JP2004325268A - Surface discontinuity detection device and surface discontinuity detection method - Google Patents

Surface discontinuity detection device and surface discontinuity detection method Download PDF

Info

Publication number
JP2004325268A
JP2004325268A JP2003120802A JP2003120802A JP2004325268A JP 2004325268 A JP2004325268 A JP 2004325268A JP 2003120802 A JP2003120802 A JP 2003120802A JP 2003120802 A JP2003120802 A JP 2003120802A JP 2004325268 A JP2004325268 A JP 2004325268A
Authority
JP
Japan
Prior art keywords
light
optical filter
angle
detection device
inspection object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003120802A
Other languages
Japanese (ja)
Inventor
Hajime Kawano
肇 川野
Tadashi Kimura
忠司 木村
Yukio Nishikawa
幸男 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003120802A priority Critical patent/JP2004325268A/en
Publication of JP2004325268A publication Critical patent/JP2004325268A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface discontinuity detection device and a surface discontinuity detection method which detect excellently a discontinuity even when an irregularly deformed shape is small, and suppress to the minimum enlargement of a constitution of the whole surface discontinuity detection device without requiring a mechanism for generating cross stripes. <P>SOLUTION: Light LO is projected from a floodlight part 2 to an inspection object 1, and its reflected light L1 is imaged by an imaging device 4 through an optical filter 3 for transmitting only light having a prescribed angle with respect to the filter face of the optical filter 3, and a discontinuity part 1b having the irregularly deformed shape is detected by the brightness difference. Hereby, the brightness difference at the spot of the discontinuity part 1b becomes clear, and the discontinuity part 1b is detected accurately. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば成形部品などの被検査体の表面に存在する微小な凹凸形状の欠陥を検出する表面欠陥検出装置および表面欠陥検出方法に関するものである。
【0002】
【従来の技術】
被検査体表面の凹凸変形形状の欠陥を検査する方法として、例えば特許文献1に開示された凹凸検出方法がある。図6に示すように、この検出方法は、被検査体であるシート51上に、光の透過部52aと遮蔽部52bとにより形成されたフィルタ52を配置し、このフィルタ52を介してシート51上に投光部53から投光し、その反射光L3を前記フィルタ52を介して受光し、反射光L3の明暗差によりシート51の変形状態を検出するものである。なお、図6におけるL4は投光部53からの投下光である。
【0003】
また、特許文献2に開示された表面欠陥検出装置では、図7に示すように、被検査体60の表面に、光の干渉によって得られる一定の縞周期を持った格子縞61を投影し、その投影された格子縞61を撮像し、縞周期Pnと縞周期Pdとの変動量から表面欠陥62を検出している。
【0004】
【特許文献1】
特開平5−330695号公報
【0005】
【特許文献2】
特開平7−318499号公報
【0006】
【発明が解決しようとする課題】
しかしながら、前述した特許文献1に記載の凹凸検出方法であれば、フィルタ52の遮蔽部52bにより、正常部分からの反射光L3も遮られるため、コントラストの低下、そして遮蔽部52bの大きさより凹凸変形形状が小さければ欠陥を検出することが困難になるという問題がある。
【0007】
また、特許文献2に記載の表面欠陥検出装置では、格子縞61の縞周期Pnと縞周期Pdとの変動から表面欠陥62を検出する場合に、格子縞61を発生させる機構や、また検出の際に撮像画像の明暗値だけでなく縞周期の変動量を計算する信号処理部を設ける必要があり、その結果、製造コストの大幅な増加や、表面欠陥検出装置全体の構成が大きくなるという課題が生じる。
【0008】
本発明は上記問題や課題を解決するもので、凹凸変形形状が小さい場合でも欠陥を良好に検出することができ、また、格子縞を発生させる機構などを必要とせず、表面欠陥検出装置全体の構成が大きくなることも最小限に抑えることができる表面欠陥検出装置および表面欠陥検出方法を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
上記課題を解決するために本発明の表面欠陥検出装置は、被検査体に対して所定の入射角で投光する照明装置と、入射角と等しい反射角の光に対してある角度を持った光のみを透過させる光学フィルタと、この光学フィルタを介して前記被検査体からの反射光を受光する撮像装置と、前記撮像装置により受光した濃淡画像データより前記被検査体の表面欠陥を検出する画像処理装置とを備えたことを特徴とする。
【0010】
この構成により、被検査体の表面に凹凸変形形状の欠陥があると、被検査体の表面により反射する反射光の反射角度が変化するため、光学フィルタを介して撮像装置に入射する濃淡画像の濃淡が、凹凸変形形状の欠陥の箇所で顕著化され、凹凸変形形状が小さい場合でも欠陥を良好に検出することができ、また、格子縞を発生させる機構などを必要とせず、表面欠陥検出装置全体の構成が大きくなることも最小限に抑えることができる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図1〜図5に基づき説明する。
図1は本発明の実施の形態にかかる表面欠陥検出装置の全体構成を概略的に示す図である。
【0012】
図1に示すように、表面欠陥検出装置は、被検査体1に投光する照明装置としての投光部2と、入射面に対してある角度を持った光線のみを透過させる光学フィルタ3と、この光学フィルタ3を介して被検査体1からの反射光を受光する撮像装置4と、この撮像装置4により受光した濃淡画像データを処理して被検査体1の表面欠陥を検出する画像処理装置5とから構成されている。
【0013】
そして、この構成において、投光部2から光L0を被検査体1に照射し、被検査体1からの反射光L1を、そのフィルタ面に対してある角度を持った光のみ透過させる光学フィルタ3を介して、撮像装置4で受光する。そして、受光して得られた画像の明暗差を画像処理装置5で検知して、凹凸形状からなる欠陥部1b(図2参照)を検出するものである。
【0014】
次に、図1および図2を用いて、本発明の実施の形態に係る表面欠陥検出方法について、さらに詳しく説明する。
図1に示すように、被検査体1における欠陥がない正常面1aに対して、投光部2から光L0が投光角(正常面1aに対する角度)Φの角度を持って照射されると、この光L0は、被検査体1で前記投光角Φと同じ角度の反射角(正常面1aに対する角度)Φで反射し、光学フィルタ3を通過する。ここで、光学フィルタ3は、このように被検査体1の正常面1aに反射した際の反射光L1が光学フィルタ3に対して垂直に入射する角度となる設置角度で設置されている。
【0015】
しかしながら、図2に示すように、投光される箇所が被検査体1における凹凸変形形状の欠陥部1b、特に凹凸に変形している箇所である場合には、この欠陥部1b箇所で反射した反射光L1の反射角は、正常面1aに反射した場合の反射角Φとは異なる角度を持つため光学フィルタ3を透過できない。このため、撮像装置4に投影される画像は正常面1aの反射光L1だけとなるため、正常面1aと欠陥部1bとで明暗差ができる。この明暗差を画像処理装置5で処理することにより、欠陥部1bを検出することができる。なお、図2においては、欠陥部1bが凹形状である場合を示したが、凸形状であっても上記と同様であることは明らかである。
【0016】
次に、光学フィルタ3に対して光(反射光L1)の透過可能な角度(指向角:Φf(図4参照))と欠陥部1bの正常面1aに対する傾斜角Φxとの関係について図3を用いて述べる。なお、図4は上記光学フィルタ3の指向角Φfを説明した図であり、図4に示すように、光学フィルタ3は指向角Φfの範囲内だけにおいて光の透過率が高くなる。
【0017】
被検査体1における正常面1aに対して傾斜角Φxだけ傾斜する面により反射された反射光L1は光学フィルタ3に対して垂直となる直線方向に対して入射角θxの角度を持って入射される。ここで、光学フィルタ3への入射角θxは、図3に示すように、正常面1aでの反射角をΦとすると、被検査体1における反射光L1の反射点に関して、投光部2からの光L0の被検査体1の傾斜面(欠陥部1bの傾斜面)に対する入射角αと、反射光L1の被検査体1の傾斜面(欠陥部1bの傾斜面)に対する出射角βとは等しく、入射角αは、正常面1a(水平面)に対する投光角Φと、傾斜角Φxとの和であり、また、出射角βは、光学フィルタ3に直交する線に対する入射角θxと、正常面1a(水平面)に対する反射角Φから傾斜角Φx分だけ差し引いた角度との和であるので、
Φ+Φx=θx+(Φ−Φx)である。
【0018】
したがって、
θx=2Φxで表される。
このことより、光学フィルタ3に対して指向角Φfの範囲内の光のみを透過させるものとすると、傾斜角ΦxがΦf/2以上であれば欠陥部1bからの反射光L1は光学フィルタ3を透過しないことがわかる。つまりこの傾斜角Φxを持った部分で撮像画像に明暗差ができる。また、通常、凹形状の欠陥部1bは、図5に示すような形状をしているため、投光部2からの光L0の投下角度Φは、凹形状の欠陥部1bの傾斜角Φ1、Φ2よりも大きく、かつ正常面1aに対して垂直に近いほど効率よく欠陥部1bを検出できることがわかる。なお、図5においては凹形状の欠陥部1bについて示したが、凸形状の欠陥部1bについても同様である。
【0019】
このように、被検査体1の表面に凹凸変形形状の欠陥部1bがあると、その凹凸変形形状が小さい場合でも、被検査体1の表面により反射する反射光L1の反射角度が変化するため、光学フィルタ3を介して撮像装置4に入射する濃淡画像の濃淡が、凹凸変形形状の欠陥部1bで顕著化される。したがって、この撮像装置4の濃淡画像データを、画像処理装置5により処理することで被検査体1の表面の欠陥部1bを良好かつ自動的に検出することができる。
【0020】
また、表面欠陥検出装置としては、投光部2、撮像装置4、画像処理装置5の他に光学フィルタ3を設けるだけであるので、簡単な構成で済んで、製造コストを少なめに抑えることができるとともに、表面欠陥検出装置全体の構成が大きくなることもない。
【0021】
なお、上記実施の形態においては、撮像装置4により受光した濃淡画像データを処理して被検査体1の表面の欠陥部1bを検出する画像処理装置5を備えた場合を述べ、この場合には、欠陥部1bを自動的に検出することが可能となり、作業能率が良好となる利点があるが、これに限るものではなく、画像処理装置5を設けないで、撮像装置4の濃淡画像を人が視認することによっても、凹凸変形形状が小さい欠陥部1bの場合でも、この欠陥部1bを良好に識別することができ、この場合には、製造コストをさらに低減することが可能となる。
【0022】
【発明の効果】
以上のように、本発明の表面欠陥検出装置および表面欠陥検出方法は、投光部より被検査体に光を投光し、その反射光をフィルタ面に対してある角度を持った光のみ透過させる光学フィルタを介して撮像装置で撮像し、その明暗差のある濃淡画像により凹凸変形形状の表面欠陥を検出することを特徴とするもので、この装置および方法によれば、表面欠陥の箇所で明暗差を顕著化できて、表面欠陥を精度良く検出することが可能となる。また、光学フィルタと通常の光源からなる照明装置とを用いるだけの簡単な構成であるため、製造コストが安価となり、表面欠陥検出装置全体の構成が大きくなることもない。
【図面の簡単な説明】
【図1】本発明の実施の形態にかかる表面欠陥検出装置の全体構成を概略的に示す図
【図2】同表面欠陥検出装置により被検査体の欠陥部に光を照射している状態を概略的に示す図
【図3】同表面欠陥検出装置による表面欠陥検出方法の傾斜角と投光角との関係を表す図
【図4】同表面欠陥検出装置における光学フィルタの指向角を説明するための、フィルタ入射角とフィルタ透過率との関係を示す図
【図5】同表面欠陥検出装置による表面欠陥検出方法の投下光と反射光との関係を示す図
【図6】従来の表面欠陥検出方法を示す図
【図7】その他の従来の表面欠陥検出方法を示す図
【符号の説明】
1 被検査体
1a 正常面
1b 欠陥部
2 投光部(照明装置)
3 光学フィルタ
4 撮像装置
5 画像処理装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a surface defect detection device and a surface defect detection method for detecting a defect having a minute uneven shape existing on a surface of an inspection object such as a molded part.
[0002]
[Prior art]
As a method of inspecting a defect having a deformed and deformed shape on the surface of an object to be inspected, there is, for example, a method for detecting a surface irregularity disclosed in Patent Document 1. As shown in FIG. 6, in this detection method, a filter 52 formed by a light transmitting portion 52a and a shielding portion 52b is arranged on a sheet 51, which is an object to be inspected, and the sheet 51 is interposed via the filter 52. The reflected light L3 is projected upward from the light projecting unit 53, the reflected light L3 is received through the filter 52, and the deformation state of the sheet 51 is detected based on the brightness difference of the reflected light L3. L4 in FIG. 6 is light emitted from the light projecting unit 53.
[0003]
Further, in the surface defect detection device disclosed in Patent Document 2, as shown in FIG. 7, a lattice fringe 61 having a constant fringe period obtained by interference of light is projected on the surface of the inspection object 60, and The projected lattice fringe 61 is imaged, and the surface defect 62 is detected from the fluctuation amount between the fringe period Pn and the fringe period Pd.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. Hei 5-330695
[Patent Document 2]
JP-A-7-318499
[Problems to be solved by the invention]
However, according to the unevenness detection method described in Patent Document 1 described above, the reflected light L3 from the normal portion is also shielded by the shielding portion 52b of the filter 52, so that the contrast is reduced and the unevenness is deformed due to the size of the shielding portion 52b. There is a problem that it is difficult to detect a defect if the shape is small.
[0007]
Further, in the surface defect detection device described in Patent Literature 2, when detecting the surface defect 62 from the fluctuation between the fringe period Pn and the fringe period Pd of the lattice fringe 61, a mechanism for generating the lattice fringe 61, It is necessary to provide a signal processing unit that calculates not only the brightness value of the captured image but also the fluctuation amount of the fringe period. As a result, there are problems that the manufacturing cost is significantly increased and the configuration of the entire surface defect detection device is increased. .
[0008]
The present invention solves the above-mentioned problems and problems, and can detect defects even when the unevenness deformed shape is small, and does not require a mechanism for generating lattice fringes. It is an object of the present invention to provide a surface defect detection device and a surface defect detection method capable of minimizing the increase of the surface defect.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, a surface defect detection device according to the present invention has an illumination device that projects light at a predetermined incident angle with respect to an object to be inspected, and has a certain angle with respect to light having a reflection angle equal to the incident angle. An optical filter that transmits only light, an imaging device that receives reflected light from the inspection object through the optical filter, and a surface defect of the inspection object is detected from grayscale image data received by the imaging device. An image processing device is provided.
[0010]
With this configuration, if the surface of the object to be inspected has a defect having an irregularly deformed shape, the angle of reflection of light reflected by the surface of the object to be inspected changes, so that the grayscale image incident on the imaging device via the optical filter is changed. The shading becomes noticeable at the location of the irregularly deformed shape defect. Even when the irregularly deformed shape is small, the defect can be detected satisfactorily.In addition, a mechanism for generating lattice fringes is not required, and the entire surface defect detection device is used. Can be minimized.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a diagram schematically showing an overall configuration of a surface defect detection device according to an embodiment of the present invention.
[0012]
As shown in FIG. 1, the surface defect detecting device includes a light projecting unit 2 as an illuminating device for projecting light on an object 1 to be inspected, and an optical filter 3 for transmitting only a light beam having a certain angle with respect to an incident surface. An imaging device 4 for receiving reflected light from the object 1 through the optical filter 3; and an image processing for detecting surface defects of the object 1 by processing grayscale image data received by the imaging device 4. And an apparatus 5.
[0013]
In this configuration, the optical filter irradiates the inspection object 1 with the light L0 from the light projecting unit 2 and transmits only the light having a certain angle with respect to the filter surface of the reflection light L1 from the inspection object 1. The light is received by the image pickup device 4 via the control unit 3. The image processing device 5 detects the difference in brightness of an image obtained by receiving light, and detects a defective portion 1b having an uneven shape (see FIG. 2).
[0014]
Next, the surface defect detection method according to the embodiment of the present invention will be described in more detail with reference to FIGS.
As shown in FIG. 1, when the light L0 is irradiated from the light projecting unit 2 to the normal surface 1a of the inspection object 1 having no defect at an angle of the light projection angle (the angle with respect to the normal surface 1a) Φ. The light L0 is reflected by the inspection object 1 at a reflection angle Φ (an angle with respect to the normal surface 1a) equal to the light projection angle Φ, and passes through the optical filter 3. Here, the optical filter 3 is installed at an installation angle at which the reflected light L <b> 1 when reflected on the normal surface 1 a of the inspection object 1 is perpendicularly incident on the optical filter 3.
[0015]
However, as shown in FIG. 2, when the projected portion is the defect portion 1 b of the uneven shape in the inspection object 1, particularly when the portion is deformed unevenly, the light is reflected at the defect portion 1 b. The reflection angle of the reflected light L <b> 1 is different from the reflection angle Φ when reflected on the normal surface 1 a, and therefore cannot pass through the optical filter 3. For this reason, the image projected on the imaging device 4 is only the reflected light L1 of the normal surface 1a, so that there is a difference in brightness between the normal surface 1a and the defective portion 1b. By processing the difference in brightness with the image processing device 5, the defective portion 1b can be detected. Although FIG. 2 shows a case where the defective portion 1b has a concave shape, it is apparent that the same applies to the case where the defective portion 1b has a convex shape.
[0016]
Next, FIG. 3 shows the relationship between the angle at which light (reflected light L1) can pass through the optical filter 3 (directivity angle: Φf (see FIG. 4)) and the inclination angle Φx of the defective portion 1b with respect to the normal surface 1a. I will use it. FIG. 4 is a diagram for explaining the directivity angle Φf of the optical filter 3. As shown in FIG. 4, the optical filter 3 has a high light transmittance only within the range of the directivity angle Φf.
[0017]
The reflected light L1 reflected by the surface of the test object 1 that is inclined by the inclination angle Φx with respect to the normal surface 1a enters the optical filter 3 at an angle of incidence θx with respect to a linear direction perpendicular to the optical filter 3. You. Here, as shown in FIG. 3, assuming that the reflection angle on the normal surface 1 a is Φ, the incident angle θx to the optical filter 3 is, as shown in FIG. Is the incident angle α of the light L0 with respect to the inclined surface of the inspection object 1 (the inclined surface of the defect portion 1b) and the emission angle β of the reflected light L1 with respect to the inclined surface of the inspection object 1 (the inclined surface of the defect portion 1b). Equally, the incident angle α is the sum of the projection angle Φ with respect to the normal surface 1 a (horizontal plane) and the inclination angle Φx, and the emission angle β is the incidence angle θx with respect to a line orthogonal to the optical filter 3. Since it is the sum of an angle obtained by subtracting the inclination angle Φx from the reflection angle Φ with respect to the surface 1a (horizontal plane),
Φ + Φx = θx + (Φ−Φx).
[0018]
Therefore,
θx = 2Φx.
From this, assuming that only the light within the range of the directivity angle Φf is transmitted to the optical filter 3, if the inclination angle Φx is Φf / 2 or more, the reflected light L1 from the defective portion 1b passes through the optical filter 3. It turns out that it does not transmit. That is, there is a difference in brightness between the picked-up image and the portion having the tilt angle Φx. In addition, since the concave defect portion 1b usually has a shape as shown in FIG. 5, the falling angle Φ of the light L0 from the light projecting portion 2 is equal to the inclination angle Φ1 of the concave defect portion 1b, It can be seen that the defect portion 1b can be detected more efficiently as it is larger than Φ2 and closer to the normal surface 1a. Although FIG. 5 illustrates the concave defect portion 1b, the same applies to the convex defect portion 1b.
[0019]
As described above, if the surface of the inspection object 1 has the defect portion 1b having the uneven deformation shape, the reflection angle of the reflected light L1 reflected by the surface of the inspection object 1 changes even when the uneven deformation shape is small. The shading of the shading image incident on the imaging device 4 via the optical filter 3 is made more conspicuous at the defect portion 1b having the uneven shape. Therefore, by processing the grayscale image data of the imaging device 4 by the image processing device 5, it is possible to detect the defect 1b on the surface of the inspection object 1 satisfactorily and automatically.
[0020]
Further, as the surface defect detection device, only the optical filter 3 is provided in addition to the light projecting unit 2, the imaging device 4, and the image processing device 5, a simple configuration is sufficient, and the production cost can be suppressed to a small extent. In addition to this, the configuration of the entire surface defect detection device does not increase.
[0021]
In the above-described embodiment, a case is described in which the image processing device 5 is provided which processes the grayscale image data received by the imaging device 4 to detect the defective portion 1b on the surface of the inspection object 1. In this case, And the defective portion 1b can be automatically detected, and there is an advantage that the work efficiency is improved. However, the present invention is not limited to this. By visually recognizing, even in the case of the defective portion 1b having a small uneven deformation shape, the defective portion 1b can be identified well, and in this case, the manufacturing cost can be further reduced.
[0022]
【The invention's effect】
As described above, the surface defect detection apparatus and the surface defect detection method of the present invention emit light from the light projecting unit to the object to be inspected, and transmit only reflected light having an angle with respect to the filter surface. An image is taken by an image pickup device through an optical filter to be detected, and a surface defect having a concavo-convex deformation shape is detected based on a grayscale image having a difference in brightness. According to this device and method, at a position of the surface defect, The difference in brightness can be remarkable, and surface defects can be detected with high accuracy. In addition, since the configuration is a simple one using only the optical filter and the illumination device including the ordinary light source, the manufacturing cost is low and the configuration of the entire surface defect detection device is not increased.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing an entire configuration of a surface defect detection device according to an embodiment of the present invention; FIG. 2 is a diagram showing a state in which light is applied to a defect portion of an inspection object by the surface defect detection device; FIG. 3 is a diagram schematically showing a relationship between an inclination angle and a projection angle of a surface defect detection method by the surface defect detection apparatus. FIG. 4 is a view illustrating a directivity angle of an optical filter in the surface defect detection apparatus. FIG. 5 is a diagram showing the relationship between the incident angle of the filter and the transmittance of the filter for the purpose. FIG. 5 is a diagram showing the relationship between the emitted light and the reflected light in the surface defect detection method by the same surface defect detection device. FIG. 7 shows a detection method. FIG. 7 shows another conventional surface defect detection method.
DESCRIPTION OF SYMBOLS 1 Inspection object 1a Normal surface 1b Defect part 2 Light projection part (illumination device)
3 optical filter 4 imaging device 5 image processing device

Claims (3)

被検査体に対して所定の入射角で投光する照明装置と、入射角と等しい反射角の光に対してある角度を持った光のみを透過させる光学フィルタと、この光学フィルタを介して前記被検査体からの反射光を受光する撮像装置と、前記撮像装置により受光した濃淡画像データより前記被検査体の表面欠陥を検出する画像処理装置とを備えたことを特徴とする表面欠陥検出装置。An illuminating device that projects light at a predetermined incident angle with respect to the test object; an optical filter that transmits only light having a certain angle with respect to light having a reflection angle equal to the incident angle; and A surface defect detection device, comprising: an imaging device that receives reflected light from an inspection object; and an image processing device that detects a surface defect of the inspection object from grayscale image data received by the imaging device. . 光学フィルタは、前記光学フィルタの入射面に対して垂直な光を透過させることを特徴とする請求項1記載の表面欠陥検出装置。The surface defect detection device according to claim 1, wherein the optical filter transmits light perpendicular to an incident surface of the optical filter. 被検査体に所定の入射角で投光し、入射角と等しい反射角の光に対してある角度を持った光のみを透過させる光学フィルタを介して、前記被検査体からの反射光を受光して、前記受光した濃淡画像に基づいて前記被検査体の表面欠陥を検出することを特徴とする表面欠陥検出方法。The reflected light from the test object is received through an optical filter that projects light to the test object at a predetermined incident angle and transmits only light having a certain angle with respect to light having a reflection angle equal to the incident angle. Detecting a surface defect of the inspection object based on the received grayscale image.
JP2003120802A 2003-04-25 2003-04-25 Surface discontinuity detection device and surface discontinuity detection method Pending JP2004325268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003120802A JP2004325268A (en) 2003-04-25 2003-04-25 Surface discontinuity detection device and surface discontinuity detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003120802A JP2004325268A (en) 2003-04-25 2003-04-25 Surface discontinuity detection device and surface discontinuity detection method

Publications (1)

Publication Number Publication Date
JP2004325268A true JP2004325268A (en) 2004-11-18

Family

ID=33499535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003120802A Pending JP2004325268A (en) 2003-04-25 2003-04-25 Surface discontinuity detection device and surface discontinuity detection method

Country Status (1)

Country Link
JP (1) JP2004325268A (en)

Similar Documents

Publication Publication Date Title
TWI408360B (en) Apparatus for detecting particles on a glass surface and a method thereof
JP5410092B2 (en) Apparatus and method for inspecting composite structures for inconsistencies
JP4511978B2 (en) Surface flaw inspection device
US10345248B2 (en) Optical system and method for inspecting a transparent plate
KR20160004099A (en) Defect inspecting apparatus
JP6038434B2 (en) Defect inspection equipment
JP5830229B2 (en) Wafer defect inspection system
KR101203210B1 (en) Apparatus for inspecting defects
JP4755040B2 (en) Scratch inspection device, scratch inspection method
JP2008157788A (en) Surface inspection method and device
JP6039119B1 (en) Defect inspection equipment
JP2009063560A (en) Method and system for detecting surface defect of component part
JP4630945B1 (en) Defect inspection equipment
JP3568482B2 (en) Plate-like scratch detection method and device
JP2012042254A (en) Method for inspecting lens defect
JP2011203223A (en) Device and method for detecting flaw
JP4496257B2 (en) Defect inspection equipment
JP2012068211A (en) Distortion inspection device for sheet member and distortion inspection method for sheet member
JP2004325268A (en) Surface discontinuity detection device and surface discontinuity detection method
JP2001041719A (en) Inspection device and method of transparent material and storage medium
JP4251980B2 (en) Shape measuring device
JP2009222629A (en) Device for inspecting edge of object to be inspected
JP2012150079A (en) Defect detection device for transparent member and defect detection method
JP2015102364A (en) Visual inspection device
JP3405118B2 (en) Surface defect inspection equipment