JP2004337874A - Optical machining apparatus - Google Patents

Optical machining apparatus Download PDF

Info

Publication number
JP2004337874A
JP2004337874A JP2003134096A JP2003134096A JP2004337874A JP 2004337874 A JP2004337874 A JP 2004337874A JP 2003134096 A JP2003134096 A JP 2003134096A JP 2003134096 A JP2003134096 A JP 2003134096A JP 2004337874 A JP2004337874 A JP 2004337874A
Authority
JP
Japan
Prior art keywords
workpiece
optical
image
optical path
light energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003134096A
Other languages
Japanese (ja)
Other versions
JP4055649B2 (en
Inventor
Masahiro Sato
正博 佐藤
Ryoji Inuzuka
良治 犬塚
Masafumi Ishiguro
雅史 石黒
Tomoko Fukunaka
智子 福中
Kazuhiko Yamashita
和彦 山下
Yasu Watanabe
鎮 渡辺
Shunichi Yoneda
俊一 米田
Kenji Takahashi
健治 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003134096A priority Critical patent/JP4055649B2/en
Priority to US10/833,072 priority patent/US7663073B2/en
Publication of JP2004337874A publication Critical patent/JP2004337874A/en
Application granted granted Critical
Publication of JP4055649B2 publication Critical patent/JP4055649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that an image obtained by a light receiving means is the image of a workpiece viewed in a diagonal direction in a method for directly leading the image of the workpiece to the light receiving means as a method for observing the workpiece in a machining apparatus using optical energy, and the image is distorted. <P>SOLUTION: The optical machining apparatus comprises an optical energy output means to output optical energy, a first optical path to lead the optical energy to a workpiece, an optical means to shape the optical energy disposed in the first optical path, and a second optical path which shares a part of the optical path to lead the light from the workpiece to a light receiving means. An image distortion correction means is disposed in front of the light receiving means in the second optical path at the position different from that of the first optical path. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、被加工物に光エネルギーを照射する光加工装置に関するものである。
【0002】
【従来の技術】
従来、光エネルギーによる加工手段においては、光エネルギー出力手段と、前記光エネルギーを被加工物に導く第1の光路と、前記第1の光路に配置した光エネルギーを整形する光学手段と、前記光路の一部を共有せず、前記被加工物からの光を直接受光手段に導く第2の光路を備え、この上に受光手段を配置していた。
【0003】
もしくは光エネルギーを出力する光エネルギー出力手段と、前記光エネルギーを被加工物に導く第1の光路と、前記第1の光路に配置した光エネルギーを整形する光学手段と、前記光路の一部を共有し、かつ、前記被加工物からの光を受光手段に導く第2の光路を備え、前記第2の光路の前記第1の光路とは異なる位置に前記受光手段を配置していた(例えば特許文献1参照)。
【0004】
【特許文献1】
特開2002−1521号公報
【0005】
【発明が解決しようとする課題】
しかし、従来の被加工物の画像を直接受光手段に導く方法では受光手段で得られる画像は被加工物を斜めから見たものになり、画像に歪みが生じる。また、受光手段を集光手段を通した第2の光路上に置く方法では、光路を被加工物に対し垂直にすることで前記の歪みはなくなるが、以下の課題が発生する。
【0006】
すなわち、光エネルギー出力手段から出る光は発散角を持っており、これを整形する光学手段により被加工物の上に集光される。
【0007】
この集光特性は光エネルギー出力手段の特性に合わせて最適化されている。また被加工物からの光は上記整形手段により受光手段に導かれる。ここで整形手段の集光特性と受光手段の集光特性のちがいにより、受光手段で受けた被加工物の画像には半径方向に歪みが生じる。
【0008】
本発明は上記課題に鑑み、被加工物の画像の歪みを取り除いて教示時間の短縮および精度の高い加工が可能となる光加工装置を提供するものである。
【0009】
【課題を解決するための手段】
上記課題を解決するために本発明の第1の手段は、光エネルギーを出力する光エネルギー出力手段と、前記光エネルギーを被加工物に導く第1の光路と、前記第1の光路に配置した光エネルギーを整形する光学手段と、前記光路の一部を共有し、かつ前記被加工物からの光を受光手段に導く第2の光路を備え、前記第2の光路の前記第1の光路とは異なる位置で、かつ前記受光手段の前に配置した画像歪修正手段を設けたことにより、加工部位を正面から観察でき、かつその画像のひずみが小さくなるという作用が得られる。
【0010】
本発明の第2の手段によれば前記光学手段と第2の光路と画像歪修正手段と受光手段を保持する加工ヘッドを、被加工物に対して重力の働く方向に配置したことにより加工面が被加工物の下側にあっても被加工物を反転しなくてもよいという作用が得られる。
【0011】
本発明の第3の手段によれば前記加工ヘッドと被加工物を相対移動させる駆動手段を設けたことにより、加工領域を広げることができるという作用が得られる。
【0012】
本発明の第4の手段によれば前記被加工物の被加工部位を示す画像を表示する表示手段と、前記光学手段により整形された光エネルギーが被加工物に照射されたときに光エネルギーが位置する被加工物の部位を導き出す加工位置検出手段と、前記加工位置検出手段で導き出した加工位置を、被加工物の被加工部位に対応して前記表示手段に表示することにより、位置教示および修正確認作業が容易になるという作用が得られる。
【0013】
本発明の第5の手段によれば加工位置検出手段は、少なくとも前記光学手段と第2の光路と画像歪修正手段と受光手段を保持する加工ヘッドの位置を認識する手段と、前記光学手段により整形された光エネルギーが被加工物に照射されたときに光エネルギーが位置する被加工物の部位と前記認識手段により検出された位置との差をオフセットする位置検出修正手段を備えることにより、被加工物の位置決め精度がわるくても高い加工位置精度が得られるという作用が得られる。
【0014】
本発明の第6の手段によれば前記被加工物の被加工部位を示す画像を予め記憶する記憶手段を設けたことにより、被加工物の画像を見ながら加工部位の教示ができるので、オフラインによる教示ができるという作用が得られる。
【0015】
本発明の第7の手段によれば糸はんだ送給手段を設けたことにより、前記加工ヘッドによる被加工物の加工部位へ光ビームを照射し、はんだ付け加工ができるという作用が得られる。
【0016】
【発明の実施の形態】
(実施の形態1)
本発明の第1の実施の形態について図1、7、8を用いて説明する。
【0017】
1は光エネルギーを出力する光エネルギー出力手段であり、2は光エネルギーを被加工物に導く光エネルギーの(第1の)光路を示す。3はハーフミラーであり、光エネルギーの波長成分を透過させ、可視光成分を反射させる特性をもつ。4は光エネルギーを整形する光学手段であり、光エネルギー出力手段1から出る光を必要なビーム径に集光する。その集光特性は光エネルギー光源の発散特性に合わせて設定されている。5は着脱可能な保護ガラスであり、加工時に発生する異物が4に付着することを防ぐ。異物付着により光エネルギー出力が低下した場合にこれを交換することで、光出力を回復させ、メンテナンスを容易にする。6は本装置の加工対象である被加工物。7は被加工物の光を受光手段に導くためのミラー。8は光エネルギーの整形手段によって歪んだ画像を補正するための画像歪み修正手段。9は被加工物の画像を見るための受光手段。10は受光手段の光路を示す。
【0018】
以上のように構成された光加工装置について、その動作を説明する。
【0019】
まず、光エネルギー出力手段1から出た光は第1の光路2に沿ってハーフミラー3を透過し、光エネルギー整形手段4に入り、ここで必要な大きさに集光され、保護ガラス5を経て、被加工物上6に照射される。この集光された光で被加工物6を加工する。このように光エネルギーを集光して局所加熱を行うため、被加工物に対する熱影響を抑えられる。
【0020】
一方、被加工物6から出た光は前記5、4を経てハーフミラー3で第2の光路10に反射し、ミラー7で再度反射後、画像歪み補正手段8を経て、受光手段9に入る。この1から10を加工ヘッドと呼ぶ。
【0021】
図7は画像歪み補正手段8に入る整形手段4による被加工物のひずんだ画像である。
【0022】
図8は図7の画像が画像歪み補正手段8で補正された画像を示す。
【0023】
光エネルギー出力手段から出る光はある発散角を持っており、出力手段からの距離とともに広がる性質がある。光エネルギー整形手段はこの光を整形し、必要なビーム径に集光させるように光学特性を設定してある。一方被加工物から出た光がこの整形手段を通ると、この特性のために半径方向に歪みを生じる。
【0024】
そこで受光手段の前に配置した画像歪修正手段により、画像歪のない被加工物の画像を受光手段で得る事ができる。これにより加工位置のずれ、集光径の大きさを容易に確認することができ、教示時間の短縮および精度の高い加工が可能となる。
【0025】
このように受光手段9に入る画像は歪みが補正されており、正確な教示や作業を行うことができる。
【0026】
なお、光エネルギーの具体例としてレーザ、ランプ、受光手段としてはカメラ、画像補正手段としてレンズがある。
【0027】
(実施の形態2)
本発明の第2の実施の形態について図2を用いて説明する。
【0028】
1から10は図1の加工ヘッドと同じものでありその説明を省略する。この加工ヘッドは、被加工物に対し重力の働く方向(下側)に配置されている。
【0029】
以上のように構成された光加工装置について、その動作を説明する。
【0030】
まず光エネルギー出力手段1から出た光は第1の光路2に沿ってハーフミラー3を透過し、光エネルギー整形手段4に入り、ここで必要な大きさに集光され、保護ガラス5を経て被加工物6上に照射される。この集光された光で被加工物を加工する。
【0031】
一方、被加工物6から出た光は前記5、4を経てハーフミラー3で第2の光路10に反射し、ミラー7で再度反射後、画像歪み補正手段8を経て、受光手段9に入る。この部分を加工ヘッドと呼び、被加工物に対し重力の働く方向に設置されており、被加工物の下側面を加工することができる。
【0032】
このように被加工物の加工面が下側にあっても、被加工物を反転させる必要がないので反転装置が不要になり、被加工物の反転に伴う位置ずれ、被加工物およびその上に搭載された部品等の脱落の恐れがなくなる。
【0033】
(実施の形態3)
本発明の第3の実施の形態について図3を用いて説明する。
【0034】
1から10は図1の加工ヘッドと同じものでありその説明を省略する。この加工ヘッドは、被加工物6に対し重力の働く方向に設置されており、被加工物の下側面を加工することができる。11は被加工物と光エネルギー整形手段3との相対位置を変えるための駆動手段である。
【0035】
以上のように構成された光加工装置について、その動作を説明する。
【0036】
受光手段9から得られる加工部位の画像情報により駆動装置11で加工ヘッドを被加工物6の加工部位に移動後、加工ヘッドから光ビームを照射させて加工を行う。
【0037】
この構成により被加工物の加工部位の位置に関わらず加工ができる。
【0038】
(実施の形態4)
本発明の第4の実施の形態について図4を用いて説明する。
【0039】
1から10は図1の加工ヘッドと同じものでありその説明を省略する。この加工ヘッドは、被加工物の下側に配置されている。
【0040】
11は被加工物と光エネルギー整形手段との相対位置を変えるための駆動手段、12は受光手段により得られた被加工物の画像を表示する表示手段、13は加工ヘッドの位置を検出する認識手段、14は加工位置検出手段である。
【0041】
以上のように構成された光加工装置について、その動作を説明する。
【0042】
加工位置検出手段14は加工ヘッド位置認識手段13の情報から前記加工ヘッドから照射される光ビームの位置を検出する。この信号は表示手段12に送られ、画像として表示される。また被加工物6の画像は受光手段9により電気信号に変換され、表示手段12により被加工物6の加工部位の画像として表示される。
【0043】
このことにより、加工部位が小さい、または加工部位が被加工物の下側にあるために肉眼では見ることが困難な場合であっても容易に観察することができ、またその位置にずれがある場合でも容易に確認することができる。
【0044】
なお、加工位置検出手段の具体例としては、コンピュータ、表示手段としてCRT、LCD表示装置がある。
【0045】
(実施の形態5)
本発明の第5の実施の形態について図4を用いて説明する。
【0046】
1から10は図1の加工ヘッドと同じものでありその説明を省略する。この加工ヘッドは、被加工物の下側に配置されている。
【0047】
11は被加工物と光エネルギー整形手段との相対位置を変えるための駆動手段、12は受光手段により得られた被加工物の画像を表示する表示手段、13は加工ヘッドの位置を検出する認識手段、14は加工位置を導き出す加工位置検出手段、15は加工位置検出修正手段である。
【0048】
以上のように構成された光加工装置について、その動作を説明する。
【0049】
加工位置検出手段14は加工ヘッド位置認識手段13の情報から前記加工ヘッドから照射される光ビームの位置を検出する。この信号は表示手段12に送られ、画像として表示される。また被加工物6の画像は受光手段9により電気信号に変換され、表示手段12により被加工物6の加工部位の画像として表示される。
【0050】
ここで加工位置検出修正手段15は前記受光手段9による被加工物6の加工部位の位置と前記加工ヘッドから照射される光ビームの位置との差を検知し、その情報を加工位置検出手段14に送る。加工位置検出手段14はこの誤差位置情報により駆動手段11により位置誤差がなくなるように前記加工ヘッドを位置決めさせ、加工ヘッドの出力手段1を操作して加工を行う。
【0051】
このことにより、光ビームが照射される位置と被加工物の加工部位の差を駆動手段により修正することで、加工精度を上げることができる。
【0052】
なお、加工ヘッド位置認識手段の具体例としては、駆動手段のエンコーダ、位置検出修正手段として画像認識装置がある。
【0053】
(実施の形態6)
本発明の第6の実施の形態について図5を用いて説明する。
【0054】
1から10は図1の加工ヘッドと同じものでありその説明を省略する。この加工ヘッドは、被加工物に対し重力の働く方向(下側)に配置されている。
【0055】
11は被加工物と光エネルギー整形手段との相対位置を変えるための駆動手段、12は受光手段により得られた被加工物の画像を表示する表示手段、13はヘッドの位置を検出する認識手段、14は加工位置検出手段、15は位置検出修正手段、16は画像記憶手段である。
【0056】
以上のように構成された光加工装置について、その動作を説明する。
【0057】
加工位置検出手段14は加工ヘッド位置認識手段13の情報から前記加工ヘッドから照射される光ビームの位置を検出する。この信号は表示手段12に送られ、画像として表示される。また被加工物6の画像は受光手段9により電気信号に変換され、表示手段12により被加工物6の加工部位の画像として表示される。
【0058】
加工ヘッドは被加工物6に対し重力の働く方向に設置されており、駆動手段11により、加工ヘッドと被加工物6の相対位置を変えることができる。画像記憶手段16には被加工物6の画像データが記憶されている。画像記憶手段16はその画像を表示手段12に表示する。現在の光ビーム照射位置もまた加工位置検出手段14により表示手段12に表示される。
【0059】
被加工物の画像と現在の光ビーム位置を表示手段に表示することにより、現在の光ビーム位置が被加工物のどこに位置するか、また加工部位がどこにあるかを容易に知ることができる。またオフライン教示ができるので生産ラインを止めないでも教示ができる。
【0060】
なお、画像データの具体例としては、CADデータ、スキャナ画像またはカメラ画像がある。画像記憶手段としては磁気ディスク、フラッシュメモリがある。
【0061】
(実施の形態7)
本発明の第7の実施の形態について図6を用いて説明する。
【0062】
1から10は図1の加工ヘッドと同じものでありその説明を省略する。この加工ヘッドは、被加工物の下側に配置されている。
【0063】
11は被加工物と光エネルギー整形手段との相対位置を変えるための駆動手段、12は受光手段により得られた被加工物の画像を表示する表示手段、13はヘッドの位置を検出する認識手段、14は加工位置検出手段、15は位置検出修正手段、16は画像記憶手段、17は糸はんだ送給装置である。
【0064】
以上のように構成された光加工装置について、その動作を説明する。
【0065】
加工ヘッドは被加工物6に対し重力の働く方向に設置されており、駆動手段11により、加工ヘッドと被加工物6の相対位置を変えることができる。表示手段12は受光手段からの電気信号を被加工物6の画像として表示する。加工位置検出手段14は駆動手段11を駆動し、加工ヘッドが被加工物6の加工部位に位置するよう移動させ、光エネルギー出力手段1を操作して光ビームを照射させる。同時に糸はんだ送給装置17を操作して加熱された照射部位にはんだを送り込み、はんだ付け加工を行わせる。
【0066】
このことにより、糸はんだ送給装置で照射部位にはんだを送り込むことではんだ付け加工を行わせることができる。
【0067】
【発明の効果】
以上の説明からも明らかなように本発明によれば、被加工物の画像の歪みを取り除いて教示時間の短縮および精度の高い加工が可能となる光加工装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1における光加工装置の概要説明図
【図2】本発明の実施の形態2における光加工装置の概要説明図
【図3】本発明の実施の形態3における光加工装置の概要説明図
【図4】本発明の実施の形態4、5における光加工装置の概要説明図
【図5】本発明の実施の形態6における光加工装置の概要説明図
【図6】本発明の実施の形態7における光加工装置の概要説明図
【図7】画像歪補正手段の入力画像を示す図
【図8】画像歪補正手段の出力画像を示す図
【符号の説明】
1 光エネルギー出力手段
2 光エネルギーの(第1の)光路
3 ハーフミラー
4 光学手段
5 保護ガラス
6 被加工物
7 ミラー
8 画像歪修正手段
9 受光手段
10 受光手段の光路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical processing apparatus that irradiates a workpiece with light energy.
[0002]
[Prior art]
Conventionally, in a processing means using light energy, a light energy output means, a first optical path for guiding the light energy to a workpiece, an optical means for shaping light energy arranged in the first optical path, and the optical path A second optical path that directly guides light from the workpiece to the light receiving means is provided, and the light receiving means is disposed on the second optical path.
[0003]
Alternatively, a light energy output means for outputting light energy, a first optical path for guiding the light energy to a workpiece, an optical means for shaping the light energy arranged in the first optical path, and a part of the optical path A second optical path for sharing and guiding light from the workpiece to the light receiving means, and the light receiving means is disposed at a position different from the first optical path of the second optical path (for example, Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-1521
[Problems to be solved by the invention]
However, in the conventional method of directly guiding the image of the workpiece to the light receiving means, the image obtained by the light receiving means is an oblique view of the workpiece, and the image is distorted. In the method of placing the light receiving means on the second optical path through the light collecting means, the above-mentioned distortion is eliminated by making the optical path perpendicular to the workpiece, but the following problems occur.
[0006]
That is, the light emitted from the light energy output means has a divergence angle and is condensed on the workpiece by the optical means for shaping the light.
[0007]
This condensing characteristic is optimized according to the characteristic of the light energy output means. The light from the workpiece is guided to the light receiving means by the shaping means. Here, due to the difference between the condensing characteristic of the shaping means and the condensing characteristic of the light receiving means, the image of the workpiece received by the light receiving means is distorted in the radial direction.
[0008]
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides an optical processing apparatus capable of reducing teaching time and processing with high accuracy by removing distortion of an image of a workpiece.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, a first means of the present invention is arranged in a light energy output means for outputting light energy, a first light path for guiding the light energy to a workpiece, and the first light path. An optical means for shaping light energy; a second optical path that shares a part of the optical path and guides light from the workpiece to the light receiving means; and the first optical path of the second optical path; By providing the image distortion correcting means arranged at different positions and in front of the light receiving means, it is possible to observe the processed part from the front and to reduce the distortion of the image.
[0010]
According to the second means of the present invention, the machining head holding the optical means, the second optical path, the image distortion correcting means, and the light receiving means is arranged in the direction in which gravity acts on the workpiece, thereby providing a machining surface. Even if the workpiece is on the lower side of the workpiece, the workpiece does not have to be inverted.
[0011]
According to the third means of the present invention, by providing the driving means for moving the machining head and the workpiece relative to each other, an effect that the machining area can be expanded is obtained.
[0012]
According to the fourth means of the present invention, when the workpiece is irradiated with the light energy shaped by the optical means, the display means for displaying an image showing the processed part of the workpiece, the light energy is By displaying a machining position detecting means for deriving a position of the workpiece to be positioned, and displaying the machining position derived by the machining position detecting means on the display means corresponding to the workpiece position of the workpiece, the position teaching and It is possible to obtain an effect that the correction confirmation work becomes easy.
[0013]
According to the fifth means of the present invention, the processing position detecting means includes at least the optical means, the second optical path, the image distortion correcting means, the means for recognizing the position of the processing head holding the light receiving means, and the optical means. By providing position detection correction means for offsetting the difference between the part of the workpiece where the light energy is positioned and the position detected by the recognition means when the shaped light energy is applied to the workpiece, Even if the positioning accuracy of the workpiece is not good, it is possible to obtain a high machining position accuracy.
[0014]
According to the sixth means of the present invention, by providing a storage means for storing in advance an image showing the workpiece part of the workpiece, the machining part can be taught while viewing the image of the workpiece, so that it is offline. The effect of being able to teach by is obtained.
[0015]
According to the seventh means of the present invention, since the yarn solder feeding means is provided, an effect is obtained in that the processing portion of the workpiece by the processing head is irradiated with a light beam and soldering can be performed.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
A first embodiment of the present invention will be described with reference to FIGS.
[0017]
Reference numeral 1 denotes optical energy output means for outputting optical energy, and reference numeral 2 denotes a (first) optical path of optical energy that guides the optical energy to the workpiece. Reference numeral 3 denotes a half mirror, which has characteristics of transmitting a wavelength component of light energy and reflecting a visible light component. 4 is an optical means for shaping the light energy, and condenses the light emitted from the light energy output means 1 to a necessary beam diameter. The condensing characteristic is set according to the divergence characteristic of the light energy light source. Reference numeral 5 denotes a detachable protective glass that prevents foreign matters generated during processing from adhering to the glass 4. When the light energy output is reduced due to the attachment of foreign matter, the light output is replaced to restore the light output and facilitate maintenance. 6 is a workpiece to be processed by this apparatus. 7 is a mirror for guiding the light of the workpiece to the light receiving means. 8 is an image distortion correcting means for correcting an image distorted by the light energy shaping means. 9 is a light receiving means for viewing an image of the workpiece. Reference numeral 10 denotes an optical path of the light receiving means.
[0018]
About the optical processing apparatus comprised as mentioned above, the operation | movement is demonstrated.
[0019]
First, the light emitted from the light energy output means 1 passes through the half mirror 3 along the first optical path 2 and enters the light energy shaping means 4 where it is condensed to a required size, and the protective glass 5 Then, it is irradiated onto the workpiece 6. The workpiece 6 is processed with the condensed light. As described above, since the light energy is condensed and the local heating is performed, the thermal influence on the workpiece can be suppressed.
[0020]
On the other hand, the light emitted from the workpiece 6 is reflected by the half mirror 3 to the second optical path 10 after passing through 5 and 4, and after being reflected by the mirror 7 again, enters the light receiving means 9 through the image distortion correcting means 8. . These 1 to 10 are called machining heads.
[0021]
FIG. 7 is a distorted image of the workpiece by the shaping means 4 entering the image distortion correction means 8.
[0022]
FIG. 8 shows an image obtained by correcting the image of FIG.
[0023]
The light emitted from the light energy output means has a certain divergence angle and has the property of spreading with the distance from the output means. The optical energy shaping means shapes the light and sets the optical characteristics so as to focus it on the required beam diameter. On the other hand, when light emitted from the workpiece passes through the shaping means, distortion occurs in the radial direction due to this characteristic.
[0024]
Therefore, an image of the workpiece without image distortion can be obtained by the light receiving means by the image distortion correcting means arranged in front of the light receiving means. As a result, it is possible to easily confirm the deviation of the machining position and the size of the light collection diameter, and it is possible to shorten the teaching time and perform machining with high accuracy.
[0025]
As described above, the distortion of the image entering the light receiving means 9 is corrected, and accurate teaching and work can be performed.
[0026]
As specific examples of the light energy, there are a laser, a lamp, a camera as the light receiving means, and a lens as the image correcting means.
[0027]
(Embodiment 2)
A second embodiment of the present invention will be described with reference to FIG.
[0028]
Reference numerals 1 to 10 are the same as those of the machining head shown in FIG. This processing head is arranged in the direction (lower side) in which gravity acts on the workpiece.
[0029]
About the optical processing apparatus comprised as mentioned above, the operation | movement is demonstrated.
[0030]
First, the light emitted from the light energy output means 1 passes through the half mirror 3 along the first optical path 2 and enters the light energy shaping means 4 where it is condensed to a required size and passes through the protective glass 5. The workpiece 6 is irradiated. The workpiece is processed with the condensed light.
[0031]
On the other hand, the light emitted from the workpiece 6 is reflected by the half mirror 3 to the second optical path 10 after passing through 5 and 4, and after being reflected by the mirror 7 again, enters the light receiving means 9 through the image distortion correcting means 8. . This portion is called a machining head, and is installed in a direction in which gravity acts on the workpiece, so that the lower surface of the workpiece can be machined.
[0032]
In this way, even if the work surface of the work piece is on the lower side, it is not necessary to turn the work piece, so that a reversing device is not required. This eliminates the risk of parts mounted on the.
[0033]
(Embodiment 3)
A third embodiment of the present invention will be described with reference to FIG.
[0034]
Reference numerals 1 to 10 are the same as those of the machining head shown in FIG. This processing head is installed in the direction in which gravity acts on the workpiece 6, and can process the lower surface of the workpiece. Reference numeral 11 denotes driving means for changing the relative position between the workpiece and the light energy shaping means 3.
[0035]
About the optical processing apparatus comprised as mentioned above, the operation | movement is demonstrated.
[0036]
After the machining head is moved to the machining site of the workpiece 6 by the driving device 11 based on the image information of the machining site obtained from the light receiving means 9, the machining head is irradiated with a light beam to perform machining.
[0037]
With this configuration, processing can be performed regardless of the position of the processing portion of the workpiece.
[0038]
(Embodiment 4)
A fourth embodiment of the present invention will be described with reference to FIG.
[0039]
Reference numerals 1 to 10 are the same as those of the machining head shown in FIG. The processing head is disposed below the workpiece.
[0040]
11 is a driving means for changing the relative position between the workpiece and the light energy shaping means, 12 is a display means for displaying an image of the workpiece obtained by the light receiving means, and 13 is a recognition for detecting the position of the machining head. Means 14 is a processing position detecting means.
[0041]
About the optical processing apparatus comprised as mentioned above, the operation | movement is demonstrated.
[0042]
The processing position detection means 14 detects the position of the light beam emitted from the processing head from the information of the processing head position recognition means 13. This signal is sent to the display means 12 and displayed as an image. The image of the workpiece 6 is converted into an electric signal by the light receiving means 9 and displayed as an image of the processed part of the workpiece 6 by the display means 12.
[0043]
As a result, even if it is difficult to see with the naked eye because the processing site is small or the processing site is below the workpiece, there is a shift in the position. Even in this case, it can be easily confirmed.
[0044]
Specific examples of the processing position detecting means include a computer and CRT and LCD display devices as display means.
[0045]
(Embodiment 5)
A fifth embodiment of the present invention will be described with reference to FIG.
[0046]
Reference numerals 1 to 10 are the same as those of the machining head shown in FIG. The processing head is disposed below the workpiece.
[0047]
11 is a driving means for changing the relative position between the workpiece and the light energy shaping means, 12 is a display means for displaying an image of the workpiece obtained by the light receiving means, and 13 is a recognition for detecting the position of the machining head. Means 14, 14 is a machining position detection means for deriving a machining position, and 15 is a machining position detection correction means.
[0048]
About the optical processing apparatus comprised as mentioned above, the operation | movement is demonstrated.
[0049]
The processing position detection means 14 detects the position of the light beam emitted from the processing head from the information of the processing head position recognition means 13. This signal is sent to the display means 12 and displayed as an image. The image of the workpiece 6 is converted into an electric signal by the light receiving means 9 and displayed as an image of the processed part of the workpiece 6 by the display means 12.
[0050]
Here, the processing position detection / correction means 15 detects the difference between the position of the processing part of the workpiece 6 by the light receiving means 9 and the position of the light beam emitted from the processing head, and uses the information as the processing position detection means 14. Send to. The processing position detection means 14 positions the processing head so that the position error is eliminated by the driving means 11 based on the error position information, and operates the output means 1 of the processing head to perform processing.
[0051]
Thus, the processing accuracy can be improved by correcting the difference between the position irradiated with the light beam and the processing portion of the workpiece by the driving means.
[0052]
Specific examples of the processing head position recognition means include an encoder for driving means and an image recognition apparatus as position detection correction means.
[0053]
(Embodiment 6)
A sixth embodiment of the present invention will be described with reference to FIG.
[0054]
Reference numerals 1 to 10 are the same as those of the machining head shown in FIG. This processing head is arranged in the direction (lower side) in which gravity acts on the workpiece.
[0055]
11 is a driving means for changing the relative position between the workpiece and the light energy shaping means, 12 is a display means for displaying an image of the workpiece obtained by the light receiving means, and 13 is a recognition means for detecting the position of the head. , 14 is a processing position detection means, 15 is a position detection correction means, and 16 is an image storage means.
[0056]
About the optical processing apparatus comprised as mentioned above, the operation | movement is demonstrated.
[0057]
The processing position detection means 14 detects the position of the light beam emitted from the processing head from the information of the processing head position recognition means 13. This signal is sent to the display means 12 and displayed as an image. The image of the workpiece 6 is converted into an electric signal by the light receiving means 9 and displayed as an image of the processed part of the workpiece 6 by the display means 12.
[0058]
The machining head is installed in the direction in which gravity acts on the workpiece 6, and the relative position between the machining head and the workpiece 6 can be changed by the driving means 11. The image storage means 16 stores image data of the workpiece 6. The image storage unit 16 displays the image on the display unit 12. The current light beam irradiation position is also displayed on the display means 12 by the processing position detection means 14.
[0059]
By displaying the image of the workpiece and the current light beam position on the display means, it is possible to easily know where the current light beam position is located on the workpiece and where the machining site is located. Moreover, since offline teaching is possible, teaching can be performed without stopping the production line.
[0060]
Specific examples of the image data include CAD data, a scanner image, or a camera image. Image storage means includes a magnetic disk and a flash memory.
[0061]
(Embodiment 7)
A seventh embodiment of the present invention will be described with reference to FIG.
[0062]
Reference numerals 1 to 10 are the same as those of the machining head shown in FIG. The processing head is disposed below the workpiece.
[0063]
11 is a driving means for changing the relative position between the workpiece and the light energy shaping means, 12 is a display means for displaying an image of the workpiece obtained by the light receiving means, and 13 is a recognition means for detecting the position of the head. , 14 is a processing position detection means, 15 is a position detection correction means, 16 is an image storage means, and 17 is a thread solder feeding device.
[0064]
About the optical processing apparatus comprised as mentioned above, the operation | movement is demonstrated.
[0065]
The machining head is installed in the direction in which gravity acts on the workpiece 6, and the relative position between the machining head and the workpiece 6 can be changed by the driving means 11. The display unit 12 displays the electrical signal from the light receiving unit as an image of the workpiece 6. The processing position detection unit 14 drives the driving unit 11 to move the processing head so as to be positioned at the processing site of the workpiece 6, and operates the light energy output unit 1 to irradiate the light beam. At the same time, the yarn solder feeding device 17 is operated to send the solder to the heated irradiated portion and perform the soldering process.
[0066]
Thereby, soldering can be performed by sending solder into an irradiation site with a yarn solder feeding device.
[0067]
【The invention's effect】
As is apparent from the above description, according to the present invention, it is possible to provide an optical processing apparatus capable of reducing teaching time and performing highly accurate processing by removing distortion of an image of a workpiece.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory diagram of an optical processing apparatus according to a first embodiment of the present invention. FIG. 2 is a schematic explanatory diagram of an optical processing apparatus according to a second embodiment of the present invention. FIG. 4 is a schematic explanatory diagram of an optical processing apparatus according to Embodiments 4 and 5 of the present invention. FIG. 5 is a schematic explanatory view of an optical processing apparatus according to a sixth embodiment of the present invention. FIG. 7 is a diagram illustrating an input image of the image distortion correcting means. FIG. 8 is a diagram illustrating an output image of the image distortion correcting means.
DESCRIPTION OF SYMBOLS 1 Optical energy output means 2 Optical energy (first) optical path 3 Half mirror 4 Optical means 5 Protective glass 6 Work piece 7 Mirror 8 Image distortion correcting means 9 Light receiving means 10 Optical path of light receiving means

Claims (7)

光エネルギーを出力する光エネルギー出力手段と、前記光エネルギーを被加工物に導く第1の光路と、前記第1の光路に配置した光エネルギーを整形する光学手段と、前記光路の一部を共有し、かつ前記被加工物からの光を受光手段に導く第2の光路を備え、前記第2の光路の前記第1の光路とは異なる位置で、かつ前記受光手段の前に配置した画像歪修正手段を設けた光加工装置。Light energy output means for outputting light energy, a first optical path for guiding the light energy to a workpiece, an optical means for shaping light energy arranged in the first optical path, and a part of the optical path are shared And an image distortion disposed at a position different from the first optical path of the second optical path and in front of the light receiving means. An optical processing apparatus provided with correction means. 少なくとも前記光学手段と第2の光路と画像歪修正手段と受光手段を保持する加工ヘッドを、被加工物に対して重力の働く方向に配置した請求項1記載の光加工装置。The optical processing apparatus according to claim 1, wherein at least the processing means holding the optical means, the second optical path, the image distortion correcting means, and the light receiving means is arranged in a direction in which gravity acts on the workpiece. 前記加工ヘッドと被加工物を相対移動させる駆動手段を設けた請求項2記載の光加工装置。The optical processing apparatus according to claim 2, further comprising a driving unit that relatively moves the processing head and the workpiece. 少なくとも前記被加工物の被加工部位を示す画像を表示する表示手段と、少なくとも前記光学手段により整形された光エネルギーが被加工物に照射されたときに光エネルギーが位置する被加工物の部位を導き出す加工位置検出手段と、前記加工位置検出手段で導き出した加工位置を、被加工物の被加工部位に対応して前記表示手段に表示する請求項1から3の何れかに記載の光加工装置。A display means for displaying at least an image showing a part to be processed of the work piece, and a part of the work piece where the light energy is positioned when the work piece is irradiated with the light energy shaped by at least the optical means. The optical machining apparatus according to claim 1, wherein the derived machining position detection means and the machining position derived by the machining position detection means are displayed on the display means in correspondence with a part to be machined of the workpiece. . 加工位置検出手段は、少なくとも前記光学手段と第2の光路と画像歪修正手段と受光手段を保持する加工ヘッドの位置を認識する手段と、前記光学手段により整形された光エネルギーが被加工物に照射されたときに光エネルギーが位置する被加工物の部位と前記認識手段により検出された位置との差をオフセットする位置検出修正手段を備えた請求項4記載の光加工装置。The processing position detecting means includes at least the optical means, the second optical path, the image distortion correcting means, the means for recognizing the position of the processing head holding the light receiving means, and the light energy shaped by the optical means on the workpiece. The optical processing apparatus according to claim 4, further comprising position detection correction means for offsetting a difference between a portion of the workpiece where the light energy is positioned when irradiated and a position detected by the recognition means. 前記被加工物の被加工部位を示す画像を予め記憶する記憶手段を設けた請求項4または5記載の光加工装置。The optical processing apparatus according to claim 4, further comprising a storage unit that stores in advance an image indicating a processing portion of the workpiece. 被加工物の被加工部位近傍へ糸はんだを送給する糸はんだ送給手段を設けた請求項1から6の何れかに記載の光加工装置。The optical processing apparatus according to any one of claims 1 to 6, further comprising a thread solder feeding means for feeding thread solder to the vicinity of a part to be processed of the workpiece.
JP2003134096A 2003-05-13 2003-05-13 Optical processing equipment Expired - Fee Related JP4055649B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003134096A JP4055649B2 (en) 2003-05-13 2003-05-13 Optical processing equipment
US10/833,072 US7663073B2 (en) 2003-05-13 2004-04-28 Optical processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003134096A JP4055649B2 (en) 2003-05-13 2003-05-13 Optical processing equipment

Publications (2)

Publication Number Publication Date
JP2004337874A true JP2004337874A (en) 2004-12-02
JP4055649B2 JP4055649B2 (en) 2008-03-05

Family

ID=33524750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003134096A Expired - Fee Related JP4055649B2 (en) 2003-05-13 2003-05-13 Optical processing equipment

Country Status (1)

Country Link
JP (1) JP4055649B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022587A1 (en) * 2007-08-10 2009-02-19 Toyota Jidosha Kabushiki Kaisha Laser welding inspection device
CN112404632A (en) * 2019-08-22 2021-02-26 台达电子工业股份有限公司 Soldering device and system controller thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166924A (en) * 1985-01-17 1986-07-28 Nec Corp Laser annealing device
JPH01237091A (en) * 1988-03-18 1989-09-21 Nec Corp Laser beam machine
JPH0518780U (en) * 1991-08-28 1993-03-09 日本電気株式会社 Laser beam positioning device
JPH05177374A (en) * 1992-01-09 1993-07-20 Hitachi Constr Mach Co Ltd Observing device for laser beam machine
JP2002001521A (en) * 2000-06-26 2002-01-08 Fine Device:Kk Method and device for laser beam soldering
JP2002509032A (en) * 1998-01-16 2002-03-26 カール・ツアイス・シュティフテュング・ハンデルンド・アルス・カール・ツアイス Workpiece lighting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166924A (en) * 1985-01-17 1986-07-28 Nec Corp Laser annealing device
JPH01237091A (en) * 1988-03-18 1989-09-21 Nec Corp Laser beam machine
JPH0518780U (en) * 1991-08-28 1993-03-09 日本電気株式会社 Laser beam positioning device
JPH05177374A (en) * 1992-01-09 1993-07-20 Hitachi Constr Mach Co Ltd Observing device for laser beam machine
JP2002509032A (en) * 1998-01-16 2002-03-26 カール・ツアイス・シュティフテュング・ハンデルンド・アルス・カール・ツアイス Workpiece lighting device
JP2002001521A (en) * 2000-06-26 2002-01-08 Fine Device:Kk Method and device for laser beam soldering

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022587A1 (en) * 2007-08-10 2009-02-19 Toyota Jidosha Kabushiki Kaisha Laser welding inspection device
JP2009039773A (en) * 2007-08-10 2009-02-26 Toyota Motor Corp Laser welding inspection device
CN101801585A (en) * 2007-08-10 2010-08-11 丰田自动车株式会社 Laser welding inspection device
US8289506B2 (en) 2007-08-10 2012-10-16 Toyota Jidosha Kabushiki Kaisha Laser welding inspection device
CN112404632A (en) * 2019-08-22 2021-02-26 台达电子工业股份有限公司 Soldering device and system controller thereof
JP2021030301A (en) * 2019-08-22 2021-03-01 台達電子工業股▲ふん▼有限公司Delta Electronics, Inc. Solder device and system controller therefor
CN112404632B (en) * 2019-08-22 2022-09-02 台达电子工业股份有限公司 Soldering device and system controller thereof
US11628510B2 (en) 2019-08-22 2023-04-18 Delta Electronics, Inc. Solder device and system controller thereof
US11980960B2 (en) 2019-08-22 2024-05-14 Delta Electronics, Inc. Solder device and system controller thereof

Also Published As

Publication number Publication date
JP4055649B2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
CN101856773B (en) Focusing positioning method based on initial laser processing position and laser processing device
US7718922B2 (en) Optical processing apparatus
JP2011156574A (en) Focusing device for laser beam machining, laser beam machining apparatus and method for manufacturing solar panel
JP2008203434A (en) Scanning mechanism, method of machining material to be machined and machining apparatus
EP3124163B1 (en) System and method for laser processing
JP5371514B2 (en) Laser light state inspection method and apparatus, and solar panel manufacturing method
JP5268749B2 (en) Substrate condition inspection method, laser processing apparatus, and solar panel manufacturing method
JP4055649B2 (en) Optical processing equipment
US20210023652A1 (en) Method for centering laser beam and laser processing machine
JP2011177771A (en) Laser beam machining method, laser beam machining apparatus, and method for manufacturing solar panel
JPWO2009078077A1 (en) Laser welding method and laser welding apparatus
JP5349352B2 (en) Laser light state inspection method and apparatus, laser processing method and apparatus, and solar panel manufacturing method
JP2003294419A (en) Measuring instrument for infinitesimal dimension
JP4155095B2 (en) Optical processing equipment
JP4790420B2 (en) Microscope with automatic focusing mechanism and adjustment method thereof
CN104708202A (en) Laser welding machine
KR20230002713A (en) laser processing device
JP2009160610A (en) Laser beam repairing device
JP2011161492A (en) Apparatus and method for inspecting laser beam-machined condition and apparatus and method for laser beam machining, and method of manufacturing solar panel
JP6861350B2 (en) Laser welding equipment
JP4300783B2 (en) Processing position teaching method of semiconductor laser device
JP2011173141A (en) Laser beam machining position alignment method, laser beam machining method, laser beam machining apparatus, and method for manufacturing solar panel
JP5238451B2 (en) Laser processing apparatus and position detection method thereof
EP4228848B1 (en) Beam machining head and method for beam machining
JP2010075952A (en) Laser beam machining method and laser beam machining apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050905

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees