JP2004332014A - Cu-Zn ALLOY SUPERIOR IN SEASON CRACKING RESISTANCE AND MANUFACTURING METHOD THEREFOR - Google Patents

Cu-Zn ALLOY SUPERIOR IN SEASON CRACKING RESISTANCE AND MANUFACTURING METHOD THEREFOR Download PDF

Info

Publication number
JP2004332014A
JP2004332014A JP2003126292A JP2003126292A JP2004332014A JP 2004332014 A JP2004332014 A JP 2004332014A JP 2003126292 A JP2003126292 A JP 2003126292A JP 2003126292 A JP2003126292 A JP 2003126292A JP 2004332014 A JP2004332014 A JP 2004332014A
Authority
JP
Japan
Prior art keywords
alloy
cracking
based alloy
time
excellent resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003126292A
Other languages
Japanese (ja)
Other versions
JP4357869B2 (en
Inventor
Takuya Koizumi
琢哉 小泉
Taiji Yoshimura
泰治 吉村
Kazuhiko Kita
和彦 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp filed Critical YKK Corp
Priority to JP2003126292A priority Critical patent/JP4357869B2/en
Priority to KR1020030074530A priority patent/KR20040094593A/en
Priority to CNB2003101202182A priority patent/CN1250757C/en
Publication of JP2004332014A publication Critical patent/JP2004332014A/en
Application granted granted Critical
Publication of JP4357869B2 publication Critical patent/JP4357869B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Cu-Zn alloy which has a high Zn content, can be cold-worked, and has high strength and superior season cracking resistance. <P>SOLUTION: A cold-worked Cu-Zn alloy containing at least 10% Zn is subjected to at least one treatment selected among shot peening, shot blasting, sand blasting, and steel ball shot blasting; thus, the tensile residual stress on the surface of the alloy is reduced or brought into the state of compressive residual stress. The Cu-Zn alloy has a composition expressed by the general formula: CuaZnbXc (wherein X is at least one element selected among Al, Si, Sn, and Mn; and, by mass%, a is the balance, 10<b≤38, and 0≤c<3, provided the balance may include unavoidable elements). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は例えばスライドファスナーのエレメント、スライダー、止具など或いは金属製のボタン、被服の係止具などの装身用に適した強度、耐時期割れ性に優れた高濃度亜鉛合金及びその製造方法に関する。
【0002】
【従来の技術】
従来のファスナー用銅合金は丹銅、真鍮に代表される銅亜鉛合金や洋白等の合金が用いられてきた。かかる合金に用いられる合金元素である亜鉛は固溶により合金の強度、硬度、均一変形量を増大させる効果がある。又、亜鉛は銅に比べ低価格であるために良好な特性を有する安価な合金を得ることが可能であった。
しかし亜鉛元素は銅中に存在することにより、耐食性を著しく劣化させる問題があり、亜鉛の多い銅合金を用い、特に冷間加工によって基布に植え付けファスナーとして製造される場合においては、残留した加工歪による時期割れの問題が発生していた。
【0003】
時期割れは、特にCu−Zn系合金に多く見られ、特にZnが10%より多く含まれると時期割れが急激に悪化することが知られている。
Cu−Zn系合金耐時期割れ性を向上させるには亜鉛の割合を10%未満にすることが考えられるが、そのような合金は材料価格が高くなるばかりか、強度も十分ではなくなるためファスナー用銅合金としては望ましくない。
【0004】
また、応力腐食下でおこる応力腐食割れの問題は再結晶温度近傍で焼き鈍して、再結晶粒が粗大化する前の状態に保つことにより、著しく改善され、さらには種々の元素の微量添加により応力腐食割れの寿命が長くなったという報告もある。
例えば特許文献1には、冷間塑性加工されたCu−Zn合金部材を200〜300℃の温度で焼き鈍しした後、急冷して合金部材の表面に圧縮残留応力を生じさせることにより、対応力腐蝕割れ性を向上させることが記載されている。
【0005】
しかしながら、前記のような焼き鈍しによる応力腐食割れ防止法では、熱処理を必要とするため材料強度の低下が起こり、またファスナー製品のようなテープに植え付けられているエレメントなどへの適用は難しかった。
また、歪の入った状態で使用される場合において、使用環境下によっては負荷応力がなくても発生する時期割れを解決する効果的な手段はほとんどないと考えられる
【0006】
【特許文献1】
特公昭60−17822号公報
【発明が解決しようとする課題】
本発明は高濃度亜鉛を含むCu合金において冷間加工が可能でかつ高強度である耐時期割れ性に優れたCu−Zn系合金及びその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題は次に記載する構成を備えた本発明によって解決することができる。(1)冷間加工を施した、少なくともZnを10%より多く含むCu−Zn系合金に対して、該合金表面の引張残留応力を低減するかまたは圧縮残留応力の状態とする処理を施すことを特徴とする耐時期割れ性に優れたCu−Zn系合金の製造方法。
(2)前記処理がショットピーニング、ショットブラスト、サンドブラスト及び鋼球ショットブラストから選ばれる少なくとも1種であることを特徴とする上記(1)に記載の耐時期割れ性に優れたCu−Zn系合金の製造方法。
【0008】
(3)前記Cu−Zn系合金が一般式:CuaZnbXc(但し、XはAl、Si、Sn、Mnから選ばれる少なくとも一種の元素、a、b、cは質量%で、aは残部、10<b≦38、0≦c<3、不可避元素を含み得る)で表される組成を有することを特徴とする上記(1)又は(2)に記載の耐時期割れ性に優れたCu−Zn系合金の製造方法。
(4)記Cu−Zn系合金が一般式:CuaZnbXc(但し、XはAl、Si、Sn、Mnから選ばれる少なくとも一種の元素、a、b、cは質量%で、aは残部、25<b≦38、0≦c<3、不可避元素を含み得る)で表される組成を有することを特徴とする上記(1)又は(2)に記載の耐時期割れ性に優れたCu−Zn系合金の製造方法。
【0009】
(5)上記上記(1)〜(4)のいずれかに記載の製造方法により製造された耐時期割れ性に優れたCu−Zn系合金。
(6)日本伸銅技術協会標準JBMA−T301に規定されている時期割れ試験において、2時間暴露後においても時期割れの生じない、上記(5)に記載の耐時期割れ性に優れたCu−Zn系合金。
(7)前記日本伸銅技術協会標準JBMA−T301に準じた時期割れ試験で、最大12時間暴露後において、製品強度低下量(%)が10%以内である上記(5)に記載の耐時期割れ性に優れたCu−Zn系合金。
(8)上記(5)〜(7)のいずれかに記載の耐時期割れ性に優れたCu−Zn系合金からなるスライドファスナーの構成部品。
【0010】
【発明の実施の形態】
以下、本発明の耐時期割れ性に優れたCu−Zn系合金について説明する。
時期割れの生じる原因は、合金組成、腐食環境及び引張り残留応力の三つである。
前述したように、時期割れは、特にCu−Zn系合金に多く見られ、特にZnが10%より多く含まれると時期割れが急激に悪化することが知られている。
特に、Cu−Zn系合金が一般式:CuaZnbXc(但し、XはAl、Si、Sn、Mnから選ばれる少なくとも一種の元素、a、b、cは質量%で、aは残部、10<b≦38、0≦c<3、不可避元素を含み得る)で表される組成を有する場合には時期割れが起こりやすく、前記bが25<b≦38で表れる場合に顕著である。
【0011】
引張り残留応力は冷間加工による塑性変形の不均一などによって生じるが、材料表面の残留応力をゼロに制御するか、または圧縮残留応力に制御することにより、前記のような合金組成においても耐時期割れ性を改善することができる。
引張り残留応力を低減する方法としては、材料表面に連続的に衝撃を与えて表面硬化を起こすショットピーニング、ショットブラスト、サンドブラスト、鋼球ショットブラストなどの表面硬化方法が挙げられる。このような表面硬化操作によって冷間加工で生じた表面層に降伏点を超える塑性変形を起こし、冷間加工によって生じた引張り残留応力を低減し、または圧縮残留応力に制御することが可能となる。
また、ファスナー製品等に適用した場合、前記の表面硬化操作を施すことによって得られる梨地模様がファスナー製品の意匠性を向上させるといった効果もある。
【0012】
ショットピーニングに用いられるメディアの材質としては主にガラス、サンド、鋼球、セラミックス等が挙げられ、形状は球形が好ましい。角が有る場合は角を丸めたものを使用する必要がある。角は被加工材を傷つけるため、表面欠陥の原因となる。
また、ファスナー製品に使用した場合、ショットピーニングにより得られるファスナー表面の梨地模様の均一性が損なわれ、かつ摺動抵抗の増大を引き起こす傷を形成させる。
【0013】
ショットピーニング処理に用いられるメディアの平均粒径は10μm〜2000μmの範囲であることが望ましい。10μm未満であると引張り残留応力を低減することが十分ではなく、逆に2000μmを超えると表面粗さが大きくなる。
また、ファスナー製品に適用した場合、ショットピーニングに用いられるメディアの粒径が2000μmを超えるとショットピーニング(硬化手段)によって得られた梨地模様が粗くなり意匠性が損なわれるばかりでなく、表面粗さが大きくなることにより摺動抵抗が増大する。
【0014】
また、ショットピーニングのメディアの投射速度は10〜150m/sの範囲内であることが望ましい。被加工材に加えられる仕事は速度に依存するため下限未満であると引張残留応力を低減するのに十分ではなく、上限を超えるようにすると投射装置を構成することが難しく、またメディアの破砕等が生じる。
また、本発明の合金の組織がα相単相であることにより、冷間加工性により優れた合金を提供することができる。
【0015】
ショットピーニングの投射時間は1〜60secの範囲内であることが好ましい。
前記の下限未満であると、材料表面全体をフルカバレージとすることは難しく、また前記の上限を超えると表面の削食量が大きくなり製品寸法の減少が著しくなる。
また、ファスナー製品に適用した場合、前記の下限未満であると、材料全体を均一な梨地模様にすることができず、また、前記の上限を超えると削食により、務歯の寸法が小さくなり強度低下、摺動抵抗増大を引き起こす。
【0016】
以下本発明の合金の使用用途であるスライドファスナーを図面に基づき具体的に説明する。
図1は、スライドファスナーの概念図であり、図1に示すようにスライドファスナーは、一側端側に芯部2が形成された一対のファスナーテープ1、1とファスナーテープ1の芯部2に所定の間隔をおいて加締め固定(装着)されたエレメント3と、エレメント3の上端及び下端でファスナーテープ1の芯部2に加締め固定された上止具4及び下止具5と、対向する一対のエレメント3間に配され、エレメント3の噛合及び開離を行うための上下方向に摺動自在なスライダー6とからなる。尚、上記において、ファスナーテープ1の芯部2にエレメント3が装着されたものがスライドファスナーチェーン7である。また図1に示すスライダー6は、図示されていないが断面矩形状の板状体からなる長尺体を多段階にてプレス加工を施し、所定間隔ごとに切断し、スライダー胴体を作製し、さらに必要に応じてスプリング及び引手を装着したものである。さらに、引手も断面矩形状の板状体から、所定形状ごとに打ち抜き、これをスライダーの開離操作にて一対のスライドファスナーチェーンを分離できるようにしたものであっても構わない。
【0017】
図2は図1に示されるスライドファスナーのエレメント3、上止具4及び下止具5の製造方法及びファスナーテープ1の芯部2への取り付けの仕方を示す図面である。
図に示すようにエレメント3は断面略Y字状からなる異形線8を所定寸法ごとに切断し、これをプレス成形することにより、係合頭部9を形成し、その後、ファスナーテープ1の芯部2へ両脚部10を加締めることにより装着される。
【0018】
上止具は、断面矩形状の矩形線11(平行線)を所定寸法ごとに切断し、曲げ加工により略断面コ字状に成形し、その後、ファスナーテープ1の芯部2へ加締めることにより、装着される。
下止め具は、断面略X字状からなる異形線12を所定寸法ごとに切断し、その後、ファスナーテープ1の芯部2へ加締めることにより、装着される。
【0019】
なお、図においては、エレメント3、上下止具4、5が同時にファスナーテープ1に装着されるようになっているが、実際は、ファスナーテープ1に連続的にエレメント3を取付け、まずファスナチェーンを作製し、ファスナーチェーンの止め具取付領域のエレメント3を取り外し、この領域のエレメンヨ3に近接して所定の止具4又は5を装着するものである。
【0020】
以上のようにファスナーに使用される、エレメント、止具、スライダー、引手等は冷間加工を行うことが多く、その為引張り残留応力が生じZnを多く含むファスナーについては時期割れが多く発生していた
そこで、製造及び取付を行う工程においてエレメント、止具、スライダー、引き手等をテープに取り付ける前又は/及び後にショットピーニングなどの残留応力制御を行うことで耐時期割れ性に優れた合金とすることができる。
【0021】
本発明においてはCu−Zn合金の組成を特定の組成とすることによって、本発明の目的を達成することができるが、以下では本発明の合金を構成する各成分について説明する。
【0022】
<Zn>
銅合金の中でもZnを多く含むCu−Zn系合金は引張応力と腐食環境下において応力腐食割れ又は時期割れを生じやすい。亜鉛量が10%より多くなると、固溶強化により合金強度は大きくなるが、同時に時期割れ感受性が高くなる。逆に10%以下であると合金自体の強度が不十分である。この時期割れ感受性の高い黄銅系合金に表面硬化手段を適用することにより、時期割れ性の劇的な改善を可能とする。さらに、25%より多い亜鉛を含むと、合金としての強度と加工硬化による高強度化が十分に得られるため、時期割れによる強度低下を防止する本方法の適用が非常に効果的となる。38%以上となるとβ相の形成が顕著となり、冷間加工が困難で製品形状を得る事が困難となる。
【0023】
<X(Al,Si,Sn,Mn)>
Al,Sn、Mn:Al及びSn及びMnは固溶強化により合金の機械的特性を向上させる。3%より多いと結晶構造がα+β相となり、十分な冷間加工性を確保できなくなる。
【0024】
<Si>
Siは表面に安定な酸化膜を形成することにより、ファスナーに要求される耐時期割れ性を向上させる効果がある。しかし3%以上になると結晶構造がα+β相となり、十分な冷間加工性が確保できなくなる。本発明合金はα相単相であり、十分な冷間加工性を確保できる
【0025】
【実施例】
[実施例1〜13]
原材料として、純Cu(99.99%)、純Zn(99.9%)、純Al(99.9%)、純Si(99.9%)、純Sn(99.9%)、純Mn(99.9%)を使用して、表1又は表2に示す所定組成に秤量した。これをアルミナ坩堝に入れ、アルゴンガス雰囲気で高周波溶融し、φ40mmの銅鋳型内に注湯し、鋳塊を作製した。得られた鋳塊を長さ75mmに切断し、押出用ビレットとした。押出はビレット温度800℃、コンテナ温度530℃で行いφ26mmの押出材を作製した。得られた押出材に800℃、1時間の均質化処理を行った。
【0026】
得られた均質化処理材に旋盤加工を施してφ6mmの丸棒を作製し、厚さ1.2mmまで冷間圧延を行い、80%の圧延ひずみ(スライドファスナーのエレメントを成形する際に与えるひずみと同じ量)を加えた。圧延材よりJIS Z2201の7号試験片に従った引張試験片を作製した。この試験片に対し、表1及び表2に示すメディア条件で投射速度60m/sで試験片平行部に対して垂直に四方向から距離100mmで試験片に投射した。投射時間は20secとした。
【0027】
JISH3300に準じた日本伸銅技術協会標準JBMA−T301に規定されている時期割れ試験法に従ってアンモニア暴露試験を2〜12時間行った。暴露試験後の試験片は、表面観察により時期割れの有無を評価し、割れが発生していないものは○、割れが発生したものは×とした。その後Instron型試験機により、1mm/secのクロスヘッドスピードで、引張試験を行い、暴露試験前後の強度低下量(%)で評価した。評価結果を表1に示す。
【0028】
[比較例1〜7]
実施例で用いたと同様の原材料を用い、表2に示す合金組成とした以外は実施例と同様にして試験片を作製した。
得られた試験片に対して表2に示すショット条件でメディアを投射したのち、実施例と同様にして時期割れ試験を行った。評価結果を表2に示す。
【0029】
【表1】

Figure 2004332014
【0030】
【表2】
Figure 2004332014
【0031】
[評価結果]
本発明材について時期割れについて○、×について評価した結果、比較例1〜5については割れが発生した。それに対し本発明材は何れも割れが発生していないことがわかる。
また試験片の強度低下量を測定した結果、ショットピーニング処理を行っていない比較例1〜5に示すようにZnが多く含むほど強度低下量は大きかったが、本発明品にいたっては強度低下量はほとんど見られなかった。これは例えばスライドファスナー製品に用いた場合の様々な環境下で長時間使用された場合にも、時期割れを発生させることなく高い強度を維持できることがいえる。
尚、比較例6、7については、時期割れが発生せず、強度低下量もほとんどなかったが、Zn量が少ないために強度の点で不足しているのに対し、本発明材は強度が600〜730Mpaと高い強度であることがわかる。これは例えばスライドファスナーのエレメントや、止部などに使用した場合、スライドファスナーの開け閉めなどで、エレメントや止部に過度の負担がかかるため、ある程度の高い強度が必要となる。本発明材はファスナー製品に必要な良好な強度を持っているといえる。
【0032】
【発明の効果】
本発明は、材料価格が低く高強度である高濃度銅亜鉛合金を用いて、高強度を維持し、耐時期割れ性に優れたCu−Zn系合金であり、ショットピーニングは冷間でのプロセスであるため、例えばファスナーのエレメントスライダー、止め具などのようなテープに植え付けられている状態でも適用可能である
【図面の簡単な説明】
【図1】スライドファスナーの概念図である。
【図2】スライドファスナーに下止具及び上止具を取り付ける仕方を説明する図である。
【符号の説明】
1 ファスナーテープ
2 芯部
3 エレメント
4 上止具
5 下止具
6 スライダー
7 スライドファスナーチェーン
8 異形線
9 係合頭部
10 両脚部
11 矩形線
12 異形線[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-concentration zinc alloy excellent in strength and seasonal crack resistance, and suitable for use as accessories such as elements of a slide fastener, a slider, a fastener, or a metal button, a fastener for clothing, and a method for producing the same. About.
[0002]
[Prior art]
Conventional copper alloys for fasteners include copper zinc alloys typified by copper and brass, and alloys such as nickel silver. Zinc, which is an alloy element used in such an alloy, has an effect of increasing the strength, hardness and uniform deformation of the alloy by solid solution. In addition, since zinc is less expensive than copper, it was possible to obtain an inexpensive alloy having good characteristics.
However, since zinc element is present in copper, there is a problem that corrosion resistance is significantly degraded.Therefore, when a zinc-rich copper alloy is used, and particularly when it is planted on a base fabric by cold working and manufactured as a fastener, the residual processing is performed. The problem of cracking due to strain has occurred.
[0003]
It is known that time cracking is particularly often observed in Cu-Zn based alloys, and that particularly when Zn is contained in an amount of more than 10%, time cracking rapidly worsens.
In order to improve the crack resistance of the Cu-Zn based alloy, it is conceivable to reduce the proportion of zinc to less than 10%. However, such an alloy not only increases the material price but also does not have sufficient strength. It is not desirable as a copper alloy.
[0004]
In addition, the problem of stress corrosion cracking under stress corrosion is significantly improved by annealing near the recrystallization temperature and maintaining the state before the recrystallized grains are coarsened. There are also reports that the life of corrosion cracking has been extended.
For example, in Patent Document 1, after cold-worked Cu—Zn alloy member is annealed at a temperature of 200 to 300 ° C., it is quenched to generate compressive residual stress on the surface of the alloy member. It is described that the cracking property is improved.
[0005]
However, in the method for preventing stress corrosion cracking by annealing as described above, heat treatment is required, so that the material strength is reduced, and it has been difficult to apply the method to elements such as fastener products planted on tape.
Further, when used under a strained condition, it is considered that there is almost no effective means for solving the time crack that occurs even without load stress depending on the use environment.
[Patent Document 1]
JP-B-60-17822 [Problems to be solved by the invention]
An object of the present invention is to provide a Cu-Zn-based alloy which is capable of being cold-worked, has high strength, and is excellent in time cracking resistance, and a method for producing the same, in a Cu alloy containing high-concentration zinc.
[0007]
[Means for Solving the Problems]
The above problem can be solved by the present invention having the following configuration. (1) Cold-worked Cu—Zn-based alloy containing at least more than 10% of Zn is subjected to a treatment for reducing the tensile residual stress on the surface of the alloy or for bringing it into a state of compressive residual stress. A method for producing a Cu—Zn-based alloy having excellent resistance to time cracking.
(2) The Cu-Zn-based alloy excellent in time crack resistance according to (1), wherein the treatment is at least one selected from shot peening, shot blast, sand blast, and steel ball shot blast. Manufacturing method.
[0008]
(3) The Cu-Zn-based alloy has a general formula: CuaZnBc (where X is at least one element selected from Al, Si, Sn, and Mn, a, b, and c are mass%, a is the balance, and 10 < b ≦ 38, 0 ≦ c <3, and may contain unavoidable elements). The Cu—Zn-based material having excellent resistance to time cracking as described in (1) or (2) above, Alloy manufacturing method.
(4) The Cu—Zn-based alloy has a general formula: CuaZnBXc (where X is at least one element selected from Al, Si, Sn, and Mn, a, b, and c are mass%, a is the balance, 25 < b ≦ 38, 0 ≦ c <3, and may contain unavoidable elements). The Cu—Zn-based material having excellent resistance to time cracking as described in (1) or (2) above, Alloy manufacturing method.
[0009]
(5) A Cu-Zn-based alloy having excellent resistance to time cracking produced by the production method according to any one of the above (1) to (4).
(6) In the time cracking test prescribed in the Japan Copper and Brass Technical Association Standard JBMA-T301, no time cracking occurs even after exposure for 2 hours. Zn-based alloy.
(7) In the time cracking test according to the Japan Copper and Brass Technical Association standard JBMA-T301, the amount of decrease in product strength (%) after exposure for up to 12 hours is within 10% after the exposure for up to 12 hours. Cu-Zn based alloy with excellent cracking properties.
(8) A component of a slide fastener made of a Cu-Zn-based alloy having excellent resistance to time cracking according to any of (5) to (7).
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the Cu—Zn-based alloy of the present invention having excellent resistance to time cracking will be described.
There are three causes of the cracks: alloy composition, corrosive environment and residual tensile stress.
As described above, time cracking is particularly frequently observed in Cu—Zn-based alloys, and it is known that the time cracking rapidly deteriorates particularly when Zn is contained in an amount of more than 10%.
In particular, a Cu—Zn-based alloy is represented by the general formula: CuaZnbXc (where X is at least one element selected from Al, Si, Sn, and Mn, a, b, and c are mass%, a is the balance, and 10 <b ≦ 38, 0 ≦ c <3, which may contain an unavoidable element), cracking is likely to occur, and is remarkable when b is represented by 25 <b ≦ 38.
[0011]
Tensile residual stress is caused by non-uniform plastic deformation due to cold working, etc., but controlling the residual stress on the material surface to zero or controlling it to compressive residual stress allows the alloy to withstand the time even in the above alloy composition. Crackability can be improved.
Examples of a method for reducing the residual tensile stress include surface hardening methods such as shot peening, shot blast, sand blast, and steel ball shot blast, which continuously apply an impact to the material surface to cause surface hardening. Such surface hardening operation causes plastic deformation exceeding the yield point in the surface layer generated by the cold working, thereby reducing the tensile residual stress generated by the cold working or controlling the residual stress to the compressive residual stress. .
Further, when applied to a fastener product or the like, the satin pattern obtained by performing the above-described surface hardening operation also has the effect of improving the design of the fastener product.
[0012]
Examples of the material of the medium used for shot peening include glass, sand, steel balls, and ceramics, and the shape is preferably spherical. If there are corners, it is necessary to use rounded corners. The corners damage the workpiece and cause surface defects.
In addition, when used for fastener products, the uniformity of the matte pattern on the fastener surface obtained by shot peening is impaired, and scratches that cause an increase in sliding resistance are formed.
[0013]
The average particle size of the media used for the shot peening treatment is preferably in the range of 10 μm to 2000 μm. If it is less than 10 μm, it is not enough to reduce the residual tensile stress, and if it exceeds 2000 μm, the surface roughness becomes large.
In addition, when applied to fastener products, if the particle size of the media used for shot peening exceeds 2000 μm, not only the satin pattern obtained by shot peening (curing means) becomes coarse and the design property is impaired, but also the surface roughness is reduced. Increases, the sliding resistance increases.
[0014]
Further, the projection speed of the shot peening medium is desirably in the range of 10 to 150 m / s. Since the work applied to the workpiece depends on the speed, if it is less than the lower limit, it is not enough to reduce the residual tensile stress, and if it exceeds the upper limit, it is difficult to configure a projection device, and it is also necessary to crush the media. Occurs.
Further, since the structure of the alloy of the present invention is an α-phase single phase, it is possible to provide an alloy having better cold workability.
[0015]
The shot peening projection time is preferably in the range of 1 to 60 sec.
If it is less than the above lower limit, it is difficult to achieve full coverage of the entire material surface, and if it exceeds the above upper limit, the amount of erosion on the surface is large and the product size is significantly reduced.
Also, when applied to fastener products, if it is less than the lower limit, it is not possible to make the entire material into a uniform satin pattern, and if it exceeds the upper limit, the size of the tooth is reduced due to erosion. This causes a decrease in strength and an increase in sliding resistance.
[0016]
Hereinafter, a slide fastener as an application of the alloy of the present invention will be specifically described with reference to the drawings.
FIG. 1 is a conceptual diagram of a slide fastener. As shown in FIG. 1, the slide fastener has a pair of fastener tapes 1, 1 having a core 2 formed on one end side and a core 2 of the fastener tape 1. The element 3 fixed and fixed (attached) at predetermined intervals, and the upper stopper 4 and the lower stopper 5 fixed to the core 2 of the fastener tape 1 at the upper and lower ends of the element 3 are opposed to each other. And a slider 6 slidable in the vertical direction for engaging and disengaging the elements 3. In the above description, the slide fastener chain 7 is obtained by attaching the element 3 to the core 2 of the fastener tape 1. The slider 6 shown in FIG. 1 is a multi-stage press working of a long body made of a plate-like body having a rectangular cross section (not shown), and is cut at predetermined intervals to produce a slider body. A spring and a pull are attached as needed. Further, the tab may be punched out of a plate-like body having a rectangular cross section in a predetermined shape so that a pair of slide fastener chains can be separated by a slider separating operation.
[0017]
FIG. 2 is a view showing a method for manufacturing the element 3, the upper stopper 4 and the lower stopper 5 of the slide fastener shown in FIG. 1, and a method for attaching the fastener tape 1 to the core 2.
As shown in the figure, the element 3 is formed by cutting a deformed wire 8 having a substantially Y-shaped cross section into predetermined dimensions and pressing the same to form an engaging head 9, and thereafter, the core of the fastener tape 1. It is attached to the part 2 by caulking both legs 10.
[0018]
The upper stopper is formed by cutting a rectangular line 11 (parallel line) having a rectangular cross section into predetermined dimensions, forming a substantially U-shaped cross section by bending, and then caulking the core 2 of the fastener tape 1. , Will be installed.
The lower stopper is attached by cutting the deformed wire 12 having a substantially X-shaped cross section into predetermined dimensions, and then crimping the core wire 2 of the fastener tape 1.
[0019]
In the figure, the element 3, the upper and lower stoppers 4, 5 are simultaneously attached to the fastener tape 1, but actually, the element 3 is continuously attached to the fastener tape 1, and first, a fastener chain is manufactured. Then, the element 3 in the fastener attachment area of the fastener chain is removed, and a predetermined fastener 4 or 5 is attached in proximity to the element 3 in this area.
[0020]
As described above, elements, fasteners, sliders, pullers, and the like used for fasteners are often subjected to cold working, so that tensile residual stress occurs and fasteners containing a large amount of Zn are frequently cracked. Therefore, in the process of manufacturing and mounting, by controlling residual stress such as shot peening before and / or after attaching elements, fasteners, sliders, pullers, etc. to the tape, it is possible to obtain an alloy having excellent resistance to time cracking. be able to.
[0021]
In the present invention, the object of the present invention can be achieved by setting the composition of the Cu—Zn alloy to a specific composition. Hereinafter, each component constituting the alloy of the present invention will be described.
[0022]
<Zn>
Among copper alloys, a Cu—Zn-based alloy containing a large amount of Zn is liable to cause stress corrosion cracking or time cracking under a tensile stress and corrosive environment. When the zinc content is more than 10%, the alloy strength increases due to solid solution strengthening, but at the same time, the susceptibility to time cracking increases. Conversely, if it is less than 10%, the strength of the alloy itself is insufficient. By applying a surface hardening means to the brass alloy having high susceptibility to time cracking, dramatic improvement of the time cracking property is enabled. Furthermore, when zinc is contained in an amount of more than 25%, the strength as an alloy and the high strength due to work hardening can be sufficiently obtained, so that the application of the present method for preventing a decrease in strength due to time cracking becomes very effective. If it is 38% or more, formation of the β phase becomes remarkable, so that cold working is difficult and it is difficult to obtain a product shape.
[0023]
<X (Al, Si, Sn, Mn)>
Al, Sn, Mn: Al and Sn and Mn improve the mechanical properties of the alloy by solid solution strengthening. If it is more than 3%, the crystal structure becomes an α + β phase, and sufficient cold workability cannot be secured.
[0024]
<Si>
By forming a stable oxide film on the surface, Si has the effect of improving the crack resistance against time required for fasteners. However, if it exceeds 3%, the crystal structure becomes an α + β phase, and sufficient cold workability cannot be ensured. The alloy of the present invention is an α-phase single phase and can ensure sufficient cold workability.
【Example】
[Examples 1 to 13]
As raw materials, pure Cu (99.99%), pure Zn (99.9%), pure Al (99.9%), pure Si (99.9%), pure Sn (99.9%), pure Mn (99.9%) and weighed to the prescribed composition shown in Table 1 or Table 2. This was put in an alumina crucible, melted by high frequency in an argon gas atmosphere, and poured into a copper mold of φ40 mm to produce an ingot. The obtained ingot was cut into a length of 75 mm to obtain a billet for extrusion. Extrusion was performed at a billet temperature of 800 ° C. and a container temperature of 530 ° C. to produce an extruded material of φ26 mm. The obtained extruded material was subjected to a homogenization treatment at 800 ° C. for 1 hour.
[0026]
The obtained homogenized material is subjected to lathe processing to produce a φ6 mm round bar, cold-rolled to a thickness of 1.2 mm, and a rolling strain of 80% (strain applied when forming an element of a slide fastener). And the same amount). From the rolled material, a tensile test piece according to JIS Z2201 No. 7 test piece was prepared. The test piece was projected at a distance of 100 mm from four directions perpendicular to the parallel part of the test piece at a projection speed of 60 m / s under the media conditions shown in Tables 1 and 2. The projection time was 20 seconds.
[0027]
An ammonia exposure test was performed for 2 to 12 hours in accordance with the time cracking test method specified in the Japan Copper and Brass Technical Association standard JBMA-T301 according to JIS H3300. The test pieces after the exposure test were evaluated for the presence of cracks at the time by surface observation, and were evaluated as good when no cracks occurred and as poor when cracks occurred. Thereafter, a tensile test was performed at a crosshead speed of 1 mm / sec using an Instron type tester, and the strength reduction (%) before and after the exposure test was evaluated. Table 1 shows the evaluation results.
[0028]
[Comparative Examples 1 to 7]
Test pieces were prepared in the same manner as in the examples except that the same raw materials as used in the examples were used and the alloy compositions were as shown in Table 2.
After the medium was projected on the obtained test piece under the shot conditions shown in Table 2, a time cracking test was performed in the same manner as in the example. Table 2 shows the evaluation results.
[0029]
[Table 1]
Figure 2004332014
[0030]
[Table 2]
Figure 2004332014
[0031]
[Evaluation results]
As for the material of the present invention, as to the results of the evaluation of “時期” and “×” regarding the time crack, cracks occurred in Comparative Examples 1 to 5. On the other hand, it can be seen that none of the materials of the present invention cracked.
Further, as a result of measuring the strength reduction amount of the test piece, as shown in Comparative Examples 1 to 5 in which the shot peening treatment was not performed, the larger the Zn content, the larger the strength reduction amount. Little amount was seen. This means that high strength can be maintained without causing cracks even when used in a slide fastener product for a long time under various environments.
In Comparative Examples 6 and 7, no cracking occurred and there was almost no decrease in strength. However, since the amount of Zn was small, it was insufficient in strength. It can be seen that the strength is as high as 600 to 730 Mpa. For example, when used for an element or a stop of a slide fastener, an excessive load is applied to the element or the stop when the slide fastener is opened or closed, so that a certain high strength is required. It can be said that the material of the present invention has good strength required for fastener products.
[0032]
【The invention's effect】
The present invention is a Cu-Zn-based alloy that uses a high-concentration copper-zinc alloy that is low in material cost and high in strength, maintains high strength, and has excellent resistance to time cracking. Therefore, the present invention can be applied even when it is planted on a tape such as a fastener element slider, a fastener, etc. [Brief description of drawings]
FIG. 1 is a conceptual diagram of a slide fastener.
FIG. 2 is a diagram illustrating a method of attaching a lower stopper and an upper stopper to a slide fastener.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fastener tape 2 Core part 3 Element 4 Upper stop 5 Lower stop 6 Slider 7 Slide fastener chain 8 Deformed wire 9 Engagement head 10 Both legs 11 Rectangular wire 12 Deformed wire

Claims (8)

冷間加工を施した、少なくともZnを10%より多く含むCu−Zn系合金に対して、該合金表面の引張残留応力を低減するかまたは圧縮残留応力の状態とする処理を施すことを特徴とする耐時期割れ性に優れたCu−Zn系合金の製造方法。A cold-worked Cu-Zn alloy containing at least more than 10% Zn is subjected to a treatment for reducing the tensile residual stress on the surface of the alloy or for bringing it into a state of compressive residual stress. Of producing a Cu—Zn-based alloy having excellent resistance to time cracking. 前記処理がショットピーニング、ショットブラスト、サンドブラスト及び鋼球ショットブラストから選ばれる少なくとも1種であることを特徴とする請求項1に記載の耐時期割れ性に優れたCu−Zn系合金の製造方法。2. The method of claim 1, wherein the treatment is at least one selected from shot peening, shot blast, sand blast, and steel ball shot blast. 3. 前記Cu−Zn系合金が一般式:CuaZnbXc(但し、XはAl、Si、Sn、Mnから選ばれる少なくとも一種の元素、a、b、cは質量%で、aは残部、10<b≦38、0≦c<3、不可避元素を含み得る)で表される組成を有することを特徴とする請求項1又は2に記載の耐時期割れ性に優れたCu−Zn系合金の製造方法。The Cu—Zn-based alloy is represented by a general formula: CuaZnbXc (where X is at least one element selected from Al, Si, Sn, and Mn, a, b, and c are mass%, a is the balance, and 10 <b ≦ 38. The method for producing a Cu-Zn-based alloy having excellent resistance to seasonal cracking according to claim 1 or 2, wherein the composition has a composition represented by the formula: 0, c <3, and may contain an unavoidable element. 前記Cu−Zn系合金が一般式:CuaZnbXc(但し、XはAl、Si、Sn、Mnから選ばれる少なくとも一種の元素、a、b、cは質量%で、aは残部、25<b≦38、0≦c<3、不可避元素を含み得る)で表される組成を有することを特徴とする請求項1又は2に記載の耐時期割れ性に優れたCu−Zn系合金の製造方法。The Cu—Zn-based alloy has a general formula: CuaZnBc (where X is at least one element selected from Al, Si, Sn, and Mn, a, b, and c are mass%, a is the balance, and 25 <b ≦ 38. The method for producing a Cu-Zn-based alloy having excellent resistance to seasonal cracking according to claim 1 or 2, wherein the composition has a composition represented by the formula: 0, c <3, and may contain an unavoidable element. 上記請求項1〜4のいずれかに記載の製造方法により製造された耐時期割れ性に優れたCu−Zn系合金。A Cu-Zn-based alloy having excellent resistance to seasonal cracking manufactured by the manufacturing method according to claim 1. 日本伸銅技術協会標準JBMA−T301に規定されている時期割れ試験において、2時間暴露後においても時期割れの生じない、請求項5に記載の耐時期割れ性に優れたCu−Zn系合金。The Cu-Zn alloy according to claim 5, wherein no time cracking occurs even after exposure for 2 hours in a time cracking test prescribed in Japan Copper and Brass Technical Association Standard JBMA-T301. 前記日本伸銅技術協会標準JBMA−T301に準じた時期割れ試験で、最大12時間暴露後において、製品強度低下量(%)が10%以内である請求項5に記載の耐時期割れ性に優れたCu−Zn系合金。The time cracking test according to the Japan Copper and Brass Technical Association Standard JBMA-T301, the product strength reduction (%) after exposure for up to 12 hours is within 10%, and the time cracking resistance according to claim 5 is excellent. Cu-Zn alloy. 請求項5〜7のいずれかに記載の耐時期割れ性に優れたCu−Zn系合金からなるスライドファスナーの構成部品。A component of a slide fastener made of a Cu-Zn-based alloy having excellent resistance to time cracking according to any one of claims 5 to 7.
JP2003126292A 2003-05-01 2003-05-01 A method for producing a Cu-Zn alloy having excellent time cracking resistance. Expired - Lifetime JP4357869B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003126292A JP4357869B2 (en) 2003-05-01 2003-05-01 A method for producing a Cu-Zn alloy having excellent time cracking resistance.
KR1020030074530A KR20040094593A (en) 2003-05-01 2003-10-24 Cu-zn alloy excellent in season cracking resistance and preparation thereof
CNB2003101202182A CN1250757C (en) 2003-05-01 2003-12-09 Cu-Zn system alloy with good of durable crack resistant performance and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003126292A JP4357869B2 (en) 2003-05-01 2003-05-01 A method for producing a Cu-Zn alloy having excellent time cracking resistance.

Publications (2)

Publication Number Publication Date
JP2004332014A true JP2004332014A (en) 2004-11-25
JP4357869B2 JP4357869B2 (en) 2009-11-04

Family

ID=33503266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003126292A Expired - Lifetime JP4357869B2 (en) 2003-05-01 2003-05-01 A method for producing a Cu-Zn alloy having excellent time cracking resistance.

Country Status (3)

Country Link
JP (1) JP4357869B2 (en)
KR (1) KR20040094593A (en)
CN (1) CN1250757C (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012004841A1 (en) * 2010-07-05 2012-01-12 Ykk株式会社 Copper-zinc alloy product and process for producing copper-zinc alloy product
WO2014024293A1 (en) * 2012-08-09 2014-02-13 Ykk株式会社 Fastening copper alloy
WO2016143138A1 (en) * 2015-03-12 2016-09-15 Ykk株式会社 Metallic zipper member and zipper equipped with same
WO2022124280A1 (en) * 2020-12-11 2022-06-16 国立大学法人豊橋技術科学大学 Bar-like or tube-like high-strength copper alloy and method for prodcuing same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101713035A (en) * 2008-09-29 2010-05-26 铜陵市永生机电制造有限责任公司 Brass alloy for manufacturing air conditioning distributor
CN102665473B (en) * 2009-12-25 2015-04-22 Ykk株式会社 Zipper component and slide zipper
CN102534295B (en) * 2011-11-21 2016-07-06 宁波三旺洁具有限公司 A kind of anticorrosion boron copper alloy
CN103131893B (en) * 2011-11-21 2016-07-06 宁波三旺洁具有限公司 A kind of acid bronze alloy
CN105261406B (en) * 2014-07-14 2017-07-21 安徽均益金属科技有限公司 A kind of high intensity copper cash
CN107105833B (en) * 2014-12-26 2020-04-10 Ykk株式会社 Metal fastening member having light gold color and fastener having the same
JP3197413U (en) * 2015-02-24 2015-05-14 Ykk株式会社 Metallic fastener member having lemon gold color and fastener having the same
CN108517477B (en) * 2018-04-16 2020-10-23 中国兵器工业第五九研究所 Deep conical copper liner tissue superfine grain gradient control method
IT202100007925A1 (en) * 2021-03-31 2022-10-01 Ykk Corp METHODS FOR MANUFACTURING ZIPPER TAPE WITH COLORED METALLIC TEETH

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9023272B2 (en) 2010-07-05 2015-05-05 Ykk Corporation Copper-zinc alloy product and process for producing copper-zinc alloy product
WO2012004841A1 (en) * 2010-07-05 2012-01-12 Ykk株式会社 Copper-zinc alloy product and process for producing copper-zinc alloy product
JP5442119B2 (en) * 2010-07-05 2014-03-12 Ykk株式会社 Fastener element and fastener element manufacturing method
KR101502246B1 (en) * 2010-07-05 2015-03-12 와이케이케이 가부시끼가이샤 Fastener element and process for producing fastener element
JP5873175B2 (en) * 2012-08-09 2016-03-01 Ykk株式会社 Copper alloy for fastening
US20150218674A1 (en) * 2012-08-09 2015-08-06 Ykk Corporation Fastening Copper Alloy
WO2014024293A1 (en) * 2012-08-09 2014-02-13 Ykk株式会社 Fastening copper alloy
EP2883971A4 (en) * 2012-08-09 2016-07-20 Ykk Corp Fastening copper alloy
US10760146B2 (en) 2012-08-09 2020-09-01 Ykk Corporation Fastening copper alloy
WO2016143138A1 (en) * 2015-03-12 2016-09-15 Ykk株式会社 Metallic zipper member and zipper equipped with same
JPWO2016143138A1 (en) * 2015-03-12 2017-10-19 Ykk株式会社 Metal fastener member and fastener having the same
CN107429325A (en) * 2015-03-12 2017-12-01 Ykk株式会社 Metal secure component and the fastener for possessing the metal secure component
US10178898B2 (en) 2015-03-12 2019-01-15 Ykk Corporation Metallic fastener member and fastener equipped with same
WO2022124280A1 (en) * 2020-12-11 2022-06-16 国立大学法人豊橋技術科学大学 Bar-like or tube-like high-strength copper alloy and method for prodcuing same

Also Published As

Publication number Publication date
CN1542150A (en) 2004-11-03
KR20040094593A (en) 2004-11-10
CN1250757C (en) 2006-04-12
JP4357869B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
JP3953357B2 (en) Copper alloy for electrical and electronic parts
JP5442119B2 (en) Fastener element and fastener element manufacturing method
JP2008075171A (en) HEAT RESISTANT ALLOY SPRING AND Ni-BASED ALLOY WIRE USED THEREFOR
WO2011068121A1 (en) Copper alloy sheet material, connector using same, and copper alloy sheet material production method for producing same
JP4357869B2 (en) A method for producing a Cu-Zn alloy having excellent time cracking resistance.
JP2008057046A (en) Silver containing copper alloy
WO2013018228A1 (en) Copper alloy
TW201736613A (en) Copper alloy sheet material and method for producing copper alloy sheet material
TWI490350B (en) Copper alloy with fasteners
WO2005093108A1 (en) Brass material
JPWO2009113489A1 (en) Silver-white copper alloy and method for producing the same
JPS5887244A (en) Copper base spinodal alloy strip and manufacture
TW201241195A (en) Cu-si-co-base copper alloy for electronic materials and method for producing same
JPH111735A (en) High strength cu alloy with excellent press blankability and corrosion resistance
JP2002266042A (en) Copper alloy sheet having excellent bending workability
JP4166147B2 (en) Method for producing copper alloy plate for high-strength electrical and electronic parts
JP2015196838A (en) PRODUCTION METHOD OF Fe-Ni ALLOY MATERIAL, METHOD OF MANUFACTURING SOFT MAGNETIC COMPONENT, Fe-Ni ALLOY AND SOFT MAGNETIC COMPONENT MATERIAL
JP4780600B2 (en) Magnesium alloy sheet excellent in deep drawability and manufacturing method thereof
JP2006291298A (en) Aluminum alloy, and slide fastener using the alloy
JP2018070944A (en) Copper alloy sheet material and manufacturing method therefor
JP2886818B2 (en) Method of manufacturing copper alloy for decoration
JPH11335758A (en) High strength titanium alloy excellent in cold ductility
JP2014080676A (en) PRODUCTION METHOD OF Fe-Al BASED ALLOY BAND-STEEL
JP2003293056A (en) Phosphor bronze strip with excellent press workability
JP2724418B2 (en) High-strength sealing alloy with excellent Ag braze flowability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4357869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

EXPY Cancellation because of completion of term