JP2004337773A - Exhaust gas cleaning catalyst and exhaust gas cleaning method - Google Patents

Exhaust gas cleaning catalyst and exhaust gas cleaning method Download PDF

Info

Publication number
JP2004337773A
JP2004337773A JP2003138912A JP2003138912A JP2004337773A JP 2004337773 A JP2004337773 A JP 2004337773A JP 2003138912 A JP2003138912 A JP 2003138912A JP 2003138912 A JP2003138912 A JP 2003138912A JP 2004337773 A JP2004337773 A JP 2004337773A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
atmosphere
stoichiometric
rich atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003138912A
Other languages
Japanese (ja)
Other versions
JP4239679B2 (en
Inventor
Kiyoshi Yamazaki
清 山崎
Masaoki Iwasaki
正興 岩崎
Naoki Takahashi
直樹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2003138912A priority Critical patent/JP4239679B2/en
Publication of JP2004337773A publication Critical patent/JP2004337773A/en
Application granted granted Critical
Publication of JP4239679B2 publication Critical patent/JP4239679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To demonstrate a high NO<SB>x</SB>-removing performance even after endurance under a high temperature and suppress deterioration due to sulfur poisoning. <P>SOLUTION: A first catalyst carrying at least Pt in a carrier containing a composite oxide in which ceria and alumina are dispersed on the nm scale is arranged in the upstream side of the exhaust gas, and a second NO<SB>x</SB>occlusion reduction type catalyst is arranged in the downstream side of the first catalyst. The first catalyst oxidizes NO to NO<SB>2</SB>in a lean atmosphere and produces H<SB>2</SB>from CO and H<SB>2</SB>O in a stoichiometric or rich atmosphere, thereby promoting the NO<SB>x</SB>occlusion reduction on the second catalyst. Since the first catalyst adsorbs SO<SB>x</SB>preferentially in a lean atmosphere, contact of SO<SB>x</SB>with the second catalyst is controlled, resulting in control of deterioration due to sulfur poisoning. Though the first catalyst desorbs SO<SB>x</SB>adsorbed in a stoichiometric or rich atmosphere, the desorption does not lead to deterioration of the second catalyst due to sulfur poisoning for the reason of the rich atmosphere. Even if the second catalyst undergoes sulfur poisoning, the second catalyst restores NO<SB>x</SB>occlusion capacity by acceleration of reduction decomposition reaction of sulfate of the second catalyst by H<SB>2</SB>produced by the first catalyst in the rich atmosphere. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、酸素過剰のリーン雰囲気とストイキ又は酸素不足のリッチ雰囲気が交互に繰り返される燃焼条件で燃焼される内燃機関からの排ガスを浄化する排ガス浄化用触媒、特に硫黄成分を含む排ガスを浄化する排ガス浄化用触媒と、その排ガス浄化用触媒を用いた排ガス浄化方法に関する。
【0002】
【従来の技術】
従来より自動車の排ガス浄化用触媒として、排ガス中のCO及びHCの酸化とNO の還元とを同時に行って浄化する三元触媒が用いられている。このような三元触媒としては、例えばコーディエライトなどからなる耐熱性ハニカム基材にγ−Alからなる担体層を形成し、その担体層に白金(Pt)やロジウム(Rh)などの貴金属を担持させたものが広く知られている。
【0003】
また近年では、二酸化炭素による地球温暖化現象が問題となり、二酸化炭素の排出量を低減することが課題となっている。自動車においても排ガス中の二酸化炭素量の低減が課題となり、燃料を酸素過剰雰囲気で希薄燃焼させるリーンバーンエンジンが開発されている。このリーンバーンエンジンによれば、燃費が向上するため二酸化炭素の排出量を抑制することができる。
【0004】
ところがリーンバーンエンジンからの排ガス中の有害成分を浄化する場合、酸素過剰雰囲気であるがゆえにNO の還元浄化が困難となる。そこで特開平05−317652号公報などには、貴金属とともにアルカリ金属、アルカリ土類金属及び希土類元素から選ばれるNO 吸蔵材を担持したNO 吸蔵還元型の排ガス浄化用触媒が開示されている。このNO 吸蔵還元型の排ガス浄化用触媒を用い、リーン雰囲気の途中にパルス状にストイキ〜リッチ雰囲気となるように混合気組成を制御すれば、HC及びCOの酸化とNO の還元とを効率よく進行させることができ、高い浄化性能が得られる。
【0005】
つまりリーン雰囲気では排ガス中のNOが酸化されてNO となり、NO 吸蔵材に吸蔵されるためNO の排出が抑制される。そしてパルス状にストイキ〜リッチ雰囲気に制御されると、NO 吸蔵材からNO が放出され、それが排ガス中に存在するCO、HCなどの還元成分と反応してNに還元されるため、NO の排出が抑制される。したがってリーン〜リッチの全雰囲気でNO の排出を抑制することができる。
【0006】
しかしながらNO 吸蔵還元型触媒においては、高温に曝されたり、硫黄成分が含まれる排ガス中で用いられたりすると、NO 浄化性能が低下するという問題があった。高温に曝された場合にNO 浄化性能が低下する原因は、以下のように考えられている。
【0007】
すなわち高温雰囲気下では、塩基性の強いNO 吸蔵材によって貴金属の粒成長が促進されることが知られている。またNO 吸蔵材と担体とが反応する場合があり、この場合には担体の比表面積の低下が生じ、それに伴って貴金属も粒成長する。NO 吸蔵還元型触媒は、酸素過剰のリーン雰囲気において排ガス中のNOをNO に酸化し、生成したNO がNO 吸蔵材に硝酸塩として吸蔵されるのであるが、貴金属に粒成長が生じるとNOの酸化活性が低下するため、NO 吸蔵量も低下し、その結果NO 浄化性能が低下する。
【0008】
またNO 吸蔵還元型触媒は、ストイキ〜酸素不足のリッチ雰囲気において吸蔵したNO を還元成分と反応させることでNへ還元する。しかし貴金属が粒成長すると、この還元活性も低下しNO 浄化性能が低下する。
【0009】
したがってNO 吸蔵還元型触媒が高温に曝されると、リーン雰囲気及びストイキ〜リッチ雰囲気の何れの場合でも活性が低下し、NO 浄化性能が低下してしまう。
【0010】
またNO 吸蔵還元型触媒を硫黄成分が含まれる排ガス中で用いた場合にも、NO 浄化能が低下する。この理由は以下のように考えられている。つまりリーン雰囲気においては排ガス中の硫黄成分が貴金属によって亜硫酸イオン又は硫酸イオンにまで酸化され、これらがNO 吸蔵材と反応して硫酸塩を生成する。この硫酸塩は分解しにくいために、NO 吸蔵材のNO 吸蔵能が消失してしまうからである。この現象は硫黄被毒劣化と称されている。
【0011】
【特許文献1】特開平05−317652号
【0012】
【発明が解決しようとする課題】
本発明はこのような事情に鑑みてなされたものであり、高温耐久後も高いNO 浄化性能を発現させるとともに、硫黄被毒劣化を抑制することを目的とする。
【0013】
【課題を解決するための手段】
上記課題を解決する本発明の排ガス浄化用触媒の特徴は、酸素過剰のリーン雰囲気とストイキ又は酸素不足のリッチ雰囲気が交互に繰り返される燃焼条件で燃焼される内燃機関からの排ガスを浄化する排ガス浄化用触媒であって、リーン雰囲気では排ガス中のNOをNO へ酸化しストイキ又はリッチ雰囲気では排ガス中のCOとHO からHを生成する第1触媒と、多孔質酸化物担体に貴金属とNO 吸蔵材とを担持してなるNO 吸蔵還元型の第2触媒と、からなることにある。
【0014】
また内燃機関からの排ガスが硫黄成分を含む場合、第1触媒は、リーン雰囲気で排ガス中のSO を吸着し、ストイキ又はリッチ雰囲気で吸着したSO を脱離することが望ましい。このような第1触媒としては、セリアとアルミナとがnmスケールで分散した複合酸化物を含む担体に少なくともPtを担持してなるものを用いることが望ましい。
【0015】
また本発明の排ガス浄化方法の特徴は、本発明の排ガス浄化用触媒を用い、酸素過剰のリーン雰囲気では第1触媒がNOを酸化してNO とするとともに第2触媒がNO を吸蔵し、ストイキ又は酸素不足のリッチ雰囲気では第1触媒がHを生成するとともに第2触媒が第2触媒から放出されたNO をNに還元することにある。
【0016】
【発明の実施の形態】
本発明の排ガス浄化用触媒は、リーン雰囲気では第1触媒が排ガス中のNOを酸化してNO などのNO が生成し、生成されたNO は第2触媒に吸蔵される。この反応ではNOの酸化反応が律速と考えられているので、第1触媒によってNOが効率よく酸化される結果、高いNO 吸蔵能が発現される。
【0017】
そしてストイキ又はリッチ雰囲気では、第1触媒におけるCOシフト反応によって排ガス中のCOとHO から還元活性の高いHが生成する。通常のリーンバーンエンジンからの排ガス中の還元成分はCOが主成分であるが、そのCOがHに転化され多量のHが生成する。そしてストイキ又はリッチ雰囲気では、吸蔵されていたNO が第2触媒から放出され、放出されたNO はHによってNに還元される。したがって第2触媒の貴金属が高温耐久により粒成長していたとしても、高いNO 浄化性能が発現される。
【0018】
またセリアとアルミナとがnmスケールで分散した複合酸化物を含む担体に少なくともPtを担持してなる第1触媒を用いれば、リーン雰囲気で排ガス中のSO を優先的に吸着するため、SO が第2触媒と接触するのが抑制され硫黄被毒劣化が抑制される。そして第1触媒はストイキ又はリッチ雰囲気で吸着したSO を脱離するが、ストイキ又はリッチ雰囲気であるので第2触媒が硫黄被毒劣化することはない。さらに第2触媒が硫黄被毒劣化していたとしても、ストイキ又はリッチ雰囲気で第1触媒で生成したHによって第2触媒の硫酸塩の還元分解反応が促進され、NO 吸蔵能が回復する。したがってこのような第1触媒を用いることで、第2触媒の硫黄被毒劣化を抑制することができNO 浄化性能の耐久性が向上する。
【0019】
ここでnmスケールの分散とは、1nm程度の高分解能を有するミクロ分析装置を用いて測定しても、独立した粒子として観察されないレベルの分散状態のことをいう。このようなミクロ分析装置としては、例えば日立製作所(株)製の「HD−2000」などのFE−TEM透過電子顕微鏡がある。そしてセリアとアルミナとがnmスケールで分散している状態は、FE−TEMの EDSを用いた重なりのない一つの粒子の、直径5nm又は 0.5nmのビーム径による微少範囲分析を行った結果、各分析点の90%以上でCeとAlとが仕込み組成の±20%以内の組成比で検出されることで確認することができる。
【0020】
このような第1触媒では、Ptがメソ細孔に高分散状態で担持され、かつそのメソ細孔が反応場となるため、活性がきわめて高い。さらに、高温耐久後にもPtの担持サイトであるメソ細孔が十分に存在するとともに、比表面積も充分に大きく確保されている。そしてセリアとアルミナとが互いの障壁として作用するために、高温時のシンタリングが抑制される。したがって担持されているPtの粒成長も抑制され、高い耐久性が発現される。
【0021】
セリアは担体中に40重量%以上含まれていることが好ましく、60重量%以上含まれていることが特に望ましい。したがってアルミナは60重量%未満が好ましく、40重量%未満が特に望ましい。セリアが60重量%未満あるいは40%未満となると、低温域におけるCO浄化性能及びH生成能が低下するようになる。
【0022】
Ptの担持量は、セリアとアルミナとがnmスケールで分散した複合酸化物を含む担体にに対して0.05〜30重量%が好ましい。Pt量が0.05重量%未満の場合、水性ガスシフト反応活性が十分に発現しない。Pt量が30重量%を超えると、Ptによってメソ細孔が閉塞されたり、Ptのシンタリングを防止する効果が十分に発現しない。
【0023】
なおセリアとアルミナとがnmスケールで分散した複合酸化物を含む担体には、Zr,アルカリ土類金属,希土類元素などを含むこともできる。このような成分を含むことで、耐熱性が向上する効果が得られる場合がある。この第1触媒は、特開2002−211908号公報に記載の製造方法で製造することができる。
【0024】
第2触媒は、多孔質酸化物担体に貴金属とNO 吸蔵材とを担持してなるNO 吸蔵還元型の触媒である。第2触媒には、公知のNO 吸蔵還元型触媒を用いることができる。すなわち多孔質酸化物担体には、アルミナ、チタニア、ジルコニア、セリアなどの単味あるいは複合酸化物から選ばれたものを用いることができる。硫黄被毒劣化を抑制するために、酸性担体であるチタニアを含むことが好ましい。また貴金属としてはPt、Rh、Pd、Irなどの1種又は複数種を用いることができる。またNO 吸蔵材は、アルカリ金属、アルカリ土類金属及び希土類元素から選ばれる1種又は複数種を用いることができる。
【0025】
第1触媒と第2触媒とは、互いに粉末状として混合して用いることも可能であるが、第1触媒を排ガス上流側に配置し、第2触媒を第1触媒より排ガス下流側に配置したタンデム構造とすることが望ましい。これにより第1触媒によるSO 吸着作用と、第1触媒によって生成するNO 及びHとによって、下流側の第2触媒の硫黄被毒劣化が効果的に抑制され、かつNO 吸蔵能の回復が促進されるため、高いNO 浄化性能が発現される。また第2触媒粉末から下層コート層を形成し、その上に第1触媒粉末から上層コート層を形成した二層コート構造の触媒としても、同様の作用効果が奏される。
【0026】
なお第1触媒を上流側に、第2触媒を下流側に配置する場合、その間に空間があってもよいし、空間無く密接していてもよい。また第1触媒と第2触媒の比率は、貴金属の担持量などによっても異なるが、一般には体積比で第1触媒:第2触媒=5:95〜50:50の範囲とすることが好ましい。
【0027】
【実施例】
以下、実施例及び比較例により本発明を具体的に説明する。
【0028】
(実施例1)
<第1触媒の調製>
硝酸アルミニウム9水和物0.37モル( 139g)を2000mlのイオン交換水に混合し、プロペラ撹拌器で5分間撹拌して溶解した。そこへ濃度28重量%の硝酸セリウム水溶液 202g(CeO換算で0.33モル相当)を混合し、さらに5分間撹拌した。
【0029】
得られた混合水溶液に、25%アンモニア水 177gを加え、さらに10分間撹拌して沈殿物を含む水溶液とした。これを2気圧の加圧下にて 120℃で2時間熱処理する熟成工程を行い、沈殿物を熟成した。その後、熟成された沈殿物を含む水溶液を 100℃/時間の昇温速度で加熱し、 400℃で5時間仮焼成しさらに 600℃で5時間焼成して、CeO−Alからなる複合酸化物粉末を調製した。
【0030】
得られた複合酸化物粉末は、約75重量%のCeOと約25重量%の Alからなり、その比表面積は 125m/gであった。またX線回折(40kV−350mA)測定を行った結果、CeOの回折線は誤差範囲内であってピークシフトは認められず、 Alとは固溶していない。さらにCeO( 220)面の半値幅から、計算によってCeOの結晶子径を測定した。その結果、この複合酸化物粉末は、CeOの結晶子径が6〜8nmであった。さらにFE−TEMの EDSを用いた重なりのない一つの粒子の、直径5nm又は 0.5nmのビーム径による微少範囲分析を行った結果、各分析点の90%以上でCeとAlとが仕込み組成の±20%以内の組成比で検出され、CeOと Alとがnmスケールで分散していることが確認された。
【0031】
得られた複合酸化物粉末 180gと、セリアゾルバインダ(固形分15重量%) 133gと、所定量のイオン交換水を混合し、ボールミルを用いて所定粒度まで粉砕してスラリーを得た。このスラリーを、直径30mm×長さ15mm、体積10.5cm のコージェライト製ハニカム基材にコートし、 500℃で3時間焼成してコート層を形成した。その後、所定濃度のジニトロジアンミン白金硝酸溶液の所定量をコート層に含浸させ、 300℃で3時間焼成してPtを担持して第1触媒を得た。コート層はハニカム基材1Lあたり 100g形成され、Ptはハニカム基材1Lあたり2g担持されている。
【0032】
<第2触媒の調製>
γ−Al粉末(比表面積 220m/g) 100gと、ZrO−TiO固溶体粉末(比表面積 100m/g) 100gと、CeO粉末(比表面積30m/g)20gと、アルミナゾルバインダ(固形分8.95重量%) 136gとを所定量のイオン交換水に混合し、ボールミルを用いて所定粒度まで粉砕してスラリーを得た。このスラリーを、直径30mm×長さ35mm、体積24.5cm のコージェライト製ハニカム基材にコートし、 500℃で3時間焼成してコート層を形成した。その後、所定濃度のジニトロジアンミン白金硝酸溶液の所定量をコート層に含浸させ、 300℃で3時間焼成してPtを担持した。さらに所定濃度の酢酸バリウム、酢酸カリウム及び酢酸リチウムの混合水溶液の所定量を含浸させ、 300℃で3時間焼成してBa、K及びLiを担持してNO 吸蔵還元型の第2触媒を調製した。コート層はハニカム基材1Lあたり 232g形成され、Ptはハニカム基材1Lあたり2g担持され、さらにハニカム基材1LあたりBa、K及びLiがそれぞれ 0.2モル、 0.1モル及び 0.1モル担持されている。
【0033】
<排ガス浄化用触媒の形成>
図1に示すように、第1触媒が排ガス上流側、第2触媒が排ガス下流側となるように直列に連結し、直径30mm×長さ50mm、体積 35cmの実施例1に係る触媒を形成した。
【0034】
(比較例1)
実施例1の第2触媒のみ(直径30mm×長さ35mm、体積24.5cm)を比較例1の触媒とした。
【0035】
(比較例2)
直径30mm×長さ50mm、体積 35cmのハニカム基材を用いたこと以外は実施例1の第2触媒と同様にして調製された触媒を比較例2の触媒とした。この比較例2の触媒は、比較例1の触媒と同一組成であるが長さと体積が異なる。また実施例1の触媒と同一形状であり、Pt量も同一である。
【0036】
<試験例1>
実施例及び比較例の触媒をそれぞれ常圧固定床流通型反応装置に装着し、表1に示すモデルガスをリーンガス 120秒−リッチガス3秒で交互に流しながら、 400℃における初期NO 浄化率をそれぞれ測定した。結果を図2に示す。なお、ガス流量は30000cm/分とし、そのときの空間速度は約 51,000h−1であった。リーンガスは空燃比22のときの希薄燃焼方式ガソリンエンジンの排ガスを模擬し、リッチガスは空燃比12のときの希薄燃焼方式ガソリンエンジンの排ガスを模擬したものであり、リーンガス 120秒−リッチガス3秒の雰囲気変動はそのエンジンの代表的な運転条件を模擬したものである。
【0037】
【表1】

Figure 2004337773
【0038】
次に、実施例1及び各比較例の触媒と、実施例1の第1触媒とを、それぞれ常圧固定床流通型反応装置に装着し、表2に示すモデルガスをリーンガス4分−リッチガス1分で交互に流しながら、 750℃で5時間保持する耐熱試験を行った。なお、ガス流量は 1000cm/分とした。その後、初期NO 浄化率の測定と同様にして耐熱後NO 浄化率をそれぞれ測定した。結果を図3に示す。
【0039】
【表2】
Figure 2004337773
【0040】
実施例1の触媒の初期NO 浄化率は、比較例1の触媒より僅かに高いものの、比較例2の触媒より低くなっている。しかし実施例1の触媒の耐熱後NO 浄化率は、比較例1及び比較例2の触媒に比べてそれぞれ1.28倍及び1.12倍高い。
【0041】
比較例1の触媒は実施例1の第2触媒であり、比較例2の触媒は実施例1と同一形状でPt量も同一であるから、第1触媒と第2触媒を組み合わせることで耐熱試験後のNO 浄化性能が向上することが明らかである。
【0042】
さらに図3より、第1触媒のみのNO 浄化率( 3.5%)と比較例1(第2触媒)のNO 浄化率(37.2%)を合計しても、実施例1のNO 浄化率(47.5%)には及ばない。したがって第1触媒と第2触媒を組み合わせることで、格別な「相乗効果」が発現されていることがわかる。
【0043】
<試験例2>
試験例1における耐熱試験後の、実施例1の第1触媒と第2触媒を、それぞれ常圧固定床流通型反応装置に装着し、表3に示すモデルガスをリーンガス 120秒−リッチガス3秒で交互に流しながら 400℃に保持し、リッチガスを流した時の触媒出ガス中のCOとHの平均濃度をそれぞれ測定した。結果を図4に示す。
【0044】
【表3】
Figure 2004337773
【0045】
表3のモデルガスは表1のモデルガスからNOを除いたものであり、吸蔵されたNO の還元に消費されるCO及びHがゼロとなるので、上記試験によってリッチ雰囲気におけるCOシフト反応活性を見積もることができる。
【0046】
図4より、第2触媒では出ガス中のH濃度が入ガス中のH濃度(2%)とほぼ同一であるのに対し、第1触媒では出ガス中のH濃度が入ガス中のH濃度の約 1.5倍に増加している。すなわちリッチ雰囲気では、第2触媒上ではCOシフト反応はほとんど進行せず、第1触媒上のみでCOシフト反応が進行してHが生成する。HはNO の還元に有効な還元剤であるので、この結果から第2触媒より排ガス上流側に第1触媒を配置することが有効であることが明らかである。
【0047】
<試験例3>
試験例1における耐熱試験後の、実施例1の第1触媒と第2触媒を、それぞれ常圧固定床流通型反応装置に装着し、表1に示したリーンガスのみを定常的に流しながら 400℃に保持し、触媒出ガス中のNO の濃度をそれぞれ測定した。そして入ガス中のNO濃度に対する割合を算出し、結果をNO 生成率として図5に示す。
【0048】
図5から、第1触媒の方が第2触媒よりNOの酸化活性が高いことが明らかである。
【0049】
<評価>
試験例1〜3の結果から、実施例1の触媒が比較例1〜2の触媒より耐熱後のNO 浄化性能に優れ、相乗効果が発現されるのは、リッチ雰囲気で第1触媒によって生成したHが第2触媒に供給されてNO を効率よく還元すること、リーン雰囲気において第1触媒上で生成したNO が第2触媒に効率よく吸蔵されること、の2つの要因によるものと考えられる。換言すれば、第2触媒の上流側に第1触媒を配置することで、耐熱試験後のNO 浄化活性が大きく向上する。
【0050】
<試験例4>
実施例1及び各比較例の触媒と、実施例1の第1触媒とを、それぞれ常圧固定床流通型反応装置に装着し、試験例1と同様にしてそれぞれ耐熱試験を行った。その後、表4に示すモデルガスをリーンガス 120秒−リッチガス3秒で交互に流しながら、 400℃で41分間加熱保持する硫黄被毒試験を行った。ガス流量は30000cm/分とし、そのときの空間速度は約 51,000h−1であった。
【0051】
【表4】
Figure 2004337773
【0052】
硫黄被毒試験後の各触媒を、それぞれ常圧固定床流通型反応装置に装着し、表5に示した僅かなリッチ雰囲気のモデルガスを流しながら 600℃で10分間加熱処理して、触媒出ガス中のSO 量をそれぞれ測定した。ガス流量は30000cm/分である。そして硫黄被毒試験で各触媒に供給されたSO 量に対する割合(SO 脱離率)を算出し、結果を図6に示す。なおこのリッチ雰囲気のモデルガスは、空燃比14.5のときの希薄燃焼方式ガソリンエンジンの排ガスを模擬したものである。
【0053】
また比較例1の触媒(第2触媒)の上流側に、耐熱試験のみを行い硫黄被毒試験を行っていない第1触媒を直列に配置し、同様にしてSO 脱離率を測定した結果を、図6に実施例2として示す。
【0054】
【表5】
Figure 2004337773
【0055】
図6より、実施例1の触媒からのSO 脱離率は各比較例の触媒に比べて3〜4倍高い。すなわち、第1触媒と第2触媒を組み合わせることで、NO 吸蔵還元型触媒のみに比べてSO 脱離性が大幅に向上することがわかる。
【0056】
さらに第1触媒のみでも実施例1の触媒に対して約90%のSO 脱離率を示すことから、各比較例の触媒ではSO が強く吸着して脱離しにくいのに対し、実施例1の触媒では第1触媒がSO の吸着力が弱く容易に脱離し、第2触媒をそのまますり抜けることで高いSO 脱離率を示したことがわかる。
【0057】
また実施例2では、第1触媒から脱離するSO はゼロであるのに、比較例1よりSO 脱離率が約 1.8倍多い。すなわち第1触媒の存在によって第2触媒からのSO の脱離が促進されていることが明らかである。
【0058】
<試験例5>
試験例4におけるSO 脱離試験時において、実施例1、比較例1〜2の各触媒からの出ガス中のCO及びHの濃度を測定し、結果を図7に示す。
【0059】
図7より、比較例1の触媒(第2触媒)と比較例2の触媒では、出ガス中のH濃度が入ガス中のH濃度(0.09%)とほぼ同一であり、出ガス中のCO濃度も入ガス中のCO濃度(0.13%)とほぼ同一であるのに対し、実施例1の触媒では入ガス中の濃度の約2倍のHが生成し、出ガス中のCO濃度は入ガス中の濃度から大きく低下していることがわかる。
【0060】
すなわち実施例1の触媒では、第1触媒上でCOシフト反応が効率よく進行し、多量のHが生成することが明らかである。
【0061】
<評価>
したがって試験例4〜5の結果から、実施例1の触媒のSO 脱離率が高いのは、リーン雰囲気で第1触媒に弱く吸着したSO がリッチ雰囲気において脱離すること、リッチ雰囲気で第1触媒上で生成した多量のHによって第2触媒に吸着されたSO の脱離が促進されること、の2つの要因によるものと考えられる。換言すれば、第1触媒と第2触媒をこの順で配置することによって、第2触媒の硫黄被毒劣化を抑制することができる。
【0062】
<試験例6>
SO 脱離試験後の各触媒に対して、試験例1と同様にしてNO 浄化率を測定した。結果を図8に示す。
【0063】
実施例1の触媒のNO 浄化率は、比較例1〜2の触媒に比べて1.93倍及び1.30倍高く、その差は耐熱試験後のNO 浄化率(図3)における差より拡大している。すなわち第1触媒と第2触媒をこの順で配置することで、第2触媒のみに比べて硫黄被毒劣化後の回復度が向上することが明らかである。特に実施例1の触媒は比較例2の触媒と同一体積でPt量も同一であるが、実施例1の触媒の方がSO 脱離試験後に高いNO 浄化率を示していることから、第1触媒と第2触媒との組合せが硫黄被毒劣化後のNO 吸蔵能の回復に対して効果的であることがわかる。
【0064】
【発明の効果】
すなわち本発明の排ガス浄化用触媒及び排ガス浄化方法によれば、硫黄被毒劣化を抑制できるとともに硫黄被毒劣化した第2触媒のNO 吸蔵能を容易に回復することができ、高いNO 浄化性能を長期間維持することができる。
【図面の簡単な説明】
【図1】本発明の一実施例の触媒の概略構成を示す説明図である。
【図2】初期NO 浄化率を示すグラフである。
【図3】耐熱後NO 浄化率を示すグラフである。
【図4】出ガス中のCO濃度及びH濃度を示すグラフである。
【図5】NO 生成率を示すグラフである。
【図6】SO 脱離率を示すグラフである。
【図7】SO 脱離試験時における出ガス中のCO濃度及びH濃度を示すグラフである。
【図8】SO 脱離試験後のNO 浄化率を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is an exhaust gas purifying catalyst for purifying exhaust gas from an internal combustion engine that is burned under combustion conditions in which an oxygen-excess lean atmosphere and a stoichiometric or oxygen-deficient rich atmosphere are alternately repeated, and in particular, purifies exhaust gas containing a sulfur component. The present invention relates to an exhaust gas purifying catalyst and an exhaust gas purifying method using the exhaust gas purifying catalyst.
[0002]
[Prior art]
As an exhaust gas purifying catalyst conventionally automobiles, three-way catalyst for purifying performing the reduction of the oxidized and NO x CO and HC in the exhaust gas simultaneously is used. As such a three-way catalyst, for example, a carrier layer composed of γ-Al 2 O 3 is formed on a heat-resistant honeycomb substrate composed of cordierite or the like, and platinum (Pt), rhodium (Rh), or the like is formed on the carrier layer. Which carry noble metals are widely known.
[0003]
In recent years, global warming due to carbon dioxide has become a problem, and reducing carbon dioxide emissions has become an issue. In automobiles, reduction of the amount of carbon dioxide in exhaust gas has become an issue, and lean burn engines have been developed that burn lean fuel in an oxygen-rich atmosphere. According to this lean-burn engine, the fuel consumption is improved, so that the emission of carbon dioxide can be suppressed.
[0004]
However, in the case of purifying harmful components in the exhaust gas from lean-burn engines, the reduction purification is an oxygen-rich atmosphere because NO x becomes difficult. Therefore etc. JP-05-317652 discloses an alkali metal with the precious metal, the NO x storage-reduction type exhaust gas purifying catalyst carrying the NO x storage material selected from alkaline earth metals and rare earth elements is disclosed. Using this NO x storage-and-reduction type exhaust gas purifying catalyst, by controlling the mixture composition as a stoichiometric-rich atmosphere in a pulsed manner during the lean atmosphere, and a reduction of HC and CO oxidation and NO x It can proceed efficiently and high purification performance can be obtained.
[0005]
That NO x is NO in the exhaust gas is oxidized in the lean atmosphere, the NO x emissions to be occluded in the NO x storage material is suppressed. When the controlled to the stoichiometric-rich atmosphere in a pulsed manner, NO x is released from the NO x storage material, because it is reduced CO, the N 2 react with reducing components such as HC present in the exhaust gas , NO x emissions can be suppressed. Therefore it is possible to suppress the emission of the NO x in all the atmosphere of the lean-rich.
[0006]
However, the NO x storage-reduction catalyst has a problem in that when exposed to high temperatures or used in exhaust gas containing a sulfur component, the NO x purification performance deteriorates. Cause the NO x purification performance deteriorates when exposed to high temperatures is considered as follows.
[0007]
That is, in a high temperature atmosphere, the grain growth of the noble metal is known to be promoted by strongly basic the NO x storage material. Also there is a case where the the NO x storage material and carrier for reaction, in this case caused a decrease in specific surface area of the support, the noble metal also grain growth accordingly. NO x storage-and-reduction type catalyst oxidizes NO in the exhaust gas in an oxygen-excess lean atmosphere to NO x, but the generated NO x is being occluded as nitrate the NO x storage material, resulting grain growth in the noble metal And the oxidation activity of NO decreases, the NO x storage amount also decreases, and as a result, the NO x purification performance decreases.
[0008]
The NO x storage-and-reduction type catalyst is reduced to N 2 by reacting NO x occluding in a rich atmosphere of the stoichiometric-oxygen deficiency and a reducing component. However, noble metal grain growth, the reduction activity is also decreased reduced the NO x purification performance.
[0009]
Therefore, when the NO x storage-reduction catalyst is exposed to a high temperature, activity decreases either case of the lean atmosphere and a stoichiometric-rich atmosphere, NO x purifying performance is decreased.
[0010]
The NO x storage-and-reduction type catalyst even when used in an exhaust gas containing the sulfur component, NO x purifying ability is lowered. The reason is considered as follows. That is, in the lean atmosphere is oxidized to the sulphite ion or sulfate ions by noble metal sulfur component in the exhaust gas, it reacts to produce sulfates with the NO x storage material. To this sulfate is not easily decomposed, since the NO x storage ability of the NO x storage material is lost. This phenomenon is called sulfur poisoning deterioration.
[0011]
[Patent Document 1] Japanese Patent Application Laid-Open No. 05-317652
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and to express high the NO x purification performance even after high-temperature durability, and an object thereof is to suppress the sulfur poisoning deterioration.
[0013]
[Means for Solving the Problems]
The feature of the exhaust gas purifying catalyst of the present invention that solves the above problems is that it purifies exhaust gas from an internal combustion engine that is burned under combustion conditions in which an oxygen-excess lean atmosphere and a stoichiometric or oxygen-deficient rich atmosphere are alternately repeated. A catalyst for oxidizing NO in the exhaust gas to NO 2 in a lean atmosphere and generating H 2 from CO and H 2 O in the exhaust gas in a stoichiometric or rich atmosphere, and a precious metal on a porous oxide carrier. a second catalytic NO x storage material and formed by carrying the NO x storage reduction type and is to consist of.
[0014]
In the case where the exhaust gas from an internal combustion engine comprises a sulfur component, the first catalyst adsorbs SO x in the exhaust gas in a lean atmosphere, it is desirable that desorbs SO x adsorbed in the stoichiometric or rich atmosphere. As such a first catalyst, it is desirable to use a catalyst in which at least Pt is supported on a carrier containing a composite oxide in which ceria and alumina are dispersed on a nanometer scale.
[0015]
The characteristics of the exhaust gas purifying method of the present invention, using the exhaust gas purifying catalyst of the present invention, oxygen in excess lean atmosphere to occlude second catalyst NO x with the first catalyst and NO x is oxidized to NO , in a rich atmosphere of the stoichiometric or oxygen deficiency is to reduce NO x by the second catalyst is discharged from the second catalyst together with the first catalyst to produce and H 2 to N 2.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The exhaust gas purifying catalyst of the present invention, in a lean atmosphere to produce the NO x, such as NO 2 in the first catalyst oxidizes NO in the exhaust gas, generated NO x is occluded in the second catalyst. Since oxidation of NO in this reaction is thought to rate-limiting, the results of NO by the first catalyst is efficiently oxidized, expressed high the NO x storage capacity.
[0017]
Then, in a stoichiometric or rich atmosphere, H 2 having a high reduction activity is generated from CO and H 2 O in the exhaust gas by a CO shift reaction in the first catalyst. Reducing components in the exhaust gas from the normal lean-burn engine is CO as a main component, the CO is converted a large amount of H 2 to produce the H 2. And in stoichiometric or rich atmosphere, NO x that was stored is released from the second catalyst, the released NO x is reduced to N 2 by H 2. Therefore, even noble metal of the second catalyst were grain growth by high-temperature durability, high the NO x purification performance is expressed.
[0018]
Also the use of the first catalyst comprising carrying at least Pt on a support comprising a composite oxide and ceria and alumina are dispersed in nm scale, to preferentially adsorb SO x in the exhaust gas in a lean atmosphere, SO x Is suppressed from coming into contact with the second catalyst, and sulfur poisoning deterioration is suppressed. The first catalyst Suruga desorbing SO x adsorbed in the stoichiometric or rich atmosphere, the second catalyst is not able to sulfur poisoning deterioration since it is stoichiometric or rich atmosphere. Furthermore even if the second catalyst was sulfur poisoning deterioration, reductive decomposition reaction in the second catalyst sulfates with H 2 generated in the first catalyst in the stoichiometric or rich atmosphere is promoted, NO x storage ability is restored . Therefore, by using such a first catalyst, the durability of the NO x purification performance can be suppressed sulfur poisoning deterioration of the second catalyst is increased.
[0019]
Here, the dispersion on the nanometer scale refers to a dispersion state at a level that is not observed as independent particles even when measured using a microanalyzer having a high resolution of about 1 nm. As such a micro analyzer, for example, there is an FE-TEM transmission electron microscope such as “HD-2000” manufactured by Hitachi, Ltd. The state in which ceria and alumina are dispersed on the nm scale is the result of performing micro-range analysis of a single non-overlapping particle using a FE-TEM EDS with a beam diameter of 5 nm or 0.5 nm, This can be confirmed by detecting Ce and Al at a composition ratio within ± 20% of the charged composition at 90% or more of each analysis point.
[0020]
In such a first catalyst, Pt is supported on mesopores in a highly dispersed state, and the mesopores serve as a reaction field, so that the activity is extremely high. Furthermore, even after high-temperature durability, there are sufficient mesopores as Pt-supporting sites, and a sufficiently large specific surface area is secured. Since ceria and alumina act as barriers for each other, sintering at high temperatures is suppressed. Therefore, the grain growth of the supported Pt is also suppressed, and high durability is exhibited.
[0021]
Ceria is preferably contained in the carrier in an amount of at least 40% by weight, particularly preferably at least 60% by weight. Therefore, alumina is preferably less than 60% by weight, and particularly preferably less than 40% by weight. When the ceria content is less than 60% by weight or less than 40%, the CO purification performance and the H 2 generation ability in a low temperature range are reduced.
[0022]
The supported amount of Pt is preferably 0.05 to 30% by weight based on the carrier containing the composite oxide in which ceria and alumina are dispersed on a nanometer scale. When the amount of Pt is less than 0.05% by weight, the water gas shift reaction activity is not sufficiently exhibited. If the amount of Pt exceeds 30% by weight, the effect of blocking mesopores by Pt or preventing the sintering of Pt is not sufficiently exhibited.
[0023]
Note that the carrier containing a composite oxide in which ceria and alumina are dispersed on a nm scale may also contain Zr, an alkaline earth metal, a rare earth element, or the like. By including such a component, the effect of improving heat resistance may be obtained. This first catalyst can be produced by the production method described in JP-A-2002-212908.
[0024]
The second catalyst is the NO x storage-reduction type catalyst on a porous oxide support obtained by carrying the noble metal and the NO x storage material. The second catalyst may be a known NO x storage-and-reduction type catalyst. That is, as the porous oxide carrier, one selected from simple or complex oxides such as alumina, titania, zirconia, and ceria can be used. In order to suppress sulfur poisoning deterioration, it is preferable to include titania which is an acidic carrier. Also, as the noble metal, one or more of Pt, Rh, Pd, Ir and the like can be used. Also the NO x storage material can be used one or more selected from alkali metals, alkaline earth metals and rare earth elements.
[0025]
Although the first catalyst and the second catalyst can be used as a mixture in powder form with each other, the first catalyst is disposed on the exhaust gas upstream side, and the second catalyst is disposed on the exhaust gas downstream side from the first catalyst. It is desirable to have a tandem structure. Thus the SO x adsorption action by the first catalyst, by the NO x and H 2 generated by the first catalyst, the second catalyst sulfur poisoning deterioration of the downstream side can be effectively suppressed, and NO x storage capacity since recovery is accelerated, high the NO x purification performance is expressed. The same operation and effect can be obtained even when the catalyst has a two-layer coat structure in which the lower coat layer is formed from the second catalyst powder and the upper coat layer is formed from the first catalyst powder thereon.
[0026]
When the first catalyst is disposed on the upstream side and the second catalyst is disposed on the downstream side, a space may be provided between the first catalyst and the second catalyst, or the space may be closely contacted without any space. The ratio of the first catalyst to the second catalyst also varies depending on the amount of the noble metal carried, but it is generally preferable that the first catalyst: the second catalyst = 5: 95 to 50:50 by volume.
[0027]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
[0028]
(Example 1)
<Preparation of first catalyst>
0.37 mol (139 g) of aluminum nitrate nonahydrate was mixed with 2000 ml of ion-exchanged water and dissolved by stirring with a propeller stirrer for 5 minutes. Thereto, 202 g of a 28% by weight cerium nitrate aqueous solution (corresponding to 0.33 mol in terms of CeO 2 ) was mixed, and the mixture was further stirred for 5 minutes.
[0029]
177 g of 25% aqueous ammonia was added to the obtained mixed aqueous solution, and the mixture was further stirred for 10 minutes to obtain an aqueous solution containing a precipitate. This was subjected to a ripening step of heat treatment at 120 ° C. for 2 hours under a pressure of 2 atm, to ripen the precipitate. Thereafter, the aqueous solution containing the aged precipitate is heated at a heating rate of 100 ° C./hour, temporarily calcined at 400 ° C. for 5 hours, and further calcined at 600 ° C. for 5 hours, and is made of CeO 2 —Al 2 O 3. A composite oxide powder was prepared.
[0030]
The obtained composite oxide powder consisted of about 75% by weight of CeO 2 and about 25% by weight of Al 2 O 3 and had a specific surface area of 125 m 2 / g. As a result of X-ray diffraction (40 kV-350 mA) measurement, the diffraction line of CeO 2 was within the error range, no peak shift was observed, and did not form a solid solution with Al 2 O 3 . Further, the crystallite diameter of CeO 2 was measured by calculation from the half width of the CeO 2 (220) plane. As a result, this composite oxide powder had a CeO 2 crystallite diameter of 6 to 8 nm. Further, as a result of performing a micro-range analysis of one non-overlapping particle using a FE-TEM EDS with a beam diameter of 5 nm or 0.5 nm, Ce and Al were charged at 90% or more of each analysis point. Was detected at a composition ratio within ± 20% of the above, and it was confirmed that CeO 2 and Al 2 O 3 were dispersed on the nm scale.
[0031]
180 g of the obtained composite oxide powder, 133 g of ceria sol binder (solid content 15% by weight), and a predetermined amount of ion-exchanged water were mixed, and pulverized to a predetermined particle size using a ball mill to obtain a slurry. This slurry was coated on a cordierite honeycomb substrate having a diameter of 30 mm x a length of 15 mm and a volume of 10.5 cm 3 , and fired at 500 ° C for 3 hours to form a coat layer. Thereafter, the coat layer was impregnated with a predetermined amount of a dinitrodiammineplatinum nitric acid solution having a predetermined concentration, and calcined at 300 ° C. for 3 hours to carry Pt to obtain a first catalyst. The coat layer is formed in an amount of 100 g per 1 L of the honeycomb substrate, and 2 g of Pt is carried per 1 L of the honeycomb substrate.
[0032]
<Preparation of second catalyst>
and γ-Al 2 O 3 powder (specific surface area 220m 2 / g) 100g, and ZrO 2 -TiO 2 solid solution powder (specific surface area 100m 2 / g) 100g, and CeO 2 powder (specific surface area 30m 2 / g) 20g, 136 g of an alumina sol binder (solid content: 8.95% by weight) was mixed with a predetermined amount of ion-exchanged water, and pulverized to a predetermined particle size using a ball mill to obtain a slurry. This slurry was coated on a cordierite honeycomb substrate having a diameter of 30 mm x a length of 35 mm and a volume of 24.5 cm 3 , and fired at 500 ° C for 3 hours to form a coat layer. Thereafter, a predetermined amount of a dinitrodiammineplatinum nitric acid solution having a predetermined concentration was impregnated into the coat layer, and baked at 300 ° C. for 3 hours to carry Pt. Moreover predetermined concentration of barium acetate, prepared by impregnating a predetermined amount of a mixed aqueous solution of potassium acetate and lithium acetate, Ba and then calcined 3 hours at 300 ° C., and carries the K and Li the NO x storage-and-reduction type second catalyst did. The coat layer is formed at 232 g per 1 L of the honeycomb substrate, 2 g of Pt is supported per 1 L of the honeycomb substrate, and 0.2 mol, 0.1 mol and 0.1 mol of Ba, K and Li are respectively contained per 1 L of the honeycomb substrate. It is carried.
[0033]
<Formation of exhaust gas purification catalyst>
As shown in FIG. 1, the first catalyst is connected in series with the exhaust gas upstream and the second catalyst is connected with the exhaust gas downstream to form a catalyst according to Example 1 having a diameter of 30 mm × length of 50 mm and a volume of 35 cm 3. did.
[0034]
(Comparative Example 1)
Only the second catalyst of Example 1 (diameter 30 mm × length 35 mm, volume 24.5 cm 3 ) was used as the catalyst of Comparative Example 1.
[0035]
(Comparative Example 2)
Diameter 30 mm × length 50 mm, volume except for using 35 cm 3 of the honeycomb substrate was second catalyst and the same way in Comparative Example 2 was prepared catalyst catalyst of Example 1. The catalyst of Comparative Example 2 has the same composition as the catalyst of Comparative Example 1, but differs in length and volume. It has the same shape as the catalyst of Example 1, and the same Pt amount.
[0036]
<Test Example 1>
Attached Examples and the catalysts of Comparative Examples in a normal pressure fixed bed flow type reactor, respectively, a model gas shown in Table 1 lean gas 120 seconds - while flowing alternately rich 3 seconds, the initial the NO x purification rate at 400 ° C. Each was measured. FIG. 2 shows the results. The gas flow rate was 30,000 cm 3 / min, and the space velocity at that time was about 51,000 h −1 . The lean gas simulates the exhaust gas of a lean-burn gasoline engine at an air-fuel ratio of 22, and the rich gas simulates the exhaust gas of a lean-burn gasoline engine at an air-fuel ratio of 12, and has an atmosphere of 120 seconds of lean gas and 3 seconds of rich gas. Fluctuations simulate typical engine operating conditions.
[0037]
[Table 1]
Figure 2004337773
[0038]
Next, the catalyst of Example 1 and each of the comparative examples and the first catalyst of Example 1 were respectively mounted on a normal-pressure fixed-bed flow reactor, and the model gas shown in Table 2 was replaced with lean gas 4 minutes-rich gas 1 A heat resistance test was carried out at 750 ° C. for 5 hours while alternately flowing for minutes. In addition, the gas flow rate was 1000 cm 3 / min. It was then measured heat after the NO x purification rate respectively in the same manner as in the measurement of initial the NO x purification rate. The results are shown in FIG.
[0039]
[Table 2]
Figure 2004337773
[0040]
Initial the NO x purification rate of the catalyst of Example 1, although slightly higher than the catalyst of Comparative Example 1 is lower than the catalyst of Comparative Example 2. But heat after the NO x purification rate of the catalyst of Example 1, 1.28-fold and 1.12-fold higher, respectively, compared to the catalyst of Comparative Example 1 and Comparative Example 2.
[0041]
The catalyst of Comparative Example 1 is the second catalyst of Example 1, and the catalyst of Comparative Example 2 has the same shape and the same Pt amount as Example 1, so that the heat resistance test is performed by combining the first catalyst and the second catalyst. it is clear that the NO x purification performance after improves.
[0042]
Further from FIG. 3, even if the sum of the Comparative Example 1 the NO x purification rate (second catalyst) (37.2%) and the NO x purification rate of only the first catalyst (3.5%), Example 1 It does not reach the NO x purification rate (47.5%). Therefore, it can be seen that a special "synergistic effect" is exhibited by combining the first catalyst and the second catalyst.
[0043]
<Test Example 2>
After the heat resistance test in Test Example 1, the first catalyst and the second catalyst of Example 1 were respectively installed in a normal-pressure fixed-bed flow reactor, and the model gas shown in Table 3 was used in a lean gas of 120 seconds-rich gas of 3 seconds. The temperature was maintained at 400 ° C. while flowing alternately, and the average concentrations of CO and H 2 in the catalyst outgas when the rich gas was passed were measured. FIG. 4 shows the results.
[0044]
[Table 3]
Figure 2004337773
[0045]
Model gas shown in Table 3 are those obtained by removing NO from a model gas shown in Table 1, since the CO and H 2 is consumed in the reduction of the occluded NO x is zero, CO shift reaction in the rich atmosphere by the above test Activity can be estimated.
[0046]
4, the H 2 concentration in the outgoing gas of the second catalyst is almost the same as the H 2 concentration (2%) in the incoming gas, whereas the H 2 concentration in the outgoing gas of the first catalyst is It has increased to about 1.5 times the concentration of H 2 in. That is, in a rich atmosphere, on the second catalyst does not proceed little CO shift reaction, CO shift reaction in only the first on the catalyst is H 2 is produced by progress. Since H 2 is an effective reducing agent for the reduction of NO x , it is clear from this result that it is effective to arrange the first catalyst on the exhaust gas upstream side of the second catalyst.
[0047]
<Test Example 3>
After the heat resistance test in Test Example 1, the first catalyst and the second catalyst of Example 1 were respectively mounted on a normal-pressure fixed-bed flow reactor, and 400 ° C. while constantly flowing only the lean gas shown in Table 1 And the concentration of NO 2 in the catalyst outgas was measured. Then, the ratio to the NO concentration in the incoming gas was calculated, and the result is shown in FIG. 5 as the NO 2 generation rate.
[0048]
It is apparent from FIG. 5 that the first catalyst has a higher NO oxidation activity than the second catalyst.
[0049]
<Evaluation>
Produced from the results of Test Examples 1 to 3, excellent the NO x purification performance after heat the catalyst of the catalyst Comparative Examples 1-2 Example 1, is the synergistic effect is expressed by the first catalyst in a rich atmosphere that the H 2 reduction efficiently supplied with NO x in the second catalyst, the NO 2 generated over the first catalyst in a lean atmosphere is effectively occluded in the second catalyst, due to two factors of it is conceivable that. In other words, by disposing the first catalyst on the upstream side of the second catalyst, NO x purifying activity after the heat resistance test is greatly improved.
[0050]
<Test Example 4>
The catalysts of Example 1 and Comparative Examples and the first catalyst of Example 1 were each mounted on a normal-pressure fixed-bed flow reactor, and subjected to a heat resistance test in the same manner as in Test Example 1. Thereafter, a sulfur poisoning test was conducted in which the model gas shown in Table 4 was heated and held at 400 ° C. for 41 minutes while alternately flowing lean gas for 120 seconds and rich gas for 3 seconds. The gas flow rate was 30,000 cm 3 / min, and the space velocity at that time was about 51,000 h −1 .
[0051]
[Table 4]
Figure 2004337773
[0052]
Each of the catalysts after the sulfur poisoning test was attached to a normal-pressure fixed-bed flow reactor, and heated at 600 ° C. for 10 minutes while flowing a model gas in a slightly rich atmosphere shown in Table 5 to discharge the catalyst. The SO x amount in the gas was measured. The gas flow rate is 30,000 cm 3 / min. Then, in the sulfur poisoning test, the ratio (SO x desorption rate) to the amount of SO 2 supplied to each catalyst was calculated, and the results are shown in FIG. The model gas in the rich atmosphere simulates the exhaust gas of a lean-burn gasoline engine at an air-fuel ratio of 14.5.
[0053]
In addition, the first catalyst, which was subjected to only the heat resistance test and not subjected to the sulfur poisoning test, was arranged in series upstream of the catalyst (second catalyst) of Comparative Example 1, and the SO x desorption rate was measured in the same manner. Is shown as Example 2 in FIG.
[0054]
[Table 5]
Figure 2004337773
[0055]
From FIG. 6, the SO x desorption rate from the catalyst of Example 1 is 3 to 4 times higher than that of each comparative example. That is, it can be seen that the combination of the first catalyst and the second catalyst greatly improves the SO x desorption property as compared with only the NO x storage reduction catalyst.
[0056]
Further since also show about 90% of the SO x desorption ratio relative to the catalyst of Example 1 only in the first catalyst, the catalyst of the Comparative Example while hardly desorbed adsorbed strongly SO x is Example in one catalyst adsorption force is weak easily desorbed in the first catalyst sO x, it can be seen that the second catalyst showed high sO x desorption rate is directly slip through it.
[0057]
In Example 2, SO x desorbed from the first catalyst was zero, but the SO x desorption rate was about 1.8 times higher than in Comparative Example 1. That is, it is clear that the desorption of SO x from the second catalyst is promoted by the presence of the first catalyst.
[0058]
<Test Example 5>
In SO x when desorption test in Test Example 4, Example 1, to measure the concentration of CO and H 2 in exit gas from the catalyst of Comparative Example 1-2, the results are shown in Figure 7.
[0059]
As shown in FIG. 7, in the catalyst of Comparative Example 1 (second catalyst) and the catalyst of Comparative Example 2, the H 2 concentration in the outgoing gas was almost the same as the H 2 concentration (0.09%) in the incoming gas. CO concentration in the gas also contrast is substantially the same as the concentration of CO in the inflow gas (0.13%), the catalyst of example 1 to produce about twice of H 2 concentration in the incoming gas, out It can be seen that the CO concentration in the gas is significantly lower than the concentration in the incoming gas.
[0060]
That is, in the catalyst of Example 1, it is clear that the CO shift reaction proceeds efficiently on the first catalyst and a large amount of H 2 is generated.
[0061]
<Evaluation>
Therefore, from the results of Test Examples 4 and 5, the SO x desorption rate of the catalyst of Example 1 was high because the SO x weakly adsorbed to the first catalyst in the lean atmosphere was desorbed in the rich atmosphere and the SO x desorption rate was high in the rich atmosphere. This is considered to be due to two factors: the large amount of H 2 generated on the first catalyst promotes the desorption of SO x adsorbed on the second catalyst. In other words, by arranging the first catalyst and the second catalyst in this order, it is possible to suppress the sulfur poisoning deterioration of the second catalyst.
[0062]
<Test Example 6>
For each catalyst after the SO x desorption test, the NO x purification rate was measured in the same manner as in Test Example 1. FIG. 8 shows the results.
[0063]
The NO x purification rate of the catalyst of Example 1, the difference in 1.93 times in comparison with the catalyst of Comparative Example 1-2 and 1.30 times higher, the difference is the NO x purification ratio after the heat resistance test (Fig. 3) It is expanding. That is, it is clear that the degree of recovery after sulfur poisoning degradation is improved by arranging the first catalyst and the second catalyst in this order, as compared with the case of only the second catalyst. In particular the catalyst of Example 1 is the same even Pt amount catalyst in the same volume of Comparative Example 2, since the direction of the catalyst of Example 1 shows higher the NO x purification rate after SO x desorption test, it can be seen that the combination of the first catalyst and the second catalyst is effective for recovery of the NO x storage capacity after sulfur poisoning deterioration.
[0064]
【The invention's effect】
That is, according to the catalyst and the exhaust gas purifying method for purifying an exhaust gas of the present invention, it is possible to easily recover the NO x storage ability of the second catalyst sulfur poisoning deterioration is possible to suppress the sulfur poisoning deterioration, higher the NO x purification Performance can be maintained for a long time.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a schematic configuration of a catalyst according to one embodiment of the present invention.
FIG. 2 is a graph showing an initial NO x purification rate.
FIG. 3 is a graph showing a NO x purification rate after heat resistance.
FIG. 4 is a graph showing CO concentration and H 2 concentration in outgas.
FIG. 5 is a graph showing a NO 2 generation rate.
FIG. 6 is a graph showing the SO x desorption rate.
FIG. 7 is a graph showing the CO concentration and the H 2 concentration in the outgas at the time of the SO x desorption test.
FIG. 8 is a graph showing the NO x purification rate after the SO x desorption test.

Claims (7)

酸素過剰のリーン雰囲気とストイキ又は酸素不足のリッチ雰囲気が交互に繰り返される燃焼条件で燃焼される内燃機関からの排ガスを浄化する排ガス浄化用触媒であって、
リーン雰囲気では排ガス中のNOをNO へ酸化しストイキ又はリッチ雰囲気では排ガス中のCOとHO からHを生成する第1触媒と、多孔質酸化物担体に貴金属とNO 吸蔵材とを担持してなるNO 吸蔵還元型の第2触媒と、からなることを特徴とする排ガス浄化用触媒。
An exhaust gas purifying catalyst for purifying exhaust gas from an internal combustion engine that is burned under combustion conditions in which an oxygen-excess lean atmosphere and a stoichiometric or oxygen-deficient rich atmosphere are alternately repeated,
A first catalyst that oxidizes NO in exhaust gas to NO 2 in a lean atmosphere and generates H 2 from CO and H 2 O in a stoichiometric or rich atmosphere, and a precious metal and a NO x storage material on a porous oxide carrier. a NO x storage-and-reduction type second catalyst formed by carrying a catalyst for purifying exhaust gas, characterized in that it consists of.
前記内燃機関からの排ガスは硫黄成分を含み、前記第1触媒は、リーン雰囲気で排ガス中のSO を吸着し、ストイキ又はリッチ雰囲気で吸着したSO を脱離する請求項1に記載の排ガス浄化用触媒。It includes an exhaust gas sulfur components from the internal combustion engine, the first catalyst, the exhaust gas according to claim 1 which adsorbs SO x in the exhaust gas in a lean atmosphere, and desorbs SO x adsorbed in the stoichiometric or rich atmosphere Purification catalyst. 前記第1触媒は、セリアとアルミナとがnmスケールで分散した複合酸化物を含む担体に少なくともPtを担持してなる請求項1又は請求項2に記載の排ガス浄化用触媒。3. The exhaust gas purifying catalyst according to claim 1, wherein the first catalyst has at least Pt supported on a carrier containing a composite oxide in which ceria and alumina are dispersed on a nanometer scale. 4. 前記第2触媒には少なくともPtが担持されている請求項1に記載の排ガス浄化用触媒。The exhaust gas purifying catalyst according to claim 1, wherein at least Pt is carried on the second catalyst. 前記第1触媒が排ガス上流側に配置され、前記第2触媒が前記第1触媒より排ガス下流側に配置されている請求項1〜4のいずれかに記載の排ガス浄化用触媒。The exhaust gas purifying catalyst according to any one of claims 1 to 4, wherein the first catalyst is arranged on an exhaust gas upstream side, and the second catalyst is arranged on an exhaust gas downstream side of the first catalyst. 請求項1〜5のいずれかに記載の排ガス浄化用触媒を用い、酸素過剰のリーン雰囲気では該第1触媒がNOを酸化してNO とするとともに該第2触媒がNO を吸蔵し、ストイキ又は酸素不足のリッチ雰囲気では該第1触媒がHを生成するとともに該第2触媒が該第2触媒から放出されたNO をNに還元することを特徴とする排ガス浄化方法。Using the catalyst for purification of exhaust gas according to claim 1, said second catalyst with the oxygen-excess lean atmosphere first catalyst to NO 2 by oxidizing NO is occludes NO x, exhaust gas purification method, characterized in that said first catalyst is in a rich atmosphere of the stoichiometric or oxygen shortage reducing NO x to said second catalyst is released from the second catalyst so as to generate and H 2 to N 2. 酸素過剰のリーン雰囲気では前記第1触媒が優先的にSO を吸着し、ストイキ又は酸素不足のリッチ雰囲気では前記第1触媒からSO が放出される請求項6に記載の排ガス浄化方法。Oxygen in excess lean atmosphere to adsorb the first catalyst is preferentially SO x, an exhaust gas purification method according to claim 6 in a rich atmosphere of the stoichiometric or oxygen deficiency SO x is released from the first catalyst.
JP2003138912A 2003-05-16 2003-05-16 Exhaust gas purification catalyst and exhaust gas purification method Expired - Fee Related JP4239679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003138912A JP4239679B2 (en) 2003-05-16 2003-05-16 Exhaust gas purification catalyst and exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003138912A JP4239679B2 (en) 2003-05-16 2003-05-16 Exhaust gas purification catalyst and exhaust gas purification method

Publications (2)

Publication Number Publication Date
JP2004337773A true JP2004337773A (en) 2004-12-02
JP4239679B2 JP4239679B2 (en) 2009-03-18

Family

ID=33528150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003138912A Expired - Fee Related JP4239679B2 (en) 2003-05-16 2003-05-16 Exhaust gas purification catalyst and exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP4239679B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080187A1 (en) * 2005-01-31 2006-08-03 Isuzu Motors Limited Method of raising temperature of exhaust-gas purifier and exhaust-gas purification system
JP2008128208A (en) * 2006-11-24 2008-06-05 Honda Motor Co Ltd Exhaust emission control system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5170378B2 (en) 2007-10-15 2013-03-27 コニカミノルタビジネステクノロジーズ株式会社 Image forming apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080187A1 (en) * 2005-01-31 2006-08-03 Isuzu Motors Limited Method of raising temperature of exhaust-gas purifier and exhaust-gas purification system
US7735313B2 (en) 2005-01-31 2010-06-15 Isuzu Motors Limited Method of raising temperature in exhaust-gas purifier and exhaust-gas purification system
JP2008128208A (en) * 2006-11-24 2008-06-05 Honda Motor Co Ltd Exhaust emission control system
JP4597944B2 (en) * 2006-11-24 2010-12-15 本田技研工業株式会社 Exhaust gas purification system

Also Published As

Publication number Publication date
JP4239679B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
WO2000000283A1 (en) Catalyst for exhaust gas purification, process for producing the same, and method of purifying exhaust gas
EP1188908A2 (en) Exhaust gas purifying system
JP2012055842A (en) Exhaust gas purifying catalyst
JP2005144334A (en) Exhaust gas cleaning catalyst and its production method
JP2001079402A (en) Exhaust gas cleaning catalyst and its production
JP4573993B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3789231B2 (en) Exhaust gas purification catalyst
JP3704701B2 (en) Exhaust gas purification catalyst
JP5391664B2 (en) Exhaust gas purification catalyst
JP4941731B2 (en) Exhaust gas purification system
JP2011183319A (en) Catalyst and method for cleaning exhaust gas
JP3589383B2 (en) Exhaust gas purification catalyst
JP2008284487A (en) Sulfur occlusion catalyst and apparatus for cleaning exhaust gas
JP2006329018A (en) Sulfur content absorption material and exhaust emission control system
JPH10128114A (en) Catalyst for purifying exhaust gas
JP4239679B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP5163955B2 (en) Exhaust gas purification catalyst
JP4656361B2 (en) Diesel exhaust gas purification device and exhaust gas purification method
JP5094199B2 (en) Exhaust gas purification device
JP2000246107A (en) Catalyst for cleaning exhaust gas, its production and method for cleaning exhaust gas
JP2001252563A (en) Exhaust gas cleaning catalyst and exhaust gas cleaning device
JP2002168117A (en) Exhaust emission control system
JP2000140644A (en) Catalyst for purifying exhaust gas and purification of exhaust gas
JP4019351B2 (en) NOx purification catalyst and NOx purification system
JP3885376B2 (en) Exhaust gas purification catalyst and method of using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080826

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees