JP2004327760A - Process for manufacturing led lamp - Google Patents

Process for manufacturing led lamp Download PDF

Info

Publication number
JP2004327760A
JP2004327760A JP2003121115A JP2003121115A JP2004327760A JP 2004327760 A JP2004327760 A JP 2004327760A JP 2003121115 A JP2003121115 A JP 2003121115A JP 2003121115 A JP2003121115 A JP 2003121115A JP 2004327760 A JP2004327760 A JP 2004327760A
Authority
JP
Japan
Prior art keywords
hole
printed wiring
wiring board
led lamp
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003121115A
Other languages
Japanese (ja)
Inventor
Kazuyuki Oya
和行 大矢
Norio Sayama
憲郎 佐山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2003121115A priority Critical patent/JP2004327760A/en
Priority to US10/830,312 priority patent/US20040229391A1/en
Publication of JP2004327760A publication Critical patent/JP2004327760A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a packaging substrate of a plurality of LED chips employing a high thermal conductivity substrate while ensuring productivity. <P>SOLUTION: In the process for manufacturing an LED lamp, a through hole printed wiring board on which an LED chip packaging pattern and a terminal pattern are formed, and a plate provided with a through hole having a shape corresponding to a recess with the wall face of the hole being subjected to reflection increasing treatment are produced, and then they are bonded mutually while being aligned thus producing a multilayer printed wiring board. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、新規なLEDランプの製造法であり、製造工程を工夫することにより、生産性を確保しつつ、熱伝導率の高い基板を用いることを可能とするものである。
【0002】
【従来の技術】
【特許技術1】特開2001−190210号公報
【特許技術2】特開2001−224472号公報
【0003】
従来の面実装型LEDランプの製造法は、例えば、白色の無機充填剤を多量に含む銅張ガラスエポキシ積層板等を用いて、適宜、LEDチップ実装パターン部分を内層とした3層板等を作製し、該実装部分をザグリにて露出させて、LEDチップ実装し、適宜、樹脂封止し、個々のLEDランプに切断分離して製造されている。ここに、白色の無機充填剤を多量に含むものを用いる理由は、無機充填剤にて耐熱性の向上を図ることにより超音波接合などをより容易とすること、および白色充填剤にて光線反射率の向上をはかり輝度を高めることにある。
また、セラミックス、特に、アルミナ製の焼結体を使用したものが、特許技術1、2に開示され、セラミックスを用いることにより、従来の樹脂基板の欠点である超音波接合性が改善したものが得られと開示している。
【0004】
青色LEDの発明とその実用化の進展などに象徴されるように、LEDの進歩もめざましいものがあり、高密度化、多色化、さらに、自動車ヘッドランプへの利用などの課題の解決が要求されるようになってきた。
LEDは効率の高い発光素子であるが、これら要求を満たすようにしたLEDランプの発熱密度・量は高く、従来の樹脂製基板の使用では対応できない。
【0005】
【発明が解決しようとする課題】
この要求を解決する手段として、熱伝導率の高いセラミックスの使用が検討されているが、本願にて目的とする複数のLEDチップを搭載するために使用する小型高密度のものは、いまだ完成には至っていない。すなわち、セラミックス、典型的なアルミナの場合、工業的には後加工にて作製することは高価となり実質的に不可能である。そこで、グリーンシート法による製造が必須となるが、目的の個々のLEDランプは小さく、複数のLEDチップを搭載する部分も小さく、さらに反射樹脂封止部もあることから焼成収縮などに基づく焼成品に発生する歪みの克服が困難である。また、多数個を一枚の焼成板上に作製したものとし、LEDチップを搭載し、樹脂封止などした後に、個別品に分離する製造法を取ることが検査を含む生産性の要求から必要とされる。ダイシングソーによる切断分離の場合、チッピングの発生などの点を考慮した改良が必須である。
【0006】
【課題を解決するための手段】
そこで、本発明者は、比較的加工が容易であり、高い熱伝導率を持つ樹脂複合セラミックス板の使用について、特に機械加工工程の簡略化の視点から鋭意検討した結果、本発明を完成した。
すなわち、本発明は、側壁とその内側底面に複数のLEDチップ実装パターンが形成された凹部と該凹部の外下面または外側面に該LEDチップ実装パターンと導通した端子パターンを設けたLEDランプ部を多数形成した多層プリント配線板を製造し、該LEDチップ実装パターンに所定のLEDを搭載し、樹脂封止し、適宜、検査し、切断することからなるLEDランプの製造法において、該LEDチップ実装パターンと該端子パターンを形成したスルーホールプリント配線板と、該凹部に相当する型状の貫通穴を形成し、その穴壁面を適宜反射増加処理した貫通穴形成板とを作製し、これらを位置合わせして相互接着することにより該多層プリント配線板を製造することを特徴とするLEDランプの製造法である。
【0007】
また、本発明は、該スルーホールプリント配線板が、30W(mK)−1以上の熱伝導率であること、両面銅張樹脂複合セラミックス板製であること、また、該接着を熱可塑性ポリイミド樹脂にて行うLEDランプの製造法である。
【0008】
以下、本発明の構成を説明する。
本発明で製造するLEDランプは、実装するLEDチップの種類(種類、形、容量(発熱量)、その他)、数など適宜選択され、該選択に応じて最適の構造を選択し設計する。
LEDチップ実装に用いる本発明のスルーホールプリント配線板は、30W(mK)−1以上の熱伝導率である材料を用いて作製することが好ましく、また、機械加工性も良好であることが好ましい。これらから、両面銅張樹脂複合セラミックス板、特に、窒化アルミニウム−窒化硼素系の連続気孔焼結体を用いたものが好適である。なお、両面銅張樹脂複合セラミックス板、樹脂複合セラミックス板としては、商品名:セラジン(三菱瓦斯化学(株)製)が例示される。
【0009】
好適な両面銅張樹脂複合セラミックス板を用いる本スルーホールプリント配線板の製造法は、通常の両面銅張積層板を用いるスルーホールプリント配線板の製造法において、LEDチップ実装パターンと端子パターンとの導通方法が、樹脂封止するLEDチップ実装パターン部分に形成したスルーホールの場合には該スルーホールを穴埋めして用いる。また、該導通方法をLEDランプの外側面とする部分に形成したスルーホールにて行う場合には作製寸法精度を考慮して、樹脂封止に用いる樹脂漏れが発生しないように考慮した設計とする。また、パターン表面は、通常、金メッキしたものとする。この場合、銅スルーホールパターンを形成し、ニッケルメッキし、金メッキする方法、スルーホールメッキしたものを製造し、レジストパターンを形成し、ニッケルメッキし、金メッキした後、該金メッキ面をレジストとしてパターン形成する方法などによる。
【0010】
本貫通穴形成板は、樹脂封止するLEDチップ実装パターン部分に相当する型状の貫通穴を形成し、その穴壁面を適宜、光線反射増加処理したものであり、通常、上記の本スルーホールプリント配線板と同様の材料にて製造する。しかし、生産性、熱伝導性などを満足する材料であれば適宜変更できるものであり、LEDチップ実装パターンとの電気絶縁性を十分確保できる設計の場合には金属板や金属箔の打ち抜き成形品を本貫通穴形成板として好適に使用できる。
【0011】
ここで、両面銅張樹脂複合セラミックス板と同様の材料である樹脂複合セラミックス板を用いて製造する方法の一例を具体的に説明すると、まず、LEDランプとして装着する部分への固定部として半田付け可能なものが周囲相当部分に必要な場合、該部分の作製を行う。通常、この方法は、所定部分に貫通穴を形成し、穴内壁を、無電解銅メッキ→ニッケルメッキ→金メッキすることによる。この金メッキされた穴は、個別のLEDランプに切り離されるときに通常、4分割されて、個々のLEDランプの角部となる。
次に、樹脂封止するLEDチップ実装パターン部分に相当する型状の貫通穴を形成する。この方法は、最もオーソドックスには、ルーター加工であるが、より生産性を向上させた製造法として、両面圧延薄銅箔張板として打ち抜き加工する方法、また、穴壁が傾斜するが、この傾斜が許容される場合にはサンドブラス法も好適である。
【0012】
上記で作製した樹脂封止するLEDチップ実装パターン部分に相当する型状の貫通穴の内壁面に、適宜、ニッケルメッキすること、白色無機充填剤を配合した耐熱性・耐光性樹脂塗膜を形成することによって、光線反射率を増加させる。
この光線反射率を増加させる処理において、上記した4角の固定部が形成されたものを用いる場合には当然に該部分に保護膜等を形成して本工程を実施する。また、上記した4角の固定部とLEDチップ実装パターン部分に相当する型状の貫通穴部分との貫通穴を形成し、無電解銅メッキし、レジストパターンを形成してニッケルメッキし、反射膜とする部分にもレジストを形成し、金メッキする方法も実施できる。
【0013】
上記で製造したスルーホールプリント配線板と貫通穴形成板とを位置合わせして相互接着する。用いるサイズは、通常、LEDチップ実装サイズとする。
相互接着に用いる接着剤としては、使用条件に耐える耐熱性、耐光性を示すものであれば使用可能であり、ポリエステル系、アクリル系、エポキシ系、シリコーン系などの接着剤、ポリエステル、ポリエーテルイミド、ポリカーボネート、ポリエステルイミド、ポリイミドなどの熱可塑性樹脂溶液などが例示される。
【0014】
これらの中で、このましくは、滲みなどの発生のないもの、すなむち、接着成分である樹脂の分子量がある程度以上あり、かつ、樹脂溶液の場合、溶質である樹脂の融点も高いものを選択することが好ましく、具体的には、ユピタイト UPA−N111,N221(商品名、宇部興産(株)製)、リカコート EN20(商品名、新日本理化(株)製)が例示される。
特に、熱可塑性樹脂による接着は、多少の熱膨張率の差は応力緩和層として機能することから異種材料の接着保持にも適用できる。
【0015】
接着に際しては、被接着物相互に接着層を形成しておくことが好ましい。
本スルーホールプリント配線板を形成する場合、スクリーン印刷法、ホトレジスト法などにより形成する。また、本貫通穴形成板の場合は、接着面側全面に均一に接着層が形成されればよく、印刷法にて好適に作製できる。
なお、本スルーホールプリント配線板が絶縁体でないて場合には、上記にも記載したが、本スルーホールプリント配線板との信頼性の高い電気絶縁が必須となる。この場合、上記の本スルーホールプリント配線板へ形成する接着層にて信頼性の高い絶縁性を確保することが好ましい。
【0016】
上記で製造した接着層を予め形成した本スルーホールプリント配線板または本貫通穴形成板を用い、加熱加圧にて接着する。アルミニウム板、樹脂複合セラミックス板製などのプレス補助板上に、本スルーホールプリント配線板をLEDチップ実装面を上側として乗せ、その上に本貫通穴形成板を置き、拡大鏡下に位置合わせし、仮固定し、プレス補助板を乗せ、これを耐熱性のクッションを介してプレス熱盤間に挿入し、通常、低圧加熱して接着する。ここで、接着剤として熱可塑性ポリイミドなどを使用した場合には、加熱加圧時の位置ずれは比較的小さいが、流動性が高くなる熱硬化性樹脂類を使用する場合には、加熱加圧時の位置ずれ防止について細心の注意を払って位置ずれが発生しないようにする。
【0017】
以上にて、本発明のLEDランプユニットを多数配置してなるLEDチップ実装サイズ品が製造される。これに、所定のLEDを実装し、樹脂封止し、適宜、検査した後、個々のLEDランプに分割する。LEDチップ実装には、超音波接合など好適に適用できる。また、個々のLEDランプに分割は、本発明の好適な態様、すなわち、両面銅張樹脂複合セラミックス板、樹脂複合セラミックス板を選択した場合にはダイシングソーにて好適に実施できる。
【0018】
本発明の製造法は、本スルーホールプリント配線板と本貫通穴形成板とを別々に製造し、接着一体化する製造法であることから、両者に用いる材料として異なるもの、異なる材料、製造法にて作製したものによる製造が可能である。
例えば、LEDランプユニット間をV溝などの配置可能な間隔の設計としてグリーンシート法などでセラミックス製の本スルーホールプリント配線板を作製する。一方、本貫通穴形成板を金属シートの打ち抜き成形にて、接着面とする側の反対側を切除することにより個々のLEDランプユニット部分に分割する形として作製する。そしてこれらを接着一体化し、LEDチップ実装を行い、個々のLEDランプユニット部分に分割するという製造法が可能となる。
【0019】
なお、金属シートの打ち抜き成形にて本貫通穴形成板を製造するとき、光線反射面は銀色(アルミニウム面またはニッケルや銀メッキ面など)とし、4角は半田付け可能とする場合、片面処理にて所望の物性を付与することが好ましく、圧縮成形にて所望の凹凸形成品として、片面のみ所望の処理(ニッケルや銀メッキまたは銅メッキ〜金メッキ)をした後、LEDチップ実装部分に相当する貫通穴を打ち抜きにて作製する方法など、適宜選択する。
【0020】
【実施例】
以下、実施例などにより本発明を具体的に説明する。
実施例1
LEDチップを3個搭載する多色LEDランプユニット板を製造した。
LEDランプユニットは、外形が巾約1.1mm、高さ約1mm、長さ約3.6mmでその4角に直径0.8mmのスルーホールにて外部の基板などへの取り付け部を形成してなり、深さ約0.5mm、巾0.8mm、長さ約3.2mmの凹部の底面にLEDチップ実装パターンを有し、直径0.1mmのスルーホールにて裏面の端子パターンと導通させてなる。
そしてこのLEDランプユニットが切断代約0.2mmの間隔で巾方向20個、長さ方向7個配置してなる。
【0021】
厚み12μmのロープロファイル圧延仕様電解銅箔をシアン酸エステル−エポキシ樹脂含侵の厚さ0.5mmの窒化アルミニウム−窒化硼素系焼結体(h−BN20%、気孔率21vol%)に張った両面銅箔張樹脂複合セラミックス板(セラジンCCL−ANB21)を用いた。
これに、ダイヤモンドコーティングドリルを用いて、0.1mmの穴あけし、スルーホールメッキし穴埋めした。次に0.8mmの4角相当の穴あけし、スルーホールメッキし、ニッケルメッキ、金メッキして本スルーホールプリント配線板を得た。
【0022】
上記と同様の両面銅箔張樹脂複合セラミックス板(セラジンCCL−ANB21)を用いて本貫通穴形成板を製造した。まず、0.8mmの4角相当の穴あけし、スルーホールメッキし、片面はレジストで全面被覆し、反対面は穴周囲に巾0.15mmのパターンを残して被覆してニッケルメッキ、金メッキした後、レジストを除去し、金をレジスト膜としてエッチングして片面は金属箔なし、反対面は穴周りのみパターンのある板とした。
次に、この板に巾0.8mm、長さ約3.2mmの貫通穴をルーター加工にて形成した。ルーター加工は、ダイヤモンドコーティングドリルにてルーター加工開始位置に所定の貫通穴を形成した後、ルーター加工にて形成する方法を採用することにより、ルーターぶれに基づく開始位置ずれ発生をより小さくする方法とした。
【0023】
上記で製造した本スルーホールプリント配線板および本貫通穴形成板を外形加工した。次に、熱可塑性ポリイミド樹脂ワニス(商品名;ユピタイト N221、宇部興産(株)製)を接着剤として使用して接着一体化した。
接着部位よりやや細めのパターンとして本スルーホールプリント配線板に接着層を形成し、乾燥した。本貫通穴形成板は、接着面側全面に接着剤を塗布し、該面を下面となるようにして乾燥した。接着剤の大過剰部分と逆の不足部分について目視観察したが、特に、問題点はなかった。
【0024】
樹脂複合セラミックス板製のプレス補助板上に、上記の接着層形成本スルーホールプリント配線板をLEDチップ実装面を上側として乗せ、その上に接着層形成本貫通穴形成板を置き、拡大鏡下に位置合わせし、仮固定し、プレス補助板を乗せ、これを耐熱性のクッションを介して温度230℃に設定したプレス熱盤間に挿入し、ゆっくりと上熱盤を降下させ、まず、圧力3MPaとして15分間保った後、30分間で熱盤温度を150℃とし、取り出す方法にて接着を完了した。
上記で得た接着品について、LEDチップ実装および樹脂封止することなく、ダイシングソーによる切断を実施したところ、良好な切断が出来た。
【0025】
【発明の効果】
以上、本発明の製造法によれば、本スルーホールプリント配線板と本貫通穴形成板とを別々に製造し、接着一体化する製造法であることから、一体化した後では困難な製造が個々では可能となり、また、それぞれに最適な材料・製造法にてそれぞれを作製し、一体化することが可能とするものであり、工業的意義は極めて高いものである。
[0001]
[Industrial applications]
The present invention is a novel method for manufacturing an LED lamp, and it is possible to use a substrate having a high thermal conductivity while securing productivity by devising a manufacturing process.
[0002]
[Prior art]
[Patent technology 1] JP-A-2001-190210 [Patent technology 2] JP-A-2001-224472
A conventional method of manufacturing a surface-mount type LED lamp includes, for example, using a copper-clad glass epoxy laminate containing a large amount of a white inorganic filler and appropriately forming a three-layer plate having an LED chip mounting pattern portion as an inner layer. It is manufactured by manufacturing, exposing the mounting portion with a counterbore, mounting an LED chip, appropriately sealing with resin, and cutting and separating into individual LED lamps. Here, the reason for using a large amount of white inorganic filler is to improve the heat resistance with inorganic filler to make ultrasonic bonding easier, and to reflect light with white filler. An object of the present invention is to increase the luminance by increasing the rate.
Patent Documents 1 and 2 disclose ceramics, in particular, those using a sintered body made of alumina. The use of ceramics has improved the ultrasonic bonding property, which is a drawback of conventional resin substrates. It is disclosed that it is obtained.
[0004]
As symbolized by the invention of the blue LED and the progress of its practical application, the progress of the LED has been remarkable, and it is necessary to solve problems such as high density, multi-color, and use for automobile headlamps. It has come to be.
Although an LED is a highly efficient light emitting element, the heat generation density and amount of an LED lamp satisfying these requirements are high, and cannot be met by using a conventional resin substrate.
[0005]
[Problems to be solved by the invention]
As a means to solve this demand, the use of ceramics with high thermal conductivity is being studied. However, the small and high-density ceramics used to mount a plurality of LED chips intended in the present application are still being completed. Has not been reached. That is, in the case of ceramics and typical alumina, it is expensive and practically impossible to manufacture it by post-processing industrially. Therefore, production by the green sheet method is indispensable. However, since the target individual LED lamps are small, the portion on which a plurality of LED chips are mounted is small, and there is a reflective resin sealing portion, a fired product based on firing shrinkage and the like is required. Is difficult to overcome. In addition, it is necessary to adopt a manufacturing method that separates individual products after mounting LED chips, sealing with resin, etc. due to the need for productivity including inspection It is said. In the case of cutting and separating with a dicing saw, improvement taking into account the occurrence of chipping and the like is essential.
[0006]
[Means for Solving the Problems]
The inventor of the present invention has completed the present invention as a result of intensive studies on the use of a resin composite ceramics plate that is relatively easy to process and has a high thermal conductivity, particularly from the viewpoint of simplifying the machining process.
That is, the present invention provides an LED lamp unit having a concave portion in which a plurality of LED chip mounting patterns are formed on a side wall and an inner bottom surface thereof, and a terminal pattern electrically connected to the LED chip mounting pattern on an outer lower surface or an outer surface of the concave portion. A method of manufacturing a multi-layered printed wiring board, mounting a predetermined LED on the LED chip mounting pattern, sealing with a resin, appropriately inspecting, and cutting, the method for manufacturing an LED lamp. A through-hole printed wiring board in which the pattern and the terminal pattern are formed, and a through-hole forming plate in which a mold-shaped through-hole corresponding to the concave portion is formed and the wall surface of the hole is appropriately subjected to reflection increase processing, are formed. A method of manufacturing an LED lamp, wherein the multi-layer printed wiring board is manufactured by bonding and bonding together.
[0007]
Further, the present invention provides that the through-hole printed wiring board has a thermal conductivity of 30 W (mK) -1 or more, is made of a double-sided copper-clad resin composite ceramics board, and the bonding is made of a thermoplastic polyimide resin. Is a method for manufacturing an LED lamp.
[0008]
Hereinafter, the configuration of the present invention will be described.
The LED lamp manufactured according to the present invention is appropriately selected in terms of the type (type, shape, capacity (calorific value), etc.) and number of LED chips to be mounted, and an optimal structure is selected and designed according to the selection.
The through-hole printed wiring board of the present invention used for mounting the LED chip is preferably manufactured using a material having a thermal conductivity of 30 W (mK) -1 or more, and preferably has good machinability. . From these, a double-sided copper-clad resin composite ceramics plate, particularly one using an aluminum nitride-boron nitride-based continuous pore sintered body is suitable. The double-sided copper-clad resin composite ceramic plate and the resin composite ceramic plate include, for example, Serazine (trade name, manufactured by Mitsubishi Gas Chemical Co., Ltd.).
[0009]
The production method of the present through-hole printed wiring board using a preferred double-sided copper-clad resin composite ceramic board is the same as the production method of a through-hole printed wiring board using a normal double-sided copper-clad laminate, except that the LED chip mounting pattern and the terminal pattern When the conduction method is a through hole formed in the LED chip mounting pattern portion to be resin-sealed, the through hole is filled and used. In addition, when the conduction method is performed with a through hole formed in a portion to be an outer surface of the LED lamp, a design is made in consideration of manufacturing dimensional accuracy so as not to cause leakage of resin used for resin sealing. . The pattern surface is usually gold-plated. In this case, a method of forming a copper through hole pattern, nickel plating and gold plating, manufacturing a plated through hole, forming a resist pattern, nickel plating and gold plating, forming a pattern with the gold plated surface as a resist It depends on how you do it.
[0010]
The through hole forming plate is formed by forming a through hole having a shape corresponding to an LED chip mounting pattern portion to be resin-sealed, and appropriately treating the wall surface of the hole with light ray reflection. Manufactured from the same material as the printed wiring board. However, any material that satisfies productivity, thermal conductivity, etc. can be changed as appropriate. In the case of a design that can sufficiently secure electrical insulation with the LED chip mounting pattern, a punched molded product of a metal plate or metal foil Can be suitably used as the through hole forming plate.
[0011]
Here, an example of a method of manufacturing using a resin composite ceramics plate that is the same material as the double-sided copper-clad resin composite ceramics plate will be specifically described. First, soldering is performed as a fixing portion to a portion to be mounted as an LED lamp. If a possible part is required for the surrounding part, the part is produced. Normally, this method is based on forming a through hole in a predetermined portion and plating the inner wall of the hole with electroless copper plating → nickel plating → gold plating. This gold-plated hole, when cut into individual LED lamps, is usually divided into four to become the corners of each LED lamp.
Next, a through hole having a shape corresponding to the LED chip mounting pattern portion to be resin-sealed is formed. In this method, most orthodox is router processing.However, as a production method with improved productivity, a method of punching as a double-sided rolled thin copper foil clad plate, and a hole wall is inclined, this inclination Is acceptable, the sand blast method is also suitable.
[0012]
Nickel plating is applied to the inner wall surface of the through hole of the mold shape corresponding to the LED chip mounting pattern portion to be resin-sealed prepared above, and a heat-resistant and light-resistant resin coating film containing a white inorganic filler is formed. By doing so, the light reflectance is increased.
In the process of increasing the light reflectivity, when using the above-described one in which the square fixing part is formed, a protective film or the like is naturally formed on the part, and this step is performed. Also, a through hole is formed between the above-described square fixing portion and a through hole portion having a shape corresponding to the LED chip mounting pattern portion, electroless copper plating, a resist pattern is formed, nickel plating is performed, and a reflection film is formed. A method in which a resist is formed also in a portion to be formed and gold plating is performed.
[0013]
The through-hole printed wiring board and the through-hole forming board manufactured as described above are aligned and adhered to each other. The size to be used is usually the LED chip mounting size.
As the adhesive used for mutual bonding, any adhesive having heat resistance and light resistance that can withstand the use conditions can be used, such as polyester-based, acrylic-based, epoxy-based, and silicone-based adhesives, polyester, and polyetherimide. And thermoplastic resin solutions such as polycarbonate, polyesterimide, and polyimide.
[0014]
Among these, preferably, those which do not generate bleeding, that is, those in which the molecular weight of the resin as the adhesive component is more than a certain level, and in the case of a resin solution, the melting point of the solute resin is high. Is preferred, and specific examples thereof include Iupitite UPA-N111, N221 (trade name, manufactured by Ube Industries, Ltd.) and Ricacoat EN20 (trade name, manufactured by Nippon Rika Co., Ltd.).
In particular, the bonding with a thermoplastic resin can be applied to the bonding and holding of different kinds of materials because a slight difference in the coefficient of thermal expansion functions as a stress relaxation layer.
[0015]
At the time of bonding, it is preferable to form an adhesive layer between the objects to be bonded.
When the present through-hole printed wiring board is formed, it is formed by a screen printing method, a photoresist method, or the like. Further, in the case of the present through-hole forming plate, it is sufficient that the adhesive layer is formed uniformly on the entire surface of the adhesive surface, and it can be suitably manufactured by a printing method.
When the present through-hole printed wiring board is not an insulator, as described above, highly reliable electrical insulation from the present through-hole printed wiring board is essential. In this case, it is preferable to secure a highly reliable insulating property by the adhesive layer formed on the present through-hole printed wiring board.
[0016]
Using the present through-hole printed wiring board or the through-hole forming plate on which the adhesive layer produced as described above is formed in advance, bonding is performed by heating and pressing. Place this through-hole printed wiring board on a press auxiliary board made of aluminum plate, resin composite ceramic plate, etc. with the LED chip mounting surface on top, and place the through-hole forming plate on it, and align it under the magnifying glass. Tentatively fixed, a press auxiliary plate is placed, and this is inserted between press hot plates via a heat-resistant cushion. Here, when a thermoplastic polyimide or the like is used as the adhesive, the displacement during heating and pressurization is relatively small, but when a thermosetting resin that has a high fluidity is used, heat and pressure is applied. Great care should be taken to prevent misalignment at the time of occurrence of misalignment.
[0017]
As described above, an LED chip mounting size product in which a number of LED lamp units of the present invention are arranged is manufactured. A predetermined LED is mounted thereon, sealed with a resin, inspected as appropriate, and then divided into individual LED lamps. Ultrasonic bonding and the like can be suitably applied to LED chip mounting. In addition, division into individual LED lamps can be suitably performed by a preferred embodiment of the present invention, that is, a dicing saw when a double-sided copper-clad resin composite ceramic plate or a resin composite ceramic plate is selected.
[0018]
The manufacturing method of the present invention is a manufacturing method in which the present through-hole printed wiring board and the present through-hole forming board are separately manufactured and bonded and integrated, so that different materials, different materials, and different manufacturing methods are used for both. It is possible to manufacture with the one manufactured in the above.
For example, this through-hole printed wiring board made of ceramics is manufactured by a green sheet method or the like as a design of a space that can be arranged such as a V-groove between LED lamp units. On the other hand, this through-hole forming plate is manufactured by punching out a metal sheet and cutting the opposite side of the side to be the adhesive surface into individual LED lamp unit portions. Then, a manufacturing method is possible in which these are bonded and integrated, an LED chip is mounted, and each LED lamp unit is divided.
[0019]
When manufacturing this through-hole forming plate by stamping and forming a metal sheet, the light reflecting surface is silver (aluminum surface or nickel or silver plating surface) and the square is solderable. It is preferable to impart desired physical properties by compression molding. After performing a desired treatment (nickel or silver plating or copper plating to gold plating) on one side only as a desired unevenness-formed product by compression molding, the through-hole corresponding to the LED chip mounting portion is obtained. A method of forming a hole by punching or the like is appropriately selected.
[0020]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples and the like.
Example 1
A multicolor LED lamp unit plate on which three LED chips were mounted was manufactured.
The LED lamp unit has an outer shape of about 1.1 mm in width, about 1 mm in height, about 3.6 mm in length, and has a through-hole with a diameter of 0.8 mm at each of its four corners to form a mounting portion to an external substrate or the like. It has an LED chip mounting pattern on the bottom surface of a concave part having a depth of about 0.5 mm, a width of 0.8 mm and a length of about 3.2 mm, and is electrically connected to a terminal pattern on the back surface through a through hole having a diameter of 0.1 mm. Become.
Then, 20 LED lamp units are arranged in the width direction and 7 in the length direction at intervals of the cutting allowance of about 0.2 mm.
[0021]
Low-profile rolled electrolytic copper foil having a thickness of 12 μm is stretched on a 0.5 mm-thick aluminum nitride-boron nitride-based sintered body (h-BN 20%, porosity 21 vol%) impregnated with cyanate-epoxy resin. A copper foil-clad resin composite ceramic plate (Cerazine CCL-ANB21) was used.
Using a diamond coating drill, a hole having a diameter of 0.1 mm was formed, and through-hole plating was performed to fill the hole. Next, a 0.8 mm square hole was drilled, plated through, plated with nickel, and plated with gold to obtain a printed wiring board with through holes.
[0022]
This through-hole-formed plate was manufactured using the same double-sided copper foil-clad resin composite ceramic plate (Cerazine CCL-ANB21). First, a 0.8mm square hole is drilled and plated with through holes. One side is entirely covered with resist, and the other side is covered with a pattern of 0.15mm width around the hole, nickel-plated and gold-plated. Then, the resist was removed, and etching was performed using gold as a resist film, so that one side had no metal foil, and the other side had a pattern with only a pattern around the hole.
Next, a through hole having a width of 0.8 mm and a length of about 3.2 mm was formed in the plate by router processing. Router processing is a method of forming a predetermined through hole at the router processing start position with a diamond coating drill, and then adopting a method of forming by router processing to reduce the occurrence of start position deviation due to router shake. did.
[0023]
The through-hole printed wiring board and the through-hole forming board manufactured as described above were externally processed. Next, a thermoplastic polyimide resin varnish (trade name: Iupitite N221, manufactured by Ube Industries, Ltd.) was bonded and integrated using an adhesive.
An adhesive layer was formed on the through-hole printed wiring board as a pattern slightly narrower than the bonded portion, and dried. This through-hole forming plate was dried by applying an adhesive to the entire surface on the bonding surface side and setting the surface to the lower surface. Visual observation was made on the large excess portion of the adhesive and the opposite shortage portion, but there was no particular problem.
[0024]
Place the above-mentioned through-hole printed wiring board on which the adhesive layer is to be formed on the press auxiliary board made of a resin composite ceramic plate with the LED chip mounting surface on the upper side, and place the adhesive layer-forming book with the through-hole-forming plate on it, and place it under a magnifying glass , Temporarily fix it, put a press auxiliary plate, insert it between press hot plates set at a temperature of 230 ° C through a heat-resistant cushion, slowly lower the upper hot plate, After maintaining the pressure at 3 MPa for 15 minutes, the hot platen temperature was set to 150 ° C. in 30 minutes, and the bonding was completed by a method of taking out the hot platen.
The adhesive product obtained above was cut with a dicing saw without mounting the LED chip and sealing with resin. As a result, a good cut was obtained.
[0025]
【The invention's effect】
As described above, according to the manufacturing method of the present invention, since the present through-hole printed wiring board and the present through-hole forming board are separately manufactured and bonded and integrated, difficult manufacturing after integration is performed. This is possible individually, and it is possible to manufacture and integrate them with the most suitable materials and manufacturing methods, and the industrial significance is extremely high.

Claims (4)

光反射性で実装したLEDチップ封止樹脂容器機能を有する側壁とその内側底面に複数のLEDチップ実装パターンが形成された凹部と該凹部の外下面または外側面に該LEDチップ実装パターンと導通した端子パターンを設けたLEDランプ部を多数形成した多層プリント配線板を製造し、該LEDチップ実装パターンに所定のLEDを搭載し、樹脂封止し、適宜、検査し、切断することからなるLEDランプの製造法において、該LEDチップ実装パターンと該端子パターンを形成したスルーホールプリント配線板と、該凹部に相当する型状の貫通穴を形成し、その穴壁面を適宜反射増加処理した貫通穴形成板とを作製し、これらを位置合わせして相互接着することにより該多層プリント配線板を製造することを特徴とするLEDランプの製造法。A light-reflectingly mounted side wall having an LED chip sealing resin container function, a concave portion in which a plurality of LED chip mounting patterns are formed on the inner bottom surface, and the outer and lower or outer surfaces of the concave portion are electrically connected to the LED chip mounting pattern. An LED lamp comprising: manufacturing a multilayer printed wiring board having a large number of LED lamp portions provided with terminal patterns, mounting predetermined LEDs on the LED chip mounting pattern, sealing with resin, appropriately inspecting, and cutting. In the manufacturing method of (1), a through-hole printed wiring board on which the LED chip mounting pattern and the terminal pattern are formed, and a through hole having a shape corresponding to the concave portion are formed, and the wall surface of the hole is appropriately subjected to reflection increase processing to form a through hole. A multi-layer printed wiring board by producing a board and aligning and mutually bonding them; Production method. 該スルーホールプリント配線板が、30W(mK)−1以上の熱伝導率である請求項1記載のLEDランプの製造法。The method for producing an LED lamp according to claim 1, wherein the through-hole printed wiring board has a thermal conductivity of 30 W (mK) -1 or more. 該スルーホールプリント配線板が、両面銅張樹脂複合セラミックス板を用いてなるものである請求項1記載のLEDランプの製造法。2. The method for manufacturing an LED lamp according to claim 1, wherein said through-hole printed wiring board is formed using a double-sided copper-clad resin composite ceramic board. 該接着を熱可塑性ポリイミド樹脂にて行う請求項1記載のLEDランプの製造法。2. The method for manufacturing an LED lamp according to claim 1, wherein said bonding is performed with a thermoplastic polyimide resin.
JP2003121115A 2003-04-25 2003-04-25 Process for manufacturing led lamp Pending JP2004327760A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003121115A JP2004327760A (en) 2003-04-25 2003-04-25 Process for manufacturing led lamp
US10/830,312 US20040229391A1 (en) 2003-04-25 2004-04-23 LED lamp manufacturing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003121115A JP2004327760A (en) 2003-04-25 2003-04-25 Process for manufacturing led lamp

Publications (1)

Publication Number Publication Date
JP2004327760A true JP2004327760A (en) 2004-11-18

Family

ID=33499776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003121115A Pending JP2004327760A (en) 2003-04-25 2003-04-25 Process for manufacturing led lamp

Country Status (1)

Country Link
JP (1) JP2004327760A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344810A (en) * 2005-06-09 2006-12-21 Sumitomo Metal Electronics Devices Inc Aluminum sintered body for housing light emitting device
JP4879913B2 (en) * 2005-03-01 2012-02-22 マシモ・ラボラトリーズ・インコーポレーテッド Multi-wavelength sensor board
US8801613B2 (en) 2009-12-04 2014-08-12 Masimo Corporation Calibration for multi-stage physiological monitors
US8965471B2 (en) 2007-04-21 2015-02-24 Cercacor Laboratories, Inc. Tissue profile wellness monitor
US9839381B1 (en) 2009-11-24 2017-12-12 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10856788B2 (en) 2005-03-01 2020-12-08 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
US11545263B2 (en) 2005-03-01 2023-01-03 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
US8626255B2 (en) 2005-03-01 2014-01-07 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
US8634889B2 (en) 2005-03-01 2014-01-21 Cercacor Laboratories, Inc. Configurable physiological measurement system
US8718735B2 (en) 2005-03-01 2014-05-06 Cercacor Laboratories, Inc. Physiological parameter confidence measure
US9549696B2 (en) 2005-03-01 2017-01-24 Cercacor Laboratories, Inc. Physiological parameter confidence measure
US9750443B2 (en) 2005-03-01 2017-09-05 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
US8912909B2 (en) 2005-03-01 2014-12-16 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
US8929964B2 (en) 2005-03-01 2015-01-06 Cercacor Laboratories, Inc. Multiple wavelength sensor drivers
US11430572B2 (en) 2005-03-01 2022-08-30 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
US9131882B2 (en) 2005-03-01 2015-09-15 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
US9167995B2 (en) 2005-03-01 2015-10-27 Cercacor Laboratories, Inc. Physiological parameter confidence measure
US9241662B2 (en) 2005-03-01 2016-01-26 Cercacor Laboratories, Inc. Configurable physiological measurement system
US9351675B2 (en) 2005-03-01 2016-05-31 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
US10984911B2 (en) 2005-03-01 2021-04-20 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
JP4879913B2 (en) * 2005-03-01 2012-02-22 マシモ・ラボラトリーズ・インコーポレーテッド Multi-wavelength sensor board
US8849365B2 (en) 2005-03-01 2014-09-30 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
US10327683B2 (en) 2005-03-01 2019-06-25 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
US10123726B2 (en) 2005-03-01 2018-11-13 Cercacor Laboratories, Inc. Configurable physiological measurement system
US10251585B2 (en) 2005-03-01 2019-04-09 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
JP2006344810A (en) * 2005-06-09 2006-12-21 Sumitomo Metal Electronics Devices Inc Aluminum sintered body for housing light emitting device
US10251586B2 (en) 2007-04-21 2019-04-09 Masimo Corporation Tissue profile wellness monitor
US9848807B2 (en) 2007-04-21 2017-12-26 Masimo Corporation Tissue profile wellness monitor
US10980457B2 (en) 2007-04-21 2021-04-20 Masimo Corporation Tissue profile wellness monitor
US11647923B2 (en) 2007-04-21 2023-05-16 Masimo Corporation Tissue profile wellness monitor
US8965471B2 (en) 2007-04-21 2015-02-24 Cercacor Laboratories, Inc. Tissue profile wellness monitor
US10750983B2 (en) 2009-11-24 2020-08-25 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
US11534087B2 (en) 2009-11-24 2022-12-27 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
US9839381B1 (en) 2009-11-24 2017-12-12 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
US10729402B2 (en) 2009-12-04 2020-08-04 Masimo Corporation Calibration for multi-stage physiological monitors
US11571152B2 (en) 2009-12-04 2023-02-07 Masimo Corporation Calibration for multi-stage physiological monitors
US8801613B2 (en) 2009-12-04 2014-08-12 Masimo Corporation Calibration for multi-stage physiological monitors

Similar Documents

Publication Publication Date Title
JP4789671B2 (en) WIRING BOARD FOR LIGHT EMITTING ELEMENT AND LIGHT EMITTING DEVICE
JP2005039100A (en) Circuit component for highly thermally conductive light emitting device, and high heat dissipation module
JP2009524930A (en) Light emitting diode package and manufacturing method thereof
JP2003309292A (en) Metal core substrate of surface mounting light emitting diode and its manufacturing method
JP2006287126A (en) Led lamp and its unit sheet manufacturing method
JP2008042158A (en) Element for sml type light-emitting diode lamp and manufacturing method thereof
EP2515352B1 (en) A manufacture method for a surface mounted power led support
JP2006303351A (en) Package for storing light emitting element
JP2011096910A (en) Circuit board structure, circuit module using the same, and method of manufacturing the circuit module
JP2000077822A (en) Concave printed wiring board and manufacture thereof and electronic component
KR100473773B1 (en) Method for producing multilayer ceramic substrate
US20040229391A1 (en) LED lamp manufacturing process
JP2004327760A (en) Process for manufacturing led lamp
JP2008159937A (en) Substrate for light emitting element aggregation, and substrate with light emitting device aggregation
KR101155693B1 (en) Method of manufacturing mounting board with reflector
JP2012094679A (en) Substrate manufacturing method
JPS60262476A (en) Light-emitting element
JP2008135526A (en) Light-emitting element coupling substrate and light-emitting device coupling substrate
CN111867230A (en) Heat conducting piece embedded circuit board and manufacturing method thereof
JP4533058B2 (en) Reflector for lighting device
JP6773399B2 (en) Optical element mounting package and electronic device
JP2006261286A (en) Package for containing light emitting element and its manufacturing process
US7718024B2 (en) LED reflector molding process, construction, and loader thereof
JP3023492B2 (en) Manufacturing method of composite printed wiring board
JP2005033114A (en) Manufacturing method for led lamp