JP2008159937A - Substrate for light emitting element aggregation, and substrate with light emitting device aggregation - Google Patents

Substrate for light emitting element aggregation, and substrate with light emitting device aggregation Download PDF

Info

Publication number
JP2008159937A
JP2008159937A JP2006348411A JP2006348411A JP2008159937A JP 2008159937 A JP2008159937 A JP 2008159937A JP 2006348411 A JP2006348411 A JP 2006348411A JP 2006348411 A JP2006348411 A JP 2006348411A JP 2008159937 A JP2008159937 A JP 2008159937A
Authority
JP
Japan
Prior art keywords
emitting element
substrate
light emitting
light
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006348411A
Other languages
Japanese (ja)
Inventor
Minako Izumi
美奈子 泉
Tomohide Hasegawa
智英 長谷川
Yasuhiro Sasaki
康博 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006348411A priority Critical patent/JP2008159937A/en
Publication of JP2008159937A publication Critical patent/JP2008159937A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate for light emitting element aggregation, which is excellent in heat radiation and is easily divided, and to provide light emitting device aggregation. <P>SOLUTION: In a substrate 1 for connecting a light emitting element on which a plurality of wiring substrates 3 for a light emitting element are arranged lengthwise and crosswise interposing dividing areas between them, the substrate 3 for a light emitting element includes a plane-sheet-like metal substrate 5 composed of sintered metal, a mounting portion 7 for mounting the light emitting element 37 formed on the upper surface of the metal substrate 5, a through insulating body 9 composed of a ceramics passing through the metal substrate 5 in a direction of the thickness, a through conductor 11 which is electrically insulated from the metal substrate 5 and passes through the inside of the through insulating body 9 in a direction of the thickness, and wiring 13 which is electrically connected with the through conductor 11, is insulated from the metal substrate 5, and is located around the circumference the mounting portion 7. A groove is formed on the surface of the dividing area, and cavities 19 are located along the whole circumference of substrate area of the wiring substrate for a light emitting element in the dividing area 4 at intervals. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば、発光ダイオード等の発光素子を搭載するための発光素子用集合基板および発光装置集合基板に関する。   The present invention relates to a light-emitting element collective substrate and a light-emitting device collective substrate for mounting a light-emitting element such as a light-emitting diode.

従来、LEDを用いた発光装置は非常に発光効率が高く、白熱電球などと比較すると発光に伴い発生する熱量が小さいために様々な用途に用いられてきたが、近年では、LED発光装置の高輝度化に伴い、大型液晶ディスプレイのバックライトや、各種インテリア照明など、より広い分野に展開されている。   Conventionally, light emitting devices using LEDs have been used for various applications because of their extremely high luminous efficiency and the amount of heat generated by light emission is small compared to incandescent bulbs. Along with the increase in brightness, it has been deployed in a wider range of fields such as backlights for large liquid crystal displays and various interior lighting.

しかしながら、発光素子の輝度が向上するとともに、発光装置から発生する熱も増加している。発光素子の輝度低下を防止するためには、LED素子から熱を速やかに放散することが可能な高放熱性の発光素子用配線基板が必要となっている(例えば特許文献1、2を参照。)。   However, the luminance of the light emitting element is improved and the heat generated from the light emitting device is also increasing. In order to prevent a decrease in luminance of the light emitting element, a highly heat-radiating light emitting element wiring board capable of quickly dissipating heat from the LED element is required (see, for example, Patent Documents 1 and 2). ).

このような要求に対し、本出願人は、焼結金属を主体とした発光素子用配線基板を提案した。このように焼結金属を主体とした発光素子用配線基板は放熱性を向上することができるとともに、立体的な配線回路を形成することができるため、放熱性に優れ、しかも小型の発光素子用配線基板を容易に提供することができる。   In response to such demands, the present applicant has proposed a wiring board for a light emitting element mainly composed of sintered metal. Thus, the light emitting element wiring board mainly composed of sintered metal can improve heat dissipation and can form a three-dimensional wiring circuit. Therefore, it is excellent in heat dissipation and for small light emitting elements. A wiring board can be easily provided.

ところで、従来、小型の基板を作製する場合には取扱い性や生産性を向上させるために、複数の基板が集合した集合基板に分割溝を設け、めっき処理や素子を実装するなどした後で、個片に分割することが行われている(例えば、特許文献3、4を参照。)。
特許第3253265号公報 特開2003−347600号公報 特許第003330104号公報 特公平7−77292号公報
By the way, conventionally, when producing a small substrate, in order to improve the handling and productivity, after providing a dividing groove on a collective substrate in which a plurality of substrates are assembled, plating processing, mounting an element, etc. Dividing into individual pieces is performed (see, for example, Patent Documents 3 and 4).
Japanese Patent No. 3253265 JP 2003-347600 A Japanese Patent No.003330104 Japanese Examined Patent Publication No. 7-77292

上述した金属を主体とする発光素子用配線基板は、特許文献3に記載されたセラミックスを主体とする発光素子用配線基板に比べ、延性が高いため、集合基板に分割溝を形成しても容易に分割しにくく、分割性の改善が望まれている。   The light-emitting element wiring board mainly composed of the metal described above has higher ductility than the light-emitting element wiring board mainly composed of ceramics described in Patent Document 3, so that it is easy to form divided grooves on the collective substrate. Therefore, it is difficult to divide the material into pieces, and improvement of the division property is desired.

従って本発明は、焼結金属を主体とし、熱放散性に優れた発光素子用配線基板を容易に提供できる分割性に優れた発光素子用集合基板ならびに、この発光素子用集合基板に発光素子を搭載した発光装置集合基板を提供することを目的とする。   Accordingly, the present invention provides a light-emitting element collective substrate that is excellent in splitting ability and can easily provide a wiring board for a light-emitting element mainly composed of sintered metal and excellent in heat dissipation, and a light-emitting element on the light-emitting element collective substrate. It is an object of the present invention to provide a mounted light emitting device aggregate substrate.

本発明の発光素子用集合基板は、複数の発光素子用配線基板が分割領域を挟んで縦横の並びに整列した発光素子用集合基板において、前記発光素子用配線基板が、焼結金属からなる平板状の金属基体と、該金属基体の上面に形成された発光素子を搭載する搭載部と、前記金属基体を厚み方向に貫通するセラミックスからなる貫通絶縁体と、前記金属基体と電気的に絶縁されるとともに前記貫通絶縁体の内側を厚み方向に貫通する貫通導体と、該貫通導体と電気的に接続されるとともに前記金属基体と絶縁され前記搭載部の周囲に設けられた配線とを備え、前記分割領域の表面に分割溝が形成され、前記分割領域の前記発光素子用配線基板の基板領域の全周に沿って空洞が断続的に設けられていることを特徴とする。   The light-emitting element collective substrate of the present invention is a light-emitting element collective substrate in which a plurality of light-emitting element wiring boards are arranged vertically and horizontally across a divided region. A metal base, a mounting portion for mounting a light emitting element formed on the upper surface of the metal base, a through insulator made of ceramics that penetrates the metal base in the thickness direction, and the metal base. And a through conductor that penetrates the inside of the through insulator in the thickness direction, and a wiring that is electrically connected to the through conductor and insulated from the metal base and provided around the mounting portion. Dividing grooves are formed on the surface of the region, and cavities are intermittently provided along the entire circumference of the substrate region of the light emitting element wiring board in the divided region.

また、前記金属基体に有底穴が設けられ、該有底穴の底面に前記搭載部が形成されていることが望ましい。   Further, it is desirable that a bottomed hole is provided in the metal base, and the mounting portion is formed on the bottom surface of the bottomed hole.

そして、前記分割領域において、前記空洞が上下に重なって複数形成されていることが望ましい。   In the divided region, it is preferable that a plurality of the cavities are formed so as to overlap each other.

本発明の発光装置集合基板は、以上説明した発光素子用集合基板の前記搭載部に発光素子が搭載されたことを特徴とする。   The light emitting device aggregate substrate of the present invention is characterized in that a light emitting element is mounted on the mounting portion of the light emitting element aggregate substrate described above.

本発明の発光素子用配線基板は、基体を焼結金属で形成することにより、樹脂モールド基板やセラミック基板などよりも高い熱伝導率を有し、発光素子から発生する熱を基体全体から効率良く、速やかに系外へ放散することができ、発光素子が過剰に加熱されることを防止できる。そのため輝度低下防止あるいは、さらなる高輝度化が可能となる。しかも金属基体に、絶縁体を介して電気的に絶縁された配線を表面に形成し、更に前記金属基体に貫通して設ける事で、多層化が可能となり複雑な配線設計への対応や基板の小型化が可能となる。また、前記分割領域の表面に分割溝が形成され、前記分割領域の前記発光素子用配線基板の基板領域の全周に沿って空洞が断続的に設けられているため、本発明のようなセラミックに比べ延性の高い金属を用いた場合でも、特殊な装置を使うことなく容易に分割することができる。   The wiring board for a light emitting device of the present invention has a higher thermal conductivity than that of a resin mold substrate, a ceramic substrate, or the like by forming the substrate from a sintered metal, and efficiently generates heat from the light emitting device from the entire substrate. It is possible to quickly dissipate out of the system and to prevent the light emitting element from being heated excessively. For this reason, it is possible to prevent a decrease in luminance or to further increase the luminance. In addition, by forming wiring electrically insulated through an insulator on the surface of the metal substrate and further penetrating through the metal substrate, it is possible to increase the number of layers and to cope with complicated wiring designs and the substrate. Miniaturization is possible. In addition, since the dividing groove is formed on the surface of the dividing region, and the cavity is intermittently provided along the entire circumference of the substrate region of the light emitting element wiring board in the dividing region, the ceramic according to the present invention is provided. Even when a metal having higher ductility is used, it can be easily divided without using a special device.

さらに、前記金属基体に有底穴が設けられ、該有底穴の底面に前記搭載部を形成することで、発光素子搭載部と前記配線とを取り囲むように金属からなる反射部を形成することになり、金属基体からだけでなく反射部からも発光素子が生じる熱を放散することができる。そして反射部によって発光素子を保護できるとともに、発光素子の周辺に蛍光体などを容易に配置することができる。また、反射部により発光素子が発する光を反射させて光の取り出し効率を増加させ、高輝度化を実現することができる。さらに、金属基体および反射部が焼結金属から成ることにより、金属基体と貫通絶縁体と貫通導体と配線と反射部とを同時焼成にて作製することができ、これによりコストを低減することができる。   Further, a bottomed hole is provided in the metal base, and the mounting portion is formed on the bottom surface of the bottomed hole, thereby forming a reflective portion made of metal so as to surround the light emitting element mounting portion and the wiring. Thus, the heat generated by the light emitting element can be dissipated not only from the metal substrate but also from the reflecting portion. The light emitting element can be protected by the reflecting portion, and a phosphor or the like can be easily disposed around the light emitting element. Further, the light emitted from the light emitting element can be reflected by the reflecting portion to increase the light extraction efficiency, and high luminance can be realized. Furthermore, since the metal substrate and the reflecting portion are made of sintered metal, the metal substrate, the penetrating insulator, the penetrating conductor, the wiring, and the reflecting portion can be manufactured by simultaneous firing, thereby reducing the cost. it can.

そして、前記分割領域において、前記空洞を上下に重ねて複数形成することで、より分割を容易にし、分割時の金属基体の変形などを抑制し、歩留りを向上させることができる。   In the divided region, a plurality of the cavities are formed so as to overlap each other, whereby the division can be facilitated, the deformation of the metal substrate during the division can be suppressed, and the yield can be improved.

以上説明した本発明の発光素子用集合基板に発光素子を搭載した本発明の発光装置集合基板によれば、発光素子からの発熱を速やかに装置外に放出することができ、かつ分割歩留まりの良好な発光装置集合基板となる。   According to the light emitting device collective substrate of the present invention in which the light emitting element is mounted on the light emitting element collective substrate of the present invention described above, heat generated from the light emitting element can be quickly discharged outside the apparatus, and the divided yield is excellent. A light-emitting device assembly substrate.

図1(a)に示すように、本発明の発光素子用集合基板1は、複数個の発光素子用配線基板3が分割領域4を挟んで縦横の並びに整列したものである。   As shown in FIG. 1A, a light-emitting element collective substrate 1 of the present invention has a plurality of light-emitting element wiring substrates 3 arranged vertically and horizontally with a divided region 4 interposed therebetween.

この発光素子用配線基板3は、例えば、図1(b)に示すように、焼結金属からなる平板状の金属基体5と、この金属基体5の上面5aに形成された、発光素子を搭載する搭載部7と、セラミックスからなり金属基体5を厚み方向に貫通する貫通絶縁体9と、金属基体5と電気的に絶縁されるとともに貫通絶縁体9を厚み方向に貫通する貫通導体11と、貫通導体11と電気的に接続されるとともに金属基体5と絶縁され搭載部7の周囲に設けられた配線13とを備える。なお、配線13は貫通導体11が兼ねていてもよい。   For example, as shown in FIG. 1B, the light emitting element wiring substrate 3 includes a flat metal base 5 made of sintered metal and a light emitting element formed on the upper surface 5 a of the metal base 5. A mounting portion 7 that is made of ceramic and penetrates the metal base 5 in the thickness direction; a through conductor 11 that is electrically insulated from the metal base 5 and penetrates the through insulator 9 in the thickness direction; A wiring 13 that is electrically connected to the through conductor 11 and insulated from the metal base 5 and provided around the mounting portion 7 is provided. Note that the through conductor 11 may also serve as the wiring 13.

また、発光素子用配線基板3の下面には、発光素子用配線基板3を外部配線基板に接続するための外部接続端子15が設けられている。さらに、発光素子用配線基板3の基板領域17に沿って金属基体5の表面に設けられた分割溝18と、基板領域17に沿って金属基体5の内部に設けられた空洞19とによって、分割領域4が形成されている。   An external connection terminal 15 for connecting the light emitting element wiring board 3 to an external wiring board is provided on the lower surface of the light emitting element wiring board 3. Furthermore, it is divided by a dividing groove 18 provided on the surface of the metal substrate 5 along the substrate region 17 of the light emitting element wiring substrate 3 and a cavity 19 provided inside the metal substrate 5 along the substrate region 17. Region 4 is formed.

なお、この分割領域4は、分割溝18あるいは空洞19が形成された領域を指し、その幅は分割溝18あるいは空洞19のうち、いずれか幅広の方の幅によって決まる。   The divided region 4 indicates a region in which the divided groove 18 or the cavity 19 is formed, and the width thereof is determined by the wider one of the divided groove 18 and the cavity 19.

そして、本発明の発光素子用集合基板1においては、発光素子用配線基板3を構成する金属基体5、貫通絶縁体9、貫通導体11、配線13、および外部接続端子15が同時焼成されている。   In the light-emitting element collective substrate 1 of the present invention, the metal substrate 5, the penetrating insulator 9, the penetrating conductor 11, the wiring 13, and the external connection terminal 15 constituting the light-emitting element wiring substrate 3 are simultaneously fired. .

本発明の発光素子用集合基板1によれば、金属基体5の材料として焼結金属を用いるとともに、金属基体5を貫通するように貫通絶縁体9および貫通導体11を設けることが重要である。すなわち、金属基体1の材料として焼結金属を用いることにより、樹脂モールド基板やセラミック基板よりも高い放熱性を確保し、発光素子から発生する熱を発光素子用配線基板3全体から効率よく放出することができる。   According to the aggregate substrate 1 for light emitting elements of the present invention, it is important to use a sintered metal as the material of the metal base 5 and to provide the through insulator 9 and the through conductor 11 so as to penetrate the metal base 5. That is, by using a sintered metal as a material of the metal substrate 1, heat dissipation higher than that of a resin mold substrate or a ceramic substrate is ensured, and heat generated from the light emitting element is efficiently released from the entire wiring board 3 for the light emitting element. be able to.

また、発光素子用配線基板3の基板領域17の間にある分割領域4の表面に分割溝18を形成するとともに、この分割領域4の内部に基板領域17の全周に沿って空洞19を断続的に配置することが重要である。   In addition, a division groove 18 is formed on the surface of the division region 4 between the substrate regions 17 of the light emitting element wiring substrate 3, and the cavity 19 is intermittently formed along the entire circumference of the substrate region 17 in the division region 4. Is important.

分割領域4表面に分割溝18を形成することで、発光素子用配線基板3のバリを減らすことができるため、歩留りを向上させることができる。   By forming the dividing groove 18 on the surface of the dividing region 4, burrs of the light emitting element wiring substrate 3 can be reduced, so that the yield can be improved.

また、空洞19を設けることで、分割領域4において焼結金属同士が厚み方向において2点以上の部分で接続されるため、分割領域4での補形性を維持するとともに、分割性を向上させることができる。   In addition, by providing the cavity 19, the sintered metals are connected to each other at two or more points in the thickness direction in the divided region 4, so that the complementarity in the divided region 4 is maintained and the splitting property is improved. be able to.

また、空洞19を断続的に配置することで、例えば、応力が集中しやすい分割溝18同士が交差する部分において空洞19を無くし、意図せずに発光素子用集合基板1が割れてしまうことを抑制することができる。   Further, by disposing the cavities 19 intermittently, for example, the cavities 19 are eliminated at the portions where the split grooves 18 where stresses tend to concentrate are intersected, and the light emitting element aggregate substrate 1 is unintentionally cracked. Can be suppressed.

また、内部に空洞19を設ける場合には、生産性の観点からシート状の成形体を積層することが望ましいが、その際に、1枚のシート状の成形体に貫通孔を形成し、この貫通孔を設けたシート状の成形体の両面に、他のシート状の成形体を積層することで容易に空洞19を断続的に配置することができるという利点がある。   Further, when the cavity 19 is provided inside, it is desirable to laminate a sheet-like molded body from the viewpoint of productivity. At that time, a through-hole is formed in one sheet-like molded body, There is an advantage that the cavity 19 can be easily and intermittently arranged by laminating other sheet-like molded bodies on both surfaces of the sheet-like molded body provided with the through holes.

そして、このような分割溝18並びに空洞19を設けることにより、特殊な装置を使うことなく分割溝18に沿って発光素子用集合基板1から個々の発光素子用配線基板3へと容易に分割することができる。   Further, by providing such dividing grooves 18 and cavities 19, the light emitting element assembly substrate 1 can be easily divided into individual light emitting element wiring substrates 3 along the dividing grooves 18 without using a special device. be able to.

そしてまた、金属基体5と、貫通絶縁体9および貫通導体11を同時焼成することが重要である。これらを同時焼成することにより、発光素子用配線基板3の多層化、配線設計の多様化、小型化を低コストで実現することができる。   It is also important to fire the metal base 5, the through insulator 9 and the through conductor 11 simultaneously. By firing these simultaneously, it is possible to realize multilayering of the light emitting element wiring substrate 3, diversification of wiring design, and downsizing at a low cost.

空洞19の断面形状は、特に限定されるものではないが、光素子用集合基板1の主面側に角が向けられた三角形や菱形であることが望ましい。これにより、分割部に応力が集中しやすくなり、より分割が容易となる。   The cross-sectional shape of the cavity 19 is not particularly limited, but is desirably a triangle or a rhombus whose corners are directed to the main surface side of the optical element aggregate substrate 1. Thereby, stress becomes easy to concentrate on a division part, and division becomes easier.

そして、図2(a)、(b)に示すように、金属基体5に有底穴23を設け、この有底穴23の底面に発光素子搭載部7が形成されていることが望ましい。有底穴23の底面23aに前記搭載部7を形成することで、有底穴23の内壁面が発光素子搭載部7と配線13とを取り囲むように反射部25を形成することになり、金属基体5からだけでなく反射部25からも発光素子が生じる熱を放散することができる。また、反射部25によって発光素子を保護できるとともに、発光素子の周辺に蛍光体などを容易に配置することができる。そして、反射部25により発光素子が発する光を反射させて光の取り出し効率を増加させ、より輝度を高めることができる。さらに、反射部25は金属基体5、貫通絶縁体9、貫通導体11、および配線13と同時焼成にて作製することができるため、別途作製した金属反射部を接着剤等で金属基体に接続する場合よりも工程数を減らし、コストを低減することができる。   As shown in FIGS. 2A and 2B, it is desirable that a bottomed hole 23 is provided in the metal base 5 and the light emitting element mounting portion 7 is formed on the bottom surface of the bottomed hole 23. By forming the mounting portion 7 on the bottom surface 23 a of the bottomed hole 23, the reflecting portion 25 is formed so that the inner wall surface of the bottomed hole 23 surrounds the light emitting element mounting portion 7 and the wiring 13. The heat generated by the light emitting element can be dissipated not only from the base 5 but also from the reflecting portion 25. In addition, the light emitting element can be protected by the reflecting portion 25, and a phosphor or the like can be easily disposed around the light emitting element. Then, the light emitted from the light emitting element can be reflected by the reflecting portion 25 to increase the light extraction efficiency, and the luminance can be further increased. Furthermore, since the reflection part 25 can be produced by simultaneous firing with the metal substrate 5, the through insulator 9, the through conductor 11, and the wiring 13, the separately produced metal reflection part is connected to the metal substrate with an adhesive or the like. The number of processes can be reduced and the cost can be reduced.

さらに、図3に示すように、分割領域4において独立した空洞19が上下に重なって複数形成されていることが望ましい。空洞19が上下に重なって形成されることにより、より分割を容易にし、分割時の金属基体5の変形を抑制し、歩留りを向上させることができる。   Furthermore, as shown in FIG. 3, it is desirable that a plurality of independent cavities 19 are formed in the divided region 4 so as to overlap each other. By forming the cavities 19 so as to overlap each other, the division can be facilitated, the deformation of the metal base 5 during the division can be suppressed, and the yield can be improved.

そしてまた、図4(a)、(b)に示すように、分割領域4の両面に分割溝18を形成することが望ましい。分割領域4の両面に分割溝18を形成することにより、より分割を容易にし、金属基体5表面に生じるバリを防ぐことができる。ここで、分割溝18の断面は、V字形状であることが望ましい。V字形状にすることにより、分割部に応力が集中し、より分割が容易となる。   Further, as shown in FIGS. 4A and 4B, it is desirable to form the dividing grooves 18 on both surfaces of the dividing region 4. By forming the dividing grooves 18 on both surfaces of the divided region 4, the dividing can be facilitated and burrs generated on the surface of the metal substrate 5 can be prevented. Here, the section of the dividing groove 18 is preferably V-shaped. By making it V-shaped, stress concentrates on the divided portion, and the division becomes easier.

また、図5に示すように、金属基体5と貫通絶縁体9との境界は、クラックの発生や隙間の発生が起こりやすいことから、被覆絶縁層29で覆うことが望ましい。なお、この被覆絶縁層29は貫通導体11を露出させて配線13と接続させるため、例えばリング状に形成されている。この被覆絶縁層29は貫通絶縁体9との接合性を考慮すれば、貫通絶縁体9と同様の組成物で作製することが望ましい。   Further, as shown in FIG. 5, the boundary between the metal substrate 5 and the through insulator 9 is preferably covered with a covering insulating layer 29 because cracks and gaps are likely to occur. The insulating cover layer 29 is formed, for example, in a ring shape so that the through conductor 11 is exposed and connected to the wiring 13. The covering insulating layer 29 is preferably made of the same composition as that of the through insulator 9 in consideration of the bondability with the through insulator 9.

また、前記金属基体5の発光素子搭載部7が形成された側の主面5aに金属めっき(図示せず)が施されていることが望ましい。また、反射部25にも金属めっき(図示せず)が施されていることが望ましい。これにより、発光素子から出た光が金属めっきによく反射され、発光装置の光取り出し効率を向上させることができる。本発明では、金属めっきを施す面が焼結金属で形成されているため、樹脂モールド基板やセラミック基板のようにめっき形成部位への金属層の転写や印刷等を行う必要がなく、工程を簡略化することができる。   Further, it is desirable that metal plating (not shown) is applied to the main surface 5a of the metal base 5 on the side where the light emitting element mounting portion 7 is formed. Further, it is desirable that the reflecting portion 25 is also subjected to metal plating (not shown). Thereby, the light emitted from the light emitting element is well reflected by the metal plating, and the light extraction efficiency of the light emitting device can be improved. In the present invention, since the surface to be subjected to metal plating is formed of sintered metal, there is no need to transfer or print a metal layer on the plating formation portion like a resin mold substrate or a ceramic substrate, and the process is simplified. Can be

この金属めっきは、反射率の点からAgめっきとすることが望ましく、安価である点ではNiメッキが望ましい。   The metal plating is preferably Ag plating from the viewpoint of reflectance, and Ni plating is preferable from the viewpoint of low cost.

そして、前記金属基体5が、W、Mo、Cuのうち、少なくとも1種を主成分とすることが望ましい。WおよびMoは高融点金属であるため1300〜1600℃程度の高温焼成セラミックスと同時焼成することができる。さらに、熱膨張率が絶縁層を形成するセラミックスに近いため信頼性の高い発光素子用配線基板を作製することができる。また、Cuは熱伝導率が高く、特に放熱性に優れている。また、例えば、貫通絶縁体3としていわゆるガラスセラミックスを用いて、Cuの含有率を高めた場合には、1000℃程度の低い温度で発光素子用配線基板13を焼成することもできる。また、これらの金属を組み合わせることにより、所望の熱伝導率や熱膨張率をもつ金属基体1を形成することができる。特に放熱性の観点から、金属基体5の熱伝導率が、150W/m・K以上であることが望ましい。これにより、良好な放熱性を実現することができ、発光素子から生じる熱を速やかに放散することができる。   And it is desirable that the metal substrate 5 contains at least one of W, Mo and Cu as a main component. Since W and Mo are refractory metals, they can be co-fired with high-temperature fired ceramics at about 1300 to 1600 ° C. Furthermore, since the coefficient of thermal expansion is close to that of ceramics forming the insulating layer, a highly reliable wiring board for a light-emitting element can be manufactured. Cu has a high thermal conductivity and is particularly excellent in heat dissipation. Further, for example, when so-called glass ceramics is used as the through insulator 3 and the Cu content is increased, the light emitting element wiring substrate 13 can be fired at a temperature as low as about 1000 ° C. Further, by combining these metals, the metal substrate 1 having a desired thermal conductivity and thermal expansion coefficient can be formed. In particular, from the viewpoint of heat dissipation, the metal substrate 5 preferably has a thermal conductivity of 150 W / m · K or more. Thereby, favorable heat dissipation can be realized and heat generated from the light emitting element can be quickly dissipated.

また、貫通導体11や配線13が、W、Mo、Cu、Agのうち少なくとも1種を主成分とすることが望ましい。これにより電気抵抗の低い貫通導体11や配線13を形成できる為、優れた電気特性を有する発光素子用配線基板3を得ることができる。また、他にも多少高価ではあるが、金属基体5や貫通導体11および配線13としてAl、Ag、AuおよびPtなどの金属を用いることができるのは言うまでもない。   Moreover, it is desirable that the through conductor 11 and the wiring 13 have at least one of W, Mo, Cu, and Ag as a main component. Thereby, since the through conductor 11 and the wiring 13 having low electric resistance can be formed, the light emitting element wiring substrate 3 having excellent electric characteristics can be obtained. In addition, it is needless to say that metals such as Al, Ag, Au, and Pt can be used as the metal substrate 5, the through conductor 11, and the wiring 13, although they are somewhat expensive.

また、貫通絶縁体9ならびに被覆絶縁層29が、アルミナ、ムライト、ジルコニア、マグネシア、カルシア、窒化アルミニウム、窒化珪素、そしてガラスセラミックスのうち、少なくとも1種を主成分とすることが望ましい。絶縁性の優れたこれらの材料を用いることにより、貫通絶縁体9ならびに被覆絶縁層29が薄くても貫通導体11や配線13が金属基体5と充分に絶縁をとることが可能となり、貫通絶縁体9ならびに被覆絶縁層29を高密度で形成する事ができ、さらに金属基体5との同時焼成も容易となる。   Further, it is desirable that the through insulator 9 and the covering insulating layer 29 are mainly composed of at least one of alumina, mullite, zirconia, magnesia, calcia, aluminum nitride, silicon nitride, and glass ceramics. By using these materials having excellent insulating properties, the through conductor 11 and the wiring 13 can be sufficiently insulated from the metal substrate 5 even if the through insulator 9 and the covering insulating layer 29 are thin. 9 and the covering insulating layer 29 can be formed with high density, and simultaneous firing with the metal substrate 5 is facilitated.

また、金属基体5は多層であってもよく、反射部25には傾斜が設けられていても良い。   Further, the metal substrate 5 may be a multilayer, and the reflecting portion 25 may be provided with an inclination.

そして、例えば、発光素子用配線基板3の内部で平面方向に回路が延設されていてもよい。この場合は発光素子用配線基板3の内部に平面方向に延設された内部配線は金属基体5と絶縁する必要があるため、貫通導体11との接続部を除いた周囲を内部絶縁層で取り囲むことが重要である。この内部絶縁層は貫通絶縁体9と同様の組成とすることが望ましい。また、内部配線は貫通金属体9や配線13と同様の組成とすることが望ましい。   For example, a circuit may be extended in the planar direction inside the light emitting element wiring substrate 3. In this case, since the internal wiring extended in the plane direction inside the wiring board 3 for the light emitting element needs to be insulated from the metal base 5, the periphery excluding the connecting portion with the through conductor 11 is surrounded by the internal insulating layer. This is very important. It is desirable that the internal insulating layer has the same composition as that of the through insulator 9. Further, it is desirable that the internal wiring has the same composition as the through metal body 9 and the wiring 13.

そして、例えば図6(a)、(b)、図7(a)、(b)に示すように、以上説明した本発明の発光素子用集合基板1を構成する個々の発光素子用配線基板3の発光素子搭載部7に、金属や樹脂からなる接続層(図示せず)を介して発光素子37を搭載し、この発光素子37の端子(図示せず)と、配線13とをボンディングワイヤ39で接続し、発光素子37、配線13、およびボンディングワイヤ39をモールド材などの透光性の樹脂41で覆うことで、本発明の発光装置集合基板43となる。   For example, as shown in FIGS. 6 (a), 6 (b), 7 (a) and 7 (b), the individual light emitting element wiring boards 3 constituting the light emitting element aggregate substrate 1 of the present invention described above. A light emitting element 37 is mounted on the light emitting element mounting portion 7 through a connection layer (not shown) made of metal or resin, and a terminal (not shown) of the light emitting element 37 and the wiring 13 are connected to the bonding wire 39. And the light-emitting element 37, the wiring 13, and the bonding wire 39 are covered with a light-transmitting resin 41 such as a molding material, whereby the light-emitting device collective substrate 43 of the present invention is obtained.

次いで、この発光装置集合基板43を分割領域4にて分割することにより個々の発光装置45が得られ、発光素子37に給電することにより光を生じる。このとき、金属基体5の熱伝導率が高いため、発光素子37からの発熱を速やかに放出することができ、発熱による輝度低下を抑制できる。また、発光素子37を有底穴23内に搭載することにより、発光素子37を保護することができ、かつ、発光素子37の放射する光を金属基体5や反射部25に反射させて光の取り出し効率を高めることができるため、高効率の発光装置45を実現することができる。   Next, each light emitting device 45 is obtained by dividing the light emitting device aggregate substrate 43 in the divided region 4, and light is generated by supplying power to the light emitting element 37. At this time, since the heat conductivity of the metal substrate 5 is high, heat generated from the light emitting element 37 can be quickly released, and a decrease in luminance due to heat generation can be suppressed. Further, by mounting the light emitting element 37 in the bottomed hole 23, the light emitting element 37 can be protected, and the light emitted from the light emitting element 37 is reflected by the metal substrate 5 or the reflecting portion 25 to transmit the light. Since the extraction efficiency can be increased, a highly efficient light-emitting device 45 can be realized.

なお、図6に示した例では、発光素子37は、接続層により発光素子用配線基板3に固定され、電力の供給はボンディングワイヤ39によりなされているが、発光素子用配線基板3との接続形態は、フリップチップ接続であってもよいことはいうまでもない。   In the example shown in FIG. 6, the light emitting element 37 is fixed to the light emitting element wiring substrate 3 by the connection layer, and the power is supplied by the bonding wire 39, but the connection with the light emitting element wiring substrate 3 is performed. Needless to say, the form may be flip-chip connection.

また、発光素子37は、モールド材41により被覆されているが、モールド材41を用いずに、蓋体(図示せず)を用いて封止してもよく、また、モールド材41と蓋体とを併用してもよい。蓋体を用いる場合であって、発光素子37を用いる場合には蓋体は、ガラスなどの透光性の素材を用いることが望ましい。   Further, although the light emitting element 37 is covered with the molding material 41, it may be sealed with a lid (not shown) without using the molding material 41. Also, the molding material 41 and the lid are used. And may be used in combination. In the case where a lid is used, and the light emitting element 37 is used, it is desirable to use a light-transmitting material such as glass for the lid.

また、発光素子37を搭載する場合には、必要に応じて、このモールド材41に発光素子37が放射する光を波長変換するための蛍光体(図示せず)を添加してもよい。   When the light emitting element 37 is mounted, a phosphor (not shown) for converting the wavelength of light emitted from the light emitting element 37 may be added to the molding material 41 as necessary.

また、発光素子37の熱を金属基体5に効率よく伝達するという観点から、接続層として半田、インジウム、AuSn合金などの金属を用いることが望ましい。   Further, from the viewpoint of efficiently transferring the heat of the light emitting element 37 to the metal substrate 5, it is desirable to use a metal such as solder, indium, or AuSn alloy as the connection layer.

なお、本発明においてもヒートシンクを設けることで、更に放熱性が向上することはもちろんであり、例えば、ヒートシンクのような冷却装置を設けることを排除するものではない。   In the present invention, the heat dissipation is further improved by providing the heat sink. For example, it is not excluded to provide a cooling device such as a heat sink.

次に、本発明における発光素子用集合基板1の製造方法について、図8〜図12を用いて具体的に説明する。   Next, the manufacturing method of the light-emitting element collective substrate 1 in the present invention will be specifically described with reference to FIGS.

まず以下に説明するように、焼成することによって金属基体5となる金属シート101と貫通絶縁体9となるセラミックグリーンシート103および貫通金属体11となる導体ペーストを予め、作製する。また、必要に応じセラミックペーストを作製する。   First, as described below, by firing, a metal sheet 101 to be the metal substrate 5, a ceramic green sheet 103 to be the through insulator 9, and a conductor paste to be the through metal body 11 are prepared in advance. Moreover, a ceramic paste is produced as needed.

金属シート101は、金属粉末と樹脂と溶剤とを所定の割合で混合して調整した金属スラリーから、従来周知のドクターブレード法などによりシート上に形成される。なお、金属スラリーには必要に応じてセラミック粉末を含有させてもよい。   The metal sheet 101 is formed on a sheet by a conventionally known doctor blade method or the like from a metal slurry prepared by mixing metal powder, resin, and solvent at a predetermined ratio. The metal slurry may contain ceramic powder as necessary.

また、セラミックグリーンシート103も、セラミック粉末、樹脂および溶剤などから形成されるセラミックスラリーからドクターブレード法などによりシート状に形成される。   The ceramic green sheet 103 is also formed into a sheet shape by a doctor blade method or the like from a ceramic slurry formed from ceramic powder, resin, solvent, and the like.

金属シート101並びにセラミックグリーンシート103に用いるセラミック粉末、金属粉末の粒径は平均粒径で0.01〜10μm程度のものが好適に用いられ、特に、1〜5μmの範囲の粉末が取り扱いや焼結性に優れている。   The ceramic powder and metal powder used for the metal sheet 101 and the ceramic green sheet 103 preferably have an average particle diameter of about 0.01 to 10 [mu] m. Excellent binding.

また、望ましくはW、Mo、Cu、Agのうち少なくとも1種を主成分とする導体ペーストを作製する。金属粉末、樹脂および溶剤を所定の割合で混合し、溶剤を減圧過熱等によって除くことにより作製される。また、導体ペーストは必要に応じてセラミック粉末を含有させてもよい。   Desirably, a conductor paste containing at least one of W, Mo, Cu, and Ag as a main component is prepared. The metal powder, resin and solvent are mixed at a predetermined ratio, and the solvent is removed by heating under reduced pressure or the like. Further, the conductor paste may contain ceramic powder as necessary.

そして、セラミックペーストは導体ペーストと同様にセラミック粉末、樹脂および溶剤を混合し、溶剤を除くことによって作製される。   The ceramic paste is produced by mixing ceramic powder, resin and solvent and removing the solvent in the same manner as the conductor paste.

導体ペーストおよびセラミックペーストに用いる金属粉末、セラミック粉末の粒径は平均粒径で0.01〜10μm程度のものが好適に用いられ、特に、1〜5μmの範囲の粉末が取り扱いや焼結性に優れている。   The metal powder used for the conductor paste and the ceramic paste, and the ceramic powder having an average particle diameter of about 0.01 to 10 μm is preferably used. Particularly, powder in the range of 1 to 5 μm is used for handling and sintering. Are better.

まず、図8(a)に示すように、セラミックグリーンシート103にマイクロドリル、レーザー等により直径50〜250μmのビアホール109を形成し、図8(b)に示すように、このビアホール109に導体ペーストを印刷等により埋め込んで貫通導体成形体105aを形成し、導体埋め込みシート111を作製する。   First, as shown in FIG. 8A, a via hole 109 having a diameter of 50 to 250 μm is formed in the ceramic green sheet 103 by a micro drill, laser, or the like, and a conductor paste is formed in the via hole 109 as shown in FIG. 8B. Is embedded by printing or the like to form the through conductor molded body 105a, and the conductor embedded sheet 111 is produced.

また、図8(c)に示すように、打ち抜き穴113を具備する金型115の上面に、予め作製しておいた金属シート101を配置し、図8(d)に示すように、押し金型117で金属シート101を打ち抜く。   Further, as shown in FIG. 8C, a metal sheet 101 prepared in advance is arranged on the upper surface of the mold 115 having the punching hole 113, and as shown in FIG. The metal sheet 101 is punched with a mold 117.

さらに図9(a)に示すように打ち抜いた金属シート101の上に、予めセラミックグリーンシート103に貫通導体成形体105aを形成した導体埋め込みシート111を配置し、図9(b)に示すように、押し金型117で導体埋め込みシート111を打ち抜くと同時に、導体埋め込みシート111の一部を金属シート101に形成された穴に挿入する。そして、金属シート101と導体埋め込みシート111の不要な部分を除去することにより、図9(c)に示すような焼成後に貫通導体11や貫通絶縁体9および金属基体5となる複合成形体119を作製することができる。なお、金属シート101とセラミックグリーンシート103は略同一厚みであることが望ましい。   Further, on the metal sheet 101 punched out as shown in FIG. 9A, a conductor embedded sheet 111 in which the through conductor molded body 105a is formed in advance on the ceramic green sheet 103 is arranged, as shown in FIG. 9B. The conductor embedding sheet 111 is punched out with the pressing die 117 and at the same time, a part of the conductor embedding sheet 111 is inserted into the hole formed in the metal sheet 101. Then, by removing unnecessary portions of the metal sheet 101 and the conductor-embedded sheet 111, the composite molded body 119 that becomes the through conductor 11, the through insulator 9, and the metal substrate 5 after firing as shown in FIG. Can be produced. It is desirable that the metal sheet 101 and the ceramic green sheet 103 have substantially the same thickness.

そして、例えば、図9(d)に示すように、この複合成形体119の表面に配線用導体ペーストを印刷等により塗布することで、焼成後に配線13となる配線成形体123を形成することができる。また、導体ペーストによって形成された配線成形体123は、例えば焼成後に外部接続端子15や内部配線31とすることもできることはいうまでもない。ここで、配線用導体ペーストは、導体ペーストと同じペーストを用いることもできるし、導体ペーストと同様の方法で違う組成のペーストを別途作製してもよい。   Then, for example, as shown in FIG. 9D, a wiring molded body 123 that becomes the wiring 13 after firing can be formed by applying a wiring conductor paste to the surface of the composite molded body 119 by printing or the like. it can. Needless to say, the wiring molded body 123 formed of the conductive paste can be used as the external connection terminals 15 or the internal wirings 31 after firing, for example. Here, as the conductor paste for wiring, the same paste as the conductor paste can be used, or a paste having a different composition may be separately prepared by the same method as the conductor paste.

また、この配線成形体123は貫通絶縁体9と貫通導体11との境界にクラックや隙間が発生することを抑制するために、セラミックグリーンシート103と貫通導体成形体105aとの境界を覆うように形成することが望ましい。   The wiring molded body 123 covers the boundary between the ceramic green sheet 103 and the through conductor molded body 105a in order to suppress the occurrence of cracks or gaps at the boundary between the through insulator 9 and the through conductor 11. It is desirable to form.

そして、例えば、図10(a)に示すように、配線成形体123を形成する前に、図9(c)で作製した複合成形体119の表面にセラミックペーストを塗布して、焼成後に被覆絶縁層29となる被覆絶縁層成形体127を、貫通導体成形体105aを露出させるとともに金属シート101とセラミックグリーンシート103との境界を覆うように形成することが望ましい。   Then, for example, as shown in FIG. 10 (a), before forming the wiring molded body 123, a ceramic paste is applied to the surface of the composite molded body 119 produced in FIG. It is desirable to form the covering insulating layer formed body 127 to be the layer 29 so as to expose the through conductor formed body 105 a and cover the boundary between the metal sheet 101 and the ceramic green sheet 103.

これにより、金属基体5と貫通絶縁体9との境界にクラックや隙間が発生することを抑制することができる。なお、貫通導体成形体105aを露出させるためには、被覆絶縁層成形体127をリング状あるいはドーナツ状に形成すればよい。   Thereby, it can suppress that a crack and a clearance gap generate | occur | produce in the boundary of the metal base | substrate 5 and the penetration insulator 9. FIG. In order to expose the through conductor molded body 105a, the covering insulating layer molded body 127 may be formed in a ring shape or a donut shape.

そしてさらに、図10(b)に示すように、貫通導体成形体105aと接続させ、金属シート101と接続しないように配線成形体123を形成することで、被覆絶縁層成形体127と配線成形体123とを備えた複合成形体119を作製することができる。   Further, as shown in FIG. 10B, by forming the wiring molded body 123 so as to be connected to the through conductor molded body 105a and not to be connected to the metal sheet 101, the covering insulating layer molded body 127 and the wiring molded body are formed. The composite molded body 119 provided with 123 can be manufactured.

なお、例えば配線成形体123や被覆絶縁層成形体127を備えた複数の複合成形体119を積層した場合には配線成形体123は焼成後に内部配線31となる場合があり、また、被覆絶縁層成形体127は焼成後に内部絶縁層33となる場合がある。   For example, when a plurality of composite molded bodies 119 provided with the wiring molded body 123 and the coating insulating layer molded body 127 are laminated, the wiring molded body 123 may become the internal wiring 31 after firing, and the coating insulating layer The molded body 127 may become the internal insulating layer 33 after firing.

次に、空洞19および分割溝18の形成方法について説明する。図11に示すように以上のようにして作製した複合成形体119に、焼成後に空洞19となる貫通孔128を複数形成して、貫通孔128を備えた複合成形体119aを作製する。   Next, a method for forming the cavity 19 and the dividing groove 18 will be described. As shown in FIG. 11, the composite molded body 119 manufactured as described above is formed with a plurality of through holes 128 that become the cavities 19 after firing, and a composite molded body 119 a having the through holes 128 is manufactured.

つぎに、図12(a)に示すように、貫通孔128を形成した複合成形体119aの両主面に貫通孔128のない複合成形体119を積層して、さらに、図12(b)に示すように、この積層成形体の表面に金属刃によって、焼成後に分割溝18となる溝129を形成する。   Next, as shown in FIG. 12 (a), a composite molded body 119 having no through holes 128 is laminated on both main surfaces of the composite molded body 119a in which the through holes 128 are formed. As shown, a groove 129 that becomes the divided groove 18 after firing is formed on the surface of the laminated molded body by a metal blade.

このとき、例えば、鋭角の金属刃を用いた場合は、V字形状の溝129を形成することができ、回転刃を用いた場合は、矩形や底部に曲率を持った溝129を形成することができる。   At this time, for example, when an acute-angle metal blade is used, a V-shaped groove 129 can be formed, and when a rotary blade is used, a rectangular or bottom groove 129 is formed. Can do.

なお、空洞19となる貫通孔は、図8(c)、(d)で金属シート111に貫通孔を設けるときに形成してもよい。   In addition, you may form the through-hole used as the cavity 19 when providing a through-hole in the metal sheet 111 by FIG.8 (c), (d).

また、空洞19となる貫通孔128を形成する他の方法として、例えば、金属刃によって不連続の溝を形成した複合成形体119同士を向かい合わせて積層することで断面形状が菱形の空洞19を容易に作製することができる。   Further, as another method of forming the through-hole 128 to be the cavity 19, for example, the composite molded body 119 in which discontinuous grooves are formed by metal blades are laminated face to face to form a cavity 19 having a rhombus cross section. It can be easily manufactured.

また、最表層となる第1層複合成形体119以外のすべての複合成形体119(第2層〜第n層)を積層し、この積層体の第2層から第(n−1)層まで貫通する分割領域溝125を形成した後に、第1層を積層することにより、焼成後に空洞19を形成することができる。さらに第1層の表と第n層の裏に焼成後に分割溝18となる分割領域溝125を形成することも可能である。以上のように分割領域溝125を形成する工程と積層工程を組み合わせることにより、所望の形状の空洞19や分割溝18を形成することが可能である。   Moreover, all the composite molded bodies 119 (2nd layer-nth layer) other than the 1st layer composite molded body 119 used as the outermost layer are laminated | stacked, and from the 2nd layer of this laminated body to the (n-1) th layer. The cavity 19 can be formed after firing by laminating the first layer after forming the dividing region groove 125 penetrating. Furthermore, it is also possible to form divided region grooves 125 that become the divided grooves 18 after firing on the front surface of the first layer and the back surface of the nth layer. As described above, by combining the step of forming the divided region groove 125 and the stacking step, it is possible to form the cavity 19 or the divided groove 18 having a desired shape.

次に有底穴23の形成方法について説明する。まず、図13(a)に示すように、焼成後に有底穴23となるように、金属シート101に貫通孔130を設け、有穴成形体131を作製し、図13(b)に示すように、この有穴成形体131と、図12(b)で作製した積層成形体とを積層し、焼成することで有底穴23を有する発光素子用配線基板3が複数集合してなる発光素子用集合基板1を作製することができる。   Next, a method for forming the bottomed hole 23 will be described. First, as shown in FIG. 13A, a through hole 130 is provided in the metal sheet 101 so that the bottomed hole 23 is obtained after firing, and a holed compact 131 is produced, as shown in FIG. 13B. In addition, a light emitting element in which a plurality of light emitting element wiring substrates 3 each having a bottomed hole 23 are assembled by laminating and firing the perforated molded body 131 and the laminated molded body produced in FIG. The collective substrate 1 can be produced.

なお、有底穴23のない発光素子用集合基板1については、図12(b)で作製した積層成形体を焼成すればよい。
なお、反射部25は、図1(a)に示すように金属基体に対して垂直に配設されていてもよいし、図2のように傾斜を有するように配設されてもよい。反射部25が垂直な場合は、通常の金型で打ち抜いて作製すればよく、また、反射部25が傾斜を有する場合は、例えばパンチの外径よりもダイスの内径が0.05〜1mm程度大きな打ち抜き金型を用いて金属シート101を打ち抜き加工して作製することができる。
For the light emitting element aggregate substrate 1 without the bottomed hole 23, the laminated molded body produced in FIG.
In addition, the reflection part 25 may be arrange | positioned perpendicularly | vertically with respect to a metal base | substrate as shown to Fig.1 (a), and may be arrange | positioned so that it may incline like FIG. When the reflecting portion 25 is vertical, it may be produced by punching with a normal mold. When the reflecting portion 25 has an inclination, for example, the inner diameter of the die is about 0.05 to 1 mm rather than the outer diameter of the punch. The metal sheet 101 can be punched using a large punching die.

なお、貫通導体成形体105aは金属シート101に複数形成してもよい。   A plurality of through conductor molded bodies 105 a may be formed on the metal sheet 101.

そして、貫通絶縁体9や貫通導体11の形状は、四角や角柱形状でも良いし、その他円形あるいは円柱形状など所望の形状にすることが可能である。   The shape of the through insulator 9 and the through conductor 11 may be a square shape or a prism shape, or may be a desired shape such as a circular shape or a cylindrical shape.

また、配線成形体123は、薄膜法により形成したり、金属箔を成形体の表面に転写するなどして形成することもできる。   In addition, the wiring molded body 123 can be formed by a thin film method or by transferring a metal foil to the surface of the molded body.

純度99%以上、平均粒径2.0μmのW粉末を70質量%と、純度99%以上、平均粒径2.0μmのCu粉末を30質量%で混合し、さらに成形用有機樹脂(バインダ)としてアクリル系バインダと、トルエンを溶媒として添加し、金属シートとなるスラリーを調整した。しかる後に、焼成後に厚みが0.2mmとなるようにドクターブレード法にて金属シートを作製した。   70% by mass of W powder with a purity of 99% or more and an average particle size of 2.0 μm and 30% by mass of Cu powder with a purity of 99% or more and an average particle size of 2.0 μm, and further molding organic resin (binder) As a solvent, an acrylic binder and toluene were added as solvents to prepare a slurry to be a metal sheet. Thereafter, a metal sheet was prepared by a doctor blade method so that the thickness was 0.2 mm after firing.

また、純度99%以上、平均粒子径2μmのW粉末70質量%および純度99%以上、平均粒子径2μmのCu粉末30質量%にアクリル系バインダおよび溶媒としてアセトンを混合したのち、減圧過熱によりアセトンを取り除いて導体ペーストを作製した。   Further, after mixing acetone as an acrylic binder and a solvent with 70% by mass of W powder having a purity of 99% or more and an average particle size of 2 μm and 30% by mass of Cu powder having a purity of 99% or more and an average particle size of 2 μm, acetone is removed by overheating under reduced pressure. Was removed to produce a conductor paste.

また、原料粉末として純度99%以上、平均粒径が1.5μmのAl粉末を90質量%と、純度99%以上、平均粒子径1.3μmのMn粉末を5質量%と、純度99%以上、平均粒径1.0μmのSiO粉末を5質量%の割合で混合して、金属シートと同様に、アクリル系バインダとトルエンを混合し、スラリーを調整した。しかる後に、ドクターブレード法にてAlを主成分とし、金属シートと略同一厚みのセラミックグリーンシートを作製した。 Moreover, 90% by mass of Al 2 O 3 powder having a purity of 99% or more and an average particle diameter of 1.5 μm as raw material powder, and 5% by mass of Mn 2 O 3 powder having a purity of 99% or more and an average particle diameter of 1.3 μm. Then, an SiO 2 powder having a purity of 99% or more and an average particle diameter of 1.0 μm was mixed at a ratio of 5 mass%, and an acrylic binder and toluene were mixed in the same manner as the metal sheet to prepare a slurry. Thereafter, a ceramic green sheet having Al 2 O 3 as a main component and substantially the same thickness as the metal sheet was produced by a doctor blade method.

また、セラミックグリーンシートと同様の比率で、Al粉末とMn粉末とSiO粉末とを混合し、これにアクリル系バインダおよびアセトンを添加し、その後減圧過熱することにより溶剤を除き、セラミックペーストを作製した。 In addition, Al 2 O 3 powder, Mn 2 O 3 powder and SiO 2 powder are mixed at the same ratio as the ceramic green sheet, and an acrylic binder and acetone are added thereto, and then the solvent is removed by heating under reduced pressure. Except for this, a ceramic paste was prepared.

これらの部材を用いて、0.2mm×5層からなる外形寸法50×100×1mmの本発明の発光素子用集合基板および本発明の範囲外の発光素子用集合基板を作製した。これらの発光素子用集合基板は、8行×18列、合計144個の発光素子用配線基板を含むもので、個々の発光素子用配線基板の構造は外形5mm×5mm×1mm、有底穴φ3.0mm×0.4mmである。   Using these members, a light-emitting element collective substrate of the present invention having an outer dimension of 50 × 100 × 1 mm consisting of 0.2 mm × 5 layers and a light-emitting element collective substrate outside the scope of the present invention were produced. These light-emitting element collective substrates include 8 rows × 18 columns and a total of 144 light-emitting element wiring substrates. Each light-emitting element wiring substrate has an outer shape of 5 mm × 5 mm × 1 mm and a bottomed hole φ3. 0.0 mm × 0.4 mm.

上記のセラミックグリーンシートに対して、打ち抜き加工を施し、直径が200μmのビアホールを形成し、このビアホール内に、導体ペーストをスクリーン印刷法によって充填し、導体埋め込みシートを作製した。   The ceramic green sheet was punched to form a via hole having a diameter of 200 μm, and a conductor paste was filled in the via hole by a screen printing method to produce a conductor embedded sheet.

ここで、焼成後に有底穴を形成する金属シートには、打抜き加工を施し、焼成後に直径3.0mmとなるような穴を設けた。   Here, the metal sheet forming the bottomed hole after firing was punched and provided with a hole having a diameter of 3.0 mm after firing.

そして、金属シートの所定箇所に貫通孔を形成し、金属シートにおける貫通孔形成部分を導体埋め込みシートから押圧することによって、導体埋め込みシートの一部を貫通孔内に嵌め込み、金属シートと導体埋め込みシートとを一体化し、複合成形体を形成した。   Then, a through hole is formed at a predetermined position of the metal sheet, and a part of the conductor embedded sheet is fitted into the through hole by pressing a through hole forming portion of the metal sheet from the conductor embedded sheet. And a composite molded body was formed.

そしてまた、セラミックペーストを用いてスクリーン印刷により複合成形体の主面側、および対向面側に、金属シートとセラミックグリーンシートとの境界を覆うように被覆絶縁層成形体をリング状に形成した。なお、このとき複合成形体に設けられたビアホールに充填された貫通導体となる導体ペーストが露出するようにした。さらに、導体ペーストを配線用導体ペーストとしても用い、貫通導体成形体を覆うように、被覆絶縁層成形体上に、導体ペーストを印刷塗布し、焼成後に配線および接続端子となるように配線成形体を形成した。   Further, a covering insulating layer molded body was formed in a ring shape so as to cover the boundary between the metal sheet and the ceramic green sheet on the main surface side and the opposite surface side of the composite molded body by screen printing using ceramic paste. At this time, the conductor paste serving as a through conductor filled in the via hole provided in the composite molded body was exposed. Further, the conductor paste is also used as a conductor paste for wiring, and the conductor paste is printed and applied on the covering insulating layer molded body so as to cover the through conductor molded body, and the wiring molded body is formed into wiring and connection terminals after firing. Formed.

以上のようにして得られた被覆絶縁層および配線成形体が形成された複合成形体に、次のように焼成後に空洞となる貫通孔の形成と、積層を行い、発光素子用集合基板の成形体を作製した。   The composite molded body on which the coating insulating layer and the wiring molded body obtained as described above are formed is formed with a through-hole that becomes a cavity after firing and is laminated as follows to form a collective substrate for a light-emitting element. The body was made.

なお、5層の複合成形体のうち、真中の第3層にレーザーを用いて、焼成後に空洞となる貫通孔を加工した。貫通孔は、基板領域7に沿うように長さ1mmの間隔で、幅0.2mm×長さ1mmの寸法で形成した。   In addition, the through-hole which becomes a cavity after baking was processed using the laser for the third layer in the middle of the five-layer composite molded body. The through-holes were formed with a dimension of width 0.2 mm × length 1 mm at intervals of 1 mm along the substrate region 7.

その後、各層を位置あわせし、積層圧着して一体化した。   Then, each layer was aligned and laminated and pressure-bonded.

そして、この積層体に金属刃を用いて上から第1層の複合成形体には表面に、第5層の複合成形体には裏面に、焼成後の深さが0.1mmとなるような分割溝を設けた。   And, using a metal blade for this laminate, the depth after firing is 0.1 mm on the front surface of the first layer composite molded body, on the back surface of the fifth layer composite molded body. Split grooves were provided.

また、本発明の範囲外の発光素子用集合基板は、第1層から第5層の複合成形体を積層した後、比較例1は、最表面と最裏面にそれぞれ焼成後の深さが0.4mmとなるような分割領域溝を設け、比較例2は、同様に最表面と最裏面にそれぞれ焼成後の深さが0.25mmとなるような分割領域溝を設けた。   Further, in the aggregate substrate for light emitting elements outside the scope of the present invention, after the composite molded bodies of the first layer to the fifth layer were laminated, in Comparative Example 1, the depth after firing was 0 on the outermost surface and the outermost surface, respectively. In the same manner, Comparative Example 2 provided the divided region grooves on the outermost surface and the rearmost surface so that the depth after firing was 0.25 mm.

そして、以上のようにして得られた発光素子用集合基板の成形体を露点+25℃の窒素水素混合雰囲気にて脱脂を行った後、引き続き、露点+25℃の窒素水素混合雰囲気にて1300℃の最高温度で2時間焼成した。   And after performing the degreasing | defatting in the nitrogen-hydrogen mixed atmosphere of dew point +25 degreeC, the molded object of the aggregate substrate for light emitting elements obtained as mentioned above was continued, and 1300 degreeC of nitrogen-hydrogen mixed atmosphere of dew point +25 degreeC was continued. Baked for 2 hours at maximum temperature.

その後、金属基体、配線、接続端子並びに外部電極端子の表面にNi、AuおよびAgめっきを順次施し、図1に示すような本発明の発光素子用集合基板および比較例となる発光素子用集合基板を作製した。   Thereafter, Ni, Au, and Ag plating are sequentially applied to the surfaces of the metal substrate, wiring, connection terminals, and external electrode terminals, and the light-emitting element collective substrate of the present invention and the light-emitting element collective substrate as a comparative example as shown in FIG. Was made.

これらの発光素子用集合基板に接続層として半田を用いて出力1.5Wの発光素子である□1mmのLED素子を発光素子搭載部に実装し、ボンディングワイヤによりLED素子と配線とを接続し、さらに、LED素子と配線とをエポキシ樹脂からなるモールド材で覆い、発光装置集合基板を得た。   A 1 mm LED element, which is a light emitting element with an output of 1.5 W, is mounted on the light emitting element mounting portion using solder as a connection layer on these aggregate substrates for light emitting elements, and the LED element and the wiring are connected with bonding wires, Furthermore, the LED element and the wiring were covered with a mold material made of an epoxy resin to obtain a light emitting device aggregate substrate.

得られた発光素子用集合基板について形状維持性と分割性の評価を行った。本発明の発光装置集合基板は、分割領域に沿って曲げ応力を負荷した結果、分割領域が破断し、容易に個片に分割することができた。   The obtained substrate for a light-emitting element was evaluated for shape maintainability and separability. As a result of applying a bending stress along the divided region, the divided region was broken and the light emitting device aggregate substrate of the present invention could be easily divided into individual pieces.

一方、本発明の範囲外である比較例1は、分割性は良好であったが、製造工程途中の焼成前の段階で、分割領域での分離が見られた。   On the other hand, in Comparative Example 1 which is outside the scope of the present invention, the splitting property was good, but separation in the divided region was observed at the stage before firing in the middle of the manufacturing process.

また、比較例2は、製造工程中に分割領域で分離することはなかったが、分割領域に沿って曲げ応力を負荷しても分割できず、無理に分割すると、個々の発光素子用配線基板に変形が見られた。   Further, Comparative Example 2 was not separated in the divided regions during the manufacturing process, but could not be divided even when bending stress was applied along the divided regions. Deformation was seen.

(a)は、本発明の発光素子用集合基板の平面図であり、(b)は、本発明の発光素子用集合基板の断面図である。(A) is a top view of the aggregate substrate for light emitting elements of this invention, (b) is sectional drawing of the aggregate substrate for light emitting elements of this invention. (a)は、本発明の発光素子用集合基板の他の形態の平面図であり、(b)は、本発明の発光素子用集合基板の他の形態の断面図である。(A) is a top view of the other form of the aggregate substrate for light emitting elements of this invention, (b) is sectional drawing of the other form of the aggregate substrate for light emitting elements of this invention. 本発明の発光素子用集合基板の他の形態の断面図である。It is sectional drawing of the other form of the aggregate substrate for light emitting elements of this invention. (a)は、本発明の発光素子用集合基板の他の形態の平面図であり、(b)は、本発明の発光素子用集合基板の他の形態の断面図である。(A) is a top view of the other form of the aggregate substrate for light emitting elements of this invention, (b) is sectional drawing of the other form of the aggregate substrate for light emitting elements of this invention. 本発明の発光素子用集合基板の要部拡大断面図である。It is a principal part expanded sectional view of the aggregate substrate for light emitting elements of this invention. (a)は、本発明の発光装置集合基板の平面図であり、(b)は、本発明の発光装置集合基板の断面図である。(A) is a top view of the light-emitting device assembly substrate of this invention, (b) is sectional drawing of the light-emitting device assembly substrate of this invention. (a)は、本発明の発光装置集合基板の他の形態の平面図であり、(b)は、本発明の発光装置集合基板の他の形態の断面図である。(A) is a top view of the other form of the light-emitting device assembly board of this invention, (b) is sectional drawing of the other form of the light-emitting device assembly board of this invention. 本発明の発光素子用集合基板の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the aggregate substrate for light emitting elements of this invention. 本発明の発光素子用集合基板の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the aggregate substrate for light emitting elements of this invention. 本発明の発光素子用集合基板の製造方法を説明するための要部拡大断面図である。It is a principal part expanded sectional view for demonstrating the manufacturing method of the aggregate substrate for light emitting elements of this invention. 本発明の発光素子用配線基板の製造方法を説明するための平面図である。It is a top view for demonstrating the manufacturing method of the wiring board for light emitting elements of this invention. 本発明の発光素子用配線基板の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the wiring board for light emitting elements of this invention. 本発明の発光素子用配線基板の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the wiring board for light emitting elements of this invention.

符号の説明Explanation of symbols

1・・・発光素子用集合基板
3・・・発光素子用配線基板
4・・・分割領域
5・・・金属基体
7・・・搭載部
9・・・貫通絶縁体
11・・・貫通導体
13・・・配線
15・・・外部接続端子
17・・・基板領域
18・・・分割溝
19・・・空洞
23・・・有底穴
25・・・反射部
29・・・被覆絶縁層
37・・・発光素子
39・・・ボンディングワイヤ
41・・・モールド材
43・・・発光装置集合基板
45・・・発光装置
DESCRIPTION OF SYMBOLS 1 ... Light emitting element assembly board 3 ... Light emitting element wiring board 4 ... Divided region 5 ... Metal substrate 7 ... Mounting part 9 ... Penetration insulator 11 ... Penetration conductor 13 ... Wiring 15 ... External connection terminal 17 ... Substrate region 18 ... Division groove 19 ... Cavity 23 ... Bottom hole 25 ... Reflecting part 29 ... Coating insulating layer 37 ..Light emitting element 39... Bonding wire 41... Mold material 43.

Claims (4)

複数の発光素子用配線基板が分割領域を挟んで縦横の並びに整列した発光素子用集合基板において、前記発光素子用配線基板が、焼結金属からなる平板状の金属基体と、該金属基体の上面に形成された発光素子を搭載する搭載部と、前記金属基体を厚み方向に貫通するセラミックスからなる貫通絶縁体と、前記金属基体と電気的に絶縁されるとともに前記貫通絶縁体の内側を厚み方向に貫通する貫通導体と、該貫通導体と電気的に接続されるとともに前記金属基体と絶縁され前記搭載部の周囲に設けられた配線とを備え、前記分割領域の表面に分割溝が形成され、前記分割領域の前記発光素子用配線基板の基板領域の全周に沿って空洞が断続的に設けられていることを特徴とする発光素子用集合基板。 In a collective substrate for light-emitting elements in which a plurality of light-emitting element wiring substrates are arranged vertically and horizontally across a divided region, the light-emitting element wiring substrate includes a flat metal base made of sintered metal, and an upper surface of the metal base A mounting portion for mounting the light emitting element formed thereon, a penetrating insulator made of ceramics penetrating the metal base in the thickness direction, and being electrically insulated from the metal base and inside the penetrating insulator in the thickness direction. A penetrating conductor penetrating through and a wiring electrically connected to the penetrating conductor and insulated from the metal base and provided around the mounting portion, and a dividing groove is formed on the surface of the dividing region, A collective substrate for a light emitting element, wherein cavities are intermittently provided along the entire circumference of the substrate region of the light emitting element wiring substrate in the divided region. 前記金属基体に有底穴が設けられ、該有底穴の底面に前記搭載部が形成されていることを特徴とする請求項1に記載の発光素子用集合基板。 The light-emitting element collective substrate according to claim 1, wherein the metal base is provided with a bottomed hole, and the mounting portion is formed on a bottom surface of the bottomed hole. 前記分割領域において、前記空洞が上下に重なって複数形成されていることを特徴とする請求項1または2に記載の発光素子用集合基板。 3. The light-emitting element collective substrate according to claim 1, wherein a plurality of the cavities are formed so as to overlap each other in the divided region. 請求項1乃至3のいずれかに記載の発光素子用集合基板の前記搭載部に発光素子が搭載されたことを特徴とする発光装置集合基板。
A light-emitting device aggregate substrate, wherein a light-emitting element is mounted on the mounting portion of the light-emitting element aggregate substrate according to claim 1.
JP2006348411A 2006-12-25 2006-12-25 Substrate for light emitting element aggregation, and substrate with light emitting device aggregation Pending JP2008159937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006348411A JP2008159937A (en) 2006-12-25 2006-12-25 Substrate for light emitting element aggregation, and substrate with light emitting device aggregation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006348411A JP2008159937A (en) 2006-12-25 2006-12-25 Substrate for light emitting element aggregation, and substrate with light emitting device aggregation

Publications (1)

Publication Number Publication Date
JP2008159937A true JP2008159937A (en) 2008-07-10

Family

ID=39660509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006348411A Pending JP2008159937A (en) 2006-12-25 2006-12-25 Substrate for light emitting element aggregation, and substrate with light emitting device aggregation

Country Status (1)

Country Link
JP (1) JP2008159937A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110093037A (en) * 2010-02-11 2011-08-18 삼성엘이디 주식회사 Nitride semiconductor light emitting device
JP2012504342A (en) * 2008-09-29 2012-02-16 ブリッジラックス インコーポレイテッド Efficient LED array
CN104518055A (en) * 2013-10-07 2015-04-15 广镓光电股份有限公司 Light emitting diode assembly and method of manufacture
JP2017059798A (en) * 2015-09-19 2017-03-23 日本特殊陶業株式会社 Wiring board and manufacturing method of the same
WO2018142910A1 (en) * 2017-02-03 2018-08-09 日本電気硝子株式会社 Manufacturing method for package and wavelength conversion member, package, wavelength conversion member, light emitting device, base material of package, and base material of container
CN114008799A (en) * 2019-06-24 2022-02-01 波主有限公司 Method for manufacturing support substrate for semiconductor light-emitting element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504342A (en) * 2008-09-29 2012-02-16 ブリッジラックス インコーポレイテッド Efficient LED array
KR20110093037A (en) * 2010-02-11 2011-08-18 삼성엘이디 주식회사 Nitride semiconductor light emitting device
KR101650722B1 (en) * 2010-02-11 2016-08-24 삼성전자주식회사 Nitride semiconductor light emitting device
CN104518055A (en) * 2013-10-07 2015-04-15 广镓光电股份有限公司 Light emitting diode assembly and method of manufacture
CN109268709A (en) * 2013-10-07 2019-01-25 晶元光电股份有限公司 Light emitting diode assembly and method of manufacture
JP2017059798A (en) * 2015-09-19 2017-03-23 日本特殊陶業株式会社 Wiring board and manufacturing method of the same
WO2018142910A1 (en) * 2017-02-03 2018-08-09 日本電気硝子株式会社 Manufacturing method for package and wavelength conversion member, package, wavelength conversion member, light emitting device, base material of package, and base material of container
CN114008799A (en) * 2019-06-24 2022-02-01 波主有限公司 Method for manufacturing support substrate for semiconductor light-emitting element

Similar Documents

Publication Publication Date Title
JP4789671B2 (en) WIRING BOARD FOR LIGHT EMITTING ELEMENT AND LIGHT EMITTING DEVICE
JP4804109B2 (en) LIGHT EMITTING DEVICE WIRING BOARD, LIGHT EMITTING DEVICE, AND LIGHT EMITTING DEVICE WIRING BOARD MANUFACTURING METHOD
US9596747B2 (en) Wiring substrate and electronic device
JP6499277B2 (en) Optical device mounting package, electronic device and electronic module
JP2008109079A (en) Wiring board for surface mounting type light-emitting element, and light-emitting device
JP2006093565A (en) Wiring board for light emitting element, light emitting device and method for manufacturing it
JP2006216764A (en) Wiring board for packaging light-emitting device
JP2008172113A (en) Wiring substrate
JP2008159937A (en) Substrate for light emitting element aggregation, and substrate with light emitting device aggregation
JP4780939B2 (en) Light emitting device
JP2007250899A (en) Light-emitting module, and display device and lighting device using the same
JP4895777B2 (en) WIRING BOARD FOR LIGHT EMITTING ELEMENT AND LIGHT EMITTING DEVICE
JP2008135526A (en) Light-emitting element coupling substrate and light-emitting device coupling substrate
JP2006156447A (en) Wiring board for light emitting element, light emitting device and its manufacturing method
JP2006066409A (en) Wiring board for light emitting element, manufacturing method thereof and light emitting device
JP2006128265A (en) Wiring board for light emitting element and light emitting device
JP4940669B2 (en) Support for mounting semiconductor elements
US11276617B2 (en) Electronic device mounting board, electronic package, and electronic module
JP4835104B2 (en) Semiconductor light emitting device
JP4331585B2 (en) Light emitting element storage package and manufacturing method thereof
JP2011071554A (en) Wiring board for light emitting element and light emitting device
JP2015159245A (en) Package for mounting light-emitting element and light-emitting device
JP6773399B2 (en) Optical element mounting package and electronic device
JP2008135525A (en) Light-emitting element coupling substrate and light-emitting device coupling substrate
JP4841348B2 (en) WIRING BOARD FOR LIGHT EMITTING ELEMENT AND LIGHT EMITTING DEVICE