JP2004335259A - Electrical wiring, electronic device, magnetoresistance effect element, magnetic head, magnetic medium, recording devices, and manufacturing method of the above - Google Patents

Electrical wiring, electronic device, magnetoresistance effect element, magnetic head, magnetic medium, recording devices, and manufacturing method of the above Download PDF

Info

Publication number
JP2004335259A
JP2004335259A JP2003129402A JP2003129402A JP2004335259A JP 2004335259 A JP2004335259 A JP 2004335259A JP 2003129402 A JP2003129402 A JP 2003129402A JP 2003129402 A JP2003129402 A JP 2003129402A JP 2004335259 A JP2004335259 A JP 2004335259A
Authority
JP
Japan
Prior art keywords
metal
magnetic
alloy
cnt
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003129402A
Other languages
Japanese (ja)
Other versions
JP2004335259A5 (en
Inventor
Hiroshi Sakakima
博 榊間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003129402A priority Critical patent/JP2004335259A/en
Publication of JP2004335259A publication Critical patent/JP2004335259A/en
Publication of JP2004335259A5 publication Critical patent/JP2004335259A5/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain carbon nanotube wiring on an electronic device. <P>SOLUTION: The outside of the electronic device is composed of a carbon nanotube (CNT) 1, and the inside is composed of a metal or an alloy 2 containing a metal element as a main component. Electrodes or elements are reticulately connected by wiring of which the length of the metal or the alloy 2 in charge of electrical conduction is shorter than a mean free path of an electron of that part. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、新規な電気配線、電子デバイス、磁気抵抗効果素子、磁気ヘッドおよび記録装置とその製造方法に関するものである。
【0002】
【従来の技術】
半導体の分野では素子部の微細化とともに配線サイズがnmオーダ−となり、従来の金属を用いた配線の加工が困難となっている。
【0003】
磁気デバイスの分野では従来のGMR(巨大磁気抵抗効果)膜を用いた磁気抵抗効果素子や磁気ヘッドのMR(磁気抵抗)比が10%程度で、更に大きなMR比を示すものが求められている。
【0004】
また磁気媒体においても更なる高密度化が求められているが、従来の面内磁気媒体では磁気媒体粒の微細化に伴い熱揺らぎが問題となりつつある。
【0005】
【発明が解決しようとする課題】
半導体分野の電気配線に関してはCNTを用いるというアイデアはあるが、CNTのうち金属的な特性を示すものはアームチェア型の構造を有するものだけで、ジグザグ型やキラル型では半導体的あるいは絶縁的な特性を示し、これらの構造制御が困難であることや、CNTを任意の位置に配線する技術も未完成なため、CNT配線は実現されていない。またCNTを用いたバリスティック伝導デバイスも考案されているが、やはり金属的な構造制御の課題と、電極部とCNTの低接触抵抗化技術が未確立なため実用化には至っていない。
【0006】
磁気デバイスの分野では50%程度のMR比が得られるTMR(トンネル磁気抵抗効果)膜を用いた磁気ヘッドの研究が現在進められているが、磁気ヘッドに使用されるTMR素子幅はトラック幅に比例し、TMR素子の抵抗は素子幅の2乗に反比例するため、高密度記録になるほどTMR磁気ヘッドの抵抗が非常に高くなり高周波特性が劣化する課題がある。そこで近年CNTを用いて磁気抵抗効果素子を作製する試みがなされているが(非特許文献1参照)、極低温で10%程度、室温では大きなMR比は得られていない。また抵抗も10kΩ以上と高い。一方Niウィスカーを用いたナノコンタクト素子において室温で100%が報告されているが(非特許文献2)、メッキにより形成されるナノコンタクト部が制御して形成することが困難な複雑な構造となっており、まだ実用的な段階には至っていない。
【0007】
磁気媒体においては面内媒体よりも高密度化が期待される垂直記録媒体や一様なサイズの磁気ドットから成るパターンドメディアと呼ばれる磁気媒体が研究されているが、前者は磁気媒体の粒径制御が、後者は製造コストが課題となっている。パターンドメディアではなく、金属錯体を利用し、スピンコーティング技術と自己配列技術により磁性粒子を内包したドットを規則的に配列した磁気媒体の提案もなされているが(非特許文献3)、形状が球形のため磁気異方性の制御が困難な課題を有している。
【0008】
【非特許文献1】
Nature Vol.401,p572,1999
【非特許文献2】
Physical Review B 67,p60401,2003
【非特許文献3】
Science,Vol.287,p1989,2000
【0009】
【課題を解決するための手段】
上記課題を解決すべく、本発明では外部がカーボンナノチューブ(以下CNT)部より成り、内部が金属元素を主成分とする金属もしくは合金部から成る構造を電気配線、電子デバイス、磁気抵抗効果素子、磁気ヘッド、磁気媒体に用いる。
【0010】
電気配線においては上記の金属もしくは合金部が電気伝導を担うことを特徴とする。これにより従来の電気伝導を担う部分にCNTを用いると構造制御が困難なため安定した金属特性を得ることが困難だった課題が解決される。
【0011】
電子デバイスにおいては上記な構成でかつ電気伝導を担う金属もしくは合金部の長さが、その部分の電子の平均自由行程より短くすることによりバリスティック伝導を示す素子が可能となる。またCNTと電極部との接触抵抗の課題も解決される。
【0012】
更には本発明の電気配線により、電極もしくは素子間を網の目形状に電気的に接続した電子デバイスが可能となる。この様な構成では電気接続部にはCNTを用いないため、CNTの接触抵抗制御の課題が無くなる。
【0013】
磁気抵抗効果素子においては、外部磁界により容易に磁化回転する第一の磁性膜部、外部磁界により容易に磁化回転しない第二の磁性膜部、上記両磁性膜部間をつなぐ連結部を有し、上記連結部が、外部はCNT部、内部は金属元素を主成分とする金属もしくは合金部から磁気抵抗効果素子を構成することにより、nmオーダーの微細な素子化が容易となる。この場合も電気伝導は金属もしくは合金部が担うことが望ましい。更には電気伝導を担う金属もしくは合金部の長さが、その部分の電子の平均自由行程より短くすることにより、従来のGMR素子より大きなMR比を得ることが可能となる。
【0014】
上記の磁気抵抗効果素子において上記第一の磁性膜部の磁化容易軸方向が、検出すべき外部磁界方向と直交するように配置することにより、出力の線形性の良い磁気ヘッドが得られる。特に第二の磁性膜部が反強磁性膜と反強磁性膜によりピンニングされた磁性膜とにより構成すれば熱的にも特性が安定な磁気ヘッドが得られる。
【0015】
磁気媒体においては、情報を記録する柱状の硬質磁性合金部を内包する多数のCNTを配列することにより、CNTにより磁気的に分離されたnmオーダーで一様な形状を有し、かつ柱状形状であるため垂直磁気媒体に適した構造の磁気媒体が得られる。この場合、硬質磁性合金部はFe,Coのいずれか一種もしくは二種の元素を含有することが望ましい。また硬質磁性合金部が更にPtを含有することが望ましい。
【0016】
以上の本発明の電気配線、電子デバイス、磁気抵抗効果素子、磁気ヘッドの金属もしくは合金部はFe,Co,Niから選ばれる一種もしくは二種以上の元素を含有することが望ましい。
【0017】
上記の本発明の再生用の磁気ヘッドと、記録用磁気ヘッド、及び本発明の記録媒体を用いることにより超高密度化が可能な記録装置が得られる。
【0018】
これらの本発明の電気配線、電子デバイス、磁気抵抗効果素子、磁気ヘッドの製造においてはCNTの触媒となる金属・合金粒あるいは膜を第一及び第二の電極部上に設け、CVD法を用いて、上記触媒により上記第一及び第二の電極間にブリッジするようにカ−ボンナノチュ−ブを形成すると同時に、その内部に電気伝導を担う金属・合金部を形成することを特徴とする。特に電極間の配線・連結部の長さが、上記の金属・合金部の電子の平均自由行程よりも短くなるように、第一及び第二電極部を配置した後に、上記の金属・合金部を内包するカ−ボンナノチュ−ブを形成することが電子デバイス、磁気抵抗効果素子、磁気ヘッドの製造には望ましい。また第一と第二の電極間に電圧を印加しながら、CVD法により両電極間に金属・合金部を内包するカ−ボンナノチュ−ブをブリッジするように形成し、これを連結部とすることにより電気配線、電子デバイス、磁気抵抗効果素子、磁気ヘッドにおいて連結部の成長方向制御が可能となる。
【0019】
本発明の磁気媒体の製造においては基板上にCNTの触媒となる金属・合金粒あるいは膜を設け、CVD法を用いて、上記触媒によりカ−ボンナノチュ−ブを形成すると同時に、その内部に柱状の磁性合金部を形成することを特徴とする。更に基板上に自己配列したCNTの触媒となる金属・合金粒を設け、CVD法を用いて、上記触媒によりカ−ボンナノチュ−ブを形成すると同時に、その内部に柱状の磁性合金部を形成し、これらが規則的に配列した構造からなる磁気媒体としても良い。
【0020】
以上の電気配線、電子デバイス、磁気抵抗効果素子、磁気ヘッド、磁気媒体の製造方法においてCNTの触媒としてはFe,Co,Niからなる群より選ばれた一種もしくは二種以上の元素を含有する金属・合金粒あるいは膜を用いることが望ましい。
【0021】
【発明の実施の形態】
以下具体的に本発明の実施の形態を示す。
【0022】
図1に示すように本発明の電気配線において電極3と3’上に触媒部4と4’を設け、CVD等によりCNT1を触媒部4と4’から成長させると同時に、電気伝導を担う金属もしくは合金部2をCNT内に成長させて、電気配線部を形成する。図では分かり易いように触媒部4,4’を示したが、通常は1と2から成る連結部の形成が終了すると、4,4’部と2との接合界面、及び4,4’部と3と3との接合界面は不明確になり、一体化する。
【0023】
この様にすることにより、従来では不可能であったnmオーダーの配線が可能となる。またこの配線では電気伝導にCNT部が関与しないため、従来のCNTを用いた配線では困難であった安定した金属特性を得ることが可能となり、CNTと電極部との間に生じることがある大きな接触抵抗の課題も解決される。
【0024】
図1において電気伝導を担う金属もしくは合金部の長さLが、その部分の電子の平均自由行程Λより短くすること(L<Λ)によりバリスティック伝導を示す素子が可能となる。このような素子においては、量子化されたコンダクタンスが観測される。本発明のデバイスにおいてはCNTを用いるため、サイズがnmオーダーとなり、比較的高温でもバリスティック伝導を反映した量子化コンダクタンスの観測が可能となる。また少なくとも電極部3,3’に磁性膜を用いれば磁性膜の磁化状態により特性が変化するスピンエレクトロニクスデバイスとなる。更にゲ−ト部を設け、上記の磁性膜電極部3,3’をソ−スとドレインとすればスピントランジスタとなる。
【0025】
以上の本実施の形態の電気配線により、複数の電極もしくは素子間を網の目形状に電気的に接続した電子デバイスが可能となる。この様な構成では電気接続部にはCNTを用いないため、CNTの接触抵抗制御の課題が無くなる。
【0026】
以上の電極部の材料は金属・合金が望ましく、触媒部はFe,Co,Niからなる群より選ばれた一種もしくは二種以上の元素を含有する金属・合金粒あるいは膜を用いることが望ましい。CNTは単層でも多層でも良い。またCNTに内包され電気伝導を担う金属もしくは合金部は通常は触媒部の構成元素、あるいは触媒部の構成元素と電極部の構成元素を含有する組成となる。
【0027】
図2は本発明の磁気抵抗効果素子の一例で、上部は平面図、下部は断面図を示す。この素子においては、図に示すように外部磁界Hを陰印加するとその方向に容易に磁化回転する第一の磁性膜部5、外部磁界Hが印加されても容易には磁化回転しない第二の磁性膜部6、上記両磁性膜部間をつなぐCNT1と金属元素を主成分とする金属もしくは合金部2より成る連結部、及び電圧印加用のリ−ド線部7と絶縁膜部8より成る。
【0028】
この様な構成とすることにより上記連結部の直径が数nmオーダーで長さが数nm〜数十nmオーダーの微細な素子化が容易となる。この場合も電気伝導は金属もしくは合金部が担うことが望ましい。更には電気伝導を担う金属もしくは合金部の長さLが、その部分の電子の平均自由行程Λより短くすることにより、BMR(バリスティックMR)素子とすることが可能となり、従来のGMR素子やTMR素子より大きなMR比を得ることが可能となる。
【0029】
上記の磁気抵抗効果素子において上記第一の磁性膜部5の磁化容易軸方向が、図に示すように検出すべき外部磁界Hの方向と直交するように配置することにより、出力の線形性の良い磁気ヘッドが得られる。特に第二の磁性膜部6が反強磁性膜6−2と反強磁性膜によりピンニングされた磁性膜6−1とにより構成すれば熱的にも特性が安定な磁気ヘッドが得られる。また図には示さなかったが第二の磁性膜2はこの例では反強磁性膜によりピンニングされているが、保磁力の大きな硬質磁性膜、あるいは磁力の大きな硬質磁性膜と磁性膜との複合膜でも良い。この場合は反強磁性膜は必要でない。第二の磁性膜の磁化方向は一方向に固定されていなければならないが、100Gb/in超用の磁気ヘッドにおいては素子サイズが極めて小さくなり、磁化が熱揺らぎを受けて磁化方向の固定が困難となる。そこで本発明においてはこの反強磁性膜3により第二の磁性膜2をピンニングし、微細な素子形状となった場合にも熱揺らぎを受けないような構造としている。
【0030】
第一の磁性膜部1の磁化容易軸方向は、検出すべき外部磁界Hの方向と直交するように配置されていることが望ましい。これにより本実施の形態の磁気抵抗効果素子の信号出力の線形性が向上する。これを実現するには第一の磁性膜の両側に永久磁石膜を設け、そのバイアス磁界により第一の磁性膜の磁化容易軸を磁界Hの方向と直交するように固定しても良いし、反強磁性膜により第一の磁性膜の磁化容易軸が磁界Hの方向と直交するように、第一の磁性膜の両端の一部をピンニングしても良い。
【0031】
更に第一の磁性膜部を非磁性膜を介して反平行に交換結合した二つの磁性膜より成る構造とし、それぞれの磁化Mと膜厚tをM1,t1,M2,t2とするとき、(M1・t1−M2・t2)が零でないようにすれば、この交換結合により微細な素子となった場合の熱揺らぎに対する安定性と実効的な磁性膜の膜厚が減少することによる外部磁界に対する磁気抵抗効果素子の感度の向上が可能である。第二の磁性膜も非磁性膜を介して反平行に交換結合した二つの磁性膜より成る構造としても良い。これにより更に熱的安定性が向上する。第二の磁性膜部の場合はそれぞれの磁化M’と膜厚t’をM1’,t1’,M2’,t2’とするとき、(M1’・t1’−M2’・t2’)が零となっても良い。
【0032】
以上の磁気抵抗効果素子及び磁気ヘッドにおいて、磁性膜部としてはFe,Co,Niを主成分とする金属・合金が望ましい。具体的にはNiFe,CoFe,CoFeNi等があげられる。また反強磁性膜部にはPt,Pd,Irから選ばれる一種もしくは二種以上の元素とMn元素を主成分とする合金膜、例えばPtMn,IrMn,PtPdMnを用いることが望ましい。絶縁膜部8には例えばSiO等を用いても良い。この絶縁部がある方が円滑なCNTの成長が可能となる。その他の部分に関しては上記の電気配線、電子デバイスと同様である。
【0033】
図3に示す磁気媒体においては、情報を記録する柱状の硬質磁性合金部2を内包する多数のCNT1を基板9上に配列した構成より成る。この様に硬質磁性部はCNTにより磁気的に分離された直径Dと高さTが数nmから数十nmオーダーでD<Tの一様な柱状形状とすることが可能なため、この形状異方性を活用して垂直磁気記録に適した構造の磁気媒体が得られる。
【0034】
以上の磁気媒体において、硬質磁性合金部はFe,Coのいずれか一種もしくは二種の元素を含有することが望ましい。また硬質磁性合金部が更にPtを含有することが望ましい。具体的にはFePtやCoCrPt等があげられる。図には示さなかったが、柱状媒体部の下部に軟磁気特性を示す垂直磁気記録用の下地膜を設けても良い。また媒体のコーティング膜を設けても良い。
【0035】
図4は上記磁気媒体の製造方法の一例を示す。上部に示したようにまず金属・合金錯体を基板9上にスピンコートして自己配列した金属錯体ナノドットを形成し、熱処理により金属錯体部の金属・合金部のみから成る配列した金属・合金ナノドット部10を分離形成し、これを触媒としてCVD等により図の下部のように整然と配列した柱状の硬質磁性膜部2を内包するCNT部1を形成することにより磁気媒体を作製している。図の下部においては金属・合金ナノドット部10の一部が10’となって残る場合を示しているが、この部分が残る必要はない。
【0036】
上記の本発明の再生用の磁気ヘッドと、記録用磁気ヘッド、及び本発明の記録媒体を用いることにより超高密度化が可能な記録装置が得られる。
【0037】
これらの本発明の電気配線、電子デバイス、磁気抵抗効果素子、磁気ヘッドの製造においてはCNTの触媒となる金属・合金粒あるいは膜を第一及び第二の電極部上に設け、CVD法を用いて、上記触媒により上記第一及び第二の電極間にブリッジするようにカ−ボンナノチュ−ブを形成すると同時に、その内部に電気伝導を担う金属・合金部を形成することを特徴とする。特に電極間の配線・連結部の長さが、上記の金属・合金部の電子の平均自由行程よりも短くなるように、第一及び第二電極部を配置した後に、上記の金属・合金部を内包するカ−ボンナノチュ−ブを形成することが電子デバイス、磁気抵抗効果素子、磁気ヘッドの製造には望ましい。
【0038】
また、図2においてリ−ド線部7に電圧を印加しながら、CVD法により両電極間に金属・合金部を内包するカ−ボンナノチュ−ブをブリッジするように形成し、これを連結部とすることにより電気配線、電子デバイス、磁気抵抗効果素子、磁気ヘッドにおいて連結部の成長方向制御が可能となる。
【0039】
以上の電気配線、電子デバイス、磁気抵抗効果素子、磁気ヘッド、磁気媒体の製造方法においてCNTの触媒としてはFe,Co,Niからなる群より選ばれた一種もしくは二種以上の元素を含有する金属・合金粒あるいは膜を用いることが望ましい。
【0040】
【実施例】
(実施例1)
Si基板上にSiO層を設け、この上にスパッタ法とリソグラフィ−により間隔が100nmに設定されたMo/Auより成る第一及び第二の電極を形成し、この電極上にNiの微粒子(直径約30nm)を付け、CHを用いたCVD法により800℃で内部にAu,Niを主成分とする合金部を内包する長さ100nm直径約10nmのCNTを横方向に成長させて両電極間をブリッジさせた。この電気配線の電気伝導特性を調べたところ、抵抗は10−6Ωcm以下で良好な伝導特性を示し、接触抵抗も極めて低いことがわかった。
【0041】
(実施例2)
Si基板上にSiO層を設け、この上にスパッタ法とEBリソグラフィ−により間隔が10nmに設定されたMo/NiFeより成る第一及び第二の電極を形成し、この電極上にNiFeの微粒子(直径約5nm)を付け、CHを用いたCVD法により600℃で内部にNiFeを主成分とする合金部を内包する長さ10nm直径約1.3nmのCNTを横方向に成長させて両電極間をブリッジさせた。この電子デバイスに電圧を印加して、コンダクタンスを測定したところG=2e/hの量子化コンダクタンスを示すことがわかった。
【0042】
(実施例3)
Si基板上にSiO層を設け、この上にスパッタ法とEBリソグラフィ−により間隔が10nmに設定されたMo/NiFe/CoFeより成る第一の電極とPtMn/CoFeより成る第二の電極を形成し、この電極上にCoFeの微粒子(直径約5nm)を付け、CHを用いたCVD法により400℃で内部にNiFeを主成分とする合金部を内包する長さ10nm直径約1.3nmのCNTを横方向に成長させて両電極間をブリッジさせた。この電極にリ−ド線を繋ぎ、一定の電圧を印加して、磁界を変化させたところ、約100%のMR比を示すことわかった。
【0043】
(実施例4)
Si基板上にSiO層を設け、この上にスパッタ法とEBリソグラフィ−により間隔が10nmに設定されたMo/NiFe/CoFeより成る一片が160nmの第一の電極とPtMn/CoFeより成る第二の電極を形成し、これら電極上にCoFeの微粒子(直径約5nm)を付け、CHを用いたCVD法により400℃で内部にNiFeを主成分とする合金部を内包する長さ10nm直径約1.3nmのCNTを横方向に成長させて両電極間をブリッジさせた。これら電極にリ−ド線を繋ぎ再生ヘッドを作製し、100Gb/inの媒体からの信号がこのヘッドにより検知出来ることがわかった。
【0044】
(実施例5)
Si基板上にFe元素とPt元素を含む金属錯体を合成し、スピンコートして自己配列した直径10nmのFePt金属を内包し、外部がCを主成分とするナノドットを形成した。次に600℃の熱処理によりFePt合金部を規則化して、合金ナノドットを作製し、これを触媒として600℃でCVD法により直径約10nmで、長さが30nmの柱状のFePt硬質磁性膜を内包する整然と配列した多数のCNT部を形成して磁気媒体を作製した。この媒体と第一の電極の一片の幅が80nm以外は実施例4と同様の方法で作製したの再生ヘッドと、記録ヘッドを用いて、記録装置を作製し、この記録装置では300Gb/inの記録再生が可能なことがわかった。
【0045】
【発明の効果】
以上説明したように、本発明は、優れた超微細電気配線や量子デバイス、従来にはない高MR比を示す磁気抵抗効果素子、現在のHDDや光ディスクでは不可能である100Gb/in級の超高密度記録を可能とする磁気ヘッド、媒体、記録装置を可能とするものである。
【図面の簡単な説明】
【図1】本実施の形態の電気配線の構成図
【図2】本実施の形態の磁気抵抗効果素子及び磁気ヘッドの構成図
【図3】本実施の形態の磁気媒体の構成図
【図4】本実施の形態の磁気媒体の製造方法
【符号の説明】
1 CNT
2 金属もしくは合金部
3,3’ 電極部
4,4’ 触媒部
5 第一の磁性膜部
6 第二の磁性膜部
6−1 磁性膜部
6−2 反強磁性膜部
7 リ−ド線部
8 絶縁膜部
9 基板部
10 ナノドット部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel electric wiring, an electronic device, a magnetoresistive element, a magnetic head, a recording apparatus, and a method of manufacturing the same.
[0002]
[Prior art]
In the field of semiconductors, the wiring size has become on the order of nm with the miniaturization of the element portion, and it has become difficult to process the wiring using a conventional metal.
[0003]
In the field of magnetic devices, a magnetoresistive element using a conventional GMR (giant magnetoresistive effect) film or a magnetic head having an MR (magnetoresistive) ratio of about 10% and exhibiting a higher MR ratio is required. .
[0004]
Further, higher density is also required for magnetic media. However, in conventional in-plane magnetic media, thermal fluctuation is becoming a problem with the miniaturization of magnetic medium grains.
[0005]
[Problems to be solved by the invention]
There is an idea to use CNTs for electrical wiring in the semiconductor field, but among CNTs, those exhibiting metallic characteristics are only those with an armchair type structure, and those with a zigzag type or chiral type have a semiconductive or insulating property. CNT wiring has not been realized because of its characteristics, the difficulty in controlling these structures, and the technique of wiring CNTs at arbitrary positions are incomplete. Ballistic conduction devices using CNTs have also been devised, but they have not yet been put into practical use due to the problem of controlling the metallic structure and the technology for reducing the contact resistance between the electrodes and the CNTs.
[0006]
In the field of magnetic devices, magnetic heads using a TMR (tunnel magnetoresistive effect) film capable of obtaining an MR ratio of about 50% are currently being studied, but the width of a TMR element used in a magnetic head is limited to the track width. Since the resistance is proportional to the square of the element width and inversely proportional to the square of the element width, there is a problem that the higher the recording density, the higher the resistance of the TMR magnetic head becomes, and the higher frequency characteristics deteriorate. In recent years, attempts have been made to fabricate a magnetoresistive element using CNTs (see Non-Patent Document 1), but a large MR ratio of about 10% at extremely low temperatures and room temperature has not been obtained. The resistance is as high as 10 kΩ or more. On the other hand, although 100% is reported at room temperature in a nanocontact element using Ni whiskers (Non-Patent Document 2), the nanocontact portion formed by plating has a complicated structure that is difficult to control and form. And has not yet reached a practical stage.
[0007]
In the field of magnetic media, perpendicular recording media, which are expected to have higher densities than in-plane media, and magnetic media called patterned media consisting of magnetic dots of uniform size, have been studied. Control is the problem, and the latter is a problem of manufacturing cost. There has been proposed a magnetic medium in which dots containing magnetic particles are regularly arranged by a spin coating technique and a self-alignment technique using a metal complex instead of a patterned medium (Non-Patent Document 3). There is a problem that it is difficult to control the magnetic anisotropy because of the spherical shape.
[0008]
[Non-patent document 1]
Nature Vol. 401, p572, 1999
[Non-patent document 2]
Physical Review B 67, p60401, 2003
[Non-Patent Document 3]
Science, Vol. 287, p1989, 2000
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the present invention, a structure in which the outside is formed of a carbon nanotube (hereinafter referred to as CNT) portion and the inside is formed of a metal or alloy portion containing a metal element as a main component is described as an electric wiring, an electronic device, a magnetoresistive element, Used for magnetic heads and magnetic media.
[0010]
In the electric wiring, the above-mentioned metal or alloy part performs electric conduction. As a result, the problem that it is difficult to obtain stable metal properties because the structure control is difficult when CNT is used for the portion that performs the conventional electric conduction is solved.
[0011]
In an electronic device, an element exhibiting ballistic conduction becomes possible by the above configuration and by making the length of the metal or alloy part that is responsible for electric conduction shorter than the mean free path of electrons in that part. Further, the problem of the contact resistance between the CNT and the electrode portion is also solved.
[0012]
Further, the electric wiring of the present invention enables an electronic device in which electrodes or elements are electrically connected in a mesh shape. In such a configuration, since the CNT is not used for the electrical connection part, the problem of controlling the contact resistance of the CNT is eliminated.
[0013]
The magnetoresistive element has a first magnetic film portion that is easily rotated by an external magnetic field, a second magnetic film portion that is not easily rotated by an external magnetic field, and a connecting portion that connects the two magnetic film portions. By forming the magnetoresistive effect element from a CNT part on the outside and a metal or alloy part containing a metal element as the main component on the outside, it is easy to make a fine element on the order of nm. Also in this case, it is desirable that the metal or alloy part plays the role of electric conduction. Further, by making the length of the metal or alloy portion that conducts electric conduction shorter than the mean free path of electrons in that portion, it is possible to obtain an MR ratio larger than that of the conventional GMR element.
[0014]
In the above-described magnetoresistive effect element, by arranging the direction of the easy axis of magnetization of the first magnetic film portion to be orthogonal to the direction of the external magnetic field to be detected, a magnetic head having good output linearity can be obtained. In particular, if the second magnetic film portion is formed of an antiferromagnetic film and a magnetic film pinned by the antiferromagnetic film, a magnetic head having thermally stable characteristics can be obtained.
[0015]
In a magnetic medium, by arranging a large number of CNTs containing a columnar hard magnetic alloy portion for recording information, the CNTs have a uniform shape in the order of nm magnetically separated by the CNTs, and have a columnar shape. Therefore, a magnetic medium having a structure suitable for a perpendicular magnetic medium can be obtained. In this case, the hard magnetic alloy portion desirably contains one or two elements of Fe and Co. It is desirable that the hard magnetic alloy further contains Pt.
[0016]
The metal or alloy part of the electric wiring, electronic device, magnetoresistive element, and magnetic head of the present invention described above desirably contains one or more elements selected from Fe, Co, and Ni.
[0017]
By using the magnetic head for reproduction of the present invention, the magnetic head for recording, and the recording medium of the present invention, a recording apparatus capable of ultra-high density can be obtained.
[0018]
In the production of the electric wiring, electronic device, magnetoresistive element, and magnetic head of the present invention, metal / alloy grains or films serving as CNT catalysts are provided on the first and second electrode portions, and the CVD method is used. A carbon nanotube is formed by the catalyst so as to bridge between the first and second electrodes, and at the same time, a metal / alloy portion for conducting electricity is formed therein. In particular, after arranging the first and second electrode portions, the length of the wiring / connection portion between the electrodes is shorter than the mean free path of electrons of the metal / alloy portion, and then the metal / alloy portion It is desirable for the production of electronic devices, magnetoresistive elements and magnetic heads to form carbon nanotubes containing Further, while applying a voltage between the first and second electrodes, a carbon nanotube containing a metal / alloy portion is formed between both electrodes by a CVD method so as to be bridged, and this is used as a connecting portion. Thereby, the growth direction of the connecting portion can be controlled in the electric wiring, the electronic device, the magnetoresistive element, and the magnetic head.
[0019]
In the production of the magnetic medium of the present invention, a metal / alloy grain or film serving as a CNT catalyst is provided on a substrate, and carbon nanotubes are formed by the catalyst using a CVD method. It is characterized in that a magnetic alloy part is formed. Further, metal / alloy particles serving as catalysts of the self-arranged CNTs are provided on the substrate, and carbon nanotubes are formed by the catalyst using the CVD method, and at the same time, a columnar magnetic alloy portion is formed therein. A magnetic medium having a structure in which these are regularly arranged may be used.
[0020]
In the above-described method for manufacturing an electric wiring, an electronic device, a magnetoresistive element, a magnetic head, and a magnetic medium, the CNT catalyst is a metal containing one or more elements selected from the group consisting of Fe, Co, and Ni. -It is desirable to use alloy grains or films.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described.
[0022]
As shown in FIG. 1, in the electric wiring according to the present invention, catalyst portions 4 and 4 'are provided on electrodes 3 and 3', and CNT 1 is grown from catalyst portions 4 and 4 'by CVD or the like, and at the same time, a metal which performs electric conduction Alternatively, the alloy portion 2 is grown in the CNT to form an electric wiring portion. Although the catalyst portions 4 and 4 'are shown in the drawing for easy understanding, usually, when the formation of the connecting portion composed of 1 and 2 is completed, the joining interface between the 4, 4' portion and 2 and the 4, 4 'portion The joining interface between and 3 becomes unclear and becomes unified.
[0023]
By doing so, wiring on the order of nm, which was impossible in the past, can be realized. In addition, since the CNT portion does not participate in the electrical conduction in this wiring, it is possible to obtain stable metal characteristics, which was difficult with the wiring using the conventional CNT, and there is a large case that may occur between the CNT and the electrode portion. The problem of contact resistance is also solved.
[0024]
In FIG. 1, an element exhibiting ballistic conduction can be realized by making the length L of the metal or alloy part that conducts electric conduction shorter than the mean free path 電子 of electrons in that part (L <Λ). In such an element, quantized conductance is observed. Since CNTs are used in the device of the present invention, the size is on the order of nm, and it is possible to observe the quantized conductance reflecting ballistic conduction even at a relatively high temperature. If a magnetic film is used for at least the electrode portions 3 and 3 ', a spin electronic device whose characteristics change depending on the magnetization state of the magnetic film is obtained. If a gate portion is further provided and the above-mentioned magnetic film electrode portions 3 and 3 'are used as a source and a drain, a spin transistor is obtained.
[0025]
With the above-described electric wiring of this embodiment, an electronic device in which a plurality of electrodes or elements are electrically connected in a mesh shape can be provided. In such a configuration, since the CNT is not used for the electrical connection part, the problem of controlling the contact resistance of the CNT is eliminated.
[0026]
The material of the above-mentioned electrode part is preferably a metal or alloy, and the catalyst part is preferably a metal or alloy particle or film containing one or more elements selected from the group consisting of Fe, Co and Ni. The CNT may be a single layer or a multilayer. In addition, the metal or alloy part included in the CNT and responsible for electric conduction usually has a composition containing a constituent element of the catalyst part or a constituent element of the catalyst part and a constituent element of the electrode part.
[0027]
FIG. 2 shows an example of the magnetoresistive element of the present invention. The upper part is a plan view, and the lower part is a sectional view. In this element, as shown in the figure, when an external magnetic field H is applied in a negative direction, the first magnetic film portion 5 that easily rotates in the direction of magnetization, and the second magnetic film section that does not rotate easily even when the external magnetic field H is applied. A magnetic film portion 6, a connecting portion composed of a metal or alloy portion 2 mainly composed of CNT1 and a metal element for connecting the two magnetic film portions, and a lead wire portion 7 for voltage application and an insulating film portion 8; .
[0028]
With such a configuration, it is easy to form a fine element having a diameter of the connecting portion on the order of several nm and a length on the order of several nm to several tens nm. Also in this case, it is desirable that the metal or alloy part plays the role of electric conduction. Furthermore, by making the length L of the metal or alloy portion that conducts electric conduction shorter than the mean free path 電子 of electrons in that portion, it becomes possible to use a BMR (ballistic MR) device, It is possible to obtain a larger MR ratio than the TMR element.
[0029]
In the above-mentioned magnetoresistive effect element, by arranging the direction of the easy axis of magnetization of the first magnetic film portion 5 perpendicular to the direction of the external magnetic field H to be detected as shown in the drawing, the linearity of output can be improved. A good magnetic head is obtained. In particular, if the second magnetic film portion 6 is composed of the antiferromagnetic film 6-2 and the magnetic film 6-1 pinned by the antiferromagnetic film, a magnetic head having thermally stable characteristics can be obtained. Although not shown in the figure, the second magnetic film 2 is pinned by an antiferromagnetic film in this example. However, a hard magnetic film having a large coercive force or a composite of a hard magnetic film having a large magnetic force and a magnetic film is used. It may be a film. In this case, no antiferromagnetic film is required. The magnetization direction of the second magnetic film must be fixed in one direction. However, in a magnetic head for more than 100 Gb / in 2 , the element size is extremely small, and the magnetization is thermally fluctuated and the magnetization direction is fixed. It will be difficult. Therefore, in the present invention, the second magnetic film 2 is pinned by the antiferromagnetic film 3 so as not to be affected by thermal fluctuation even when the device has a fine element shape.
[0030]
It is desirable that the direction of the axis of easy magnetization of the first magnetic film portion 1 is arranged to be orthogonal to the direction of the external magnetic field H to be detected. Thereby, the linearity of the signal output of the magnetoresistive element of the present embodiment is improved. To realize this, permanent magnet films may be provided on both sides of the first magnetic film, and the axis of easy magnetization of the first magnetic film may be fixed by the bias magnetic field so as to be orthogonal to the direction of the magnetic field H, A part of both ends of the first magnetic film may be pinned by the antiferromagnetic film so that the axis of easy magnetization of the first magnetic film is orthogonal to the direction of the magnetic field H.
[0031]
Further, when the first magnetic film portion has a structure composed of two magnetic films which are anti-parallel exchange-coupled via a non-magnetic film, and their magnetization M and film thickness t are M1, t1, M2 and t2, If M1 · t1−M2 · t2) is not set to zero, the stability against thermal fluctuation when a fine element is formed by this exchange coupling and the external magnetic field due to the decrease in the effective magnetic film thickness are reduced. The sensitivity of the magnetoresistance effect element can be improved. The second magnetic film may have a structure including two magnetic films which are anti-parallel exchange-coupled via a non-magnetic film. This further improves the thermal stability. In the case of the second magnetic film portion, when the respective magnetization M ′ and thickness t ′ are M1 ′, t1 ′, M2 ′, t2 ′, (M1 ′ · t1′−M2 ′ · t2 ′) is zero. It may be.
[0032]
In the above-described magnetoresistive element and magnetic head, the magnetic film is preferably made of a metal or alloy mainly composed of Fe, Co, and Ni. Specifically, NiFe, CoFe, CoFeNi and the like can be mentioned. It is desirable to use an alloy film containing one or more elements selected from Pt, Pd, and Ir and a Mn element as main components, for example, PtMn, IrMn, and PtPdMn for the antiferromagnetic film portion. For example, SiO 2 or the like may be used for the insulating film portion 8. The presence of the insulating portion enables smooth growth of CNTs. The other parts are the same as the above-described electric wiring and electronic device.
[0033]
The magnetic medium shown in FIG. 3 has a configuration in which a number of CNTs 1 including a columnar hard magnetic alloy portion 2 for recording information are arranged on a substrate 9. Since the hard magnetic portion can have a uniform columnar shape of D <T in the order of several nm to several tens of nm in diameter D and height T magnetically separated by CNT, By utilizing the anisotropy, a magnetic medium having a structure suitable for perpendicular magnetic recording can be obtained.
[0034]
In the above magnetic medium, the hard magnetic alloy part desirably contains one or two elements of Fe and Co. It is desirable that the hard magnetic alloy further contains Pt. Specifically, FePt, CoCrPt and the like can be mentioned. Although not shown in the figure, a base film for perpendicular magnetic recording exhibiting soft magnetic characteristics may be provided below the columnar medium portion. Further, a coating film of a medium may be provided.
[0035]
FIG. 4 shows an example of a method for manufacturing the magnetic medium. As shown in the upper part, first, the metal / alloy complex is spin-coated on the substrate 9 to form self-aligned metal complex nanodots, and the heat treatment is performed to arrange the metal / alloy nanodot portion consisting only of the metal / alloy portion of the metal complex portion. The magnetic medium is manufactured by forming the CNT portion 1 which includes the columnar hard magnetic film portions 2 arranged in order as shown in the lower part of the figure by CVD or the like by using this as a catalyst, and forming a CNT portion 1 using CVD as a catalyst. The lower part of the figure shows a case where a part of the metal / alloy nanodot part 10 remains as 10 ′, but this part does not need to remain.
[0036]
By using the magnetic head for reproduction of the present invention, the magnetic head for recording, and the recording medium of the present invention, a recording apparatus capable of ultra-high density can be obtained.
[0037]
In the production of the electric wiring, electronic device, magnetoresistive element, and magnetic head of the present invention, metal / alloy grains or films serving as CNT catalysts are provided on the first and second electrode portions, and the CVD method is used. A carbon nanotube is formed by the catalyst so as to bridge between the first and second electrodes, and at the same time, a metal / alloy portion for conducting electricity is formed therein. In particular, after arranging the first and second electrode portions, the length of the wiring / connection portion between the electrodes is shorter than the mean free path of electrons of the metal / alloy portion, and then the metal / alloy portion It is desirable for the production of electronic devices, magnetoresistive elements and magnetic heads to form carbon nanotubes containing
[0038]
In FIG. 2, while applying a voltage to the lead wire portion 7, a carbon nanotube containing a metal / alloy portion is formed between both electrodes by a CVD method so as to be bridged. By doing so, it is possible to control the growth direction of the connection portion in the electric wiring, the electronic device, the magnetoresistive element, and the magnetic head.
[0039]
In the above-described method for manufacturing an electric wiring, an electronic device, a magnetoresistive element, a magnetic head, and a magnetic medium, the CNT catalyst is a metal containing one or more elements selected from the group consisting of Fe, Co, and Ni. -It is desirable to use alloy grains or films.
[0040]
【Example】
(Example 1)
An SiO 2 layer is provided on a Si substrate, and first and second electrodes made of Mo / Au having a distance of 100 nm are formed on the SiO 2 layer by sputtering and lithography, and Ni fine particles ( A CNT having a length of about 100 nm and a diameter of about 10 nm including an alloy portion containing Au and Ni as main components therein is grown laterally at 800 ° C. by a CVD method using CH 4. Bridge between them. Examination of the electric conduction characteristics of the electric wiring revealed that the resistance was 10 −6 Ωcm or less, showing good conduction characteristics, and the contact resistance was extremely low.
[0041]
(Example 2)
An SiO 2 layer is provided on a Si substrate, and first and second electrodes made of Mo / NiFe are formed on the Si 2 layer by sputtering and EB lithography at an interval of 10 nm, and fine particles of NiFe are formed on this electrode. (With a diameter of about 5 nm), and CNTs having a length of about 10 nm and a diameter of about 1.3 nm containing a NiFe-based alloy portion are grown laterally at 600 ° C. by a CVD method using CH 4. The electrodes were bridged. A voltage was applied to this electronic device, and the conductance was measured. As a result, it was found that a quantized conductance of G = 2e 2 / h was exhibited.
[0042]
(Example 3)
A SiO 2 layer is provided on a Si substrate, and a first electrode made of Mo / NiFe / CoFe and a second electrode made of PtMn / CoFe are formed on the SiO 2 layer by sputtering and EB lithography at an interval of 10 nm. Fine particles of CoFe (about 5 nm in diameter) are formed on the electrode, and a 10 nm long, about 1.3 nm in diameter containing a NiFe-based alloy is contained therein at 400 ° C. by a CVD method using CH 4 . CNTs were grown laterally to bridge between the electrodes. A lead wire was connected to this electrode and a constant voltage was applied to change the magnetic field. As a result, it was found that an MR ratio of about 100% was exhibited.
[0043]
(Example 4)
A SiO 2 layer is provided on a Si substrate, and a piece of Mo / NiFe / CoFe having an interval of 10 nm is formed on the SiO 2 layer by sputtering and EB lithography, and a first electrode of 160 nm and a second piece of PtMn / CoFe are formed. Are formed, fine particles of CoFe (approximately 5 nm in diameter) are formed on these electrodes, and a 10-nm-long diameter containing an alloy portion containing NiFe as a main component is contained therein at 400 ° C. by a CVD method using CH 4. 1.3 nm CNTs were grown laterally to bridge between the electrodes. A read head was manufactured by connecting a lead wire to these electrodes, and it was found that a signal from a medium of 100 Gb / in 2 could be detected by this head.
[0044]
(Example 5)
A metal complex containing a Fe element and a Pt element was synthesized on a Si substrate, spin-coated and self-aligned FePt metal with a diameter of 10 nm was included, and nanodots mainly composed of C were formed on the outside. Next, the FePt alloy part is regularized by heat treatment at 600 ° C. to produce alloy nanodots, and this is used as a catalyst to enclose a columnar FePt hard magnetic film having a diameter of about 10 nm and a length of 30 nm by CVD at 600 ° C. A magnetic medium was manufactured by forming a large number of CNT parts arranged in an orderly manner. A recording device was produced using a reproducing head and a recording head produced in the same manner as in Example 4 except that the width of one piece of the medium and the first electrode was 80 nm, and a recording device was produced at 300 Gb / in 2. It was found that recording / reproduction of was possible.
[0045]
【The invention's effect】
As described above, the present invention provides excellent ultra-fine electrical wiring and quantum devices, magnetoresistive elements exhibiting an unprecedented high MR ratio, and 100 Gb / in 2 class which is impossible with current HDDs and optical disks. This enables a magnetic head, a medium, and a recording device that enable ultra-high density recording.
[Brief description of the drawings]
1 is a configuration diagram of an electric wiring according to the embodiment; FIG. 2 is a configuration diagram of a magnetoresistive element and a magnetic head according to the embodiment; FIG. 3 is a configuration diagram of a magnetic medium according to the embodiment; A method of manufacturing a magnetic medium according to the present embodiment.
1 CNT
2 Metal or alloy part 3, 3 'Electrode part 4, 4' Catalyst part 5 First magnetic film part 6 Second magnetic film part 6-1 Magnetic film part 6-2 Antiferromagnetic film part 7 Lead wire Part 8 Insulating film part 9 Substrate part 10 Nanodot part

Claims (24)

外部がカーボンナノチューブ(以下CNT)部より成り、内部が金属元素を主成分とする金属もしくは合金部から成る構造を有し、上記の金属もしくは合金部が電気伝導を担うことを特徴とする電気配線。An electric wiring having a structure in which the outside is formed of a carbon nanotube (hereinafter referred to as CNT) portion, and the inside is formed of a metal or alloy portion containing a metal element as a main component, and the metal or alloy portion performs electric conduction. . 前記電気伝導を担う金属もしくは合金部の長さが、その部分の電子の平均自由行程より短い事を特徴とする請求項1記載の電気配線。2. The electric wiring according to claim 1, wherein a length of the metal or alloy portion that performs electric conduction is shorter than a mean free path of electrons in the portion. 外部がCNT部より成り、内部が金属元素を主成分とする金属もしくは合金部から成り、電気伝導を担う金属もしくは合金部の長さが電子の平均自由行程より短く、バリスティック(弾道性)電気伝導が可能であることを特徴とする電子デバイス。The outside is made of a CNT part, and the inside is made of a metal or alloy part mainly composed of a metal element. An electronic device characterized by being capable of conducting. 請求項1又は2に記載の電気配線により、電極もしくは素子間を網の目形状に接続したことを特徴とする電子デバイス。An electronic device, wherein electrodes or elements are connected in a mesh shape by the electric wiring according to claim 1. 外部磁界により容易に磁化回転する第一の磁性膜部、外部磁界により容易に磁化回転しない第二の磁性膜部、上記両磁性膜部間をつなぐ連結部を備え、上記連結部が、外部はCNT部、内部は金属元素を主成分とする金属もしくは合金部から構成されることを特徴とする磁気抵抗効果素子。A first magnetic film portion that is easily magnetized and rotated by an external magnetic field, a second magnetic film portion that is not easily magnetized and rotated by an external magnetic field, and a connecting portion that connects the two magnetic film portions. A magnetoresistive element, wherein the CNT portion and the inside are composed of a metal or alloy portion containing a metal element as a main component. 前記電気伝導は金属もしくは合金部が担うことを特徴とする請求項5記載の磁気抵抗効果素子。6. The magnetoresistive element according to claim 5, wherein the electric conduction is performed by a metal or alloy part. 前記電気伝導を担う金属もしくは合金部の長さが、その部分の電子の平均自由行程より短い事を特徴とする請求項5又は6記載の磁気抵抗効果素子。7. The magnetoresistive element according to claim 5, wherein a length of the metal or alloy portion that performs electric conduction is shorter than a mean free path of electrons in the portion. 外部磁界により容易に磁化回転する第一の磁性膜部、外部磁界により容易に磁化回転しない第二の磁性膜部、上記両磁性膜部間をつなぐ連結部を備え、上記連結部が、外部はCNT部、内部は金属元素を主成分とする金属もしくは合金部から構成され、上記第一の磁性膜部の磁化容易軸方向が、検出すべき外部磁界方向と直交するように配置されていることを特徴とする磁気ヘッド。A first magnetic film portion that is easily magnetized and rotated by an external magnetic field, a second magnetic film portion that is not easily magnetized and rotated by an external magnetic field, and a connecting portion that connects the two magnetic film portions. The CNT portion, the inside of which is composed of a metal or alloy portion containing a metal element as a main component, is arranged such that the direction of the easy axis of magnetization of the first magnetic film portion is orthogonal to the direction of the external magnetic field to be detected. A magnetic head characterized by the above-mentioned. 前記第二の磁性膜部が反強磁性膜と反強磁性膜によりピンニングされた磁性膜とにより構成されることを特徴とする請求項8記載の磁気ヘッド。9. The magnetic head according to claim 8, wherein the second magnetic film portion is constituted by an antiferromagnetic film and a magnetic film pinned by the antiferromagnetic film. 前記電気伝導を担う金属もしくは合金部の長さが、その部分の電子の平均自由行程より短い事を特徴とする請求項8又は9記載の磁気ヘッド。The magnetic head according to claim 8, wherein a length of the metal or alloy portion that performs electric conduction is shorter than a mean free path of electrons in the portion. 情報を記録する柱状の硬質磁性合金部を内包する多数のCNTを配列させた構造を有することを特徴とする磁気媒体。A magnetic medium having a structure in which a large number of CNTs containing a columnar hard magnetic alloy portion for recording information are arranged. 前記硬質磁性合金部がFe,Coのいずれか一種もしくは二種の元素を含有することを特徴とする請求項11記載の磁気媒体。The magnetic medium according to claim 11, wherein the hard magnetic alloy portion contains one or two of Fe and Co. 前記硬質磁性合金部がPtを含有することを特徴とする請求項11又は12記載の磁気媒体。13. The magnetic medium according to claim 11, wherein the hard magnetic alloy portion contains Pt. 前記金属もしくは合金部がFe,Co,Niから選ばれる一種もしくは二種以上の元素を含有することを特徴とする請求項1又は2記載の電気配線。The electric wiring according to claim 1, wherein the metal or alloy part contains one or more elements selected from Fe, Co, and Ni. 前記金属もしくは合金部がFe,Co,Niから選ばれる一種もしくは二種以上の元素を含有することを特徴とする請求項3又は4記載の電子デバイス。The electronic device according to claim 3, wherein the metal or alloy portion contains one or more elements selected from Fe, Co, and Ni. 前記金属もしくは合金部がFe,Co,Niから選ばれる一種もしくは二種以上の元素を含有することを特徴とする請求項5から7の何れかに記載の磁気抵抗効果素子。The magnetoresistive element according to any one of claims 5 to 7, wherein the metal or alloy portion contains one or more elements selected from Fe, Co, and Ni. 前記金属もしくは合金部がFe,Co,Niから選ばれる一種もしくは二種以上の元素を含有することを特徴とする請求項8から10の何れかに記載の磁気ヘッド。The magnetic head according to any one of claims 8 to 10, wherein the metal or alloy portion contains one or more elements selected from Fe, Co, and Ni. 請求項8、請求項9、請求項10、請求項17の何れかに記載の再生用の磁気ヘッドと、記録用磁気ヘッド、及び請求項11から13の何れかに記載の記録媒体を有することを特徴とする記録装置。A magnetic head for reproduction according to any one of claims 8, 9, 10, and 17, a magnetic head for recording, and a recording medium according to any one of claims 11 to 13. A recording device characterized by the above-mentioned. CNTの触媒となる金属・合金粒あるいは膜を第一及び第二の電極部上に設け、CVD法を用いて、上記触媒により上記第一及び第二の電極間にブリッジするようにカ−ボンナノチュ−ブを形成すると同時に、その内部に電気伝導を担う金属・合金部を形成することを特徴とする電子品の製造方法。Metal / alloy particles or films serving as CNT catalysts are provided on the first and second electrode portions, and carbon nanotubes are formed by CVD using the catalyst to bridge between the first and second electrodes. A method of manufacturing an electronic product, wherein a metal / alloy portion for conducting electric conduction is formed inside the metal part while forming the metal part. 前記電極間の配線・連結部の長さが、上記の金属・合金部の電子の平均自由行程よりも短くなるように、第一及び第二電極部を配置した後に、上記の金属・合金部を内包するカ−ボンナノチュ−ブを形成することを特徴とする請求項19記載の電子品の製造方法。After arranging the first and second electrode portions, the length of the wiring / connection portion between the electrodes is shorter than the mean free path of electrons of the metal / alloy portion, and then the metal / alloy portion 20. The method for producing an electronic product according to claim 19, wherein a carbon nanotube containing the same is formed. 第一と第二の電極間に電圧を印加しながら、CVD法により両電極間に金属・合金部を内包するカ−ボンナノチュ−ブをブリッジするように形成し、これを連結部とすることを特徴とする請求項19又は、20に記載の電子品の製造方法。While applying a voltage between the first and second electrodes, a carbon nanotube containing a metal / alloy portion is formed between both electrodes by a CVD method so as to be bridged, and this is used as a connecting portion. The method for manufacturing an electronic product according to claim 19 or 20, wherein 基板上にCNTの触媒となる金属・合金粒あるいは膜を設け、CVD法を用いて、上記触媒によりカ−ボンナノチュ−ブを形成すると同時に、その内部に柱状の磁性合金部を形成することを特徴とする磁気媒体の製造方法。Metal or alloy particles or films serving as CNT catalysts are provided on a substrate, and carbon nanotubes are formed by the catalyst using a CVD method, and at the same time, a columnar magnetic alloy portion is formed therein. A method of manufacturing a magnetic medium. 基板上に自己配列したCNTの触媒となる金属・合金粒を設け、CVD法を用いて、上記触媒によりカ−ボンナノチュ−ブを形成すると同時に、その内部に柱状の磁性合金部を形成し、これらが規則的に配列した構造からなることを特徴とする磁気媒体の製造方法。Metal / alloy grains serving as catalysts of self-arranged CNTs are provided on a substrate, and carbon nanotubes are formed by the above catalyst using a CVD method. At the same time, a columnar magnetic alloy portion is formed therein. Characterized by a structure in which are arranged regularly. 前記CNTの触媒としてFe,Co,Niからなる群より選ばれた一種もしくは二種以上の元素を含有する金属・合金粒あるいは膜を用いることを特徴とする請求項22から23の何れかに記載の磁気媒体の製造方法。24. A metal or alloy particle or film containing one or more elements selected from the group consisting of Fe, Co and Ni as the CNT catalyst. A method for manufacturing a magnetic medium.
JP2003129402A 2003-05-07 2003-05-07 Electrical wiring, electronic device, magnetoresistance effect element, magnetic head, magnetic medium, recording devices, and manufacturing method of the above Withdrawn JP2004335259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003129402A JP2004335259A (en) 2003-05-07 2003-05-07 Electrical wiring, electronic device, magnetoresistance effect element, magnetic head, magnetic medium, recording devices, and manufacturing method of the above

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003129402A JP2004335259A (en) 2003-05-07 2003-05-07 Electrical wiring, electronic device, magnetoresistance effect element, magnetic head, magnetic medium, recording devices, and manufacturing method of the above

Publications (2)

Publication Number Publication Date
JP2004335259A true JP2004335259A (en) 2004-11-25
JP2004335259A5 JP2004335259A5 (en) 2006-12-07

Family

ID=33505251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003129402A Withdrawn JP2004335259A (en) 2003-05-07 2003-05-07 Electrical wiring, electronic device, magnetoresistance effect element, magnetic head, magnetic medium, recording devices, and manufacturing method of the above

Country Status (1)

Country Link
JP (1) JP2004335259A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009073692A (en) * 2007-09-20 2009-04-09 Toyota Motor Corp Carbon nanotube and its manufacturing method
JP2010126429A (en) * 2008-12-01 2010-06-10 Fujitsu Ltd Method of manufacturing composite material, and method of manufacturing semiconductor device
JP2011057466A (en) * 2009-09-07 2011-03-24 Fujitsu Ltd Carbon nanotube sheet structure and method for producing the same, semiconductor device
JP2012009427A (en) * 2010-05-25 2012-01-12 Yazaki Corp Conductive material and manufacturing method thereof
TWI393131B (en) * 2009-01-22 2013-04-11 Hon Hai Prec Ind Co Ltd Giant magneto-resistance composite material
US8786984B2 (en) 2011-11-15 2014-07-22 HGST Netherlands B.V. Perpendicular magnetic write head having a current carrying element for in-plane field assisted magnetic recording

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009073692A (en) * 2007-09-20 2009-04-09 Toyota Motor Corp Carbon nanotube and its manufacturing method
JP2010126429A (en) * 2008-12-01 2010-06-10 Fujitsu Ltd Method of manufacturing composite material, and method of manufacturing semiconductor device
TWI393131B (en) * 2009-01-22 2013-04-11 Hon Hai Prec Ind Co Ltd Giant magneto-resistance composite material
JP2011057466A (en) * 2009-09-07 2011-03-24 Fujitsu Ltd Carbon nanotube sheet structure and method for producing the same, semiconductor device
JP2012009427A (en) * 2010-05-25 2012-01-12 Yazaki Corp Conductive material and manufacturing method thereof
US8786984B2 (en) 2011-11-15 2014-07-22 HGST Netherlands B.V. Perpendicular magnetic write head having a current carrying element for in-plane field assisted magnetic recording

Similar Documents

Publication Publication Date Title
US8189302B2 (en) Magnetic field sensor with graphene sense layer and ferromagnetic biasing layer below the sense layer
US6525532B2 (en) Magnetic device
US7969692B2 (en) Magnetic reading head with first and second element units each including a ferromagnetic layer and each with a different spin-polarization
US20020027753A1 (en) Magneto-resistance effect type composite head and production method thereof
JPH10162326A (en) Magnetic tunnel junction element, junction memory- cell and junction magnetic field sensor
JP2002118306A (en) Magnetoresistance element and multielement magnetoresistance element
JP2004342241A (en) Magnetic head and magnetic recording and reproducing device using the same
JP2000323767A (en) Magneto-electronic device and magnetic head
Jia et al. Magnetic sensors for data storage: perspective and future outlook
JP3556457B2 (en) Spin-dependent conductive element and electronic and magnetic components using the same
JP3697369B2 (en) Magnetic element, magnetic memory device, magnetoresistive head, magnetic head gimbal assembly, and magnetic recording system
JP2005109241A (en) Magnetoresistance effect element, manufacturing method thereof, and magnetic head
JP2005217422A (en) Magnetoresistive element
US7450348B2 (en) Electronic device, magnetoresistance effect element; magnetic head, recording/reproducing apparatus, memory element and manufacturing method for electronic device
JP2004220692A (en) Three-terminal magnetic head and magnetic recording device mounted with the same
JP2006114609A (en) Magnetoresistive element, magnetic head using the same, and magnetic reproducer
JP2006114610A (en) Magnetoresistive element, magnetic head using the same, and magnetic reproducer
JP2000504503A (en) Horizontal magnetoelectric device using quasi-two-dimensional electron gas
JP2004335259A (en) Electrical wiring, electronic device, magnetoresistance effect element, magnetic head, magnetic medium, recording devices, and manufacturing method of the above
JP4966483B2 (en) Magnetoresistive element, magnetic head using magnetoresistive element, recording / reproducing apparatus, memory element, memory array, and method for manufacturing magnetoresistive element
JP2000011333A (en) Tunneling magneto-resistance effect element and its production
JP2005109242A (en) Magnetoresistive effect element and magnetic head
KR19980024661A (en) Magnetoresistive device and magnetic head
JP4572434B2 (en) Magnetoresistive element, magnetoresistive head, and memory element
JP2008090877A (en) Magnetic head and magnetic recording device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061018

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080623