JP2015196838A - PRODUCTION METHOD OF Fe-Ni ALLOY MATERIAL, METHOD OF MANUFACTURING SOFT MAGNETIC COMPONENT, Fe-Ni ALLOY AND SOFT MAGNETIC COMPONENT MATERIAL - Google Patents

PRODUCTION METHOD OF Fe-Ni ALLOY MATERIAL, METHOD OF MANUFACTURING SOFT MAGNETIC COMPONENT, Fe-Ni ALLOY AND SOFT MAGNETIC COMPONENT MATERIAL Download PDF

Info

Publication number
JP2015196838A
JP2015196838A JP2014073534A JP2014073534A JP2015196838A JP 2015196838 A JP2015196838 A JP 2015196838A JP 2014073534 A JP2014073534 A JP 2014073534A JP 2014073534 A JP2014073534 A JP 2014073534A JP 2015196838 A JP2015196838 A JP 2015196838A
Authority
JP
Japan
Prior art keywords
mass
less
annealing
magnetic
alloy material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014073534A
Other languages
Japanese (ja)
Other versions
JP6375127B2 (en
Inventor
水島 孝
Takashi Mizushima
孝 水島
佐々木 史明
Fumiaki Sasaki
史明 佐々木
俊也 首藤
Toshiya Shudo
俊也 首藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2014073534A priority Critical patent/JP6375127B2/en
Publication of JP2015196838A publication Critical patent/JP2015196838A/en
Application granted granted Critical
Publication of JP6375127B2 publication Critical patent/JP6375127B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain good magnetic properties of a soft magnetic component composed of an Fe-Ni alloy and furthermore to prevent sticking of workpiece and other members to each other during annealing.SOLUTION: A production method of an Fe-Ni alloy material is provided in which: hot forging, hot rolling and cold rolling under prescribed processing conditions are performed on a steel ingot having a prescribed component composition containing Ni:40 to 51 mass%; a cold rolled rolling target material is heated to 800 to 1200°C and is magnetically annealed for 0.15 to 120 min. to obtain a magnetically annealed rolling target material having an average particle diameter of crystal particles of a 25 μm or more; and the magnetically annealed rolling target material is subjected to final cold rolling with a rolling ratio of 0 to 20%.

Description

本発明は、軟磁性材料として用いられるFe−Ni合金材の製造方法、そのFe−Ni合金材を用いた軟磁性部品の製造方法、Fe−Ni合金及び軟磁性部品材料に関する。   The present invention relates to a method for producing an Fe—Ni alloy material used as a soft magnetic material, a method for producing a soft magnetic component using the Fe—Ni alloy material, an Fe—Ni alloy, and a soft magnetic component material.

Ni:40〜51mass%、残部:Fe及び不可避的不純物から成るFe−Ni合金材(いわゆるPBパーマロイ)は、例えば時計用のヨークや変成器コア、磁場シールドケース等の軟磁性部品の素材として用いられる。   Ni: 40 to 51 mass%, balance: Fe and Ni alloy material (so-called PB permalloy) composed of Fe and inevitable impurities is used as a material for soft magnetic parts such as a yoke for a watch, a transformer core, and a magnetic shielding case. It is done.

軟磁性部品は、鋳造、鍛造、圧延、焼鈍等の一連の製造工程を経て得られるFe−Ni合金材に対し、所定のプレス加工や曲げ加工等を施し、その後、被加工材の磁性焼鈍を施すことで製造される。なお、本明細書における「磁性焼鈍」とは、材料の再結晶や粒成長を促し、磁気特性を向上させ、また圧延等の機械加工にて付与され、磁気特性を低下させる材料内部の歪を回復により除去することを主な目的とする焼鈍のことをいう。   Soft magnetic parts are subjected to predetermined pressing and bending processes on Fe-Ni alloy materials obtained through a series of manufacturing processes such as casting, forging, rolling, and annealing, and then magnetic annealing of the workpiece is performed. Manufactured by applying. In this specification, “magnetic annealing” refers to the strain inside the material that promotes recrystallization and grain growth of the material, improves the magnetic properties, and is applied by mechanical processing such as rolling to lower the magnetic properties. It refers to annealing whose main purpose is to be removed by recovery.

従来のFe−Ni合金材の製造方法としては、例えば特許文献1に記載された方法がある。特許文献1に記載された方法は、Fe−Ni合金材の磁性焼鈍をプレス加工等の前工程で行う方法であるが、磁性焼鈍の時間が10〜65秒と短く、後工程において更に磁性焼鈍を行うことはしていない。これでは、軟磁性部品の磁気特性が不十分になるおそれがある。   As a conventional method for producing an Fe—Ni alloy material, for example, there is a method described in Patent Document 1. The method described in Patent Document 1 is a method in which the magnetic annealing of the Fe—Ni alloy material is performed in a pre-process such as press working, but the magnetic annealing time is as short as 10 to 65 seconds, and the magnetic annealing is further performed in the post-process. Do not do. This may cause the magnetic properties of the soft magnetic component to be insufficient.

これに対して、特許文献2には、Fe−Ni合金材の磁性焼鈍を1100℃で3時間実施する方法が記載されている。また、特許文献2には、溶湯に石灰石やアルミナ等を添加することで脱酸や脱硫を促し、清浄度を上げることで磁気特性を向上させることも記載されている。   On the other hand, Patent Document 2 describes a method of performing magnetic annealing of an Fe—Ni alloy material at 1100 ° C. for 3 hours. Patent Document 2 also describes that deoxidation and desulfurization are promoted by adding limestone, alumina, or the like to the molten metal, and magnetic properties are improved by increasing the cleanliness.

また、特許文献2と同様に、特許文献3にもFe−Ni合金材の磁性焼鈍を1100℃で3時間実施する方法が記載されている。特許文献3には、スラブを均質化処理することでNiの偏析を抑制し、これにより磁気特性を向上させることも記載されている。   Similarly to Patent Document 2, Patent Document 3 also describes a method of performing magnetic annealing of an Fe—Ni alloy material at 1100 ° C. for 3 hours. Patent Document 3 also describes that Ni segregation is suppressed by homogenizing the slab, thereby improving the magnetic characteristics.

しかし、Fe−Ni合金材にプレス加工等の加工を施した後に被加工材の歪除去を兼ねた磁性焼鈍を実施する場合、特許文献2や特許文献3のような処理条件で磁性焼鈍を行うと、被加工材が高温状態のまま他部材と長時間接触することになる。この場合には、被加工材同士の貼り付き、被加工材と金属容器等との貼り付き、接触荷重での熱変形が生じるおそれがある。被加工材と他部材との貼り付きが生じると、貼り付いた部材同士の分離作業等に時間を費やすことになり生産性が低下してしまう。   However, when performing magnetic annealing that also serves to remove distortion of the workpiece after performing processing such as press processing on the Fe—Ni alloy material, magnetic annealing is performed under the processing conditions as in Patent Document 2 and Patent Document 3. Then, the workpiece will be in contact with other members for a long time while being in a high temperature state. In this case, there is a possibility that the workpieces stick to each other, the workpiece and the metal container stick to each other, and thermal deformation due to contact load occurs. When sticking between the workpiece and the other member occurs, it takes time to separate the stuck members and the like, and productivity is lowered.

この問題を回避するためには、特許文献4にあるようなFe−Ni合金材に焼鈍分離用のコーティングを施して磁性焼鈍を行うといった方法もある。   In order to avoid this problem, there is a method of performing magnetic annealing by applying a coating for annealing separation to an Fe—Ni alloy material as disclosed in Patent Document 4.

特開2009−114511号公報JP 2009-114511 A 特開2002−161328号公報JP 2002-161328 A 特開2011−68998号公報JP 2011-68998 A 特開平4−142705号公報JP-A-4-142705

しかしながら、Fe−Ni合金材に焼鈍分離用のコーティングを施すことは、Fe−Ni合金材の製造コストが上昇し、ひいては軟磁性部品の製造コストの上昇につながる。   However, applying the annealing separation coating to the Fe—Ni alloy material increases the manufacturing cost of the Fe—Ni alloy material, and consequently increases the manufacturing cost of the soft magnetic component.

また、磁性焼鈍時間を短縮することにより、被加工材と他部材との貼り付きをある程度抑制することも可能かもしれないが、その場合には磁性焼鈍時間が短くなることにより、Fe−Ni合金材の磁気特性を低下させてしまうことになる。   In addition, by reducing the magnetic annealing time, it may be possible to suppress the sticking between the workpiece and other members to some extent, but in this case, the magnetic annealing time is shortened, thereby reducing the Fe-Ni alloy. This will reduce the magnetic properties of the material.

本発明は、上記事情に鑑みてなされたものであり、Fe−Ni合金材の磁気特性を良好に維持しつつ、焼鈍時の被加工材と他部材との貼り付きを防止することを目的とする。   The present invention has been made in view of the above circumstances, and aims to prevent sticking between a workpiece and another member during annealing while maintaining good magnetic properties of the Fe-Ni alloy material. To do.

上記課題を解決する本発明は、Fe−Ni合金材の製造方法であって、
Ni:40〜51mass%、
Ti:0〜1.0mass%、
Cr:0〜1.0mass%、
Co:0〜2.0mass%、
Sn:0〜1.0mass%、
Zn:0〜1.0mass%、
Mg:0〜0.10mass%、
Zr:0〜1.0mass%、
Al:0〜1.0mass%、
Si:0〜1.0mass%、
B :0〜0.05mass%、
Cr:0〜1.0mass%、
Mn:0〜2.0mass%、
V :0〜1.0mass%、
Cu:0〜10mass%、
Mo:0〜10mass%、
Ca:0〜0.10mass%、
REM(希土類元素):0〜0.10mass%を含有し、
S:0.0035mass%以下、
O:0.10mass%以下、
N:0.10mass%以下、
C:0.10mass%以下、
P:0.10mass%以下に制限され、
残部:Feから成る鋼塊に対して所定の処理条件で熱間鍛造、熱間圧延、冷間圧延が実施され、冷間圧延された被圧延材を800〜1200℃まで加熱して0.15〜120分間、磁性焼鈍を行って被焼鈍材の結晶粒の平均粒径を25μm以上とし、その後、圧延率0〜20%の最終冷間圧延が実施されることを特徴としている。
The present invention for solving the above problems is a method for producing an Fe-Ni alloy material,
Ni: 40-51 mass%,
Ti: 0 to 1.0 mass%,
Cr: 0 to 1.0 mass%,
Co: 0 to 2.0 mass%,
Sn: 0 to 1.0 mass%,
Zn: 0 to 1.0 mass%,
Mg: 0 to 0.10 mass%,
Zr: 0 to 1.0 mass%,
Al: 0 to 1.0 mass%,
Si: 0 to 1.0 mass%,
B: 0 to 0.05 mass%,
Cr: 0 to 1.0 mass%,
Mn: 0 to 2.0 mass%,
V: 0 to 1.0 mass%,
Cu: 0 to 10 mass%,
Mo: 0-10 mass%,
Ca: 0 to 0.10 mass%,
REM (rare earth element): 0 to 0.10 mass%,
S: 0.0035 mass% or less,
O: 0.10 mass% or less,
N: 0.10 mass% or less,
C: 0.10 mass% or less,
P: limited to 0.10 mass% or less,
The rest: hot ingot, hot rolling, and cold rolling are performed on the steel ingot made of Fe under predetermined processing conditions, and the cold-rolled material to be rolled is heated to 800 to 1200 ° C. to 0.15 It is characterized in that magnetic annealing is performed for ˜120 minutes so that the average grain size of the crystal grains of the material to be annealed is 25 μm or more, and then final cold rolling at a rolling rate of 0 to 20% is performed.

本発明によれば、Fe−Ni合金材の成型工程前に合金材の磁性焼鈍を数分間実施することで、成型工程後の磁性焼鈍を処理温度が低い条件、又は、処理温度が高くても処理時間が短い条件で実施することが可能となる。なお、「成型加工」とはプレス打ち抜きや曲げ加工等の加工を指し、「成型工程」とは、軟磁性部品製造のために合金材に成型加工を施す工程を指す。これにより、被加工材と他部材との貼り付きを抑制することができる。また、本発明では、Fe−Ni合金中のSの含有量を制限することにより、合金材中のA系介在物の清浄度を低くすることができる。これにより、結晶粒の粒成長が起こりやすくなり、磁気特性を向上させることができる。   According to the present invention, the magnetic annealing of the alloy material is performed for several minutes before the Fe-Ni alloy material forming step, so that the magnetic annealing after the forming step can be performed under conditions where the processing temperature is low or the processing temperature is high. It is possible to carry out under conditions where the processing time is short. “Molding” refers to processing such as press punching or bending, and “molding step” refers to a step of molding an alloy material for the production of soft magnetic parts. Thereby, sticking with a workpiece and other members can be controlled. In the present invention, by limiting the content of S in the Fe—Ni alloy, the cleanliness of the A-based inclusions in the alloy material can be lowered. Thereby, crystal grain growth is likely to occur, and magnetic characteristics can be improved.

別の観点による本発明として、上記Fe−Ni合金材に所定の成型加工が施された後、被加工材を500〜1000℃まで加熱して60〜180分間、更に磁性焼鈍を行う軟磁性部品の製造方法が提供される。   According to another aspect of the present invention, a soft magnetic component that performs magnetic annealing for 60 to 180 minutes by heating the workpiece to 500 to 1000 ° C. after the Fe-Ni alloy material is subjected to predetermined molding processing. A manufacturing method is provided.

また、別の観点による本発明として、上記Fe−Ni合金材に所定の成型加工が施された後、被加工材を1000超〜1200℃まで加熱して1〜60分間、更に磁性焼鈍を行う、軟磁性部品の製造方法も提供される。   As another aspect of the present invention, after the Fe-Ni alloy material is subjected to a predetermined molding process, the workpiece is heated to more than 1000 to 1200 ° C and further subjected to magnetic annealing for 1 to 60 minutes. A method of manufacturing a soft magnetic component is also provided.

また、別の観点による本発明として、
Ni:40〜51mass%、
Ti:0〜1.0mass%、
Cr:0〜1.0mass%、
Co:0〜2.0mass%、
Sn:0〜1.0mass%、
Zn:0〜1.0mass%、
Mg:0〜0.10mass%、
Zr:0〜1.0mass%、
Al:0〜1.0mass%、
Si:0〜1.0mass%、
B:0〜0.05mass%、
Cr:0〜1.0mass%、
Mn:0〜2.0mass%、
V:0〜1.0mass%、
Cu:0〜10mass%、
Mo:0〜10mass%、
Ca:0〜0.10mass%、
REM(希土類元素):0〜0.10mass%を含有し、
S:0.0035mass%以下
O:0.10mass%以下、
N:0.10mass%以下、
C:0.10mass%以下、
P:0.10mass%以下に制限され、
残部:Feより成り、結晶粒の平均粒径が25μm以上であり、A系介在物の清浄度が0.010%以下であり、ビッカース硬さが120〜200HVである、Fe−Ni合金も提供される。
As another aspect of the present invention,
Ni: 40-51 mass%,
Ti: 0 to 1.0 mass%,
Cr: 0 to 1.0 mass%,
Co: 0 to 2.0 mass%,
Sn: 0 to 1.0 mass%,
Zn: 0 to 1.0 mass%,
Mg: 0 to 0.10 mass%,
Zr: 0 to 1.0 mass%,
Al: 0 to 1.0 mass%,
Si: 0 to 1.0 mass%,
B: 0 to 0.05 mass%,
Cr: 0 to 1.0 mass%,
Mn: 0 to 2.0 mass%,
V: 0 to 1.0 mass%,
Cu: 0 to 10 mass%,
Mo: 0-10 mass%,
Ca: 0 to 0.10 mass%,
REM (rare earth element): 0 to 0.10 mass%,
S: 0.0035 mass% or less O: 0.10 mass% or less,
N: 0.10 mass% or less,
C: 0.10 mass% or less,
P: limited to 0.10 mass% or less,
The balance: Fe—Ni alloy comprising Fe, having an average grain size of 25 μm or more, cleanliness of A-based inclusions of 0.010% or less, and Vickers hardness of 120 to 200 HV is also provided. Is done.

また、別の観点による本発明として、
Ni:40〜51mass%、
Ti:0〜1.0mass%、
Cr:0〜1.0mass%、
Co:0〜2.0mass%、
Sn:0〜1.0mass%、
Zn:0〜1.0mass%、
Mg:0〜0.10mass%、
Zr:0〜1.0mass%、
Al:0〜1.0mass%、
Si:0〜1.0mass%、
B:0〜0.05mass%、
Cr:0〜1.0mass%、
Mn:0〜2.0mass%、
V:0〜1.0mass%、
Cu:0〜10mass%、
Mo:0〜10mass%、
Ca:0〜0.10mass%、
REM(希土類元素):0〜0.10mass%を含有し、
S:0.0035mass%以下
O:0.10mass%以下、
N:0.10mass%以下、
C:0.10mass%以下、
P:0.10mass%以下に制限され、残部:Feから成り、
結晶粒の平均粒径が25μm以上であり、かつ成型加工後施される磁性焼鈍にて保磁力Hcが16A/m以下、初期透磁率μiが3000以上、最大透磁率μmが30000以上の磁気特性を有する、軟磁性部品材料も提供される。
As another aspect of the present invention,
Ni: 40-51 mass%,
Ti: 0 to 1.0 mass%,
Cr: 0 to 1.0 mass%,
Co: 0 to 2.0 mass%,
Sn: 0 to 1.0 mass%,
Zn: 0 to 1.0 mass%,
Mg: 0 to 0.10 mass%,
Zr: 0 to 1.0 mass%,
Al: 0 to 1.0 mass%,
Si: 0 to 1.0 mass%,
B: 0 to 0.05 mass%,
Cr: 0 to 1.0 mass%,
Mn: 0 to 2.0 mass%,
V: 0 to 1.0 mass%,
Cu: 0 to 10 mass%,
Mo: 0-10 mass%,
Ca: 0 to 0.10 mass%,
REM (rare earth element): 0 to 0.10 mass%,
S: 0.0035 mass% or less O: 0.10 mass% or less,
N: 0.10 mass% or less,
C: 0.10 mass% or less,
P: limited to 0.10 mass% or less, balance: Fe,
Magnetic grains having an average grain size of 25 μm or more, a coercive force H c of 16 A / m or less, an initial permeability μi of 3000 or more, and a maximum permeability μm of 30000 or more in magnetic annealing performed after molding. A soft magnetic component material having properties is also provided.

本発明によれば、Fe−Ni合金からなる軟磁性部品の磁気特性を良好に維持しつつ、焼鈍時の被加工材と他部材との貼り付きを防止することができる。   ADVANTAGE OF THE INVENTION According to this invention, sticking with the to-be-processed material and other member at the time of annealing can be prevented, maintaining the magnetic characteristic of the soft-magnetic component which consists of Fe-Ni alloys favorably.

以下、本発明の実施形態について、Fe−Ni合金材の製造方法に基づいて説明する。   Hereinafter, embodiments of the present invention will be described based on a method for producing an Fe—Ni alloy material.

まず、本実施形態のFe−Ni合金材について説明する。本実施形態のFe−Ni合金材は、Ni:40〜51mass%を含有する所謂PBパーマロイである。   First, the Fe—Ni alloy material of this embodiment will be described. The Fe—Ni alloy material of this embodiment is a so-called PB permalloy containing Ni: 40 to 51 mass%.

<成分組成>
本実施形態のFe−Ni合金材は、Ni:40〜51mass%に加え、Ti:0〜1.0mass%、Cr:0〜1.0mass%、Co:0〜2.0mass%、Sn:0〜1.0mass%、Zn:0〜1.0mass%、Mg:0〜0.10mass%、Zr:0〜1.0mass%、Al:0〜1.0mass%、Si:0〜1.0mass%、B:0〜0.05mass%、Cr:0〜1.0mass%、Mn:0〜2.0mass%、V:0〜1.0mass%、Cu:0〜10mass%、Mo:0〜10mass%、Ca:0〜0.10mass%、REM(希土類元素):0〜0.10mass%の各元素を1種以上含有してもよく、かつ不純物元素であるSの含有量が0.0035mass%(35ppm)以下、O:0.10mass%以下、N:0.10mass%以下、C:0.10mass%以下、P:0〜0.10mass%以下に制限されている。なお、各元素において「含有量が0%」である場合には、その元素が含有していないことを意味する。
<Ingredient composition>
In addition to Ni: 40 to 51 mass%, the Fe—Ni alloy material of the present embodiment includes Ti: 0 to 1.0 mass%, Cr: 0 to 1.0 mass%, Co: 0 to 2.0 mass%, and Sn: 0. ~ 1.0 mass%, Zn: 0 to 1.0 mass%, Mg: 0 to 0.10 mass%, Zr: 0 to 1.0 mass%, Al: 0 to 1.0 mass%, Si: 0 to 1.0 mass% , B: 0 to 0.05 mass%, Cr: 0 to 1.0 mass%, Mn: 0 to 2.0 mass%, V: 0 to 1.0 mass%, Cu: 0 to 10 mass%, Mo: 0 to 10 mass% , Ca: 0 to 0.10 mass%, REM (rare earth element): 0 to 0.10 mass% of each element may be contained, and the content of S as an impurity element is 0.0035 mass% ( 35 ppm) or less, O: 0.10 mass% or less, N: 0.10 mass% or less, C: 0.10 mass% or less, and P: 0 to 0.10 mass% or less. In addition, when "content is 0%" in each element, it means that the element does not contain.

Sは不可避的不純物の一種であるが、本実施形態においてはS除去剤添加もしくはスラグ精錬等により含有量が制限される。Sの含有量が0.0035mass%を超えると、後述する磁性焼鈍時において、結晶粒の成長を阻害するA系(Mn−S系)介在物が生成しやすくなり、合金材の磁気特性が低下する。   S is a kind of inevitable impurities, but in this embodiment, the content is limited by addition of S remover or slag refining. When the content of S exceeds 0.0035 mass%, during magnetic annealing described later, A-based (Mn-S-based) inclusions that inhibit the growth of crystal grains are likely to be generated, and the magnetic properties of the alloy material are deteriorated. To do.

また、Sの含有量が0.0035mass%以下であることにより、後述の製造方法で説明する合金材の鍛造を行うことで、合金材中のA系介在物の清浄度が0.010%以下にされている。合金材中のA系介在物の清浄度が0.010%を超えると、合金材の磁気特性が低下する。   Moreover, when the content of S is 0.0035 mass% or less, the cleanliness of the A-based inclusions in the alloy material is 0.010% or less by forging the alloy material described in the manufacturing method described later. Has been. If the cleanliness of the A-based inclusions in the alloy material exceeds 0.010%, the magnetic properties of the alloy material will deteriorate.

ここで、その他の元素について説明する。   Here, other elements will be described.

O、N、C、P:不可避不純物として含有する。規定量を超えると加工時の割れ、製品表面にキズ等を形成する有害介在物の発生を招く恐れがある。好ましくはO、N≦0.001mass%、C,P≦0.02mass%である。   O, N, C, P: contained as an inevitable impurity. Exceeding the specified amount may cause cracking during processing and generation of harmful inclusions that form scratches on the product surface. Preferably, O, N ≦ 0.001 mass%, C, P ≦ 0.02 mass%.

Si、Mn、Mg、Ca:主として脱酸材もしくは含有Sを固着して熱間加工時の割れを防止する目的で添加する、もしくは精錬時のスラグとして使用されたものが混入するが、磁気特性にとっては望小元素である。多量に含むと固溶して再結晶速度を遅延させる、或いは表面キズ等の有害な欠陥の原因となる恐れがある。またA系(Mn−S系)介在物は材料の再結晶の阻害やその結果として磁気特性の低下を招く。但しMn−Sの発生量はS含有量によって左右され、Mn量の影響は殆どないと考えられる。好ましくはSi≦1mass%、Mn≦1.5mass%、Mg,Ca≦0.01mass%となる。    Si, Mn, Mg, Ca: mainly added with the purpose of fixing deoxidizer or contained S to prevent cracking during hot working, or used as slag during refining, but magnetic properties are mixed It is a small desired element for me. If it is contained in a large amount, it may cause a solid solution and delay the recrystallization speed, or may cause harmful defects such as surface scratches. In addition, A-based (Mn-S-based) inclusions inhibit the recrystallization of the material and as a result, deteriorate the magnetic properties. However, the amount of Mn-S generated depends on the S content, and it is considered that there is almost no influence of the Mn amount. Preferably, Si ≦ 1 mass%, Mn ≦ 1.5 mass%, Mg, Ca ≦ 0.01 mass%.

Ti 、B、Zr、V、REM:脱酸を助ける、或いは材料特性を調整するため添加される場合がある。少量なら問題なく、規定量を超えると加工時の割れ等を招く恐れがある。好ましくはTi≦0.1mass%、B,Zr,V,REM≦0.05mass%となる。   Ti, B, Zr, V, REM: May be added to aid deoxidation or adjust material properties. If the amount is small, there is no problem, and if it exceeds the specified amount, cracking during processing may occur. Preferably, Ti ≦ 0.1 mass%, B, Zr, V, REM ≦ 0.05 mass%.

Sn、Zn:メッキ性等表面特性を調整するため添加される場合がある。少量なら問題ないが、規定量を超えると加工時の割れ等を招く恐れがある。好ましくはSn、Zn≦0.1mass%となる。   Sn, Zn: Sometimes added to adjust surface properties such as plating properties. If the amount is small, there is no problem, but if the amount exceeds the specified amount, cracking during processing may occur. Preferably, Sn and Zn ≦ 0.1 mass%.

Cr、Co:表面酸化膜を調整し、溶接性や対錆性を向上させるために添加する場合がある。少量なら問題ないが、規定量を超えると表面酸化による変色や溶接性阻害の原因となる。好ましくはCr≦0.5mass%、Co≦1mass%である。   Cr, Co: may be added to adjust the surface oxide film and improve weldability and rust resistance. If the amount is small, there is no problem. However, if the amount exceeds the specified amount, discoloration due to surface oxidation and weldability may be impaired. Preferably, Cr ≦ 0.5 mass% and Co ≦ 1 mass%.

Cu、Mo:磁性焼鈍条件をコントロールする目的で添加する場合がある。規定量を超えると磁気特性を低下させる恐れがある。好ましくはCu≦2mass%、Mo≦5mass%となる。   Cu, Mo: May be added for the purpose of controlling magnetic annealing conditions. If the amount exceeds the specified amount, the magnetic properties may be deteriorated. Preferably, Cu ≦ 2 mass% and Mo ≦ 5 mass%.

以上について、Si、Mn、Cu、Moを除く元素は、その総量は好ましくは2mass%以下に、より好ましくは1mass%以下である。Si、Mn、Cu、Moについては各元素個別の規定量による。   Regarding the above, the total amount of elements other than Si, Mn, Cu, and Mo is preferably 2 mass% or less, and more preferably 1 mass% or less. For Si, Mn, Cu, and Mo, it depends on the prescribed amount of each element.

なお、上記成分組成の残部はFe及び不可避的不純物から成る。   The balance of the component composition is composed of Fe and inevitable impurities.

<金属組織>
本実施形態のFe−Ni合金は、合金の結晶粒の平均粒径が25μm以上である。結晶粒の平均粒径が25μm未満であると、合金材の磁気特性を十分に得ることができない。なお、結晶粒の平均粒径は、1000μmを超えると、結晶粒界での材料の部分的な軟化等が発生し、成型加工が困難となる。このため、結晶粒の平均粒径の上限は1000μmであり、好ましい平均粒径の上限は200μm、更に好ましくは150μmである。また、好ましい平均粒径の下限は30μmであり、更に好ましくは40μmである。
<Metallic structure>
In the Fe—Ni alloy of this embodiment, the average grain size of the alloy crystal grains is 25 μm or more. When the average grain size of the crystal grains is less than 25 μm, the magnetic properties of the alloy material cannot be sufficiently obtained. Note that if the average grain size of the crystal grains exceeds 1000 μm, partial softening of the material at the crystal grain boundaries or the like occurs, and the molding process becomes difficult. For this reason, the upper limit of the average grain size of the crystal grains is 1000 μm, and the upper limit of the preferred average grain size is 200 μm, more preferably 150 μm. Moreover, the minimum of a preferable average particle diameter is 30 micrometers, More preferably, it is 40 micrometers.

<特性>
本実施形態のFe−Ni合金のビッカース硬さは、125〜200HVである。125HV未満であると、材料強度(硬さ)が通常のPBパーマロイと比較し著しく低いことで、同等の設備や加工条件での成型加工が困難となる。200HVを超えると、成型加工後の磁性焼鈍において合金材に残留する加工歪の回復が十分に行われず、その結果磁気特性十分に得られない。160HV以下であることがより好ましい。
<Characteristic>
The Vickers hardness of the Fe—Ni alloy of this embodiment is 125 to 200 HV. If it is less than 125 HV, the material strength (hardness) is remarkably lower than that of ordinary PB permalloy, making it difficult to perform molding with the same equipment and processing conditions. If it exceeds 200 HV, the work strain remaining in the alloy material is not sufficiently recovered in the magnetic annealing after the forming process, and as a result, sufficient magnetic properties cannot be obtained. More preferably, it is 160 HV or less.

以上が本実施形態に係るFe−Ni合金材である。次に、Fe−Ni合金材の製造方法について説明する。   The above is the Fe—Ni alloy material according to the present embodiment. Next, a method for manufacturing the Fe—Ni alloy material will be described.

まず、溶解原料中のS含有量を抑えるよう吟味し、これに加え真空溶解によりS除去剤添加もしくはスラグ精錬によりSを除去することで、Ni:40〜51mass%を含有し、また、必要に応じて、Ti:0〜1.0mass%、Cr:0〜1.0mass%、Co:0〜2.0mass%、Sn:0〜1.0mass%、Zn:0〜1.0mass%、Mg:0〜0.10mass%、Zr:0〜1.0mass%、Al:0〜1.0mass%、Si:0〜1.0mass%、B:0〜0.05mass%、Cr:0〜1.0mass%、Mn:0〜2.0mass%、V:0〜1.0mass%、Cu:0〜10mass%、Mo:0〜10mass%、Ca:0〜0.10mass%、REM(希土類元素):0〜0.10mass%の各元素を1種以上含有し、S:0.0035mass%以下、O:0.10mass%以下、N:0.10mass%以下、C:0.10mass%以下、P:0〜0.10mass%以下に制限された、残部がFeから成る鋼塊を作製する。なお、本明細書における「鋼塊」には、連続鋳造等により作製された鋳片も含むものとする。   First, we examined to suppress the S content in the melting raw material, and in addition to this, by removing S by adding S remover or refining slag by vacuum melting, Ni: 40-51 mass% is contained, and also necessary Accordingly, Ti: 0 to 1.0 mass%, Cr: 0 to 1.0 mass%, Co: 0 to 2.0 mass%, Sn: 0 to 1.0 mass%, Zn: 0 to 1.0 mass%, Mg: 0 to 0.10 mass%, Zr: 0 to 1.0 mass%, Al: 0 to 1.0 mass%, Si: 0 to 1.0 mass%, B: 0 to 0.05 mass%, Cr: 0 to 1.0 mass %, Mn: 0 to 2.0 mass%, V: 0 to 1.0 mass%, Cu: 0 to 10 mass%, Mo: 0 to 10 mass%, Ca: 0 to 0.10 mass%, REM (rare earth element): 0 ˜0.10 mass% of each element is contained, S: 0.0035 mass% or less, O: 0.10 mass% or less, N: 0.10 mass% or less, C: 0 10 mass% or less, P: 0~0.10mass% was below the limit, the remainder to produce a steel ingot consisting of Fe. The “steel ingot” in the present specification includes a slab produced by continuous casting or the like.

次に、その鋼塊に対して所定の処理条件で熱間鍛造、熱間圧延、冷間圧延が実施される。なお、本実施形態のFe−Ni合金材の製造方法は、鋼塊の作製後、後述の磁性焼鈍工程までは従来の製造方法と同様である。即ち、上記の「所定の処理条件」とは、従来の製造方法で採用されている処理条件のことをいう。   Next, hot forging, hot rolling, and cold rolling are performed on the steel ingot under predetermined processing conditions. In addition, the manufacturing method of the Fe-Ni alloy material of this embodiment is the same as the conventional manufacturing method until the below-mentioned magnetic annealing process after preparation of a steel ingot. That is, the above-mentioned “predetermined processing conditions” refers to processing conditions adopted in the conventional manufacturing method.

例えば、上記成分組成の鋼塊は、1200〜1350℃で1〜12時間の加熱を行った後、熱間鍛造される。鋼塊を熱間鍛造することにより、A系介在物を低減させることができる。続いて、1000℃〜1200℃で被鍛造材が熱間圧延される。熱間圧延後の被圧延材の板厚は、鋼塊の板厚の3〜30%に減少する。その後、所定の板厚となるまで冷間圧延が実施される。なお、熱間圧延や冷間圧延は、それぞれ複数回実施しても良い。また、冷間圧延が複数回実施される場合には、各冷間圧延パスの間に必要に応じて、加工歪を除去する焼鈍を実施しても良い。   For example, a steel ingot having the above component composition is hot forged after heating at 1200 to 1350 ° C. for 1 to 12 hours. By hot forging the steel ingot, A-based inclusions can be reduced. Subsequently, the forged material is hot-rolled at 1000 ° C to 1200 ° C. The thickness of the material to be rolled after hot rolling is reduced to 3 to 30% of the thickness of the steel ingot. Thereafter, cold rolling is performed until a predetermined plate thickness is obtained. In addition, you may implement hot rolling and cold rolling in multiple times, respectively. Further, when cold rolling is performed a plurality of times, annealing for removing work strain may be performed between the cold rolling passes as necessary.

本実施形態においては、上記の冷間圧延終了後、冷間圧延された被圧延材に対して磁性焼鈍(以下、「成型前磁性焼鈍」ともいう)を行う。本実施形態における成型前磁性焼鈍は、被圧延材を800〜1200℃まで加熱し、その温度状態を0.15(9秒)〜120分間保持することにより実施される。このとき、被圧延材の温度が800℃未満であると、結晶粒の再結晶及び粒成長が不十分となり、合金材の磁気特性を十分に向上させることができない。一方、被圧延材の温度が1200℃を超えると、被圧延材の一般的な熱処理雰囲気焼鈍炉の使用温度を超えてしまい、炉の寿命の短縮等が発生するため、合金材とその加工部品について実質的なコスト上昇を招く。このため、成型前磁性焼鈍時の焼鈍温度を800〜1200℃以上とした。好ましい焼鈍温度の下限は900℃であり、更に好ましい焼鈍温度の下限は1000℃である。また、好ましい焼鈍温度の上限は1100℃であり、更に好ましい焼鈍温度の上限は1050℃である。   In the present embodiment, after the cold rolling is completed, magnetic annealing (hereinafter, also referred to as “pre-molding magnetic annealing”) is performed on the cold-rolled material. The pre-molding magnetic annealing in the present embodiment is performed by heating the material to be rolled to 800 to 1200 ° C. and holding the temperature state for 0.15 (9 seconds) to 120 minutes. At this time, if the temperature of the material to be rolled is less than 800 ° C., recrystallization of crystal grains and grain growth become insufficient, and the magnetic properties of the alloy material cannot be sufficiently improved. On the other hand, if the temperature of the material to be rolled exceeds 1200 ° C., it will exceed the operating temperature of a general heat treatment atmosphere annealing furnace of the material to be rolled, and the life of the furnace will be shortened. Incurs a substantial cost increase. For this reason, the annealing temperature at the time of magnetic annealing before shaping | molding was 800-1200 degreeC or more. The minimum of the preferable annealing temperature is 900 degreeC, and the minimum of the more preferable annealing temperature is 1000 degreeC. Moreover, the upper limit of a preferable annealing temperature is 1100 degreeC, and the upper limit of a more preferable annealing temperature is 1050 degreeC.

また、成型前磁性焼鈍における焼鈍時間が0.15分未満であると、結晶粒の再結晶及び粒成長が十分に進まず、合金材の磁気特性を十分に向上させることができない。一方で、焼鈍時間が120分を超えると、磁気特性の向上効果が小さくなるため、生産性の観点から更に長い時間焼鈍することは好ましくない。このため、成型前磁性焼鈍の時間を0.15〜120分に規定した。より好ましい焼鈍時間は1〜60分であり、さらに2〜20分としてもよい。   Further, if the annealing time in the pre-molding magnetic annealing is less than 0.15 minutes, recrystallization of crystal grains and grain growth do not proceed sufficiently, and the magnetic properties of the alloy material cannot be sufficiently improved. On the other hand, if the annealing time exceeds 120 minutes, the effect of improving the magnetic properties is reduced, so that it is not preferable to perform annealing for a longer time from the viewpoint of productivity. For this reason, the time for magnetic annealing before molding was specified to be 0.15 to 120 minutes. A more preferable annealing time is 1 to 60 minutes, and may be 2 to 20 minutes.

続いて、成型前磁性焼鈍が施された被圧延材に対して圧延率0〜20%で最終冷間圧延を行う。この圧延は材料表面に軽度の表面圧縮応力を導入することで、プレス等の切断加工時に発生するバリやダレを防止するために必要に応じて導入される。この圧延において、圧延率が20%を超えると、被圧延材の加工硬化が過剰となり、合金材の硬度が高くなりすぎる。硬度が高すぎると、磁気特性を低下させてしまう。なお、「圧延率0%の最終冷間圧延」とは、最終冷間圧延を実施しないことを意味する。即ち、最終冷間圧延は、成型前磁性焼鈍後の被圧延材の硬度を上げたい場合に、必要に応じて実施すれば良い。また圧延率の上限は15%以下、さらには10%以下であることが好ましい。   Subsequently, final cold rolling is performed at a rolling rate of 0 to 20% on the material to be rolled that has been subjected to pre-molding magnetic annealing. This rolling is introduced as necessary in order to prevent burrs and sagging that occur at the time of cutting such as a press by introducing a slight surface compressive stress to the material surface. In this rolling, if the rolling rate exceeds 20%, work hardening of the material to be rolled becomes excessive, and the hardness of the alloy material becomes too high. If the hardness is too high, the magnetic properties will be reduced. “Final cold rolling with a rolling rate of 0%” means that the final cold rolling is not performed. That is, the final cold rolling may be performed as necessary when it is desired to increase the hardness of the material to be rolled after the magnetic annealing before molding. The upper limit of the rolling rate is preferably 15% or less, and more preferably 10% or less.

以上の工程により、本実施形態におけるFe−Ni合金材が製造される。本実施形態のFe−Ni合金材は、合金材を製造する段階で磁性焼鈍(成型前磁性焼鈍)を行うため、軟磁性部品を製造するための加工を行う前の段階で、ある程度磁気特性が向上した状態となっている。   The Fe—Ni alloy material in this embodiment is manufactured through the above steps. Since the Fe—Ni alloy material of the present embodiment performs magnetic annealing (magnetic annealing before molding) at the stage of manufacturing the alloy material, the magnetic characteristics have some degree of magnetic properties before processing for manufacturing soft magnetic parts. It is in an improved state.

このため、成型工程後に行う磁性焼鈍(以下、「成型後磁性焼鈍」ともいう)においては、従来の成型後磁性焼鈍のように磁気特性を一気に向上させるような高温で長時間の焼鈍を実施しなくても良い。即ち、被加工材の温度が低い状態で焼鈍処理を行うことができる。また、被圧延材の温度が高い場合であっても、磁気特性が既にある程度向上した状態にあるために、焼鈍時間を短くすることができる。これにより、被加工材が高温状態で長い時間、他部材と接触することがなくなる。これにより、被加工材と他部材との貼り付きを抑制することができる。   For this reason, in the magnetic annealing performed after the molding process (hereinafter also referred to as “post-molding magnetic annealing”), annealing is performed at a high temperature for a long time so as to improve the magnetic properties at once like the conventional post-molding magnetic annealing. It is not necessary. That is, the annealing process can be performed in a state where the temperature of the workpiece is low. Even when the temperature of the material to be rolled is high, the annealing time can be shortened because the magnetic properties have already been improved to some extent. This prevents the workpiece from coming into contact with other members for a long time in a high temperature state. Thereby, sticking with a workpiece and other members can be controlled.

また、本実施形態に係るFe−Ni合金材は、合金材中に含有されるSの含有量が低く制限されていることから、熱間鍛造時におけるA系化合物の清浄度低減の効果を高めることが可能となる。このため、磁性焼鈍時に結晶粒の粒成長が起こりやすくなり、合金材の磁気特性の向上を促進させることができる。   Moreover, since the content of S contained in the alloy material is limited to be low, the Fe—Ni alloy material according to this embodiment enhances the effect of reducing the cleanliness of the A-based compound during hot forging. It becomes possible. For this reason, crystal grain growth is likely to occur during magnetic annealing, and the improvement of the magnetic properties of the alloy material can be promoted.

なお、本実施形態のFe−Ni合金材を用いて、時計用のヨークや変成器コア等の軟磁性部品を製造する場合には、製造される部品に応じてプレス加工や曲げ加工等の所定の成型加工が実施される。成型加工方法は、従来方法と同様であるため、本明細書においては説明を省略する。   In addition, when producing soft magnetic parts such as a timepiece yoke and a transformer core using the Fe—Ni alloy material of the present embodiment, a predetermined process such as pressing or bending is performed according to the parts to be produced. The molding process is performed. Since the molding method is the same as the conventional method, the description is omitted in this specification.

そして、所定の成型加工が施された被加工材に対しては、前述の通り、成型後磁性焼鈍が実施される。これにより、軟磁性部品製造用の材料(軟磁性部品材料)が作製される。なお、成型後磁性焼鈍の好ましい焼鈍温度は500〜1000℃、より好ましくは700〜950℃であり、このときの好ましい焼鈍時間は60〜180分、更には60〜120分であることがより好ましい。また、焼鈍温度を1000超〜1200℃としても良く、更に好ましくは1050〜1150℃、この場合の好ましい焼鈍時間は5〜60分、更には10〜40分とすることがより好ましい。   And as above-mentioned, the post-molding magnetic annealing is implemented with respect to the to-be-processed material to which the predetermined shaping | molding process was given. Thereby, a material for soft magnetic component manufacture (soft magnetic component material) is produced. In addition, the preferable annealing temperature of post-molding magnetic annealing is 500-1000 degreeC, More preferably, it is 700-950 degreeC, It is more preferable that the preferable annealing time at this time is 60-180 minutes, Furthermore, it is 60-120 minutes. . Also, the annealing temperature may be more than 1000 to 1200 ° C, more preferably 1050 to 1150 ° C, and the preferable annealing time in this case is 5 to 60 minutes, more preferably 10 to 40 minutes.

そして、軟磁性部品材料を用いて従来方法により軟磁性部品が製造される。   Then, a soft magnetic component is manufactured by a conventional method using the soft magnetic component material.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to this example. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

本発明に係るFe−Ni合金材を製造して合金材の特性について評価した。Fe−Ni合金材の製造方法は以下の通りである。   The Fe—Ni alloy material according to the present invention was manufactured and the characteristics of the alloy material were evaluated. The manufacturing method of the Fe—Ni alloy material is as follows.

まず、5ton溶解炉において、Niを45.0−45.3mass%含有し、Sが表1に示す含有量に制限され、残部がFe及び表1中の含有成分から成る5トン鋼塊が数種類作製された。これらの鋼塊から所定の寸法に複数切り出された試験No.1〜31の供試材が作製される。各供試材をそれぞれ表1に示す鍛造温度まで5時間加熱し、加熱された各供試材を断面積が30%(500mm×500mmから200mm×400mm)となるまで熱間鍛造にて延伸し、その後、表面酸化層を切削除去した。なお、各供試材の成分組成は、以下の工程を経て製造されたFe−Ni合金材に対してICP分析を行うことで同定した。   First, in a 5 ton melting furnace, 45.0-45.3 mass% of Ni is contained, S is limited to the content shown in Table 1, and the remainder is Fe and several 5-ton steel ingots composed of the components contained in Table 1 It was made. Test materials of Test Nos. 1 to 31 cut out to a predetermined size from these steel ingots are produced. Each specimen was heated to the forging temperature shown in Table 1 for 5 hours, and each heated specimen was stretched by hot forging until the cross-sectional area became 30% (500 mm × 500 mm to 200 mm × 400 mm). Thereafter, the surface oxide layer was removed by cutting. In addition, the component composition of each test material was identified by performing ICP analysis with respect to the Fe-Ni alloy material manufactured through the following processes.

Figure 2015196838
Figure 2015196838

続いて、加熱された各供試材に対して、熱間圧延率が90%となるように熱間圧延を施し、コイル状に巻き取った。このコイルを常温まで冷却した後、コイルから引き出された板状の各供試材に対して板厚が2.0mmになるまで冷間圧延を実施した。その後、炉内が水素雰囲気にある連続焼鈍炉において、冷間圧延された各供試材に対し、1040℃で3分間、加工歪を除去するための焼鈍を施した。   Subsequently, each of the heated specimens was hot-rolled so that the hot rolling rate was 90%, and wound into a coil shape. After this coil was cooled to room temperature, cold rolling was performed on each plate-shaped specimen drawn from the coil until the plate thickness became 2.0 mm. Thereafter, in the continuous annealing furnace in which the inside of the furnace was in a hydrogen atmosphere, each of the cold-rolled specimens was annealed at 1040 ° C. for 3 minutes to remove processing strain.

焼鈍後、各供試材に対し、所望の板厚となるまで更に冷間圧延を実施した。その後、炉内が水素雰囲気にある連続焼鈍炉において再度焼鈍を実施した。ここで行う焼鈍は磁性焼鈍(成型前磁性焼鈍)であり、焼鈍温度を1040℃とし、焼鈍時間は表1に示す条件で実施した。続いて、磁性焼鈍が施された供試材のうち、いくつかの供試材に対して表1に示す圧延率で最終冷間圧延を施した。最終冷間圧延により、各供試材は板厚0.5mmまで圧延される。なお、最終冷間圧延を実施しない供試材については、成型前磁性焼鈍の直前の冷間圧延工程において、0.5mmまで圧延された状態となっている。   After annealing, each sample material was further cold rolled until a desired plate thickness was obtained. Thereafter, annealing was performed again in a continuous annealing furnace having a hydrogen atmosphere in the furnace. The annealing performed here was magnetic annealing (magnetic annealing before molding), the annealing temperature was 1040 ° C., and the annealing time was performed under the conditions shown in Table 1. Subsequently, among the test materials subjected to magnetic annealing, some of the test materials were subjected to final cold rolling at the rolling rates shown in Table 1. By the final cold rolling, each specimen is rolled to a plate thickness of 0.5 mm. In addition, about the test material which does not implement final cold rolling, it is in the state rolled to 0.5 mm in the cold rolling process just before magnetic annealing before shaping | molding.

以上の工程を経て試験No.1〜31のFe−Ni合金材が製造される。ここで、各合金材の結晶粒の平均粒径を測定した。平均粒径は、JIS H 0501中の切断法を用いて測定した。また、各合金材のビッカース硬さも測定した。ビッカース硬さは、JIS G 0255に準拠し試験荷重を500gとして測定した。   The Fe-Ni alloy material of test No. 1-31 is manufactured through the above process. Here, the average grain size of the crystal grains of each alloy material was measured. The average particle size was measured using the cutting method in JIS H 0501. Moreover, the Vickers hardness of each alloy material was also measured. The Vickers hardness was measured according to JIS G 0255 with a test load of 500 g.

また、各合金材のA系介在物の清浄度をJIS G 0555に準拠した方法で測定した。また、各合金材の圧延方向100mm×幅方向10mmのサンプルを採取し、片面を段階的に均一エッチングし、板厚と発生した反りを測定して表面応力の大きさを測定した。これらの測定結果を表2に示す。なお、表2に示す表面応力は、正の値が圧縮応力、負の値が引張応力を示している。   Further, the cleanliness of the A-based inclusions of each alloy material was measured by a method based on JIS G 0555. Further, a sample of 100 mm in the rolling direction and 10 mm in the width direction of each alloy material was collected, one surface was uniformly etched stepwise, and the thickness of the plate and the generated warp were measured to measure the surface stress. These measurement results are shown in Table 2. As for the surface stress shown in Table 2, a positive value indicates a compressive stress, and a negative value indicates a tensile stress.

続いて、最終圧延後の各合金材(最終圧延を実施していない場合には、磁性焼鈍後の合金材)に対してプレス加工を行い、1つの合金材につき4枚の磁気特性測定用のOリング(内径33mmφ、外径45mmφ)を作製した。更に、いくつかの合金材については、各OリングにJIS Z 4428 Vブロック法にてR=1.0mmによる90°曲げを実施した後、矯正用の平板に挟んだプレスで平坦に戻した。なお、表1の“成型加工方法”の項目に付された“○”は、所定の成型加工(プレス、曲げ)が施されたことを意味する。   Subsequently, each alloy material after the final rolling (alloy material after magnetic annealing in the case where the final rolling is not performed) is pressed to measure four magnetic properties per alloy material. An O-ring (inner diameter 33 mmφ, outer diameter 45 mmφ) was produced. Further, for some alloy materials, each O-ring was subjected to 90 ° bending with R = 1.0 mm by JIS Z 4428 V block method, and then returned to flatness with a press sandwiched between flat plates for correction. Note that “◯” attached to the item “Molding method” in Table 1 means that a predetermined molding process (press, bending) has been performed.

成型加工後、Oリングを4枚積層させてケースに収めることで磁気特性測定用の測定試料Aが作製される。続いて、直流磁気特性測定装置を用いて各測定試料Aの直流磁気特性(保磁力、透磁率)を測定した。測定方法は、JIS C 2531 直流磁気特性試験に準拠した。その測定結果を表2に示す。   After molding, four O-rings are stacked and placed in a case to produce a measurement sample A for measuring magnetic properties. Subsequently, the DC magnetic characteristics (coercivity, permeability) of each measurement sample A were measured using a DC magnetic characteristic measuring apparatus. The measuring method was based on JIS C 2531 DC magnetic property test. The measurement results are shown in Table 2.

その後、各Oリングに対して成型後磁性焼鈍を実施した。成型後磁性焼鈍は、炉内が水素雰囲気にある連続焼鈍炉において、各Oリングを表2に示す焼鈍温度まで加熱し、その温度状態で表2に示す時間保持されることで実施される。そして、成型後磁性焼鈍が施されたOリングを再度4枚積層させてケースに収めることで磁気特性測定用の測定試料Bが作製される。続いて、直流磁気特性測定装置を用いて各測定試料Bの直流磁気特性(保磁力、透磁率)を測定した。その測定結果を表1に示す。なお、軟磁性部品材料としては、保磁力Hcが16A/m以下、初期透磁率μiが3000以上、最大透磁率μmが30000以上の磁気特性を有することが好ましい。 Thereafter, post-molding magnetic annealing was performed on each O-ring. The post-molding magnetic annealing is performed by heating each O-ring to the annealing temperature shown in Table 2 in the continuous annealing furnace in which the inside of the furnace is in a hydrogen atmosphere, and maintaining that temperature for the time shown in Table 2. Then, four O-rings that have been subjected to magnetic annealing after molding are again laminated and placed in a case, thereby producing a measurement sample B for measuring magnetic properties. Subsequently, the DC magnetic characteristics (coercivity, permeability) of each measurement sample B were measured using a DC magnetic characteristic measuring apparatus. The measurement results are shown in Table 1. The soft magnetic component material preferably has magnetic properties such that the coercive force Hc is 16 A / m or less, the initial permeability μi is 3000 or more, and the maximum permeability μm is 30000 or more.

Figure 2015196838
Figure 2015196838

表2に示す通り、本発明で規定される成分組成や処理条件を満たす試験No.1〜25の測定試料においては、磁気特性が良好なものとなった。また、成型工程後の磁性焼鈍時において、結晶粒径は成型加工前磁性焼鈍後で測定した32〜145μmの範囲に収まっており、各Oリング同士が貼り付くといった問題も生じなかった。   As shown in Table 2, the magnetic properties of test samples Nos. 1 to 25 satisfying the component composition and processing conditions defined in the present invention were good. Further, at the time of the magnetic annealing after the molding process, the crystal grain size was in the range of 32 to 145 μm measured after the magnetic annealing before molding processing, and there was no problem that the O-rings adhered to each other.

一方、試験No.27の測定試料においては、合金材の成型前磁性焼鈍時間が0.1分(0.15分未満)であったため、合金材の結晶粒の平均粒径が7μm(25μm未満)となり、磁気特性が低かった。また、試験No.26、29の測定試料においては、合金中のSの含有量がそれぞれ0.0045mass%、0.0040mass%で0.0035mass%を超えたため、A系介在物の清浄度が大きくなってしまった。これにより、測定試料の磁気特性が低くなった。また、試験No.28の測定試料においては、最終冷間圧延における圧延率が20%を超えたため、合金材の硬さが200HVを超えてしまい、その結果、測定試料の磁気特性が低くなった。   On the other hand, in the measurement sample of test No. 27, the magnetic annealing time before molding of the alloy material was 0.1 minutes (less than 0.15 minutes), so the average grain size of the alloy material crystal grains was 7 μm (less than 25 μm). ) And magnetic properties were low. Moreover, in the measurement samples of Test Nos. 26 and 29, the S content in the alloy exceeded 0.0035 mass% at 0.0045 mass% and 0.0040 mass%, respectively. It is had. As a result, the magnetic properties of the measurement sample were lowered. Moreover, in the measurement sample of test No. 28, since the rolling rate in the final cold rolling exceeded 20%, the hardness of the alloy material exceeded 200 HV, and as a result, the magnetic properties of the measurement sample were lowered. .

試験No.30は成型前磁性焼鈍温度が既定より低く、十分な加熱がなされなかったため、成型後磁性焼鈍を施しても磁気特性が向上するに至らなかった。   In Test No. 30, the pre-molding magnetic annealing temperature was lower than the predetermined value, and sufficient heating was not performed. Therefore, even if the post-molding magnetic annealing was performed, the magnetic characteristics did not improve.

また、試験No.31においては、成型後磁性焼鈍を高温(1100℃)で長時間(120分)実施している。即ち、試験No.31における成型後磁性焼鈍は、成型加工後に一気に磁気特性を向上させる焼鈍であり、従来方法を用いた磁性焼鈍である。表2に示す通り、試験No.31の測定試料の磁気特性は良好であるが、この測定試料を構成する各Oリングの表面は、アルミナ粉の塗布等の貼り付き防止処理が施されている。即ち、試験No.31のような製造条件で合金材を製造すると、磁気特性は良好であるが、貼り付き防止処理を実施している分、コストが上昇してしまう。   In Test No. 31, magnetic post-molding annealing was performed at a high temperature (1100 ° C.) for a long time (120 minutes). That is, the post-molding magnetic annealing in Test No. 31 is an annealing that improves the magnetic properties at once after the molding process, and is a magnetic annealing using a conventional method. As shown in Table 2, the magnetic properties of the measurement sample of Test No. 31 are good, but the surface of each O-ring constituting this measurement sample is subjected to sticking prevention treatment such as application of alumina powder. . That is, when an alloy material is manufactured under the manufacturing conditions as in Test No. 31, the magnetic characteristics are good, but the cost increases as the sticking prevention treatment is performed.

一方、貼り付き防止処理を施さずに試験No.31と同様の条件で製造した合金材は、成型後の磁性焼鈍中にOリング同士に著しいハリツキが発生し、磁気特性の測定に供せない状態となってしまった。   On the other hand, the alloy material manufactured under the same conditions as in Test No. 31 without performing the sticking prevention treatment causes remarkable peeling between the O-rings during magnetic annealing after molding, and cannot be used for measurement of magnetic properties. It has become a state.

本発明は、軟磁性材料として用いられるFe−Ni合金材の製造に適用することができる。
The present invention can be applied to the manufacture of an Fe—Ni alloy material used as a soft magnetic material.

Claims (5)

Fe−Ni合金材の製造方法であって、
Ni:40〜51mass%、
Ti:0〜1.0mass%、
Cr:0〜1.0mass%、
Co:0〜2.0mass%、
Sn:0〜1.0mass%、
Zn:0〜1.0mass%、
Mg:0〜0.10mass%、
Zr:0〜1.0mass%、
Al:0〜1.0mass%、
Si:0〜1.0mass%、
B :0〜0.05mass%、
Cr:0〜1.0mass%、
Mn:0〜2.0mass%、
V :0〜1.0mass%、
Cu:0〜10mass%、
Mo:0〜10mass%、
Ca:0〜0.10mass%、
REM(希土類元素):0〜0.10mass%を含有し、
S:0.0035mass%以下、
O:0.10mass%以下、
N:0.10mass%以下、
C:0.10mass%以下、
P:0.10mass%以下に制限され、
残部:Feから成る鋼塊に対して所定の処理条件で熱間鍛造、熱間圧延、冷間圧延が実施され、冷間圧延された被圧延材を800〜1200℃まで加熱して0.15〜120分間、磁性焼鈍を行って被焼鈍材の結晶粒の平均粒径を25μm以上とし、その後、圧延率0〜20%の最終冷間圧延が実施される、Fe−Ni合金材の製造方法。
A method for producing an Fe-Ni alloy material,
Ni: 40-51 mass%,
Ti: 0 to 1.0 mass%,
Cr: 0 to 1.0 mass%,
Co: 0 to 2.0 mass%,
Sn: 0 to 1.0 mass%,
Zn: 0 to 1.0 mass%,
Mg: 0 to 0.10 mass%,
Zr: 0 to 1.0 mass%,
Al: 0 to 1.0 mass%,
Si: 0 to 1.0 mass%,
B: 0 to 0.05 mass%,
Cr: 0 to 1.0 mass%,
Mn: 0 to 2.0 mass%,
V: 0 to 1.0 mass%,
Cu: 0 to 10 mass%,
Mo: 0-10 mass%,
Ca: 0 to 0.10 mass%,
REM (rare earth element): 0 to 0.10 mass%,
S: 0.0035 mass% or less,
O: 0.10 mass% or less,
N: 0.10 mass% or less,
C: 0.10 mass% or less,
P: limited to 0.10 mass% or less,
The rest: hot ingot, hot rolling, and cold rolling are performed on the steel ingot made of Fe under predetermined processing conditions, and the cold-rolled material to be rolled is heated to 800 to 1200 ° C. to 0.15 A method for producing an Fe—Ni alloy material, in which magnetic annealing is performed for 120 minutes so that the average grain size of crystal grains of the material to be annealed is 25 μm or more, and then final cold rolling is performed at a rolling rate of 0 to 20% .
請求項1に記載のFe−Ni合金材に所定の成型加工が施された後、
被加工材を500〜1000℃まで加熱して60〜180分間、更に磁性焼鈍を行う、軟磁性部品の製造方法。
After a predetermined molding process is performed on the Fe—Ni alloy material according to claim 1,
A method for producing a soft magnetic component, comprising heating a workpiece to 500 to 1000 ° C. and further performing magnetic annealing for 60 to 180 minutes.
請求項1に記載のFe−Ni合金材に所定の成型加工が施された後、
被加工材を1000超〜1200℃まで加熱して5〜60分間、更に磁性焼鈍を行う、軟磁性部品の製造方法。
After a predetermined molding process is performed on the Fe—Ni alloy material according to claim 1,
A method for producing a soft magnetic component, comprising heating a workpiece to over 1000 to 1200 ° C. and further performing magnetic annealing for 5 to 60 minutes.
Ni:40〜51mass%、
Ti:0〜1.0mass%、
Cr:0〜1.0mass%、
Co:0〜2.0mass%、
Sn:0〜1.0mass%、
Zn:0〜1.0mass%、
Mg:0〜0.10mass%、
Zr:0〜1.0mass%、
Al:0〜1.0mass%、
Si:0〜1.0mass%、
B:0〜0.05mass%、
Cr:0〜1.0mass%、
Mn:0〜2.0mass%、
V:0〜1.0mass%、
Cu:0〜10mass%、
Mo:0〜10mass%、
Ca:0〜0.10mass%、
REM(希土類元素):0〜0.10mass%を含有し、
S:0.0035mass%以下
O:0.10mass%以下、
N:0.10mass%以下、
C:0.10mass%以下、
P:0.10mass%以下に制限され、
残部:Feより成り、結晶粒の平均粒径が25μm以上であり、A系介在物の清浄度が0.010%以下であり、ビッカース硬さが120〜200HVである、Fe−Ni合金。
Ni: 40-51 mass%,
Ti: 0 to 1.0 mass%,
Cr: 0 to 1.0 mass%,
Co: 0 to 2.0 mass%,
Sn: 0 to 1.0 mass%,
Zn: 0 to 1.0 mass%,
Mg: 0 to 0.10 mass%,
Zr: 0 to 1.0 mass%,
Al: 0 to 1.0 mass%,
Si: 0 to 1.0 mass%,
B: 0 to 0.05 mass%,
Cr: 0 to 1.0 mass%,
Mn: 0 to 2.0 mass%,
V: 0 to 1.0 mass%,
Cu: 0 to 10 mass%,
Mo: 0-10 mass%,
Ca: 0 to 0.10 mass%,
REM (rare earth element): 0 to 0.10 mass%,
S: 0.0035 mass% or less O: 0.10 mass% or less,
N: 0.10 mass% or less,
C: 0.10 mass% or less,
P: limited to 0.10 mass% or less,
The balance: Fe-Ni alloy made of Fe, having an average grain size of 25 μm or more, a cleanliness of A-based inclusions of 0.010% or less, and a Vickers hardness of 120 to 200 HV.
Ni:40〜51mass%、
Ti:0〜1.0mass%、
Cr:0〜1.0mass%、
Co:0〜2.0mass%、
Sn:0〜1.0mass%、
Zn:0〜1.0mass%、
Mg:0〜0.10mass%、
Zr:0〜1.0mass%、
Al:0〜1.0mass%、
Si:0〜1.0mass%、
B:0〜0.05mass%、
Cr:0〜1.0mass%、
Mn:0〜2.0mass%、
V:0〜1.0mass%、
Cu:0〜10mass%、
Mo:0〜10mass%、
Ca:0〜0.10mass%、
REM(希土類元素):0〜0.10mass%を含有し、
S:0.0035mass%以下
O:0.10mass%以下、
N:0.10mass%以下、
C:0.10mass%以下、
P:0.10mass%以下に制限され、残部:Feから成り、
結晶粒の平均粒径が25μm以上であり、かつ成型加工後施される磁性焼鈍にて保磁力Hcが16A/m以下、初期透磁率μiが3000以上、最大透磁率μmが30000以上の磁気特性を有する、軟磁性部品材料。



Ni: 40-51 mass%,
Ti: 0 to 1.0 mass%,
Cr: 0 to 1.0 mass%,
Co: 0 to 2.0 mass%,
Sn: 0 to 1.0 mass%,
Zn: 0 to 1.0 mass%,
Mg: 0 to 0.10 mass%,
Zr: 0 to 1.0 mass%,
Al: 0 to 1.0 mass%,
Si: 0 to 1.0 mass%,
B: 0 to 0.05 mass%,
Cr: 0 to 1.0 mass%,
Mn: 0 to 2.0 mass%,
V: 0 to 1.0 mass%,
Cu: 0 to 10 mass%,
Mo: 0-10 mass%,
Ca: 0 to 0.10 mass%,
REM (rare earth element): 0 to 0.10 mass%,
S: 0.0035 mass% or less O: 0.10 mass% or less,
N: 0.10 mass% or less,
C: 0.10 mass% or less,
P: limited to 0.10 mass% or less, balance: Fe,
Magnetic grains having an average grain size of 25 μm or more, a coercive force H c of 16 A / m or less, an initial permeability μi of 3000 or more, and a maximum permeability μm of 30000 or more in magnetic annealing performed after molding. Soft magnetic component material with properties.



JP2014073534A 2014-03-31 2014-03-31 Fe-Ni alloy material manufacturing method, soft magnetic component manufacturing method, Fe-Ni alloy Active JP6375127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014073534A JP6375127B2 (en) 2014-03-31 2014-03-31 Fe-Ni alloy material manufacturing method, soft magnetic component manufacturing method, Fe-Ni alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014073534A JP6375127B2 (en) 2014-03-31 2014-03-31 Fe-Ni alloy material manufacturing method, soft magnetic component manufacturing method, Fe-Ni alloy

Publications (2)

Publication Number Publication Date
JP2015196838A true JP2015196838A (en) 2015-11-09
JP6375127B2 JP6375127B2 (en) 2018-08-15

Family

ID=54546731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014073534A Active JP6375127B2 (en) 2014-03-31 2014-03-31 Fe-Ni alloy material manufacturing method, soft magnetic component manufacturing method, Fe-Ni alloy

Country Status (1)

Country Link
JP (1) JP6375127B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106834642A (en) * 2017-01-18 2017-06-13 抚顺特殊钢股份有限公司 A kind of optimization forging technology of GH6783 alloy bar materials
CN111705276A (en) * 2020-07-01 2020-09-25 宁波江丰电子材料股份有限公司 Ultra-pure copper-manganese alloy and treatment method thereof
CN113621888A (en) * 2021-08-10 2021-11-09 山东盛阳金属科技股份有限公司 825 iron-nickel-based alloy hot continuous rolling coil and preparation process thereof
CN114318172A (en) * 2022-01-04 2022-04-12 西南科技大学 Iron-nickel alloy with ultrahigh soft magnetic performance and preparation method thereof
CN114752815A (en) * 2021-01-08 2022-07-15 宝武特种冶金有限公司 Nickel-based alloy welding strip and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119620A (en) * 1987-11-04 1989-05-11 Nippon Mining Co Ltd Manufacture of sheet metal of fe-ni magnetic alloy
JPH0288746A (en) * 1988-09-26 1990-03-28 Daido Steel Co Ltd High permeability magnetic material
JPH02225621A (en) * 1989-02-27 1990-09-07 Daido Steel Co Ltd Production of high permeability magnetic material
JPH04154940A (en) * 1990-10-17 1992-05-27 Nkk Corp Fe-ni series high permeability magnet alloy and its manufacture
JPH06172938A (en) * 1992-02-18 1994-06-21 Nkk Corp Fe-ni high permeability magnetic alloy excellent in wear resistance and hot workability, and its production
JP2001049350A (en) * 2000-01-01 2001-02-20 Nkk Corp PRODUCTION OF ALLOY STRIP OF Fe-Ni ALLOY FOR SHADOW MASK AND IC LEAD FRAME
JP2009252702A (en) * 2008-04-10 2009-10-29 Univ Waseda Magnetic shield flange

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119620A (en) * 1987-11-04 1989-05-11 Nippon Mining Co Ltd Manufacture of sheet metal of fe-ni magnetic alloy
JPH0288746A (en) * 1988-09-26 1990-03-28 Daido Steel Co Ltd High permeability magnetic material
JPH02225621A (en) * 1989-02-27 1990-09-07 Daido Steel Co Ltd Production of high permeability magnetic material
JPH04154940A (en) * 1990-10-17 1992-05-27 Nkk Corp Fe-ni series high permeability magnet alloy and its manufacture
JPH06172938A (en) * 1992-02-18 1994-06-21 Nkk Corp Fe-ni high permeability magnetic alloy excellent in wear resistance and hot workability, and its production
JP2001049350A (en) * 2000-01-01 2001-02-20 Nkk Corp PRODUCTION OF ALLOY STRIP OF Fe-Ni ALLOY FOR SHADOW MASK AND IC LEAD FRAME
JP2009252702A (en) * 2008-04-10 2009-10-29 Univ Waseda Magnetic shield flange

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106834642A (en) * 2017-01-18 2017-06-13 抚顺特殊钢股份有限公司 A kind of optimization forging technology of GH6783 alloy bar materials
CN111705276A (en) * 2020-07-01 2020-09-25 宁波江丰电子材料股份有限公司 Ultra-pure copper-manganese alloy and treatment method thereof
CN111705276B (en) * 2020-07-01 2022-05-27 宁波江丰电子材料股份有限公司 Ultra-pure copper-manganese alloy and treatment method thereof
CN114752815A (en) * 2021-01-08 2022-07-15 宝武特种冶金有限公司 Nickel-based alloy welding strip and preparation method and application thereof
CN114752815B (en) * 2021-01-08 2023-11-14 宝武特种冶金有限公司 Nickel-based alloy welding strip and preparation method and application thereof
CN113621888A (en) * 2021-08-10 2021-11-09 山东盛阳金属科技股份有限公司 825 iron-nickel-based alloy hot continuous rolling coil and preparation process thereof
CN113621888B (en) * 2021-08-10 2022-02-25 山东盛阳金属科技股份有限公司 825 iron-nickel-based alloy hot continuous rolling plate rolling preparation process
CN114318172A (en) * 2022-01-04 2022-04-12 西南科技大学 Iron-nickel alloy with ultrahigh soft magnetic performance and preparation method thereof
CN114318172B (en) * 2022-01-04 2022-11-18 西南科技大学 Iron-nickel alloy with ultrahigh soft magnetic performance and preparation method thereof

Also Published As

Publication number Publication date
JP6375127B2 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
JP5610084B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP6236470B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
JP6375127B2 (en) Fe-Ni alloy material manufacturing method, soft magnetic component manufacturing method, Fe-Ni alloy
WO2018135414A1 (en) Non-oriented electromagnetic steel sheet and production method therefor
JP2002173745A (en) Fe-Ni BASED PERMALLOY, ITS PRODUCTION METHOD AND CAST SLAB
JP2008127612A (en) Non-oriented electromagnetic steel sheet for divided core
JP7462737B2 (en) 600MPa-class non-oriented electrical steel sheet and its manufacturing method
JP6518950B2 (en) Non-oriented electrical steel sheet and method of manufacturing the same
JP2018135556A (en) Electromagnetic steel sheet, and method for producing the same
JP5206017B2 (en) Method for producing high silicon steel sheet
JP2017106101A (en) Non-oriented electromagnetic steel sheet and manufacturing method therefor
JP6294028B2 (en) Method for producing Fe-Ni permalloy alloy
JP4790537B2 (en) Method for producing non-oriented electrical steel sheet with all-around characteristics and good workability
JP2020164956A (en) Ferritic stainless steel sheet and manufacturing method therefor
JP3931842B2 (en) Method for producing non-oriented electrical steel sheet
JP6143539B2 (en) Ni-Fe-based permalloy alloy excellent in hot workability and AC magnetic characteristics and method for producing the same
JP2022030684A (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR20160133371A (en) Copper alloy having excellent heat resistance
JP5282456B2 (en) A material for stainless cold-rolled steel sheet capable of suppressing the occurrence of roping and ear cracking and its manufacturing method
JP2014080676A (en) PRODUCTION METHOD OF Fe-Al BASED ALLOY BAND-STEEL
JP2020007599A (en) Ferritic stainless steel sheet, clad material, and manufacturing method of ferritic stainless steel sheet
CN114341383B (en) Method for producing non-oriented electromagnetic steel sheet
JP4852804B2 (en) Non-oriented electrical steel sheet
WO2022009483A1 (en) Soft magnetic member and intermediate thereof, methods respectively for producing said member and said intermediate, and alloy for soft magnetic member
JP6796483B2 (en) Soft magnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180723

R150 Certificate of patent or registration of utility model

Ref document number: 6375127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250