the charging pressure may be adjusted appropriately. In this case, in order to avoid the problem that the explosive is clogged in the charging hose as described above, it is preferable to use a device having a device for sending compressed air to the charging hose separately from the compressed air from the pressure vessel. I do.
[0015]
The charge rate in the present invention indicates the amount of supply of the explosive per minute, and is preferably changed usually in the range of about 10 to 40 kg / min. In order to adjust the explosive supply speed in this range, for example, when using the preferred loading machine in the present invention, the pressure in the pressure vessel is 0.1 to 0.5 MPa, preferably 0.2 to 0.4 MPa, Further, the compressed air sent into the charging hose separately from the pressure vessel is set to 0.05 to 0.7 MPa, preferably 0.2 to 0.5 MPa.
[0016]
The granular explosive used in the present invention is not particularly limited as long as it is a water-in-oil type emulsion explosive, which can be loaded by the above-described loading machine and can be deformed by the impact force at the time of loading. Such granular explosives include, for example, those obtained by substituting all or part of the oils of explosives containing oxidizing agents, water, emulsifiers, minute hollow spheres and oils with resin, and water-in-oil emulsion explosives. Those coated with an inhibitor can be mentioned.
[0017]
Hereinafter, a preferred granular explosive used in the present invention will be described.
The oxidizing agent for the granular explosive is preferably used as an aqueous solution thereof. Specific examples of oxidizing agents that can be used include ammonium nitrate, alkali metal nitrates such as sodium nitrate, alkaline earth metal nitrates such as calcium nitrate, and chlorine. Alkali metal chlorates such as sodium silicate, alkaline earth metal chlorates such as calcium chlorate, alkali metal perchlorates such as potassium perchlorate, alkaline earth metals such as calcium perchlorate Perchlorates, ammonium perchlorate and the like can be mentioned, and these can be used alone or in combination. Particularly preferred among these oxidants are ammonium nitrate and sodium nitrate.
[0018]
The aqueous oxidizing agent of the granular explosive may optionally contain water-soluble amine nitrates such as monomethylamine nitrate, monoethylamine nitrate, hydrazine nitrate, and dimethylamine dinitrate; water-soluble alkanolamine nitrates such as methanolamine nitrate and ethanolamine nitrate; It is possible to add water-soluble ethylene glycol mononitrate or the like as an auxiliary sensitizer.
[0019]
The content of water in the oxidizing agent aqueous solution of the granular explosive is preferably used only in such an amount that the crystallization temperature of the oxidizing agent aqueous solution becomes 30 to 90 ° C., and usually 5 to 40% by weight based on the oxidizing agent aqueous solution. %, Preferably in the range of 7 to 30% by weight.
In the oxidizing agent aqueous solution, a water-soluble organic solvent such as methyl alcohol, ethyl alcohol, formamide, ethylene glycol, and glycerin can be used as an auxiliary solvent in order to lower the crystallization temperature. The oxidizing agent aqueous solution is contained in the explosive in the range of 50 to 95% by weight.
[0020]
As the emulsifier for granular explosives, emulsifiers usually used for water-in-oil emulsion explosives, for example, alkali metal stearate, ammonium stearate, calcium stearate, polyoxyethylene ether salt, sorbitan fatty acid ester, sorbitol fatty acid ester And the like, and these are used as one kind or as a mixture of two or more kinds. The emulsifier is contained in the explosive in the range of 0.1 to 10% by weight, preferably 0.5 to 5% by weight.
[0021]
Specific examples of oils contained in the granular explosive include petroleum oils such as light oil, kerosene, mineral oil, lubricating oil, heavy oil, petroleum waxes such as paraffin wax and microcrystalline wax, and other hydrophobic vegetable oils. , Vegetable waxes, animal oils, and animal waxes, and these can be used alone or in combination of two or more. Oils are contained in the explosive in the range of 0.1 to 20% by weight, preferably 1 to 10% by weight.
[0022]
Some or all of the oils of the granular explosive can be replaced with oil-soluble or oil-compatible resins. As the characteristics of the resin to be used, any resin can be used as long as it is capable of injection molding a water-in-oil emulsion explosive and does not react with the emulsion base material in order to maintain the stability of the water-in-oil emulsion. Preferred are liquid or low-melting thermosetting resins at room temperature and thermoplastic resins and synthetic rubbers that exhibit fluidity when heated in solid form at room temperature. Specific examples include phenolic resins, petroleum resins, polyethylene, and ethylene-vinyl acetate copolymers. , Polybutadiene, styrene butadiene rubber and the like. In addition, since a molten resin is used in the production of explosives, the melt flow rate measured based on the “flow test method for thermoplastics” described in JIS K7210 is 10 g / 10 min. As described above, preferably 15 g / 10 min. It is preferable to use the above. These resins can be used by mixing as a part of oils contained in a mixture (a water-in-oil type emulsion base material) composed of an oxidizing agent, oils, and an emulsifier, and can be used for a water-in-oil type emulsion explosive. It can also be mixed as an additive.
[0023]
Granular explosives can provide a wide range of sensitivity performance from primer detonation to booster detonation by including an appropriate amount of micro hollow spheres. As the minute hollow sphere, for example, one or a mixture of two or more of inorganic hollow spheres such as glass microballoons and shirasu balloons, and organic hollow spheres such as foamed styrene and resin balloons are used. The amount of the fine hollow spheres varies over a wide range depending on the use of the explosive, and also depends on the specific gravity of the fine hollow spheres, so cannot be specified unconditionally. Usually, the specific gravity of the explosive is 1.4 g / cc or less, Preferably, the amount used is 1.3 g / cc or less.
[0024]
Metal powder such as aluminum powder and magnesium powder, and organic powder such as wood powder and starch can be added to the granular explosive.
The shape of the granular explosive is not particularly limited, and may be any of a spherical shape, a cylindrical shape, a disk shape, a prismatic shape, and the like, and is formed into an arbitrary shape by a molding machine used for molding. For example, a method of molding into a column shape by using a generally used extruder or a method of spheroidizing by a granulator or the like can be used. As for the size of the molded product, it is desirable to mold the explosive into a size such that the average weight per one molded product of the explosive is 0.03 to 5 g. Although the size of the explosive cannot be unconditionally determined by its shape, it is preferably about 3 to 10 mm in diameter and about 5 to 15 mm in length in the case of a cylindrical shape.
[0025]
If necessary, an anti-adhesion agent can be attached to the surface of the granular explosive after molding. A powder having an average particle size of 500 μm or less, preferably 300 μm or less is used as the antiadhesive agent. Specific examples of powders that can be used include calcium carbonate, metal salts such as magnesium carbonate, silicon oxide, metal oxides such as alumina, talc, kaolin, minerals such as bentonite, fatty acid amide, resin hollow spheres and the like. Organic powder, glass powder and the like can be mentioned. If the amount of the anti-adhesive agent used is too small, the effect of preventing the anti-adhesive agent is not sufficient. If the amount is too large, the explosive performance may be reduced. Since it varies depending on the specific gravity of the powder to be used, it cannot be said unconditionally, but it is usually attached to the granular explosive by an amount of about 0.03 to 5% by weight.
[0026]
The granular explosive is manufactured, for example, as follows. The oxidizing agent and, if necessary, the auxiliary sensitizer are dissolved in water at about 85 to 95 ° C. to obtain an oxidizing agent aqueous solution. Then, the above-mentioned aqueous solution of the oxidizing agent is gradually added to a mixture of the oil (an oil-soluble resin or a resin showing compatibility with the oil) heated to about 85 to 95 ° C. and the emulsifier with sufficient stirring. Added. The resulting water-in-oil emulsion explosive is added to the completed water-in-oil type emulsion, added with fine hollow spheres and, if necessary, other additives, a resin exhibiting oil solubility or compatibility with oils, and mixed with a kneading machine. Get. After the water-in-oil type emulsion explosive is molded by an extrusion molding machine or the like, powder is mixed as an anti-adhesion agent as needed to obtain a granular explosive. Since the obtained granular explosive has a granular shape, it can be easily loaded into a blast hole using an explosive loading machine. In addition, since it has high water resistance and a specific gravity of more than 1, even when it is loaded in a vertical water hole, it can be used without any trouble similarly to a dry hole.
[0027]
In the present invention, the granular explosive has the property that it hardly agglomerates under static pressure even when the explosive is under its own weight, such as during storage or transportation, or in a charge tank such as an explosive loader, and has a plasticity that easily deforms under dynamic pressure. Use what you have. For example, it is preferable that the explosive be easily deformed by dropping a weight of 10 g from a position 10 cm above the explosive. Because of the plasticity, unlike the ANFO explosive having the same granular form, the specific gravity of the charged material can be easily changed in the blast hole.
[0028]
The granular explosive used in the present invention is formed into a granular form and has the above-mentioned characteristics. However, when the loading specific gravity is small, for example, 0.5 to 0.75 g / cc, the detonation velocity is 2500 to 3500 m / s, When the loading specific gravity is large, for example, 0.75 to 0.95 g / cc, it is preferable to use a material whose detonation speed changes from 3500 to 4500 m / s.
[0029]
In the loading method of the present invention, the explosive loading specific gravity can be adjusted within the range of 0.6 to 1.10 g / cc by using the above-mentioned preferable granular explosive. In order to load the desired explosive loading specific gravity at the blasting site, a steel pipe having the same size as the blast hole is charged at a different speed, and the charging specific gravity with respect to the charging speed may be calibrated.
[0030]
【Example】
The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0031]
Example 1
A 90 ° C. aqueous solution of an oxidizing agent consisting of 74.3 parts by weight of ammonium nitrate, 4.8 parts by weight of sodium nitrate and 10.5 parts by weight of water was mixed with 1.9 parts by weight of microcrystalline wax, 0.8 parts by weight of ethylene vinyl acetate copolymer, The mixture was added to 2.9 parts by weight of sorbitan monooleate and thoroughly stirred and mixed to obtain a water-in-oil emulsion. 3.8 parts by weight of glass microballoons as fine hollow particles were added thereto and mixed by stirring to obtain a water-in-oil type emulsion explosive. This water-in-oil type emulsion explosive was molded with an extruder having a die having a diameter of 5 mm, cut with a knife so as to have a length of 8 mm, and then added and mixed with 1.0 part by weight of talc to obtain a granular explosive. Was. The granular explosive is pneumatically sent to an ANFO loading machine (KY-1; manufactured by Kayatech Co., Ltd.) equipped with a pressure vessel and a charging hose (inner diameter 32 mm, length 30 m) to send compressed air separately from the pressure vessel. Using a loading machine equipped with a device, the pressure in the pressure vessel was set to 0.5 MPa, the pressure of the compressed air to be sent separately from the pressure vessel was set to 0.3 MPa, and a steel pipe having an inner diameter of 48 mm, a length of 1 m, and a wall thickness of 5 mm was used. The state of the charge was confirmed, and the detonation velocity was measured by the Dotlish method.
[0032]
Example 2
Using the same granular explosive as in Example 1, the same air loading machine as in Example 1 (pressure in the pressure vessel 0.3 MPa, pressure of compressed air sent separately from the pressure vessel 0.3 MPa, charging hose (Inner diameter: 25 mm, length: 30 m) was charged into a steel pipe having an inner diameter of 48 mm, a length of 1 m, and a thickness of 5 mm, the state of the charging was confirmed, and the detonation velocity was measured by the Dotlish method. .
[0033]
Example 3
Using the same granular explosive as in Example 1, the same air loading machine as in Example 1 (pressure in the pressure vessel 0.2 MPa, pressure of compressed air sent separately from the pressure vessel 0.2 MPa, charging hose (Inner diameter: 25 mm, length: 30 m) was charged into a steel pipe having an inner diameter of 48 mm, a length of 1 m, and a thickness of 5 mm, the state of the charging was confirmed, and the detonation velocity was measured by the Dotlish method. .
[0034]
Example 4
The same granular explosive as in Example 1 was placed in the pressure vessel of the same air-loading machine as in Example 1, and after a load of 0.7 MPa was applied to the vessel, the pressure in the pressure vessel was changed to 0.3 MPa, separately from the pressure vessel. The pressure of the compressed air to be sent was set to 0.3 MPa, and it was confirmed that normal charging was possible using a charging hose having an inner diameter of 32 mm and a length of 30 m.
[0035]
Table 1 shows the loading specific gravity, the charging speed, and the detonation speed of Examples 1 to 4.
[0036]
[Table 1]
Figure 2004347182
[0037]
【The invention's effect】
The explosive loading method of the present invention can shorten the charging time and improve the work efficiency when charging a water-in-oil type emulsion explosive using an explosive loading machine, and can use various methods such as a smooth blasting method. Blast patterns can be implemented with a single explosive.

Claims (4)

粒状に成型した油中水滴型エマルション爆薬を、爆薬装填機を用いて発破孔内に装填する際に、爆薬の装薬速度を変化させることで発破孔内の爆薬装填比重を変化させることを特徴とする爆薬装填方法。When a granular water-in-oil emulsion explosive is loaded into a blast hole using an explosive loading machine, the explosive loading specific gravity in the blast hole is changed by changing the explosive charging speed. Explosive loading method. 爆薬の成型体一粒当たりの平均重量が0.03〜5.0gである請求項1記載の装填方法。The charging method according to claim 1, wherein the average weight of the explosive per molded article is 0.03 to 5.0 g. 爆薬装填機が空気装填機である請求項1または2記載の装填方法。3. The charging method according to claim 1, wherein the explosive loading machine is an air loading machine. 空気装填機が圧力容器を含む装置である請求項3記載の装填方法。The charging method according to claim 3, wherein the air loading device is a device including a pressure vessel.
JP2003142664A 2003-05-20 2003-05-20 Explosive loading method Pending JP2004347182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003142664A JP2004347182A (en) 2003-05-20 2003-05-20 Explosive loading method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003142664A JP2004347182A (en) 2003-05-20 2003-05-20 Explosive loading method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007298897A Division JP2008111656A (en) 2007-11-19 2007-11-19 Explosive loading method

Publications (1)

Publication Number Publication Date
JP2004347182A true JP2004347182A (en) 2004-12-09

Family

ID=33530682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003142664A Pending JP2004347182A (en) 2003-05-20 2003-05-20 Explosive loading method

Country Status (1)

Country Link
JP (1) JP2004347182A (en)

Similar Documents

Publication Publication Date Title
CA2965705C (en) Explosive composition for soft and wet ground and method of delivery
KR100824932B1 (en) Explosive
EP3256435B1 (en) Water-based explosive suspension
JP2008111656A (en) Explosive loading method
JP4111436B2 (en) explosive
JP2004347182A (en) Explosive loading method
JP2005145730A (en) Explosive
JPH0684273B2 (en) Water-in-oil emulsion explosive composition
JP4782599B2 (en) Explosive emulsifier and explosive using the same
JP2005030710A (en) Explosive loader and explosive loading method
JP2004238235A (en) Bursting charge
JP2001206797A (en) Explosive
JP2004238255A (en) Explosive
JP2007284291A (en) Explosive
JP2005147434A (en) Explosive loading method
JP2005132636A (en) Explosive composition
JP2001172095A (en) Granular explosive
JP2004333080A (en) Explosive loading method and loading machine
AU2020267239A1 (en) Explosive composition and method of making the same
JP2001221600A (en) Explosive charging method
JPH06144983A (en) Explosive composition and production thereof
OA18788A (en) Water-Based Explosive Suspension.
JPH11292676A (en) Water-in-oil type emulsion explosive composition
JP2001039790A (en) Water resistant explosive powder
JPH08157291A (en) Water-containing explosive composition and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080204