JP2004323729A - Polymerizable liquid crystal composition and optically anisotropic material - Google Patents

Polymerizable liquid crystal composition and optically anisotropic material Download PDF

Info

Publication number
JP2004323729A
JP2004323729A JP2003121765A JP2003121765A JP2004323729A JP 2004323729 A JP2004323729 A JP 2004323729A JP 2003121765 A JP2003121765 A JP 2003121765A JP 2003121765 A JP2003121765 A JP 2003121765A JP 2004323729 A JP2004323729 A JP 2004323729A
Authority
JP
Japan
Prior art keywords
oco
liquid crystal
compound represented
formula
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003121765A
Other languages
Japanese (ja)
Other versions
JP4505709B2 (en
Inventor
Joji Kawamura
丞治 河村
Shiyoutaku Ri
承澤 李
Yoshiyuki Ono
善之 小野
Yoshitomo Yonehara
祥友 米原
Hiroshi Hasebe
浩史 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2003121765A priority Critical patent/JP4505709B2/en
Publication of JP2004323729A publication Critical patent/JP2004323729A/en
Application granted granted Critical
Publication of JP4505709B2 publication Critical patent/JP4505709B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a polymerizable liquid crystal composition containing a swallow-tail type polymerizable compound having excellent compatibility with a liquid crystal compound having a small dipole moment and provide an optically anisotropic material having excellent transparency. <P>SOLUTION: The polymerizable liquid crystal composition contains the swallow-tail type polymerizable compound having a specific structure and the polymerizable liquid crystal compound expressed by formula (4) (A<SP>10</SP>to A<SP>12</SP>are each a ring; Y<SP>7</SP>and Y<SP>8</SP>are each a linking group; Y<SP>9</SP>is a single bond, O, CO-O or OCO; Z<SP>5</SP>is H, a halogen atom, a 1-20C alkyl or a 2-20C alkenyl; and (b) is 0 or 1). The optically anisotropic material is produced by polymerizing the liquid crystal composition in an oriented state. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は重合性液晶組成物、及び、該重合性液晶組成物中を重合して得られる光学異方体に関する。
【0002】
【従来の技術】
重合性液晶化合物、又は、液晶化合物と混合して、ネマチック相、スメクチック相、コレステリック相等の液晶相を示す重合性化合物を含有する重合性液晶組成物を、液晶相を保持した状態で重合させると、液晶分子の配向状態を固定化した重合体を作製することができる。この重合体は、屈折率、誘電率、磁化率、弾性率、熱膨張率等の物理的性質の異方性を有していることから、特に光学異方体として応用が検討されている。
【0003】
液晶分子の配向状態を固定化させるための重合方法の1つとして光重合がある。光重合においては、液晶分子の配向に対して外乱要因となる熱を加えることなしに重合反応が進行するので、液晶分子の配向状態を乱すことなく固定化することができる。しかしながら、液晶相を示す温度が高い場合、液晶相を保持させるために該重合性液晶組成物を加熱する必要があるが、この加熱によって、光重合を開始する前に部分的な熱重合がおこり、配向乱れの原因となることがある。従って、重合性液晶組成物は、できるだけ低い温度で、例えば25℃〜40℃の温度範囲で液晶相を示すようにその組成を調整する。
【0004】
液晶分子の配向状態を固定化した重合体を光学異方体に応用する場合には、該重合体には、透明性に優れることが求められている。
例えば、C−N転移温度が94℃の式Aで表されるスワローテイル型の重合性液晶化合物に、式Bで表される重合性液晶化合物及び式Cで表される重合性液晶化合物を混合することによって、25℃でネマチック相を示す重合性液晶組成物を調製し、これを25℃以下で重合すると、局所的な熱重合が起こらないので、透明性に優れる光学異方体が得られることが知られている(例えば、特許文献1参照。)。
【0005】
【化5】

Figure 2004323729
Figure 2004323729
【0006】
【化6】
Figure 2004323729
Figure 2004323729
【0007】
【化7】
Figure 2004323729
Figure 2004323729
【0008】
【特許文献1】
特開2000−327632号公報
【0009】
【発明が解決しようとする課題】
しかし、式Aで表される化合物と、式Bで表される化合物、及び式Cで表される化合物を混合した場合、いったん均一に混合したように見えても、短時間内に相分離を起こすといった問題があった。これは、式Aで表される化合物は分子末端にシアノ基を有しており双極子モーメントが大きく、式Bで表される化合物や式Cで表される化合物のような、電子吸引基を持たない双極子モーメントの小さい重合性化合物とは一般に相溶性が低いことや、式Aで表される化合物と、式Bで表される化合物や式Cで表される化合物とでは、液晶骨格が大きく異なるため相溶性が低いことが、原因として考えられる。
式Bで表される化合物及び式Cで表される化合物の配合量を多くした場合には、相溶性は幾分向上する反面、系全体のスワローテイル型化合物の濃度が下がってしまうために、これを重合して得られる光学異方体の透明性が低下するといった問題があった。
【0010】
本発明が解決しようとする課題は、双極子モーメントの小さい液晶化合物と、それとの相溶性に優れるスワローテイル型の重合性化合物を含有する重合性液晶組成物を提供することにあり、且つ、該重合性液晶組成物が液晶相を示す温度範囲内で、該重合性液晶組成物中の重合性化合物を重合させて得られる、透明性に優れた光学異方体を提供することにある。
【0011】
【課題を解決するための手段】
分子末端にシアノ基を有するスワローテイル型重合性化合物は双極子モーメントが大きいため、双極子モーメントの小さい液晶化合物と相溶性が低い。本発明者らは、一般式(1)、(2)、及び(3)で表されるスワローテイル型重合性化合物を併用すると、双極子モーメントの小さく骨格構造が異なる液晶化合物との相溶性に優れ、長期間安定な重合性液晶組成物が得られることを見出し、上記課題を解決した。また、重合性液晶組成物を重合させて得られる光学異方体が、透明性に優れることも見出した。
【0012】
即ち、本発明は、一般式(1)で表される重合性化合物、一般式(2)で表される重合性化合物、一般式(3)で表される重合性化合物、及び一般式(4)で表される重合性化合物を含有する重合性液晶組成物を提供する。
【0013】
【化8】
Figure 2004323729
Figure 2004323729
【0014】
【化9】
Figure 2004323729
Figure 2004323729
【0015】
【化10】
Figure 2004323729
Figure 2004323729
【0016】
【化11】
Figure 2004323729
Figure 2004323729
【0017】
(式中、A〜A12は各々独立してベンゼン環、シクロヘキサン環又はシクロヘキセン環を表し、Y〜Yは、各々独立して、単結合、−CHCH−、−CHO−、−OCH−、−CO−O−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH−、−CHCHCHO−、−OCHCHCH−、−CH=CH−CHCH−、−CHCH−CH=CH−、−CH=CH−CO−O−及び−OCO−CH=CH−からなる群から選ばれる連結基を表わし、Yは、単結合、−O−、−CO−O−又は−OCO−を表す。X〜Xは、各々独立して単結合、−O−、−CO−O−、又は−OCO−を表し、S〜Sは、各々独立して−C2p−、又は−(C2p−O)−C 2p −を表わし、p及びp’は各々独立して1〜20の整数を表し、qは1〜10の整数を表す。L〜Lは、各々独立して水素原子又はメチル基を表す。
【0018】
及びZは、各々独立して、−OCO−CH−CH−Cl、−OCO−CH=CH、−OCO−C(CH)=CH、−OCO−CHCHOH、−OH、−OCO−CHCH−OCO−CH=CH、−OCO−CHCH−OCO−C(CH)=CH、−CH=CH、−OCO−CH=CH、−OCO−C(CH)=CH、−CO−CH、又は−CHCHClを表すが、Zが−OCO−CH−CH−Clの時、Zは−OCO−CH=CH又は−OCO−C(CH)=CHであり、Zが−OCO−CH=CH又は−OCO−C(CH)=CHの時、Zは−OCO−CH−CH−Cl、−OCO−CHCHOH、−OH、−OCO−CHCH−OCO−CH=CH、−OCO−CHCH−OCO−C(CH)=CH、−CH=CH、−OCO−CH=CH、−OCO−C(CH)=CH、−CO−CH、又は−CHCHClであり、Zが−OCO−CH=CH又は−OCO−C(CH)=CHの時、Zは−OCO−CH−CH−Cl、−OCO−CHCHOH、−OH、−OCO−CHCH−OCO−CH=CH、−OCO−CHCH−OCO−C(CH)=CH、−CH=CH、−OCO−CH=CH、−OCO−C(CH)=CH、−CO−CH、又は−CHCHClである。Zは、水素原子又はCH−CO−O−を表し、Zは、水素原子、シアノ基、又はCl−(CH−O−を表し、aは1〜20の整数を表し、Zは水素原子、ハロゲン原子、シアノ基、炭素数1〜20のアルキル基又は炭素数2〜20のアルケニル基を表し、bは0又は1の整数を表す。)
【0019】
【発明の実施の形態】
前記一般式(1)〜(3)において、A〜Aは、炭素原子数1〜7のアルキル基、炭素原子数1〜7のアルコキシ基、炭素原子数1〜7のアルカノイル基、又はハロゲン原子等の置換基を有していても良い。前記A〜Aに、液晶分子の長軸方向に共役するようなベンゼン環を選択すれば、複屈折率の大きな重合性化合物を得ることができ、液晶分子の長軸方向に共役しないシクロヘキサン環を選択すれば、複屈折率の小さな重合性化合物を得ることができる。
【0020】
前記一般式(1)〜(3)において、Y〜Yは、単結合、−CO−O−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−等の、液晶分子の長軸方向に共役するような構造を選択すれば、複屈折率の大きな重合性化合物を得ることができ、−CHCH−、−CHO−、−OCH−、−(CH−、−CHCHCHO−、−OCHCHCH−等の、液晶分子の長軸方向に共役しない構造を選択すれば、複屈折率の小さな重合性化合物を得ることができる。
【0021】
前記一般式(1)〜(3)において、S〜Sは、液晶骨格と(メタ)アクリロイルオキシ基とを隔てるスペーサーとしての役割を持つ。具体的には、例えば、メチレン基、プロピレン基、ヘキサメチレン基、あるいはこれらの基がエーテル結合によって連結された基があげられる。中でも、p及びp’が各々独立して2〜15であることが好ましく、3〜11であることが特に好ましい。
【0022】
前記一般式(1)〜(3)において、L〜Lは、水素原子であると重合反応性が高く好ましい。
【0023】
前記一般式(1)において、ZとZとの組み合わせとしては、例えば、
が−OCO−CH−Clで、Zが−OCO−CH=CH又は−OCO−C(CH)=CHの場合や、Zが−OCO−CH=CH又は−OCO−C(CH)=CHで、Zが−OHの場合や、Zが−OCO−CH=CH又は−OCO−C(CH)=CHで、Zが−OCO−CHCHOHの場合や、Zが−OCO−CH=CH又は−OCO−C(CH)=CHで、Zが−OCO−CHCH−OCO−CH=CHの場合や、Zが−OCO−CH=CH又は−OCO−C(CH)=CHで、Zが−OCO−CH=CHの場合があげられる。
【0024】
前記一般式(1)で表される化合物、一般式(2)で表される化合物、及び一般式(3)で表される化合物は、前記一般式(1)におけるA−Y−A−Y−A、前記一般式(2)におけるA−Y−A−Y−A、前記一般式(3)におけるA−Y−A−Y−Aで表される液晶骨格が同一であると、得られる組成物の保存安定性が増し、双極子モーメントの小さい化合物とより安定に相溶させることができる。中でも、A〜Aが全てベンゼン環であり、Y、Y及びYは単結合、−CO−O−、又は−OCO−で表される同一の連結鎖であり、Y、Y及びYは単結合、−CO−O−、又は−OCO−で表される同一の連結鎖である液晶骨格が好ましい。このような液晶骨格の例を以下に示す。
【0025】
【化12】
Figure 2004323729
【0026】
【化13】
Figure 2004323729
【0027】
【化14】
Figure 2004323729
【0028】
前記一般式(1)で表される重合性化合物としては、例えば下記式(1−1)〜(1−10)の化合物が挙げられる。これらの化合物は2種以上を併用してもよい。
【0029】
【化15】
Figure 2004323729
Figure 2004323729
【0030】
【化16】
Figure 2004323729
Figure 2004323729
【0031】
【化17】
Figure 2004323729
Figure 2004323729
【0032】
【化18】
Figure 2004323729
Figure 2004323729
【0033】
【化19】
Figure 2004323729
Figure 2004323729
【0034】
【化20】
Figure 2004323729
Figure 2004323729
【0035】
【化21】
Figure 2004323729
Figure 2004323729
【0036】
【化22】
Figure 2004323729
Figure 2004323729
【0037】
【化23】
Figure 2004323729
Figure 2004323729
【0038】
【化24】
Figure 2004323729
Figure 2004323729
【0039】
また、前記一般式(2)で表される重合性化合物としては、例えば下記式(2−1)〜(2−3)の化合物が挙げられる。これらの化合物は2種以上を併用してもよい。
【0040】
【化25】
Figure 2004323729
Figure 2004323729
【0041】
【化26】
Figure 2004323729
Figure 2004323729
【化27】
Figure 2004323729
Figure 2004323729
【0042】
(一般式(1−1)〜(1−10)及び一般式(2−1)〜(2−3)においてm及びnは各々独立して1〜20の整数を表す。)
【0043】
また、前記一般式(3)で表される重合性化合物としては、例えば下記式(3−1)〜(3−5)の化合物が挙げられる。これらの化合物は2種以上を併用してもよい。本発明の重合性液晶組成物は、シアノ基等を有するような極性の高い重合性化合物を配合していても、他の液晶化合物との相溶性に優れる。
【0044】
【化28】
Figure 2004323729
Figure 2004323729
【0045】
【化29】
Figure 2004323729
Figure 2004323729
【0046】
【化30】
Figure 2004323729
Figure 2004323729
【0047】
【化31】
Figure 2004323729
Figure 2004323729
【0048】
【化32】
Figure 2004323729
Figure 2004323729
【0049】
(式(3−1)〜(3−5)において、r、s及びtは各々独立して1〜20の整数を表し、Lは水素原子又はメチル基を表す。)。
【0050】
前記一般式(1−1)〜(1−10)、一般式(2−1)〜(2−3)、及び一般式(3−1)〜(3−5)で表される重合性化合物は、公知の合成方法によって合成することができる。具体的な合成例は、「ハンドブックオブリキッドクリスタルズ」、ワイリー社、第1巻の第4章や、第2巻の第3〜5章に記載されている。
【0051】
例えば、一般式(1−1)で表される化合物は、次のようにして合成することができる。3,4−ジヒドロキシ安息香酸をハロゲン化アルコールでエーテル化した後、3−クロロプロピオニルクロリドを反応させ、式(a)で表される化合物を得る(以下、一般式(a)〜(o)において、m及びnは各々独立して1〜20の整数を表す。)。
【0052】
【化33】
Figure 2004323729
Figure 2004323729
【0053】
式(a)で表される化合物を、炭酸カリウムの存在下、脱塩化水素反応させ、式(b)又は式(c)で表される化合物を得る。
【0054】
【化34】
Figure 2004323729
Figure 2004323729
【0055】
【化35】
Figure 2004323729
Figure 2004323729
【0056】
前記式(c)で表される化合物と、4,4’−ビフェノールをハロゲン化アルコールでエーテル化した後アクリル酸を脱水縮合反応させることによって得た式(d)で表される化合物とを、脱水縮合反応させて、一般式(1−1)で表される化合物が得られる。
【0057】
【化36】
Figure 2004323729
Figure 2004323729
【0058】
一般式(1−2)で表される化合物は、次のようにして合成することができる。1−ヨード−3,4−ジメトキシベンゼンとフェニルグリニアール試薬とを反応させてビフェニル誘導体を得、これに塩化アセチルを反応させる。得られた化合物をアルカリで加水分解後、メトキシ基のメチル基を臭化水素酸で切断して式(e)で表される化合物を得る。
【0059】
【化37】
Figure 2004323729
Figure 2004323729
【0060】
式(e)で表される化合物をハロゲン化アルコールでエーテル化した後、3−クロロプロピオニルクロリドを反応させて、式(f)で表される化合物を得る。これを、炭酸カリウム存在下で脱塩化水素反応を行うことによって、式(g)又は式(h)で表される化合物を得る。
【0061】
【化38】
Figure 2004323729
Figure 2004323729
【0062】
【化39】
Figure 2004323729
Figure 2004323729
【0063】
【化40】
Figure 2004323729
Figure 2004323729
【0064】
前記式(h)で表される化合物と、ヒドロキノンをハロゲン化アルコールでエーテル化した後アクリル酸を脱水縮合反応させて得た式(i)で表される化合物とを脱水縮合反応させて、式(1−2)で表される化合物が得られる。
【0065】
【化41】
Figure 2004323729
Figure 2004323729
【0066】
式(1−3)で表される化合物は、3,4−ジヒドロキシ安息香酸をハロゲン化アルコールでエーテル化した後、アクリル酸を1:1のモル比で脱水縮合反応させて、式(j)で表される化合物を得る。これに、前記一般式(d)で表される化合物を脱水縮合反応させて得られる。
【0067】
【化42】
Figure 2004323729
Figure 2004323729
【0068】
式(1−4)で表される化合物は、3,4−ジヒドロキシ安息香酸をハロゲン化アルコールでエーテル化した後、3−ブロモプロピオニルクロリドを反応させ、これをアルカリ処理して、式(k)で表される化合物を得る。これに、前記一般式(d)で表される化合物を脱水縮合反応させて得られる。
【0069】
【化43】
Figure 2004323729
Figure 2004323729
【0070】
また、式(1−6)で表される化合物は、6−ブロモ−1−ヘキサノール等のハロゲン化アルコールとアクリル酸メチルとをエステル交換反応させて、ハロゲン化アルキルアクリレートを合成し、これとブロモ−1−ヘキセン等のハロゲン化アルケンとを1:1のモル比で混合し、3,4−ジヒドロキシ安息香酸と反応させて、式(l)で表される化合物を得る。これに、前記一般式(d)で表される化合物を脱水縮合反応させて得られる。
【0071】
【化44】
Figure 2004323729
Figure 2004323729
【0072】
式(1−8)で表される化合物は、3,4−ジヒドロキシ安息香酸をハロゲン化アルコールでエーテル化した後、3−ブロモプロピオニルクロリドを反応させ、これをアルカリ処理した後、アクリル酸クロリドやメタクリル酸クロリドを反応させて、式(m)で表される化合物を得る。これに、前記一般式(d)で表される化合物を脱水縮合反応させて得られる。
【0073】
【化45】
Figure 2004323729
Figure 2004323729
【0074】
式(2−1)で表される化合物は、4,4’−ビフェノールをハロゲン化アルコールでエーテル化した後、無水酢酸や塩化アセチルを反応させて、式(n)で表される化合物を得る。
【0075】
【化46】
Figure 2004323729
Figure 2004323729
【0076】
これに、3,4−ジヒドロキシ安息香酸をハロゲン化アルコールでエーテル化した後、アクリル酸又はメタクリル酸を反応させた、式(o)で表される化合物を脱水縮合反応させて得られる。
【0077】
【化47】
Figure 2004323729
Figure 2004323729
【0078】
また、式(3−1)で表される化合物は、以下のようにして合成することができる。6−クロロ−1−(p−トルエンスルホニルオキシ)−アルカンと、4−フェニルフェノールとを塩基の存在下に室温で反応させて、式(p)で表される化合物を得る。
【0079】
【化48】
Figure 2004323729
Figure 2004323729
【0080】
式(p)で表される化合物を、塩化アルミニウムと塩化アセチルを使用してフリーデルクラフツ反応させた後、これを過ギ酸で酸化し、アルカリ加水分解させて得られた式(q)で表される化合物と、化合物(o)とをエステル化反応させて、式(2−2)で表される化合物を得る。
【0081】
【化49】
Figure 2004323729
Figure 2004323729
【0082】
前記一般式(1)で表される化合物、一般式(2)で表される化合物及び一般式(2)で表される化合物のうち、液晶骨格が同じ化合物は、数種類を1つの反応容器で同時に合成することもできる。例えば、前記式(a)で表される化合物を炭酸カリウムの存在下で脱塩化水素反応させると、前記式(b)で表される化合物と前記式(c)で表される化合物の他に前記式(o)で表される化合物も同時に合成することができる。式(b)で表される化合物、式(c)で表される化合物、及び式(o)で表される化合物の比率は、反応条件等を変えることによって制御できる。
【0083】
また、前記式(a)で表される化合物を、少量の水分を添加した上で炭酸カリウムの存在下で脱塩化水素反応させると、前記式(b)で表される化合物と前記式(c)で表される化合物と前記式(o)で表される化合物の他に、前記式(j)で表される化合物と前記式(k)で表される化合物とを同時に合成することができる。この反応生成物に、前記式(d)で表される化合物を反応させれば、一般式(1−1)で表される化合物、(1−2)で表される化合物、及び(1−3)で表される化合物を含有する液晶組成物が簡単に得られる。
【0084】
一般式(1)、(2)及び(3)で表されるスワローテイル型重合性化合物からなる組成物と、一般式(4)で表される重合性化合物と併用することで、25℃でネマチック相を示す本発明の重合性液晶組成物が得られる。本発明の重合性液晶組成物は、一般式(4)で表されるような双極子モーメントの小さい重合性化合物を配合していても長時間相分離することがない。一般式(1)、(2)及び(3)で表されるスワローテイル型重合性化合物からなる組成物と、一般式(4)で表される重合性化合物とは、配合比にして60:40〜20:80となるように配合するのが好ましく、70:30〜30:70となるように配合するのが最も好ましい。具体的には、一般式(1)で表される重合性化合物が12〜17質量%、一般式(2)で表される重合性化合物が8〜3質量%、一般式(3)で表される重合性化合物が5〜15質量%、一般式(4)で表される重合性化合物が70〜80質量%となるように併用すると、特に好ましい。
【0085】
【化50】
Figure 2004323729
Figure 2004323729
【0086】
前記一般式(4)において、Lは水素原子又はメチル基を表す。A10〜A12は各々独立してベンゼン環、シクロヘキサン環又はシクロヘキセン環を表す。Y及びYは、各々独立して結合、−CHCH−、−CHO−、−OCH−、−CO−O−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH−、−CHCHCHO−、−OCHCHCH−、−CH=CH−CHCH−、−CHCH−CH=CH−、−CH=CH−CO−O−及び−OCO−CH=CH−からなる群から選ばれる連結基を表わす。Yは、単結合、−O−、−CO−O−又は−OCO−を表し、Zは水素原子、ハロゲン原子、炭素数1〜20のアルキル基又は炭素数2〜20のアルケニル基を表し、bは0又は1の整数を表す。
【0087】
前記一般式(4)で表される重合性液晶化合物としては、具体的には、式(4−1)〜(4−4)で表される化合物があげられる。中でも、式(4−1)で表される化合物と式(4−2)で表される化合物を併用することが好ましく、式(4−1)で表される化合物と式(4−2)で表される化合物との比が、75:25〜25:75であるとなお好ましい。中でも、式(4−1)で表される化合物と式(4−2)で表される化合物との比が、40:60〜60:40であることが好ましい。この範囲において、25℃でネマチック相を示し、長時間相分離することのない重合性液晶組成物が得られる。
【0088】
【化51】
Figure 2004323729
Figure 2004323729
【0089】
【化52】
Figure 2004323729
Figure 2004323729
【0090】
【化53】
Figure 2004323729
Figure 2004323729
【0091】
【化54】
Figure 2004323729
Figure 2004323729
【0092】
その他、本発明の重合性液晶組成物に配合することのできる、公知慣用の重合性化合物としては、下記構造の化合物が挙げられる。
【0093】
【化55】
Figure 2004323729
【0094】
【化56】
Figure 2004323729
【0095】
【化57】
Figure 2004323729
【0096】
(式中、Lは水素原子又はメチル基を、n及びmは各々独立して1〜20の整数を表す。)
【0097】
本発明の重合性液晶組成物には、重合性官能基を有していない低分子液晶化合物を必要に応じて添加してもよい。このとき、添加量が多すぎると、得られる重合体の耐熱性に劣る傾向があるので、添加する場合は、本発明の重合性液晶組成物に対して30質量%以下とすることが好ましく、20質量%以下がさらに好ましく、10質量%以下が特に好ましい。
【0098】
一方、重合性官能基を有していない高分子液晶化合物は、目的に応じて添加量を変えればよい。例えば、得られる光学異方体に可とう性を付与したい場合は、重合性官能基を有していない高分子の液晶化合物を、本発明の重合性液晶組成物に対して30質量%以下、好ましくは20質量%以下添加すればよい。また、組成物の主成分が重合性官能基を有していない高分子液晶組成物の場合で、光学異方体の耐熱性を向上させたい時は、本発明の重合性液晶組成物を少量添加して重合させると効果的である。この場合、本発明の重合性液晶組成物を、組成物全量に対して5質量%以上となるように配合するとよい。
【0099】
本発明の重合性液晶組成物には、重合性官能基を有する液晶性骨格を持たない化合物を添加することもできる。このような化合物としては、通常、この技術分野で重合性モノマーあるいは重合性オリゴマーとして認識されるものであれば特に制限なく使用することができる。添加する場合は、本発明の重合性液晶組成物に対して、5質量%以下であることが好ましく、3質量%以下が更に好ましい。
【0100】
本発明の重合性液晶組成物には、光学活性を有する化合物、すなわちキラル化合物を添加してもよい。該キラル化合物は、それ自体が液晶相を示す必要は無く、また、重合性官能基を有していても、有していなくても良い。また、キラル化合物の螺旋の向きは、重合体の使用用途によって適宜選択することができる。
具体的には、例えば、キラル基としてコレステリル基を有するペラルゴン酸コレステロール、ステアリン酸コレステロール、キラル基として2−メチルブチル基を有するビーディーエイチ社製の「CB−15」、「C−15」、メルク社製の「S−1082」、チッソ社製の「CM−19」、「CM−20」、「CM」、キラル基として1−メチルヘプチル基を有するメルク社製の「S−811」、チッソ社製の「CM−21」、「CM−22」などを挙げることができる。
キラル化合物を添加する場合は、該重合性液晶組成物の用途によるが、得られる重合体の厚み(d)を重合体中での螺旋ピッチ(P)で除した値(d/P)が0.1〜100の範囲となる量を添加することが好ましく、0.1〜20の範囲となる量がさらに好ましい。
【0101】
本発明の重合性液晶組成物には、熱重合開始剤、光重合開始剤等の重合開始剤を添加することもできる。熱重合開始剤としては、例えば、過酸化ベンゾイル、2,2’−アゾビスイソブチロニトリル等が挙げられる。また、光重合開始剤としては、例えば、ベンゾインエーテル類、ベンゾフェノン類、アセトフェノン類、ベンジルケタール類等が挙げられる。添加する場合は、該重合性液晶組成物に対して、10質量%以下であることが好ましく、5質量%以下が特に好ましく、0.5〜1.5質量%の範囲が更に好ましい。
【0102】
本発明の重合性液晶組成物には、その保存安定性を向上させるために、安定剤を添加することもできる。安定剤としては、例えば、ヒドロキノン、ヒドロキノンモノアルキルエーテル類、第三ブチルカテコール類、ピロガロール類、チオフェノール類、ニトロ化合物類、β−ナフチルアミン類、β−ナフトール類等が挙げられる。添加する場合は、該重合性液晶組成物に対して1質量%以下であることが好ましく、0.5質量%以下が特に好ましい。
【0103】
本発明の重合性液晶組成物を偏光フィルムや配向膜の原料、又は印刷インキ及び塗料、保護膜等の用途に利用する場合には、その目的に応じて、金属、金属錯体、染料、顔料、蛍光材料、燐光材料、界面活性剤、レベリング剤、チキソ剤、ゲル化剤、多糖類、紫外線吸収剤、赤外線吸収剤、抗酸化剤、イオン交換樹脂、酸化チタン等の金属酸化物などを添加してもよい。
【0104】
本発明の重合性液晶組成物が液晶相を示す温度範囲内で、該重合性液晶組成物を重合させると、本発明の光学異方体が得られる。具体的には、本発明の重合性液晶組成物を、配向機能を付与した基板上に塗布するか、又は二枚の基板間に挟持させた後、該重合性液晶組成物中の液晶分子をネマチック相を保持した状態で均一に配向させ、重合させることによって、本発明の光学異方体が得られる。
【0105】
前記基板は、有機、無機を問わず、公知慣用の材質の基板を使用することができる。例えば、ポリエチレンテレフタレート板、ポリカーボネート板、ポリイミド板、ポリアミド板、ポリメタクリル酸メチル板、ポリスチレン板、ポリ塩化ビニル板、ポリテトラフルオロエチレン板、セルロース板、シリコン板、ガラス板、方解石板等が挙げられる。基板の形状としては、平板の他、曲面を有するものであっても良い。これらの基板は、必要に応じて、電極層を有していてもよい。
【0106】
前記基板に配向機能を付与する方法としては特に限定はなく、公知慣用の方法が挙げられる。具体的には、布等で基板表面をラビング処理する方法、ポリイミド薄膜又はポリビニルアルコール薄膜等の有機薄膜を基板表面に形成し、これを布等でラビング処理する方法、基板にSiOを斜方蒸着して配向膜を形成する方法、分子内に光二量化反応する官能基を有する有機薄膜や光で異性化する官能基を有する有機薄膜に、偏光を照射する方法等が挙げられる。特に、通常のツイステッド・ネマチック素子又はスーパー・ツイステッド・ネマチック素子で使用されているプレチルト角を与えるポリイミド薄膜を使用すると、液晶分子の配向状態の制御を容易にすることができ、特に好ましい。
【0107】
本発明の重合性液晶組成物を基板上に塗布する場合は、スピンコーティング、ロールコーティング、グラビアコーティング、スプレーコーティング、ディッピング法等の公知慣用のコーティング法を利用すればよい。このとき、塗工性を高めるために、該重合性液晶組成物に公知慣用の有機溶媒を添加しても良い。この場合は、該重合性液晶組成物を基板上に塗布後、自然乾燥、加熱乾燥、減圧乾燥、減圧加熱乾燥等で有機溶媒を除去する。本発明の重合性液晶組成物を基板間に挟持させる場合は、毛細管現象あるいは真空注入法を利用した注入法等を利用すればよい。
【0108】
本発明の重合性液晶組成物を重合させる方法としては、活性エネルギー線を照射する方法や熱重合法等が挙げられるが、加熱を必要とせず、室温で反応が進行することから活性エネルギー線を照射する方法が好ましく、中でも、操作が簡便なことから、紫外線等の光を照射する方法が好ましい。紫外線強度は、0.1mW/cm〜2W/cmの範囲が好ましい。紫外線強度が0.1mW/cm未満の場合、重合を完了させるのに多大な時間がかかり、一方、2W/cmを超える強度では、重合性液晶組成物中の液晶分子が光分解する傾向にある。照射時の温度は、本発明の重合性液晶組成物が液晶相を保持できる温度とし、重合性液晶組成物の熱重合の誘起を避けるため、可能な限り25℃以下とすることが好ましい。尚、液晶組成物は、通常、昇温過程において、C−N転移温度から、N(ネマチック相)−I(等方性液体相)転移温度(以下、N−I転移温度と略す。)範囲内で液晶相を示す。一方、降温過程においては、熱力学的に非平衡状態を取るため、C−N転移温度以下でも凝固せず液晶状態を保つ場合がある。この状態を過冷却状態という。本発明においては、過冷却状態にある液晶組成物も液晶相を保持している状態に含めるものとする。
また、本発明の重合性液晶組成物を二枚の基板間に挟持させた状態で重合させる場合は、光照射面側の基板として、透明性を有する基板を使用する。
【0109】
マスクを使用して特定の部分のみを紫外線照射で重合させた後、該未重合部分の配向状態を、電場、磁場又は温度等をかけて変化させ、その後該未重合部分を重合させると、異なる配向方向をもった複数の領域を有する光学異方体を得ることもできる。
【0110】
本発明の重合性液晶組成物を重合させて得られる重合体は、基板から剥離して単体で光学異方体として使用することも、基板から剥離せずにそのまま光学異方体として使用することもできる。剥離した場合は、それらを積層することも、他の基板に貼り合わせて使用することもできる。
【0111】
本発明の重合性液晶組成物は、双極子モーメントの小さい液晶化合物を添加して25℃でネマチック相を示すように調製してあるので、加温せずに重合させることができる。双極子モーメントの小さい液晶化合物の配合量を増やさなくとも、25℃で長時間安定にネマチック相を示すので、重合性液晶組成物中のスワローテイル骨格の濃度は下がらない。従って、得られた光学異方体は透明性に優れる。
本発明の光学異方体は、光学補償板、光学的ローパスフィルタ、又は偏光プリズム材料としては勿論のこと、位相差板、偏光板、光導波路、圧電素子、非線形光学素子、各種光フィルター、コレステリック液晶相等の選択反射を利用した顔料、光ファイバー等の被覆剤等への応用が可能である。
【0112】
【実施例】
以下、実施例及び比較例によって、本発明を具体的に説明する。
【0113】
[評価項目]
重合性液晶組成物のC−N転移温度、N−I転移温度、結晶相−スメクチックC相転移温度、及びスメクチックC相−等方相転移温度は、偏光顕微鏡観察及び示差走査熱量測定により決定した。
相溶性は、相溶後の安定性で評価し、重合性液晶組成物を封入したサンプル瓶を25℃に放置し、相分離や結晶の析出が見られるか否かを目視にて観察し、その時間を測定した。
透明度は、JIS K−7136に準拠し、ヘーズ値で表した。ヘーズ値の小さいものほど透明度に優れることを表す。
リタデーション値は、ヘリウム−ネオンレーザー(He−Ne LASER)とフォトエラスティックモジュレーター(Photo Elastic Modulator)を使用した偏光解析装置により測定した。値が高いものほどリタデーションに優れることを表す。
【0114】
(合成例1)
4,4’−ビフェノール1200g、6−クロロ−1−ヘキサノール880g、炭酸カリウム800g、ヨウ化カリウム80g、ジメチルホルムアミド(以下、DMFと略す。)4800mlからなる混合物を撹拌しながら、90℃で8時間加熱した。得られた反応液を室温まで冷却後、反応液の水層が弱酸性になるまで希塩酸を加えた。析出した結晶をガラスフィルターを用いて濾取した後、結晶を水20000mlで洗い、粗生成物900gを得た。この粗生成物を、メタノール9000mlで精製し、生成物Aを500g得た。高速液体クロマトグラフィー(以下、HPLCと略す)で分析した結果、生成物Aは、式(m1)で表される化合物が92%、式(m2)で表される化合物が5%、帰属不能な化合物が3%含まれていた。
【0115】
【化58】
Figure 2004323729
Figure 2004323729
【0116】
【化59】
Figure 2004323729
Figure 2004323729
【0117】
生成物Aを480g、アクリル酸480g、p−トルエンスルホン酸150g、ヒドロキノン25g、トルエン2000ml、シクロヘキサン2000mlからなる混合物を加熱撹拌し、生成してくる水を留去しながら4時間還流させた。反応液を室温まで冷却後、反応液に飽和食塩水10000ml、酢酸エチル7000mlを加えて抽出を行った。有機層を水洗した後、酢酸エチルを減圧留去して粗生成物609g得た。得られた粗生成物をトルエン600mlとヘキサン1200mlの混合溶媒で洗い、酢酸エチル及びトルエンからなる混合溶媒(容量比で酢酸エチル:トルエン=1:4)を展開溶媒とするシリカゲルカラムクロマトグラフィーで精製して、生成物Bを190g得た。HPLCで分析した結果、生成物Bは、式(m3)で表される化合物が5%、式(m4)で表される化合物が91%、式(m5)で表される化合物が2%、帰属不可能な化合物が2%含まれていた。
【0118】
【化60】
Figure 2004323729
Figure 2004323729
【0119】
【化61】
Figure 2004323729
Figure 2004323729
【0120】
【化62】
Figure 2004323729
Figure 2004323729
【0121】
3,4−ジヒドロキシ安息香酸100g、6−クロロ−1−ヘキサノール194g、水酸化ナトリウム82g、ヨウ化カリウム10g、エタノール450ml、水450mlからなる混合物を撹拌しながら、80℃で32時間加熱した。得られた反応液を室温まで冷却後、反応液に飽和食塩水5000mlを加え、反応液の水層が弱酸性になるまで希塩酸を加えた。この反応溶液に酢酸エチル3000mlを加えて抽出した。有機層を水洗した後、酢酸エチルを減圧留去して生成物Cを232g得た。生成物CをHPLCで分析した結果、式(m6)で表される化合物が48%、帰属不明な化合物が52%含まれていた。
【0122】
【化63】
Figure 2004323729
Figure 2004323729
【0123】
生成物Cを232g、アクリル酸300g、p−トルエンスルホン酸50g、ヒドロキノン10g、トルエン1000ml、シクロヘキサン800ml、テトラヒドロフラン200mlからなる混合物を加熱撹拌し、生成してくる水を留去しながら4時間還流させた。反応液を室温まで冷却後、反応液に飽和食塩水5000ml、酢酸エチル3000mlを加えて抽出を行った。有機層を水洗した後、有機溶媒を減圧留去し、ヘキサン1000mlとトルエン200mlの混合物で洗った後、酢酸エチル及びトルエンからなる混合溶媒(容量比で酢酸エチル:トルエン=1:3)を展開溶媒とするシリカゲルカラムクロマトグラフィーで精製し、生成物Dを165g得た。生成物DをHPLCで分析した結果、式(m7)で表される化合物が55%、式(m8)で表される化合物が7%、式(m9)で表される化合物が7%、式(m10)で表される化合物が5%、式(m11)で表される化合物が5%及び式(m12)で表される化合物が4%、帰属不明な化合物が17%含まれていた。
【0124】
【化64】
Figure 2004323729
【0125】
【化65】
Figure 2004323729
Figure 2004323729
【0126】
【化66】
Figure 2004323729
Figure 2004323729
【0127】
【化67】
Figure 2004323729
Figure 2004323729
【0128】
【化68】
Figure 2004323729
Figure 2004323729
【0129】
【化69】
Figure 2004323729
Figure 2004323729
【0130】
生成物Bを55gと、生成物Dを65gを塩化メチレン1000mlに溶解させた。これを5℃に冷却し、ジメチルアミノピリジン6gと1−エチル−3−(3’−ジメチルアミノプロピル)カルボジイミド(以下WSCと略す。)50gを加えて攪拌した。2時間後室温に戻し、さらに36時間攪拌を続けた。反応終了後、反応液を1N塩酸で洗浄してから水で中性になるまで洗浄し、この有機相に無水硫酸ナトリウムを入れて乾燥した。乾燥後に溶媒を減圧除去して粗生成物を得た。この粗生成物をヘキサン:酢酸エチル=10:1の混合溶媒を移動相とするシリカゲルカラムクロマトグラフィーで精製し、組成物(I)を得た。HPLC及びGC/MS(MSは質量分析を表す。)で分析した結果、式(m13)で表される化合物が69%、式(m14)で表される化合物が9%、式(m15)で表される化合物が4%、式(m16)で表される化合物が2%、式(m17)で表される化合物、式(m18)で表される化合物、式(m19)で表される化合物、式(m20)で表される化合物、式(m21)で表される化合物がそれぞれ1%、式(m22)で表される化合物が2%、式(m23)で表される化合物が1%、帰属不明な化合物が8%含まれていた。
【0131】
【化70】
Figure 2004323729
Figure 2004323729
【0132】
【化71】
Figure 2004323729
Figure 2004323729
【0133】
【化72】
Figure 2004323729
Figure 2004323729
【0134】
【化73】
Figure 2004323729
Figure 2004323729
【0135】
【化74】
Figure 2004323729
Figure 2004323729
【0136】
【化75】
Figure 2004323729
Figure 2004323729
【0137】
【化76】
Figure 2004323729
Figure 2004323729
【0138】
【化77】
Figure 2004323729
Figure 2004323729
【化78】
Figure 2004323729
Figure 2004323729
【0139】
【化79】
Figure 2004323729
Figure 2004323729
【0140】
【化80】
Figure 2004323729
Figure 2004323729
【0141】
【化81】
Figure 2004323729
Figure 2004323729
【0142】
(実施例1)
組成物(I)20質量部、式(D)で表される化合物10質量部、式(B)で表される化合物35質量部、及び式(C)で表される化合物35質量部からなる組成物(J)を調製した。組成物(J)は、25℃でネマチック液晶相を呈した。C−N転移温度は−30℃であり、N−I転移温度は46℃であった。組成物(J)は25℃で1ヶ月以上保っても、安定的にネマチック相を呈することがわかった。
【0143】
【化82】
Figure 2004323729
Figure 2004323729
【0144】
【化83】
Figure 2004323729
Figure 2004323729
【0145】
(実施例2)
組成物(J)99質量部に、チバガイギー社製の光重合開始剤「イルガキュアー651」1質量部を添加したものを、室温で、セルギャップ50ミクロンのアンチパラレル配向液晶ガラスセル(液晶を一軸配向するよう配向処理を施したガラスセル)に注入した。注入後2分以内に配向が安定し、均一な一軸配向が得られているのが確認できた。次に、目白プレシジョン製の超高圧水銀灯750Wを使用し、14W/mの紫外線(波長366nm)を該ガラスセルに200秒間照射して、光学異方体を得た。得られた光学異方体の平行光透過率は88.1%で、ヘーズは1.3%であった。リタデーション値は3.0ミクロンであった。
【0146】
【化84】
Figure 2004323729
Figure 2004323729
【0147】
(実施例3)
組成物(I)20質量部、式(D)8質量部、式(E)で表される化合物2質量部、式(B)で表される化合物35質量部、及び式(C)で表される化合物35質量部からなる組成物(K)を調製した。組成物(K)は、25℃でネマチック液晶相を呈した。C−N転移温度は10℃であり、N−I転移温度は46℃であった。組成物(K)は25℃で1ヶ月以上保っても、安定的にネマチック相を呈することがわかった。
【0148】
(実施例4)
組成物(K)99質量部に、チバガイギー社製の光重合開始剤「イルガキュアー651」1質量部を添加したものを、室温で、セルギャップ50ミクロンのアンチパラレル配向液晶ガラスセル(液晶を一軸配向するよう配向処理を施したガラスセル)に注入した。注入後2分以内に配向が安定し、均一な一軸配向が得られているのが確認できた。次に、目白プレシジョン製の超高圧水銀灯750Wを使用し、14W/mの紫外線(波長366nm)を該ガラスセルに200秒間照射して、光学異方体を得た。得られた光学異方体の平行光透過率は88.4%で、ヘーズは1.2%であった。リタデーション値は3.1ミクロンであった。
【0149】
(比較例1)
式(A)で表される化合物を30質量部、式(B)で表される化合物を35質量部、及び式(C)で表される化合物を35質量部使用した組成物(L)を調製した。組成物(L)のC−N転移温度は41℃であり、N−I転移温度は61℃であった。この組成物は冷却過程に於いて25℃で過冷却によるネマチック相を示したが、約2時間程度で相分離してしまった。
【0150】
(比較例2)
組成物(L)99質量部に「イルガキュアー651」1質量部を添加したものを使用して、実施例4と同様にして光学異方体を得た。得られた光学異方体の平行光透過率は82.9%で、ヘーズは5.0%であった。リタデーション値は2.7ミクロンであった。
【0151】
【発明の効果】
双極子モーメントの小さい液晶化合物とスワローテイル型の重合性化合物を含有する重合性液晶組成物は、長期間安定な液晶相を示す。また、25℃でネマチック相を示すように調製してあるので、加温せずに重合させることができ、透明性に優れた光学異方体が得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polymerizable liquid crystal composition and an optically anisotropic body obtained by polymerizing the polymerizable liquid crystal composition.
[0002]
[Prior art]
Polymerizable liquid crystal compound, or, when mixed with a liquid crystal compound, a polymerizable liquid crystal composition containing a polymerizable compound exhibiting a liquid crystal phase such as a nematic phase, a smectic phase, and a cholesteric phase, and polymerized while maintaining the liquid crystal phase. In addition, a polymer in which the alignment state of liquid crystal molecules is fixed can be produced. Since this polymer has anisotropy of physical properties such as a refractive index, a dielectric constant, a magnetic susceptibility, an elastic modulus, and a thermal expansion coefficient, its application as an optically anisotropic body is particularly studied.
[0003]
Photopolymerization is one of the polymerization methods for fixing the alignment state of liquid crystal molecules. In photopolymerization, since the polymerization reaction proceeds without applying heat that causes disturbance to the alignment of the liquid crystal molecules, the alignment can be fixed without disturbing the alignment state of the liquid crystal molecules. However, when the temperature at which the liquid crystal phase is displayed is high, it is necessary to heat the polymerizable liquid crystal composition in order to maintain the liquid crystal phase, and this heating causes partial thermal polymerization before starting photopolymerization. In some cases, the orientation may be disturbed. Therefore, the composition of the polymerizable liquid crystal composition is adjusted so as to exhibit a liquid crystal phase at a temperature as low as possible, for example, in a temperature range of 25 ° C to 40 ° C.
[0004]
When a polymer in which the alignment state of liquid crystal molecules is fixed is applied to an optically anisotropic body, the polymer is required to have excellent transparency.
For example, a polymerizable liquid crystal compound represented by the formula B and a polymerizable liquid crystal compound represented by the formula C are mixed with a polymerizable liquid crystal compound of the swallow tail type represented by the formula A having a CN transition temperature of 94 ° C. Thus, a polymerizable liquid crystal composition exhibiting a nematic phase at 25 ° C. is prepared, and when this is polymerized at 25 ° C. or lower, an optically anisotropic body having excellent transparency can be obtained because local thermal polymerization does not occur. This is known (see, for example, Patent Document 1).
[0005]
Embedded image
Figure 2004323729
Figure 2004323729
[0006]
Embedded image
Figure 2004323729
Figure 2004323729
[0007]
Embedded image
Figure 2004323729
Figure 2004323729
[0008]
[Patent Document 1]
JP 2000-327632 A
[0009]
[Problems to be solved by the invention]
However, when the compound represented by the formula A, the compound represented by the formula B, and the compound represented by the formula C are mixed, even if it appears that they are mixed uniformly, the phase separation occurs within a short time. There was a problem of getting up. This is because the compound represented by the formula A has a cyano group at the molecular terminal, has a large dipole moment, and has an electron-withdrawing group such as the compound represented by the formula B and the compound represented by the formula C. A polymerizable compound having a small dipole moment does not generally have low compatibility, and a compound represented by the formula A, a compound represented by the formula B, and a compound represented by the formula C have a liquid crystal skeleton. It is considered that the compatibility is low due to the large difference.
When the compounding amount of the compound represented by the formula B and the compound represented by the formula C is increased, the compatibility is somewhat improved, but the concentration of the swallowtail type compound in the entire system is reduced. There has been a problem that the transparency of the optically anisotropic body obtained by polymerizing this is reduced.
[0010]
The problem to be solved by the present invention is to provide a liquid crystal compound having a small dipole moment and a polymerizable liquid crystal composition containing a swallow tail polymerizable compound having excellent compatibility with the liquid crystal compound. An object of the present invention is to provide an optically anisotropic body having excellent transparency, which is obtained by polymerizing a polymerizable compound in a polymerizable liquid crystal composition within a temperature range in which the polymerizable liquid crystal composition exhibits a liquid crystal phase.
[0011]
[Means for Solving the Problems]
A swallow tail polymerizable compound having a cyano group at a molecular terminal has a large dipole moment, and thus has low compatibility with a liquid crystal compound having a small dipole moment. The present inventors have found that when the swallow-tail type polymerizable compounds represented by the general formulas (1), (2), and (3) are used in combination, the compatibility with liquid crystal compounds having a small dipole moment and different skeleton structures is improved. The present inventors have found that an excellent and stable polymerizable liquid crystal composition can be obtained for a long period of time, and have solved the above-mentioned problems. It has also been found that an optically anisotropic body obtained by polymerizing a polymerizable liquid crystal composition has excellent transparency.
[0012]
That is, the present invention provides a polymerizable compound represented by the general formula (1), a polymerizable compound represented by the general formula (2), a polymerizable compound represented by the general formula (3), and a polymerizable compound represented by the general formula (4) The present invention provides a polymerizable liquid crystal composition containing the polymerizable compound represented by the formula (1).
[0013]
Embedded image
Figure 2004323729
Figure 2004323729
[0014]
Embedded image
Figure 2004323729
Figure 2004323729
[0015]
Embedded image
Figure 2004323729
Figure 2004323729
[0016]
Embedded image
Figure 2004323729
Figure 2004323729
[0017]
(Where A1~ A12Each independently represents a benzene ring, a cyclohexane ring or a cyclohexene ring;1~ Y8Are each independently a single bond, -CH2CH2-, -CH2O-, -OCH2-, -CO-O-, -OCO-, -C≡C-, -CH = CH-, -CF = CF-,-(CH2)4-, -CH2CH2CH2O-, -OCH2CH2CH2-, -CH = CH-CH2CH2-, -CH2CH2Y represents a linking group selected from the group consisting of -CH = CH-, -CH = CH-CO-O- and -OCO-CH = CH-;9Represents a single bond, -O-, -CO-O- or -OCO-. X1~ X8Each independently represents a single bond, -O-, -CO-O-, or -OCO-;1~ S8Are each independently -CpH2p-Or-(CpH2p-O)q-Cp 'H2p 'And p and p 'each independently represent an integer of 1 to 20, and q represents an integer of 1 to 10. L1~ L6Represents a hydrogen atom or a methyl group each independently.
[0018]
Z1And Z2Are each independently -OCO-CH2-CH2-Cl, -OCO-CH = CH2, -OCO-C (CH3) = CH2, -OCO-CH2CH2OH, -OH, -OCO-CH2CH2-OCO-CH = CH2, -OCO-CH2CH2-OCO-C (CH3) = CH2, -CH = CH2, -OCO-CH = CH2, -OCO-C (CH3) = CH2, -CO-CH3Or -CH2CH2Represents Cl, but Z1Is -OCO-CH2-CH2When -Cl, Z2Is -OCO-CH = CH2Or -OCO-C (CH3) = CH2And Z1Is -OCO-CH = CH2Or -OCO-C (CH3) = CH2, Z2Is -OCO-CH2-CH2-Cl, -OCO-CH2CH2OH, -OH, -OCO-CH2CH2-OCO-CH = CH2, -OCO-CH2CH2-OCO-C (CH3) = CH2, -CH = CH2, -OCO-CH = CH2, -OCO-C (CH3) = CH2, -CO-CH3Or -CH2CH2Cl and Z2Is -OCO-CH = CH2Or -OCO-C (CH3) = CH2, Z1Is -OCO-CH2-CH2-Cl, -OCO-CH2CH2OH, -OH, -OCO-CH2CH2-OCO-CH = CH2, -OCO-CH2CH2-OCO-C (CH3) = CH2, -CH = CH2, -OCO-CH = CH2, -OCO-C (CH3) = CH2, -CO-CH3Or -CH2CH2Cl. Z3Is a hydrogen atom or CH3-CO-O-, Z4Is a hydrogen atom, a cyano group, or Cl- (CH2)aA represents an integer of 1 to 20;5Represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms or an alkenyl group having 2 to 20 carbon atoms, and b represents an integer of 0 or 1. )
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
In the general formulas (1) to (3), A1~ A9May have a substituent such as an alkyl group having 1 to 7 carbon atoms, an alkoxy group having 1 to 7 carbon atoms, an alkanoyl group having 1 to 7 carbon atoms, or a halogen atom. Said A1~ A9In addition, if a benzene ring that is conjugated in the long axis direction of the liquid crystal molecule is selected, a polymerizable compound having a large birefringence can be obtained.If a cyclohexane ring that is not conjugated in the long axis direction of the liquid crystal molecule is selected, A polymerizable compound having a small birefringence can be obtained.
[0020]
In the general formulas (1) to (3), Y1~ Y6May be selected from a structure such as a single bond, -CO-O-, -OCO-, -C≡C-, -CH = CH-, -CF = CF-, which is conjugated in the major axis direction of the liquid crystal molecule. Thus, a polymerizable compound having a large birefringence can be obtained.2CH2-, -CH2O-, -OCH2-,-(CH2)4-, -CH2CH2CH2O-, -OCH2CH2CH2By selecting a structure that is not conjugated in the long axis direction of liquid crystal molecules, such as-, a polymerizable compound having a small birefringence can be obtained.
[0021]
In the general formulas (1) to (3), S1~ S8Has a role as a spacer separating the liquid crystal skeleton from the (meth) acryloyloxy group. Specific examples include a methylene group, a propylene group, a hexamethylene group, and a group in which these groups are linked by an ether bond. Among them, p and p 'are each independently preferably 2 to 15, and particularly preferably 3 to 11.
[0022]
In the general formulas (1) to (3), L1~ L5Is preferably a hydrogen atom because of high polymerization reactivity.
[0023]
In the general formula (1), Z1And Z2As a combination with, for example,
Z1Is -OCO-CH2-Cl, Z2Is -OCO-CH = CH2Or -OCO-C (CH3) = CH2Or Z1Is -OCO-CH = CH2Or -OCO-C (CH3) = CH2And Z2Is -OH, or Z1Is -OCO-CH = CH2Or -OCO-C (CH3) = CH2And Z2Is -OCO-CH2CH2OH or Z1Is -OCO-CH = CH2Or -OCO-C (CH3) = CH2And Z2Is -OCO-CH2CH2-OCO-CH = CH2Or Z1Is -OCO-CH = CH2Or -OCO-C (CH3) = CH2And Z2Is -OCO-CH = CH2Is the case.
[0024]
The compound represented by the general formula (1), the compound represented by the general formula (2), and the compound represented by the general formula (3) are represented by A in the general formula (1).1-Y1-A2-Y2-A3A in the general formula (2)4-Y3-A5-Y4-A6A in the general formula (3)7-Y5-A8-Y6-A9When the liquid crystal skeleton represented by is the same, the storage stability of the obtained composition is increased, and the composition can be more stably compatible with a compound having a small dipole moment. Above all, A1~ A9Are all benzene rings, and Y1, Y3And Y5Is the same connecting chain represented by a single bond, -CO-O- or -OCO-, and Y is2, Y4And Y6Is preferably a liquid crystal skeleton which is the same connecting chain represented by a single bond, -CO-O- or -OCO-. Examples of such a liquid crystal skeleton are shown below.
[0025]
Embedded image
Figure 2004323729
[0026]
Embedded image
Figure 2004323729
[0027]
Embedded image
Figure 2004323729
[0028]
Examples of the polymerizable compound represented by the general formula (1) include compounds represented by the following formulas (1-1) to (1-10). These compounds may be used in combination of two or more.
[0029]
Embedded image
Figure 2004323729
Figure 2004323729
[0030]
Embedded image
Figure 2004323729
Figure 2004323729
[0031]
Embedded image
Figure 2004323729
Figure 2004323729
[0032]
Embedded image
Figure 2004323729
Figure 2004323729
[0033]
Embedded image
Figure 2004323729
Figure 2004323729
[0034]
Embedded image
Figure 2004323729
Figure 2004323729
[0035]
Embedded image
Figure 2004323729
Figure 2004323729
[0036]
Embedded image
Figure 2004323729
Figure 2004323729
[0037]
Embedded image
Figure 2004323729
Figure 2004323729
[0038]
Embedded image
Figure 2004323729
Figure 2004323729
[0039]
Further, examples of the polymerizable compound represented by the general formula (2) include compounds represented by the following formulas (2-1) to (2-3). These compounds may be used in combination of two or more.
[0040]
Embedded image
Figure 2004323729
Figure 2004323729
[0041]
Embedded image
Figure 2004323729
Figure 2004323729
Embedded image
Figure 2004323729
Figure 2004323729
[0042]
(In the general formulas (1-1) to (1-10) and the general formulas (2-1) to (2-3), m and n each independently represent an integer of 1 to 20.)
[0043]
Examples of the polymerizable compound represented by the general formula (3) include compounds represented by the following formulas (3-1) to (3-5). These compounds may be used in combination of two or more. The polymerizable liquid crystal composition of the present invention has excellent compatibility with other liquid crystal compounds even when a highly polar polymerizable compound having a cyano group or the like is blended.
[0044]
Embedded image
Figure 2004323729
Figure 2004323729
[0045]
Embedded image
Figure 2004323729
Figure 2004323729
[0046]
Embedded image
Figure 2004323729
Figure 2004323729
[0047]
Embedded image
Figure 2004323729
Figure 2004323729
[0048]
Embedded image
Figure 2004323729
Figure 2004323729
[0049]
(In the formulas (3-1) to (3-5), r, s, and t each independently represent an integer of 1 to 20, and L represents a hydrogen atom or a methyl group.)
[0050]
Polymerizable compounds represented by formulas (1-1) to (1-10), formulas (2-1) to (2-3), and formulas (3-1) to (3-5) Can be synthesized by a known synthesis method. Specific examples of synthesis are described in Handbook of Liquid Crystals, Wiley, Vol. 1, Chapter 4, and Vol. 2, Chapters 3-5.
[0051]
For example, the compound represented by the general formula (1-1) can be synthesized as follows. After etherifying 3,4-dihydroxybenzoic acid with a halogenated alcohol, 3-chloropropionyl chloride is reacted to obtain a compound represented by the formula (a) (hereinafter, in the general formulas (a) to (o), , M and n each independently represent an integer of 1 to 20).
[0052]
Embedded image
Figure 2004323729
Figure 2004323729
[0053]
The compound represented by the formula (a) is subjected to a dehydrochlorination reaction in the presence of potassium carbonate to obtain a compound represented by the formula (b) or the formula (c).
[0054]
Embedded image
Figure 2004323729
Figure 2004323729
[0055]
Embedded image
Figure 2004323729
Figure 2004323729
[0056]
A compound represented by the formula (c) and a compound represented by the formula (d) obtained by etherifying 4,4′-biphenol with a halogenated alcohol and then subjecting acrylic acid to a dehydration condensation reaction, The compound represented by the general formula (1-1) is obtained by a dehydration condensation reaction.
[0057]
Embedded image
Figure 2004323729
Figure 2004323729
[0058]
The compound represented by the general formula (1-2) can be synthesized as follows. 1-iodo-3,4-dimethoxybenzene is reacted with a phenyl Grignard reagent to obtain a biphenyl derivative, which is reacted with acetyl chloride. After hydrolyzing the obtained compound with an alkali, the methyl group of the methoxy group is cleaved with hydrobromic acid to obtain a compound represented by the formula (e).
[0059]
Embedded image
Figure 2004323729
Figure 2004323729
[0060]
After etherifying the compound represented by the formula (e) with a halogenated alcohol, 3-chloropropionyl chloride is reacted to obtain a compound represented by the formula (f). This is subjected to a dehydrochlorination reaction in the presence of potassium carbonate to obtain a compound represented by the formula (g) or (h).
[0061]
Embedded image
Figure 2004323729
Figure 2004323729
[0062]
Embedded image
Figure 2004323729
Figure 2004323729
[0063]
Embedded image
Figure 2004323729
Figure 2004323729
[0064]
The compound represented by the formula (h) and the compound represented by the formula (i) obtained by etherifying hydroquinone with a halogenated alcohol and then subjecting acrylic acid to a dehydration condensation reaction are subjected to a dehydration condensation reaction to obtain a compound represented by the formula: The compound represented by (1-2) is obtained.
[0065]
Embedded image
Figure 2004323729
Figure 2004323729
[0066]
The compound represented by the formula (1-3) is obtained by etherifying 3,4-dihydroxybenzoic acid with a halogenated alcohol, and then subjecting acrylic acid to a dehydration condensation reaction at a molar ratio of 1: 1 to obtain a compound represented by the formula (j) Is obtained. This is obtained by subjecting the compound represented by the general formula (d) to a dehydration condensation reaction.
[0067]
Embedded image
Figure 2004323729
Figure 2004323729
[0068]
The compound represented by the formula (1-4) is obtained by etherifying 3,4-dihydroxybenzoic acid with a halogenated alcohol, and then reacting with 3-bromopropionyl chloride. Is obtained. This is obtained by subjecting the compound represented by the general formula (d) to a dehydration condensation reaction.
[0069]
Embedded image
Figure 2004323729
Figure 2004323729
[0070]
The compound represented by the formula (1-6) is obtained by subjecting a halogenated alcohol such as 6-bromo-1-hexanol to a transesterification reaction with methyl acrylate to synthesize a halogenated alkyl acrylate. A halogenated alkene such as -1-hexene or the like is mixed at a molar ratio of 1: 1 and reacted with 3,4-dihydroxybenzoic acid to obtain a compound represented by the formula (1). This is obtained by subjecting the compound represented by the general formula (d) to a dehydration condensation reaction.
[0071]
Embedded image
Figure 2004323729
Figure 2004323729
[0072]
The compound represented by the formula (1-8) is obtained by etherifying 3,4-dihydroxybenzoic acid with a halogenated alcohol, reacting with 3-bromopropionyl chloride, treating the resultant with alkali, and then adding acrylic acid chloride or the like. The compound represented by the formula (m) is obtained by reacting methacrylic chloride. This is obtained by subjecting the compound represented by the general formula (d) to a dehydration condensation reaction.
[0073]
Embedded image
Figure 2004323729
Figure 2004323729
[0074]
The compound represented by the formula (2-1) is obtained by etherifying 4,4′-biphenol with a halogenated alcohol and then reacting with acetic anhydride or acetyl chloride to obtain a compound represented by the formula (n). .
[0075]
Embedded image
Figure 2004323729
Figure 2004323729
[0076]
This is obtained by etherifying 3,4-dihydroxybenzoic acid with a halogenated alcohol and then reacting acrylic acid or methacrylic acid, followed by a dehydration condensation reaction of a compound represented by the formula (o).
[0077]
Embedded image
Figure 2004323729
Figure 2004323729
[0078]
The compound represented by the formula (3-1) can be synthesized as follows. The 6-chloro-1- (p-toluenesulfonyloxy) -alkane is reacted with 4-phenylphenol at room temperature in the presence of a base to obtain a compound represented by the formula (p).
[0079]
Embedded image
Figure 2004323729
Figure 2004323729
[0080]
The compound represented by the formula (p) is subjected to a Friedel-Crafts reaction using aluminum chloride and acetyl chloride, and then oxidized with performic acid and alkali-hydrolyzed to obtain a compound represented by the formula (q). And the compound (o) are subjected to an esterification reaction to obtain a compound represented by the formula (2-2).
[0081]
Embedded image
Figure 2004323729
Figure 2004323729
[0082]
Among the compounds represented by the general formula (1), the compounds represented by the general formula (2), and the compounds represented by the general formula (2), several kinds of compounds having the same liquid crystal skeleton are used in one reaction vessel. They can be synthesized at the same time. For example, when the compound represented by the formula (a) is subjected to a dehydrochlorination reaction in the presence of potassium carbonate, the compound represented by the formula (b) and the compound represented by the formula (c) The compound represented by the formula (o) can also be synthesized at the same time. The ratio of the compound represented by the formula (b), the compound represented by the formula (c), and the compound represented by the formula (o) can be controlled by changing reaction conditions and the like.
[0083]
When the compound represented by the formula (a) is subjected to a dehydrochlorination reaction in the presence of potassium carbonate after adding a small amount of water, the compound represented by the formula (b) and the compound represented by the formula (c) ) And the compound represented by the formula (o), the compound represented by the formula (j) and the compound represented by the formula (k) can be simultaneously synthesized. . When a compound represented by the formula (d) is reacted with the reaction product, a compound represented by the general formula (1-1), a compound represented by the formula (1-2), A liquid crystal composition containing the compound represented by 3) can be easily obtained.
[0084]
By using a composition comprising a swallow tail type polymerizable compound represented by the general formulas (1), (2) and (3) and a polymerizable compound represented by the general formula (4) at 25 ° C. The polymerizable liquid crystal composition of the present invention showing a nematic phase is obtained. The polymerizable liquid crystal composition of the present invention does not undergo phase separation for a long time even when a polymerizable compound having a small dipole moment as represented by the general formula (4) is blended. The composition comprising the swallow-tail type polymerizable compound represented by the general formulas (1), (2) and (3) and the polymerizable compound represented by the general formula (4) have a mixing ratio of 60: It is preferable to mix so as to be 40 to 20:80, and it is most preferable to mix so as to be 70:30 to 30:70. Specifically, the polymerizable compound represented by the general formula (1) is 12 to 17% by mass, the polymerizable compound represented by the general formula (2) is 8 to 3% by mass, and the polymerizable compound represented by the general formula (3) is It is particularly preferable to use the polymerizable compound in an amount of 5 to 15% by mass and the polymerizable compound represented by the general formula (4) in an amount of 70 to 80% by mass.
[0085]
Embedded image
Figure 2004323729
Figure 2004323729
[0086]
In the general formula (4), L6Represents a hydrogen atom or a methyl group. A10~ A12Each independently represents a benzene ring, a cyclohexane ring or a cyclohexene ring. Y7And Y8Are each independently a bond, -CH2CH2-, -CH2O-, -OCH2-, -CO-O-, -OCO-, -C≡C-, -CH = CH-, -CF = CF-,-(CH2)4-, -CH2CH2CH2O-, -OCH2CH2CH2-, -CH = CH-CH2CH2-, -CH2CH2Represents a linking group selected from the group consisting of -CH = CH-, -CH = CH-CO-O- and -OCO-CH = CH-. Y9Represents a single bond, -O-, -CO-O- or -OCO-;5Represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms or an alkenyl group having 2 to 20 carbon atoms, and b represents an integer of 0 or 1.
[0087]
Specific examples of the polymerizable liquid crystal compound represented by Formula (4) include compounds represented by Formulas (4-1) to (4-4). Above all, it is preferable to use the compound represented by the formula (4-1) and the compound represented by the formula (4-2) in combination, and the compound represented by the formula (4-1) and the compound represented by the formula (4-2) Is more preferably 75:25 to 25:75. Among them, the ratio of the compound represented by the formula (4-1) to the compound represented by the formula (4-2) is preferably from 40:60 to 60:40. Within this range, a polymerizable liquid crystal composition which exhibits a nematic phase at 25 ° C. and does not undergo phase separation for a long time can be obtained.
[0088]
Embedded image
Figure 2004323729
Figure 2004323729
[0089]
Embedded image
Figure 2004323729
Figure 2004323729
[0090]
Embedded image
Figure 2004323729
Figure 2004323729
[0091]
Embedded image
Figure 2004323729
Figure 2004323729
[0092]
Other known and commonly used polymerizable compounds that can be compounded in the polymerizable liquid crystal composition of the present invention include compounds having the following structures.
[0093]
Embedded image
Figure 2004323729
[0094]
Embedded image
Figure 2004323729
[0095]
Embedded image
Figure 2004323729
[0096]
(In the formula, L represents a hydrogen atom or a methyl group, and n and m each independently represent an integer of 1 to 20.)
[0097]
A low molecular weight liquid crystal compound having no polymerizable functional group may be added to the polymerizable liquid crystal composition of the present invention as needed. At this time, if the amount added is too large, the heat resistance of the obtained polymer tends to be inferior. Therefore, when added, the amount is preferably 30% by mass or less based on the polymerizable liquid crystal composition of the present invention, It is more preferably at most 20 mass%, particularly preferably at most 10 mass%.
[0098]
On the other hand, the amount of the polymer liquid crystal compound having no polymerizable functional group may be changed according to the purpose. For example, when it is desired to impart flexibility to the obtained optically anisotropic body, a polymer liquid crystal compound having no polymerizable functional group is used in an amount of 30% by mass or less based on the polymerizable liquid crystal composition of the present invention. Preferably, it may be added in an amount of 20% by mass or less. When the main component of the composition is a polymer liquid crystal composition having no polymerizable functional group, and it is desired to improve the heat resistance of the optically anisotropic body, a small amount of the polymerizable liquid crystal composition of the present invention is used. It is effective to add and polymerize. In this case, the polymerizable liquid crystal composition of the present invention is preferably blended so as to be 5% by mass or more based on the total amount of the composition.
[0099]
A compound having a polymerizable functional group and having no liquid crystalline skeleton can be added to the polymerizable liquid crystal composition of the present invention. As such a compound, any compound which is generally recognized as a polymerizable monomer or a polymerizable oligomer in this technical field can be used without particular limitation. When added, the content is preferably 5% by mass or less, more preferably 3% by mass or less, based on the polymerizable liquid crystal composition of the present invention.
[0100]
A compound having optical activity, that is, a chiral compound may be added to the polymerizable liquid crystal composition of the present invention. The chiral compound does not need to exhibit a liquid crystal phase itself, and may or may not have a polymerizable functional group. The direction of the helix of the chiral compound can be appropriately selected depending on the intended use of the polymer.
Specifically, for example, cholesteryl pelargonic acid having a cholesteryl group as a chiral group, cholesterol stearate, CB-15 having a 2-methylbutyl group as a chiral group, "CB-15", "C-15", "S-1082" manufactured by Chisso, "CM-19", "CM-20", "CM" manufactured by Chisso, "S-811" manufactured by Merck having a 1-methylheptyl group as a chiral group, Chisso "CM-21" and "CM-22" manufactured by the company.
When a chiral compound is added, the value (d / P) obtained by dividing the thickness (d) of the obtained polymer by the helical pitch (P) in the polymer is 0, depending on the use of the polymerizable liquid crystal composition. It is preferable to add an amount in the range of 0.1 to 100, more preferably 0.1 to 20.
[0101]
A polymerization initiator such as a thermal polymerization initiator and a photopolymerization initiator can be added to the polymerizable liquid crystal composition of the present invention. Examples of the thermal polymerization initiator include benzoyl peroxide, 2,2'-azobisisobutyronitrile, and the like. Examples of the photopolymerization initiator include benzoin ethers, benzophenones, acetophenones, and benzyl ketals. When added, the amount is preferably 10% by mass or less, particularly preferably 5% by mass or less, more preferably 0.5 to 1.5% by mass, based on the polymerizable liquid crystal composition.
[0102]
A stabilizer may be added to the polymerizable liquid crystal composition of the present invention in order to improve the storage stability. Examples of the stabilizer include hydroquinone, hydroquinone monoalkyl ethers, tertiary butyl catechols, pyrogallols, thiophenols, nitro compounds, β-naphthylamines, β-naphthols and the like. When added, it is preferably at most 1% by mass, more preferably at most 0.5% by mass, based on the polymerizable liquid crystal composition.
[0103]
When the polymerizable liquid crystal composition of the present invention is used as a raw material for a polarizing film or an alignment film, or used for printing inks and paints, protective films, etc., depending on the purpose, a metal, a metal complex, a dye, a pigment, Add fluorescent materials, phosphorescent materials, surfactants, leveling agents, thixotropic agents, gelling agents, polysaccharides, ultraviolet absorbers, infrared absorbers, antioxidants, ion exchange resins, metal oxides such as titanium oxide, etc. You may.
[0104]
When the polymerizable liquid crystal composition of the present invention is polymerized within a temperature range in which the polymerizable liquid crystal composition exhibits a liquid crystal phase, the optically anisotropic body of the present invention is obtained. Specifically, the polymerizable liquid crystal composition of the present invention is applied on a substrate having an alignment function, or after being sandwiched between two substrates, the liquid crystal molecules in the polymerizable liquid crystal composition are removed. The optically anisotropic body of the present invention can be obtained by uniformly aligning and polymerizing while maintaining the nematic phase.
[0105]
As the substrate, a substrate of a known and commonly used material can be used regardless of whether it is organic or inorganic. For example, polyethylene terephthalate plate, polycarbonate plate, polyimide plate, polyamide plate, polymethyl methacrylate plate, polystyrene plate, polyvinyl chloride plate, polytetrafluoroethylene plate, cellulose plate, silicon plate, glass plate, calcite plate, etc. . The substrate may have a curved surface in addition to a flat plate. These substrates may have an electrode layer as needed.
[0106]
The method for imparting an alignment function to the substrate is not particularly limited, and includes a known and commonly used method. Specifically, a method of rubbing the substrate surface with a cloth or the like, a method of forming an organic thin film such as a polyimide thin film or a polyvinyl alcohol thin film on the substrate surface and rubbing the same with a cloth or the like,2To form an alignment film by oblique deposition, a method of irradiating polarized light to an organic thin film having a functional group that undergoes a photodimerization reaction in a molecule or an organic thin film having a functional group that isomerizes by light. In particular, it is particularly preferable to use a polyimide thin film that gives a pretilt angle used in a normal twisted nematic device or a super twisted nematic device, because the alignment state of liquid crystal molecules can be easily controlled.
[0107]
When the polymerizable liquid crystal composition of the present invention is applied on a substrate, a known and commonly used coating method such as spin coating, roll coating, gravure coating, spray coating, and dipping may be used. At this time, in order to enhance coatability, a known and commonly used organic solvent may be added to the polymerizable liquid crystal composition. In this case, after applying the polymerizable liquid crystal composition on a substrate, the organic solvent is removed by natural drying, heat drying, reduced pressure drying, reduced pressure heating drying, or the like. When the polymerizable liquid crystal composition of the present invention is sandwiched between substrates, a capillary phenomenon or an injection method utilizing a vacuum injection method may be used.
[0108]
Examples of the method of polymerizing the polymerizable liquid crystal composition of the present invention include a method of irradiating an active energy ray and a thermal polymerization method, but the method does not require heating and the reaction proceeds at room temperature. Irradiation is preferable, and among them, a method of irradiating light such as ultraviolet light is preferable because the operation is simple. UV intensity is 0.1mW / cm2~ 2W / cm2Is preferable. UV intensity 0.1mW / cm2If less than 2W / cm, it takes a long time to complete the polymerization.2When the strength exceeds, the liquid crystal molecules in the polymerizable liquid crystal composition tend to undergo photolysis. The temperature at the time of irradiation is preferably a temperature at which the polymerizable liquid crystal composition of the present invention can maintain a liquid crystal phase, and is preferably 25 ° C. or lower as much as possible to avoid induction of thermal polymerization of the polymerizable liquid crystal composition. The liquid crystal composition usually ranges from a CN transition temperature to an N (nematic phase) -I (isotropic liquid phase) transition temperature (hereinafter abbreviated as an NI transition temperature) in a temperature rising process. Shows a liquid crystal phase within. On the other hand, in the temperature decreasing process, a non-equilibrium state is obtained thermodynamically, so that the liquid crystal state may be maintained without solidification even at a temperature lower than the CN transition temperature. This state is called a supercooled state. In the present invention, a liquid crystal composition in a supercooled state is also included in a state in which a liquid crystal phase is maintained.
When the polymerizable liquid crystal composition of the present invention is polymerized while being sandwiched between two substrates, a transparent substrate is used as the substrate on the light irradiation surface side.
[0109]
After polymerizing only a specific portion by ultraviolet irradiation using a mask, the orientation state of the unpolymerized portion is changed by applying an electric field, a magnetic field or a temperature, and then the unpolymerized portion is polymerized. An optically anisotropic body having a plurality of regions having an orientation direction can be obtained.
[0110]
The polymer obtained by polymerizing the polymerizable liquid crystal composition of the present invention may be peeled off from the substrate and used alone as an optical anisotropic body, or used as it is without peeling off from the substrate. You can also. When peeled off, they can be laminated or bonded to another substrate for use.
[0111]
The polymerizable liquid crystal composition of the present invention is prepared so as to exhibit a nematic phase at 25 ° C. by adding a liquid crystal compound having a small dipole moment, and thus can be polymerized without heating. Even if the amount of the liquid crystal compound having a small dipole moment is not increased, a nematic phase is stably displayed at 25 ° C. for a long time, so that the concentration of the swallow tail skeleton in the polymerizable liquid crystal composition does not decrease. Therefore, the obtained optically anisotropic body is excellent in transparency.
The optical anisotropic body of the present invention is not only an optical compensator, an optical low-pass filter, or a polarizing prism material, but also a retardation plate, a polarizing plate, an optical waveguide, a piezoelectric element, a nonlinear optical element, various optical filters, a cholesteric It can be applied to pigments utilizing selective reflection of a liquid crystal phase or the like, coating materials for optical fibers and the like.
[0112]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
[0113]
[Evaluation item]
The CN transition temperature, the NI transition temperature, the crystal phase-smectic C phase transition temperature, and the smectic C phase-isotropic phase transition temperature of the polymerizable liquid crystal composition were determined by observation with a polarizing microscope and differential scanning calorimetry. .
Compatibility was evaluated by stability after compatibility, the sample bottle in which the polymerizable liquid crystal composition was sealed was left at 25 ° C., and whether or not phase separation or precipitation of crystals was observed was visually observed. The time was measured.
The transparency was represented by a haze value according to JIS K-7136. The smaller the haze value, the better the transparency.
The retardation value was measured by an ellipsometer using a helium-neon laser (He-Ne LASER) and a photo elastic modulator (Photo Elastic Modulator). The higher the value, the better the retardation.
[0114]
(Synthesis example 1)
While stirring a mixture consisting of 1200 g of 4,4′-biphenol, 880 g of 6-chloro-1-hexanol, 800 g of potassium carbonate, 80 g of potassium iodide and 4800 ml of dimethylformamide (hereinafter abbreviated as DMF), the mixture was stirred at 90 ° C. for 8 hours. Heated. After cooling the obtained reaction solution to room temperature, dilute hydrochloric acid was added until the aqueous layer of the reaction solution became weakly acidic. After the precipitated crystals were collected by filtration using a glass filter, the crystals were washed with 20,000 ml of water to obtain 900 g of a crude product. This crude product was purified with 9000 ml of methanol to obtain 500 g of product A. As a result of analysis by high performance liquid chromatography (hereinafter abbreviated as HPLC), as for the product A, 92% of the compound represented by the formula (m1), 5% of the compound represented by the formula (m2), The compound contained 3%.
[0115]
Embedded image
Figure 2004323729
Figure 2004323729
[0116]
Embedded image
Figure 2004323729
Figure 2004323729
[0117]
A mixture of 480 g of the product A, 480 g of acrylic acid, 150 g of p-toluenesulfonic acid, 25 g of hydroquinone, 2,000 ml of toluene, and 2,000 ml of cyclohexane was heated and stirred, and refluxed for 4 hours while distilling off generated water. After the reaction solution was cooled to room temperature, 10000 ml of saturated saline and 7000 ml of ethyl acetate were added to the reaction solution for extraction. After washing the organic layer with water, ethyl acetate was distilled off under reduced pressure to obtain 609 g of a crude product. The obtained crude product was washed with a mixed solvent of 600 ml of toluene and 1200 ml of hexane, and purified by silica gel column chromatography using a mixed solvent of ethyl acetate and toluene (volume ratio: ethyl acetate: toluene = 1: 4) as a developing solvent. Thus, 190 g of a product B was obtained. As a result of analysis by HPLC, the product B was found to contain 5% of the compound represented by the formula (m3), 91% of the compound represented by the formula (m4), 2% of the compound represented by the formula (m5), Unassignable compounds were contained at 2%.
[0118]
Embedded image
Figure 2004323729
Figure 2004323729
[0119]
Embedded image
Figure 2004323729
Figure 2004323729
[0120]
Embedded image
Figure 2004323729
Figure 2004323729
[0121]
A mixture consisting of 100 g of 3,4-dihydroxybenzoic acid, 194 g of 6-chloro-1-hexanol, 82 g of sodium hydroxide, 10 g of potassium iodide, 450 ml of ethanol and 450 ml of water was heated at 80 ° C. for 32 hours with stirring. After the obtained reaction solution was cooled to room temperature, 5000 ml of saturated saline was added to the reaction solution, and dilute hydrochloric acid was added until the aqueous layer of the reaction solution became weakly acidic. The reaction solution was extracted by adding 3000 ml of ethyl acetate. After washing the organic layer with water, ethyl acetate was distilled off under reduced pressure to obtain 232 g of a product C. The product C was analyzed by HPLC, and as a result, it was found that the compound represented by the formula (m6) was contained 48% and the compound of unknown assignment was contained 52%.
[0122]
Embedded image
Figure 2004323729
Figure 2004323729
[0123]
A mixture of 232 g of the product C, 300 g of acrylic acid, 50 g of p-toluenesulfonic acid, 10 g of hydroquinone, 1000 ml of toluene, 800 ml of cyclohexane and 200 ml of tetrahydrofuran was heated and stirred, and refluxed for 4 hours while distilling off the generated water. Was. After the reaction solution was cooled to room temperature, 5000 ml of a saturated saline solution and 3000 ml of ethyl acetate were added to the reaction solution for extraction. After washing the organic layer with water, the organic solvent was distilled off under reduced pressure, washed with a mixture of 1000 ml of hexane and 200 ml of toluene, and then developed with a mixed solvent of ethyl acetate and toluene (ethyl acetate: toluene = 1: 3 by volume ratio). Purification by silica gel column chromatography using a solvent gave 165 g of product D. As a result of analyzing the product D by HPLC, 55% of the compound represented by the formula (m7), 7% of the compound represented by the formula (m8), 7% of the compound represented by the formula (m9), 5% of the compound represented by (m10), 5% of the compound represented by the formula (m11), 4% of the compound represented by the formula (m12), and 17% of the compound with unknown assignment were contained.
[0124]
Embedded image
Figure 2004323729
[0125]
Embedded image
Figure 2004323729
Figure 2004323729
[0126]
Embedded image
Figure 2004323729
Figure 2004323729
[0127]
Embedded image
Figure 2004323729
Figure 2004323729
[0128]
Embedded image
Figure 2004323729
Figure 2004323729
[0129]
Embedded image
Figure 2004323729
Figure 2004323729
[0130]
55 g of product B and 65 g of product D were dissolved in 1000 ml of methylene chloride. This was cooled to 5 ° C., and 6 g of dimethylaminopyridine and 50 g of 1-ethyl-3- (3′-dimethylaminopropyl) carbodiimide (hereinafter abbreviated as WSC) were added and stirred. Two hours later, the temperature was returned to room temperature, and stirring was continued for another 36 hours. After completion of the reaction, the reaction solution was washed with 1N hydrochloric acid and then with water until neutral, and anhydrous sodium sulfate was added to the organic phase and dried. After drying, the solvent was removed under reduced pressure to obtain a crude product. This crude product was purified by silica gel column chromatography using a mixed solvent of hexane: ethyl acetate = 10: 1 as a mobile phase to obtain a composition (I). As a result of analysis by HPLC and GC / MS (MS represents mass spectrometry), 69% of the compound represented by the formula (m13), 9% of the compound represented by the formula (m14), and 9% of the compound represented by the formula (m15) 4% of the compound represented by the formula (m16), 2% of the compound represented by the formula (m16), the compound represented by the formula (m17), the compound represented by the formula (m18), and the compound represented by the formula (m19) , The compound represented by the formula (m20), the compound represented by the formula (m21) is 1%, the compound represented by the formula (m22) is 2%, and the compound represented by the formula (m23) is 1%. , And 8% of the compound of unknown assignment.
[0131]
Embedded image
Figure 2004323729
Figure 2004323729
[0132]
Embedded image
Figure 2004323729
Figure 2004323729
[0133]
Embedded image
Figure 2004323729
Figure 2004323729
[0134]
Embedded image
Figure 2004323729
Figure 2004323729
[0135]
Embedded image
Figure 2004323729
Figure 2004323729
[0136]
Embedded image
Figure 2004323729
Figure 2004323729
[0137]
Embedded image
Figure 2004323729
Figure 2004323729
[0138]
Embedded image
Figure 2004323729
Figure 2004323729
Embedded image
Figure 2004323729
Figure 2004323729
[0139]
Embedded image
Figure 2004323729
Figure 2004323729
[0140]
Embedded image
Figure 2004323729
Figure 2004323729
[0141]
Embedded image
Figure 2004323729
Figure 2004323729
[0142]
(Example 1)
It is composed of 20 parts by mass of the composition (I), 10 parts by mass of the compound represented by the formula (D), 35 parts by mass of the compound represented by the formula (B), and 35 parts by mass of the compound represented by the formula (C). Composition (J) was prepared. Composition (J) exhibited a nematic liquid crystal phase at 25 ° C. The CN transition temperature was -30C and the NI transition temperature was 46C. It was found that the composition (J) stably exhibited a nematic phase even at 25 ° C. for one month or more.
[0143]
Embedded image
Figure 2004323729
Figure 2004323729
[0144]
Embedded image
Figure 2004323729
Figure 2004323729
[0145]
(Example 2)
A composition prepared by adding 1 part by mass of a photopolymerization initiator “Irgacure 651” manufactured by Ciba Geigy to 99 parts by mass of the composition (J) was mixed at room temperature with an antiparallel-aligned liquid crystal glass cell having a cell gap of 50 μm (liquid crystal is uniaxial). (A glass cell that has been subjected to an orientation treatment so as to be oriented). It was confirmed that the orientation was stabilized within 2 minutes after the injection and uniform uniaxial orientation was obtained. Next, using an ultra-high pressure mercury lamp of 750 W made by Mejiro Precision, 14 W / m2The glass cell was irradiated with the ultraviolet ray (wavelength 366 nm) for 200 seconds to obtain an optically anisotropic body. The obtained optically anisotropic material had a parallel light transmittance of 88.1% and a haze of 1.3%. The retardation value was 3.0 microns.
[0146]
Embedded image
Figure 2004323729
Figure 2004323729
[0147]
(Example 3)
20 parts by mass of the composition (I), 8 parts by mass of the formula (D), 2 parts by mass of the compound represented by the formula (E), 35 parts by mass of the compound represented by the formula (B), and the compound represented by the formula (C). A composition (K) consisting of 35 parts by mass of the compound to be prepared was prepared. The composition (K) exhibited a nematic liquid crystal phase at 25 ° C. The CN transition temperature was 10 ° C and the NI transition temperature was 46 ° C. It was found that the composition (K) stably exhibited a nematic phase even at 25 ° C. for one month or more.
[0148]
(Example 4)
A composition prepared by adding 1 part by mass of a photopolymerization initiator “Irgacure 651” manufactured by Ciba-Geigy to 99 parts by mass of the composition (K) was added at room temperature to an anti-parallel-aligned liquid crystal glass cell having a cell gap of 50 μm (liquid crystal is uniaxial). (A glass cell that has been subjected to an orientation treatment so as to be oriented). It was confirmed that the orientation was stabilized within 2 minutes after the injection and uniform uniaxial orientation was obtained. Next, using an ultra-high pressure mercury lamp of 750 W made by Mejiro Precision, 14 W / m2The glass cell was irradiated with the ultraviolet ray (wavelength 366 nm) for 200 seconds to obtain an optically anisotropic body. The obtained optically anisotropic body had a parallel light transmittance of 88.4% and a haze of 1.2%. The retardation value was 3.1 microns.
[0149]
(Comparative Example 1)
A composition (L) using 30 parts by mass of the compound represented by the formula (A), 35 parts by mass of the compound represented by the formula (B), and 35 parts by mass of the compound represented by the formula (C). Prepared. The CN transition temperature of the composition (L) was 41 ° C, and the NI transition temperature was 61 ° C. This composition showed a nematic phase due to supercooling at 25 ° C. during the cooling process, but phase separated in about 2 hours.
[0150]
(Comparative Example 2)
An optically anisotropic body was obtained in the same manner as in Example 4 by using 1 part by mass of “Irgacure 651” added to 99 parts by mass of the composition (L). The obtained optically anisotropic body had a parallel light transmittance of 82.9% and a haze of 5.0%. The retardation value was 2.7 microns.
[0151]
【The invention's effect】
A polymerizable liquid crystal composition containing a liquid crystal compound having a small dipole moment and a swallow-tail type polymerizable compound exhibits a long-term stable liquid crystal phase. Further, since it is prepared so as to show a nematic phase at 25 ° C., it can be polymerized without heating, and an optically anisotropic body having excellent transparency can be obtained.

Claims (4)

一般式(1)で表される重合性化合物、一般式(2)で表される重合性化合物、一般式(3)で表される重合性化合物、及び一般式(4)で表される重合性化合物を含有することを特徴とする重合性液晶組成物。
Figure 2004323729
Figure 2004323729
Figure 2004323729
Figure 2004323729
Figure 2004323729
Figure 2004323729
Figure 2004323729
Figure 2004323729
(式中、A〜A12は各々独立してベンゼン環、シクロヘキサン環又はシクロヘキセン環を表し、Y〜Yは、各々独立して、単結合、−CHCH−、−CHO−、−OCH−、−CO−O−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH−、−CHCHCHO−、−OCHCHCH−、−CH=CH−CHCH−、−CHCH−CH=CH−、−CH=CH−CO−O−及び−OCO−CH=CH−からなる群から選ばれる連結基を表わし、Yは、単結合、−O−、−CO−O−又は−OCO−を表す。X〜Xは、各々独立して単結合、−O−、−CO−O−、又は−OCO−を表し、S〜Sは、各々独立して−C2p−、又は−(C2p−O)−C 2p −を表わし、p及びp’は各々独立して1〜20の整数を表し、qは1〜10の整数を表す。L〜Lは、各々独立して水素原子又はメチル基を表す。Z及びZは、各々独立して、−OCO−CH−CH−Cl、−OCO−CH=CH、−OCO−C(CH)=CH、−OCO−CHCHOH、−OH、−OCO−CHCH−OCO−CH=CH、−OCO−CHCH−OCO−C(CH)=CH、−CH=CH、−OCO−CH=CH、−OCO−C(CH)=CH、−CO−CH、又は−CHCHClを表すが、Zが−OCO−CH−CH−Clの時、Zは−OCO−CH=CH又は−OCO−C(CH)=CHであり、Zが−OCO−CH=CH又は−OCO−C(CH)=CHの時、Zは−OCO−CH−CH−Cl、−OCO−CHCHOH、−OH、−OCO−CHCH−OCO−CH=CH、−OCO−CHCH−OCO−C(CH)=CH、−CH=CH、−OCO−CH=CH、−OCO−C(CH)=CH、−CO−CH、又は−CHCHClであり、Zが−OCO−CH=CH又は−OCO−C(CH)=CHの時、Zは−OCO−CH−CH−Cl、−OCO−CHCHOH、−OH、−OCO−CHCH−OCO−CH=CH、−OCO−CHCH−OCO−C(CH)=CH、−CH=CH、−OCO−CH=CH、−OCO−C(CH)=CH、−CO−CH、又は−CHCHClである。Zは、水素原子又はCH−CO−O−を表し、Zは、水素原子、シアノ基、又はCl−(CH−O−を表し、aは1〜20の整数を表し、Zは水素原子、ハロゲン原子、シアノ基、炭素数1〜20のアルキル基又は炭素数2〜20のアルケニル基を表し、bは0又は1の整数を表す。)
The polymerizable compound represented by the general formula (1), the polymerizable compound represented by the general formula (2), the polymerizable compound represented by the general formula (3), and the polymerization represented by the general formula (4) A polymerizable liquid crystal composition comprising a polymerizable compound.
Figure 2004323729
Figure 2004323729
Figure 2004323729
Figure 2004323729
Figure 2004323729
Figure 2004323729
Figure 2004323729
Figure 2004323729
(Wherein, A 1 to A 12 each independently represent a benzene ring, a cyclohexane ring, or a cyclohexene ring, and Y 1 to Y 8 each independently represent a single bond, —CH 2 CH 2 —, —CH 2 O—, —OCH 2 —, —CO—O—, —OCO—, —C≡C—, —CH = CH—, —CF = CF—, — (CH 2 ) 4 —, —CH 2 CH 2 CH 2 O -, - OCH 2 CH 2 CH 2 -, - CH = CH-CH 2 CH 2 -, - CH 2 CH 2 -CH = CH -, - CH = CH-CO-O- and --OCO-CH = A connecting group selected from the group consisting of CH-, Y 9 represents a single bond, —O—, —CO—O— or —OCO—, X 1 to X 8 each independently represent a single bond, Represents —O—, —CO—O—, or —OCO—, and S 1 to S 8 are each independently —C p H 2p -, or - (C p H 2p -O) q -C p 'H 2p' - represents a, p and p 'are each independently an integer of 1 to 20, q is an integer from 1 to 10 .L 1 ~L 6 is .Z 1 and Z 2 represents a hydrogen atom or a methyl group each independently are each independently, -OCO-CH 2 -CH 2 -Cl , -OCO-CH = CH 2 , -OCO-C (CH 3) = CH 2, -OCO-CH 2 CH 2 OH, -OH, -OCO-CH 2 CH 2 -OCO-CH = CH 2, -OCO-CH 2 CH 2 -OCO- C (CH 3) = CH 2 , -CH = CH 2, -OCO-CH = CH 2, -OCO-C (CH 3) = CH 2, -CO-CH 3, or an -CH 2 CH 2 Cl but when Z 1 is -OCO-CH 2 -CH 2 -Cl, Z 2 is -OCO-CH = CH Or -OCO-C (CH 3) = a CH 2, when Z 1 is -OCO-CH = CH 2 or -OCO-C (CH 3) = CH 2, Z 2 is -OCO-CH 2 -CH 2 -Cl, -OCO-CH 2 CH 2 OH, -OH, -OCO-CH 2 CH 2 -OCO-CH = CH 2, -OCO-CH 2 CH 2 -OCO-C (CH 3) = CH 2, -CH = CH 2, -OCO-CH = CH 2, -OCO-C (CH 3) = CH 2, -CO-CH 3, or a -CH 2 CH 2 Cl, Z 2 is --OCO-CH = When CH 2 or —OCO—C (CH 3 ) = CH 2 , Z 1 is —OCO—CH 2 —CH 2 —Cl, —OCO—CH 2 CH 2 OH, —OH, —OCO—CH 2 CH 2 -OCO-CH = CH 2, -OCO -CH 2 CH 2 -OC -C (CH 3) = CH 2 , -CH = CH 2, -OCO-CH = CH 2, -OCO-C (CH 3) = CH 2, -CO-CH 3, or -CH 2 CH 2 Cl is there. Z 3 represents a hydrogen atom or CH 3 —CO—O—, Z 4 represents a hydrogen atom, a cyano group, or Cl— (CH 2 ) a —O—, and a represents an integer of 1 to 20 , Z 5 represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms or an alkenyl group having 2 to 20 carbon atoms, and b represents an integer of 0 or 1. )
前記一般式(1)で表される化合物、一般式(2)で表される化合物、及び一般式(3)で表される化合物が、A〜Aが全てベンゼン環を表し、Y、Y及びYは単結合、−CO−O−、又は−OCO−で表される同一の連結鎖であり、Y、Y及びYが単結合、−CO−O−、又は−OCO−で表される同一の連結鎖を表す化合物である、請求項1に記載の重合性液晶組成物。Compound represented by the general formula (1), compounds represented by the general formula (2), and the compound represented by the general formula (3) is, A 1 to A 9 represents all benzene ring, Y 1 , Y 3 and Y 5 are a single bond, -CO-O- or the same connecting chain represented by -OCO-, and Y 2 , Y 4 and Y 6 are a single bond, -CO-O-, or The polymerizable liquid crystal composition according to claim 1, which is a compound represented by the same connecting chain represented by -OCO-. 前記一般式(1)で表される化合物が、A〜Aが全てベンゼン環であり、Yが単結合であり、Yが−OCO−であり、Zが−OCO−CH−Clであり、Zが−OCO−CH=CH又は−OCO−C(CH)=CHである化合物と、A〜Aが全てベンゼン環であり、Yが単結合であり、Yが−OCO−であり、Zが−OCO−CH=CH又は−OCO−C(CH)=CHであり、Zが−OHである化合物と、A〜Aが全てベンゼン環であり、Yが単結合であり、Yが−OCO−であり、Zが−OCO−CH=CH又は−OCO−C(CH)=CHであり、Zが−OCO−CHCHOHである化合物と、A〜Aが全てベンゼン環であり、Yが単結合であり、Yが−OCO−であり、Zが−OCO−CH=CH又は−OCO−C(CH)=CHであり、Zが−OCO−CHCH−OCO−CH=CHである化合物と、A〜Aが全てベンゼン環であり、Yが単結合であり、Yが−OCO−であり、Zが−OCO−CH=CH又は−OCO−C(CH)=CHであり、Zが−OCO−CH=CHである化合物であり、前記一般式(2)で表される化合物が、A〜Aが全てベンゼン環であり、Yが単結合であり、Yが−OCO−であり、ZがCH−CO−O−である化合物であり、前記一般式(3)で表される化合物が、A〜Aが全てベンゼン環であり、Yが単結合であり、Yが−OCO−であり、ZがCl−(CH−O−である化合物であり、前記に示す化合物七つを全て含み、且つ、A〜Aがベンゼン環又はシクロヘキサン環であり、Yが単結合であり、Yが−OCO−であり、Xが単結合であり、Sが−CH−であり、Zが水素原子である前記一般式(2)で表される化合物と、
〜Aがベンゼン環又はシクロヘキサン環であり、Yが単結合であり、Yが−OCO−であり、Zがシアノ基である前記一般式(3)で表される化合物のいずれかを含む、請求項1に記載の重合性液晶組成物。
In the compound represented by the general formula (1), A 1 to A 3 are all benzene rings, Y 1 is a single bond, Y 2 is —OCO—, and Z 1 is —OCO—CH 2 —Cl, Z 2 is —OCO—CH = CH 2 or —OCO—C (CH 3 ) = CH 2 , a compound in which A 1 to A 3 are all benzene rings, and Y 1 is a single bond. There, Y 2 is -OCO-, Z 1 is -OCO-CH = CH 2 or -OCO-C (CH 3) = a CH 2, the compound Z 2 is -OH, a 1 to a 3 are all benzene rings, Y 1 is a single bond, Y 2 is —OCO—, Z 1 is —OCO—CH = CH 2 or —OCO—C (CH 3 ) = CH 2 , A compound in which Z 2 is —OCO—CH 2 CH 2 OH, and a compound in which A 1 to A 3 are all benzene rings and Y 1 Is a single bond, Y 2 is —OCO—, Z 1 is —OCO—CH = CH 2 or —OCO—C (CH 3 ) = CH 2 , and Z 2 is —OCO—CH 2 CH 2 a compound which is -OCO-CH = CH 2, all a 1 to a 3 is a benzene ring, Y 1 is a single bond, Y 2 is -OCO-, Z 1 is -OCO-CH = CH 2 or —OCO—C (CH 3 ) = CH 2 , wherein Z 2 is —OCO—CH = CH 2 , and the compound represented by the general formula (2) is A 4 to A 6 Are all benzene rings, Y 3 is a single bond, Y 4 is —OCO—, and Z 3 is CH 3 —CO—O—, which is represented by the general formula (3). In the compound, all of A 7 to A 9 are benzene rings, Y 5 is a single bond, and Y 6 is —OCO—. , Z 4 is Cl- (CH 2 ) a —O—, includes all seven of the compounds described above, A 4 to A 6 are benzene rings or cyclohexane rings, and Y 3 is A compound represented by the general formula (2), wherein Y 4 is —OCO—, X 4 is a single bond, S 4 is —CH 2 —, and Z 3 is a hydrogen atom. ,
Wherein A 7 to A 9 are a benzene ring or a cyclohexane ring, Y 5 is a single bond, Y 6 is —OCO—, and Z 4 is a cyano group. The polymerizable liquid crystal composition according to claim 1, which comprises any one of the above.
請求項1に記載の重合性液晶組成物を配向させた状態で重合させて得られることを特徴とする光学異方体。An optically anisotropic body obtained by polymerizing the polymerizable liquid crystal composition according to claim 1 in an oriented state.
JP2003121765A 2003-04-25 2003-04-25 Polymerizable liquid crystal composition and optical anisotropic body Expired - Fee Related JP4505709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003121765A JP4505709B2 (en) 2003-04-25 2003-04-25 Polymerizable liquid crystal composition and optical anisotropic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003121765A JP4505709B2 (en) 2003-04-25 2003-04-25 Polymerizable liquid crystal composition and optical anisotropic body

Publications (2)

Publication Number Publication Date
JP2004323729A true JP2004323729A (en) 2004-11-18
JP4505709B2 JP4505709B2 (en) 2010-07-21

Family

ID=33500217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003121765A Expired - Fee Related JP4505709B2 (en) 2003-04-25 2003-04-25 Polymerizable liquid crystal composition and optical anisotropic body

Country Status (1)

Country Link
JP (1) JP4505709B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182423A (en) * 2005-12-08 2007-07-19 Chisso Corp LATERAL alpha-SUBSTITUTED ACRYLATE COMPOUND AND POLYMER THEREOF
US8168734B2 (en) 2005-12-08 2012-05-01 Jnc Corporation Lateral alpha-substituted acrylate compound and polymer thereof
TWI663249B (en) * 2014-03-10 2019-06-21 德商馬克專利公司 Liquid-crystalline media having homeotropic alignment
JP2020532128A (en) * 2017-08-25 2020-11-05 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. Dielectric layer containing copolymers with mesogen units

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178233A (en) * 1998-10-09 2000-06-27 Japan Chemical Innovation Institute Liquid crystalline (meth)acrylate compound, liquid crystal composition containing the compound and optically anisotropic material produced by using the composition
JP2000327632A (en) * 1999-05-14 2000-11-28 Japan Chemical Innovation Institute Liquid crystal (meth)acrylate compound, liquid crystal composition containing the same and optically anisotropic body using the same
JP2003313250A (en) * 2002-04-19 2003-11-06 Dainippon Ink & Chem Inc Polymerizable liquid crystal composition and optical anisotropic body
JP2003342238A (en) * 2002-05-29 2003-12-03 Dainippon Ink & Chem Inc Polymerizable liquid crystal compound
JP2004043710A (en) * 2002-07-15 2004-02-12 Dainippon Ink & Chem Inc Polymerizable liquid crystal composition and optically anisotropic material
JP2004059772A (en) * 2002-07-30 2004-02-26 Dainippon Ink & Chem Inc Polymerizable liquid-crystal composition and optically anisotropic body
JP2004277488A (en) * 2003-03-13 2004-10-07 Dainippon Ink & Chem Inc Polymerizable liquid crystal composition and optical anisotropic material
JP4292459B2 (en) * 2002-12-06 2009-07-08 Dic株式会社 Polymerizable liquid crystal composition and optical anisotropic body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178233A (en) * 1998-10-09 2000-06-27 Japan Chemical Innovation Institute Liquid crystalline (meth)acrylate compound, liquid crystal composition containing the compound and optically anisotropic material produced by using the composition
JP2000327632A (en) * 1999-05-14 2000-11-28 Japan Chemical Innovation Institute Liquid crystal (meth)acrylate compound, liquid crystal composition containing the same and optically anisotropic body using the same
JP2003313250A (en) * 2002-04-19 2003-11-06 Dainippon Ink & Chem Inc Polymerizable liquid crystal composition and optical anisotropic body
JP2003342238A (en) * 2002-05-29 2003-12-03 Dainippon Ink & Chem Inc Polymerizable liquid crystal compound
JP2004043710A (en) * 2002-07-15 2004-02-12 Dainippon Ink & Chem Inc Polymerizable liquid crystal composition and optically anisotropic material
JP2004059772A (en) * 2002-07-30 2004-02-26 Dainippon Ink & Chem Inc Polymerizable liquid-crystal composition and optically anisotropic body
JP4292459B2 (en) * 2002-12-06 2009-07-08 Dic株式会社 Polymerizable liquid crystal composition and optical anisotropic body
JP2004277488A (en) * 2003-03-13 2004-10-07 Dainippon Ink & Chem Inc Polymerizable liquid crystal composition and optical anisotropic material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182423A (en) * 2005-12-08 2007-07-19 Chisso Corp LATERAL alpha-SUBSTITUTED ACRYLATE COMPOUND AND POLYMER THEREOF
US8168734B2 (en) 2005-12-08 2012-05-01 Jnc Corporation Lateral alpha-substituted acrylate compound and polymer thereof
TWI663249B (en) * 2014-03-10 2019-06-21 德商馬克專利公司 Liquid-crystalline media having homeotropic alignment
US10513657B2 (en) 2014-03-10 2019-12-24 Merck Patent Gmbh Liquid-crystalline media having homeotropic alignment
TWI695880B (en) * 2014-03-10 2020-06-11 德商馬克專利公司 Liquid-crystalline media having homeotropic alignment
JP2020532128A (en) * 2017-08-25 2020-11-05 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. Dielectric layer containing copolymers with mesogen units
JP7021341B2 (en) 2017-08-25 2022-02-16 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Dielectric layer containing copolymers with mesogen units
US11525087B2 (en) 2017-08-25 2022-12-13 Ppg Industries Ohio, Inc. Dielectric devices and methods of fabrication

Also Published As

Publication number Publication date
JP4505709B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP4292459B2 (en) Polymerizable liquid crystal composition and optical anisotropic body
JP3963035B2 (en) Liquid crystalline (meth) acrylate compound and composition, and optical anisotropic body using the same
JP4200195B2 (en) Liquid crystalline (meth) acrylate compound, liquid crystal composition containing the compound, and optical anisotropic body using the same
JP4175049B2 (en) Polymerizable liquid crystal composition and optical anisotropic body
JP4006608B2 (en) Liquid crystalline (meth) acrylate compound, composition containing the compound, and optical anisotropic body using the same
JP2002145830A (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition containing the same and polymer of the composition
JP2008100982A (en) Trifunctional compound, composition and polymer thereof
JP2005320317A (en) Photopolymerizable oxetane derivative and liquid crystal composition containing the same
JP6308415B2 (en) Polymerizable compound and liquid crystal composition using the same
JP2011093812A (en) Polymerizable compound
JP2011184417A (en) Polymerizable acetylene compound
JP4929546B2 (en) Polymerizable liquid crystal composition and optical anisotropic body using the same
JP2002308831A (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition containing the compound and its polymer
JP2009084178A (en) Polymerizable chiral compound
JP5545516B2 (en) Polymerizable compound
JP4461692B2 (en) Polymerizable liquid crystal composition and optical anisotropic body
JP4208058B2 (en) Liquid crystalline (meth) acrylate compound and liquid crystal composition containing the compound
JP2002265475A (en) Polymerizable liquid crystal compound, and optical isomer
JP4505709B2 (en) Polymerizable liquid crystal composition and optical anisotropic body
JP4474826B2 (en) Polymerizable liquid crystal composition and optical anisotropic body
JP4766291B2 (en) Polymerizable liquid crystal compound, composition, and optical anisotropic body
JP2003313250A (en) Polymerizable liquid crystal composition and optical anisotropic body
JP4182452B2 (en) Liquid crystal composition and optical anisotropic body using the same
JP5747942B2 (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition containing the compound, and polymer thereof
JP3972430B2 (en) Liquid crystalline (meth) acrylate compound, composition containing the compound, and optical anisotropic body using the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees