JP2004320989A - Permanent magnet embedding motor - Google Patents

Permanent magnet embedding motor Download PDF

Info

Publication number
JP2004320989A
JP2004320989A JP2004092834A JP2004092834A JP2004320989A JP 2004320989 A JP2004320989 A JP 2004320989A JP 2004092834 A JP2004092834 A JP 2004092834A JP 2004092834 A JP2004092834 A JP 2004092834A JP 2004320989 A JP2004320989 A JP 2004320989A
Authority
JP
Japan
Prior art keywords
rotor
permanent magnet
embedded
motor
magnet embedded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004092834A
Other languages
Japanese (ja)
Other versions
JP4709495B2 (en
Inventor
Toshifumi Tsuruta
稔史 鶴田
Hideki Kanebako
秀樹 金箱
Noboru Otsuki
登 大槻
Tonei Cho
東寧 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Instruments Corp
Original Assignee
Sankyo Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Seiki Manufacturing Co Ltd filed Critical Sankyo Seiki Manufacturing Co Ltd
Priority to JP2004092834A priority Critical patent/JP4709495B2/en
Publication of JP2004320989A publication Critical patent/JP2004320989A/en
Application granted granted Critical
Publication of JP4709495B2 publication Critical patent/JP4709495B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a permanent magnet-embedding motor, wherein the amount of materials disposed in the manufacturing process and which can be reduced in torque ripple, vibration, noise, and the like, by determining the shape of the ends of slits in rotor provided for embedding permanent magnets based on the relation between outside diameter, angle equivalent to one pole of the permanent magnets 1, and the like, and making a part of the outside diameter in a straight line shape. <P>SOLUTION: In the permanent magnet-embedded motor having a rotor 11 having a plurality of the slits 20, in which the permanent magnets 12 are embedded, the slit 20 has a portion where a permanent magnet 12 is embedded in a direction orthogonal to the direction of the radius of the rotor 11, and L-shaped gap portions 22 positioned at both its ends; and the slits are constituted with 0.1≤θ2/θ1≤0.3, where θ1 is the angle corresponding to one pole of the rotor 11, and θ2 is the angle of the L-shaped gap portions. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、複数のスリットを有する回転子の上記スリット内に永久磁石を埋め込んだ回転子と、複数のスロットを有する鉄心に巻き線を巻いた固定子とを空隙を介して配置した永久磁石埋込型モータに関する。   The present invention provides a permanent magnet embedded rotor in which a permanent magnet is embedded in the slit of a rotor having a plurality of slits and a stator in which a winding is wound around an iron core having a plurality of slots via a gap. It relates to a plug-in type motor.

永久磁石埋込型モータは、回転子を高速回転させる用途において多用されるモータである。このように永久磁石を回転子に埋め込む構造を有するモータにおいては、最低1対の永久磁石を対称に配置する。一般に多く用いられる構造としては、2対の永久磁石を、磁極が交互に反転する位置関係において、埋め込むものである。   The permanent magnet embedded motor is a motor that is frequently used in applications in which a rotor rotates at high speed. In a motor having a structure in which permanent magnets are embedded in a rotor as described above, at least one pair of permanent magnets is arranged symmetrically. As a generally used structure, two pairs of permanent magnets are embedded in a positional relationship in which magnetic poles are alternately reversed.

このように、永久磁石を2対埋め込む構造のものにおいては、埋め込んだ後の隣接する永久磁石の間隔が少ないと、隣接する磁極同士による磁束の短絡等により、回転子内部の磁束の流れに乱れが生じてしまい、固定子との相互作用において発生する磁力が減衰し、モータの回転に必要なトルクが得られなくなる。これによってコギングトルクが発生し、ひいてはモータの回転効率低下に結びつくことが課題となっている。   As described above, in the structure in which two pairs of permanent magnets are embedded, if the space between the adjacent permanent magnets after the embedded is small, the flow of the magnetic flux inside the rotor is disturbed due to short-circuiting of magnetic flux between adjacent magnetic poles. Occurs, the magnetic force generated in the interaction with the stator is attenuated, and the torque required for the rotation of the motor cannot be obtained. As a result, cogging torque is generated, and the problem is that the rotation efficiency of the motor is reduced.

上記の課題を解消するために、すでにいくつかの発明がなされている。例えば、回転子に埋め込まれた永久磁石の外側輪郭の外径が、隣接する永久磁石の頂点を通る外径より小さくなるように、それぞれの永久磁石の外径の中心を偏心させることで、永久磁石の隣接部分の厚みを薄くし、回転子の形状が花弁状になる構造を有し、これによって、磁束の短絡が軽減されトルクムラの無いスムーズな回転を可能とする技術が知られている(例えば特許文献1参照)。   Some inventions have already been made to solve the above problems. For example, by eccentricizing the center of the outer diameter of each permanent magnet so that the outer diameter of the outer contour of the permanent magnet embedded in the rotor is smaller than the outer diameter passing through the apex of the adjacent permanent magnet, There is known a technology in which the thickness of an adjacent portion of the magnet is reduced, and the rotor has a petal-like structure, thereby reducing short-circuit of magnetic flux and enabling smooth rotation without torque unevenness ( See, for example, Patent Document 1.

他の例として、永久磁石を埋め込む回転子のスリットの両側に空隙を設け、これによって隣接する磁極同士の磁気的絶縁を行い、磁束の短絡を防止することで、トルクの源となる磁力の減衰を防ぐ工夫が施されるものがある(例えば特許文献2、特許文献3参照)。   As another example, air gaps are provided on both sides of the rotor slits in which permanent magnets are embedded, thereby magnetically insulating adjacent magnetic poles from each other and preventing short-circuit of magnetic flux, thereby attenuating magnetic force that is a source of torque. Some devices are designed to prevent this (see, for example, Patent Documents 2 and 3).

特開2000−350393号公報JP 2000-350393 A 特開平05−236684号公報JP 05-236684 A 特開2000−069717号公報JP 2000-069717 A

しかしながら、従来の発明はいずれも永久磁石埋込型モータにおいて、コギングトルクの低減や、逆起電力歪率の低減効果があるが、回転子の磁束分布の極性が反転する近傍の形状においてさらなる改善をしなくては、トルクリップルを小さくし、騒音や振動を小さくするには不十分である。   However, all of the conventional inventions have the effect of reducing the cogging torque and reducing the back electromotive force distortion factor in the permanent magnet embedded motor, but further improve the shape in the vicinity where the polarity of the rotor magnetic flux distribution reverses. Otherwise, it is not enough to reduce torque ripple and noise and vibration.

特に、隣接する永久磁石同士の短絡を防止するために、回転子内の所定の場所に空隙を設けることは、回転に必要なトルクの減衰を防ぎ、トルクムラを低減することに有効である。しかし、回転子内に設ける空隙の形状と大きさは、モータ全体の大きさに影響を与える要素であり、最適な形状と大きさになるよう工夫を施すことが重要である。この工夫を怠り、空隙を大きくするとモータ内に無駄な部分を作り出す原因となる。また、空隙を単に小さくするだけでは、磁束の短絡を防ぎ、トルクムラを低減するという効果が期待できなくなる。従って、回転子の形状、回転子に設けられる所定の空隙の形状において、最適な構成となるよう工夫することが重要である。   In particular, providing an air gap at a predetermined location in the rotor to prevent a short circuit between adjacent permanent magnets is effective in preventing torque required for rotation from attenuating and reducing torque unevenness. However, the shape and size of the air gap provided in the rotor are factors that affect the size of the entire motor, and it is important to devise an optimal shape and size. Neglecting this contrivance and enlarging the air gap may cause useless portions in the motor. Further, simply reducing the gap cannot prevent the effect of preventing short-circuiting of magnetic flux and reducing torque unevenness. Therefore, it is important to devise an optimum configuration in the shape of the rotor and the shape of the predetermined gap provided in the rotor.

また、回転子はその製造工程において、複数の回転子片を積層して形成してなるものである。回転子片は例えばケイ素鋼板をプレス機などで打ち抜いたものであり、回転子の形状を花弁状にする為には、回転子片においても花弁状である必要がある。   The rotor is formed by laminating a plurality of rotor pieces in the manufacturing process. The rotor piece is formed, for example, by punching a silicon steel plate with a press or the like. In order to make the rotor have a petal shape, the rotor piece also needs to be petal-shaped.

しかしながら、回転子片は1枚のケイ素鋼板から、複数枚の回転子片を連続して打ち抜くため、回転子片の外形が花弁状であるが故に、隣接する回転子片同士に間隙を設けないことには、打ち抜きを行うことはできない。すなわち、隣接する回転子片同士をケイ素鋼板に隙間無く配置した形でこれを打ち抜くとしても、回転子片同士は1点で接触して他は間隙になっており、その間隙にあたる部分の鋼板材は回転子片として利用できず、材料の有効利用は望めない。 However, since a rotor piece continuously punches out a plurality of rotor pieces from one silicon steel plate, since the outer shape of the rotor piece is petal-shaped, no gap is provided between adjacent rotor pieces. In fact, punching cannot be done. That is, even if adjacent rotor pieces are punched out in a form in which they are arranged on a silicon steel plate without a gap, the rotor pieces are in contact at one point and the others are gaps. Cannot be used as a rotor piece, and the effective use of materials cannot be expected.

本発明は以上のような従来技術の問題点を解消するためになされたもので、トルクリップルを小さく、振動や騒音を小さくすることができる永久磁石埋込型モータを提供することを目的とする。   The present invention has been made in order to solve the above-described problems of the related art, and has an object to provide a permanent magnet embedded motor that can reduce torque ripple and reduce vibration and noise. .

本発明はまた、回転子の製造過程において材料の廃棄物量を削減することも可能な永久磁石埋込型モータを提供することを目的とする。 Another object of the present invention is to provide a permanent magnet embedded motor that can reduce the amount of material waste during the manufacturing process of the rotor.

請求項1または請求項5記載の発明は、複数のスリットに永久磁石を埋め込んだ回転子と、複数のスロットを有する鉄心に巻き線を巻いた固定子とを空隙を介して配置した永久磁石埋込型モータにおいて、上記スリットは、回転子の半径方向に直交する方向で永久磁石が埋め込まれる部分と、この永久磁石埋込部に続く両端部のL字状空隙部とを有し、回転子1極分の角度(θ1)とL字型空隙部の角度(θ2)との関係が0.1≦θ2/θ1≦0.3である構成を特徴とする。θ2/θ1は、0.15≦θ2/θ1≦0.25に設定することがより好ましく、また、θ2/θ1をほぼ0.2に設定しておくことが最も好ましい。   According to the first or fifth aspect of the present invention, there is provided a permanent magnet rotor in which a rotor having a plurality of slits embedded with a permanent magnet and a stator having a plurality of slots wound around an iron core are arranged through a gap. In the embedded motor, the slit has a portion in which a permanent magnet is embedded in a direction orthogonal to the radial direction of the rotor, and L-shaped gaps at both ends following the permanent magnet embedded portion. The relationship between the angle of one pole (θ1) and the angle of the L-shaped gap (θ2) is 0.1 ≦ θ2 / θ1 ≦ 0.3. θ2 / θ1 is more preferably set to 0.15 ≦ θ2 / θ1 ≦ 0.25, and most preferably, θ2 / θ1 is set to approximately 0.2.

これによって、L字状空隙部の回転子円周方向における長さが適切になるよう配置され、隣接する永久磁石同士の磁束短絡を防ぎ、磁極反転部における回転トルクの減衰を防ぐことができる。 Accordingly, the length of the L-shaped gap portion in the circumferential direction of the rotor is set to be appropriate, so that a magnetic flux short circuit between adjacent permanent magnets can be prevented, and a decrease in rotational torque in the magnetic pole reversing portion can be prevented.

請求項2記載の発明は、複数のスリットを有する回転子内部に永久磁石を埋め込んだ回転子と、上記スリットは、回転子の半径方向に直交する方向で永久磁石が埋め込まれる部分と、この永久磁石埋込部に続く両端部のL字状空隙部とを有し、回転子1極分の角度(θ1)とL字型空隙部の角度(θ2)との関係が0.1≦θ2/θ1≦0.3であり、かつ、回転子の外接円半径(R)とL字状空隙部近傍における回転子外径の曲率(R1)との関係が0.1≦(R−R1)/R≦0.3であることを特徴とする。具体的には、回転子1極分の角度(θ1)に対して、回転子外径の曲率をR1に設定するのが好ましい。この(R−R1)/Rは、0.15≦(R−R1)/R≦0.25に設定することがより好ましく、また、(R−R1)/Rは、ほぼ0.2に設定しておくことが最も好ましい。   According to a second aspect of the present invention, there is provided a rotor in which a permanent magnet is embedded in a rotor having a plurality of slits; It has an L-shaped gap at both ends following the magnet embedded portion, and the relationship between the angle of one pole of the rotor (θ1) and the angle (θ2) of the L-shaped gap is 0.1 ≦ θ2 / θ1 ≦ 0.3, and the relationship between the circumscribed circle radius (R) of the rotor and the curvature (R1) of the rotor outer diameter in the vicinity of the L-shaped gap is 0.1 ≦ (R−R1) / R ≦ 0.3. Specifically, it is preferable to set the curvature of the outer diameter of the rotor to R1 with respect to the angle (θ1) of one pole of the rotor. This (R-R1) / R is more preferably set to 0.15 ≦ (R-R1) /R≦0.25, and (R-R1) / R is set to approximately 0.2. It is most preferable to do so.

これによって、L字型空隙部の回転子円周方向における長さと、L字状空隙部外側の回転子半径方向における長さが適切になるよう配置され、隣接する永久磁石同士の磁束短絡を防ぎ、磁極反転部における回転トルクの減衰を防止することができる。 As a result, the length of the L-shaped gap in the rotor circumferential direction and the length of the L-shaped gap in the rotor radial direction outside the L-shaped gap are appropriately arranged, and magnetic flux short-circuiting between adjacent permanent magnets is prevented. In addition, it is possible to prevent the rotation torque from attenuating in the magnetic pole reversing section.

請求項3記載の発明は、複数のスリットを有する回転子内部に永久磁石を埋め込んだ回転子と、複数のスロットを有する鉄心に巻き線を巻いた固定子とを空隙を介して配置した永久磁石埋込型モータにおいて、回転子の外周の一部が直線状であることを特徴とする。   According to a third aspect of the present invention, there is provided a permanent magnet in which a rotor having a plurality of slits and a permanent magnet embedded inside the rotor and a stator having a plurality of slots wound around an iron core are arranged via a gap. An embedded motor is characterized in that a part of the outer periphery of the rotor is linear.

これによって、回転子の材料である鋼板に隙間なく回転子片を配置することができ、鋼板材の廃棄量削減が可能となる。   As a result, the rotor pieces can be arranged without gaps in the steel plate, which is the material of the rotor, and the amount of discarded steel plate material can be reduced.

請求項4記載の発明は、複数のスリットを有する回転子内部に永久磁石を埋め込んだ回転子と、複数のスロットを有する鉄心に巻き線を巻いた固定子とを空隙を介して配置した永久磁石埋込型モータにおいて、上記スリットは、回転子の半径方向に直交する方向に永久磁石が埋め込まれる中央の部分と、この永久磁石埋込部に続く両端部のL字状空隙部とを有しており、L字型空隙部近傍における回転子の外周が直線状であることを特徴とする。   According to a fourth aspect of the present invention, there is provided a permanent magnet in which a permanent magnet is embedded in a rotor having a plurality of slits and a stator in which a winding is wound around an iron core having a plurality of slots via a gap. In the embedded motor, the slit has a central portion in which a permanent magnet is embedded in a direction orthogonal to the radial direction of the rotor, and L-shaped gap portions at both ends following the permanent magnet embedded portion. And the outer periphery of the rotor near the L-shaped gap is linear.

これによって、回転子片を隙間なく配置した鋼板材から、プレス抜きすることにより回転子片を形成することができ、鋼板材の残留量を削減が可能となり、かつ、L字状空隙部の回転子円周方向における長さが適切になるよう配置されることにより、コギングトルクや逆起電力歪率を低減でき、モータの回転を滑らかにすることが可能となる。 This makes it possible to form the rotor pieces by pressing out a steel sheet material in which the rotor pieces are arranged without gaps, thereby making it possible to reduce the residual amount of the steel material and to rotate the L-shaped gap. By arranging the length in the child circumferential direction to be appropriate, the cogging torque and the back electromotive force distortion factor can be reduced, and the rotation of the motor can be made smooth.

以上のように本発明によれば、複数のスリットを有する回転子内部に永久磁石を埋め込んだ回転子と、複数のスロットを有する鉄心に巻き線を巻いた固定子とを空隙を介して配置した永久磁石埋込型モータにおいて、上記スリットは、回転子の半径方向に直交する方向に永久磁石が埋め込まれる部分と、この永久磁石埋込部に続く両端部のL字状空隙部とを有し、回転子1極分の角度(θ1)とL字型空隙部の角度(θ2)との比が0.1≦θ2/θ1≦0.3である構成を特徴とすることで、回転子に用いる永久磁石の極性が反転する近傍における磁束分布を滑らかにすることが可能となり、逆起電力波形歪み低減や、コンキングトルクの低減を図ることが可能となる。これにより、トルクリップルが小さくなり、モータ回転時の振動や騒音が改善される。   As described above, according to the present invention, a rotor in which a permanent magnet is embedded inside a rotor having a plurality of slits and a stator in which a winding is wound around an iron core having a plurality of slots are arranged via a gap. In the permanent magnet embedded motor, the slit has a portion in which a permanent magnet is embedded in a direction orthogonal to the radial direction of the rotor, and L-shaped gaps at both ends following the permanent magnet embedded portion. The ratio of the angle (θ1) of one pole of the rotor to the angle (θ2) of the L-shaped gap is 0.1 ≦ θ2 / θ1 ≦ 0.3, so that the rotor It becomes possible to smooth the magnetic flux distribution in the vicinity where the polarity of the permanent magnet used is reversed, and it is possible to reduce the back electromotive force waveform distortion and the conking torque. As a result, torque ripple is reduced, and vibration and noise during rotation of the motor are improved.

以下、図面を参照しながら本発明にかかる永久磁石埋込型モータの実施の形態について説明する。   Hereinafter, embodiments of a permanent magnet embedded motor according to the present invention will be described with reference to the drawings.

図1は、本発明における永久磁石埋込型モータに用いる回転子の基本構造を示している。永久磁石埋込型モータの回転子11は、鋼板材からプレス機などで打ち抜かれた複数の回転子片を積層することによって形成されている。この回転子片の外周形状は、これに外接する円とは曲率の異なる複数の円弧によって構成されている。具体的には、図2に示すように、回転子片の外接円の半径Rよりも短い半径R1の四つの円弧をつなぐことによって構成されている。回転子11の内部には少なくとも1対(図に示した実施例においては2対)の永久磁石12を埋設するためのスリット20の中央が回転子11の半径方向と直交する方向に形成されており、スリット20は永久磁石を埋込むために設けられた永久磁石埋設部21と、その両端に位置するL字状空隙部22より構成されている。各スリット20は、上記の四つの円弧に対応して設けられ、従って、永久磁石埋設部21もそれぞれ上記各円弧に対応している。     FIG. 1 shows a basic structure of a rotor used in a permanent magnet embedded motor according to the present invention. The rotor 11 of the permanent magnet embedded motor is formed by laminating a plurality of rotor pieces punched from a steel plate by a press or the like. The outer peripheral shape of the rotor piece is constituted by a plurality of arcs having different curvatures from a circle circumscribing the rotor piece. Specifically, as shown in FIG. 2, it is configured by connecting four arcs having a radius R1 shorter than the radius R of the circumscribed circle of the rotor piece. The center of the slit 20 for embedding at least one pair (two pairs in the illustrated embodiment) of the permanent magnets 12 is formed in the rotor 11 in a direction perpendicular to the radial direction of the rotor 11. The slit 20 includes a permanent magnet embedded portion 21 provided for embedding a permanent magnet, and L-shaped void portions 22 located at both ends thereof. Each slit 20 is provided corresponding to the above-mentioned four arcs, and accordingly, the permanent magnet embedded portions 21 also correspond to the respective arcs.

L字状空隙部22はスリット20の永久磁石埋設部21に続く両端に位置し、回転子11の半径方向に伸びる部分22aとそれに続き回転子11の円周方向に伸びる部分22bにより構成される。 The L-shaped gap portion 22 is located at both ends of the slit 20 following the permanent magnet buried portion 21, and is constituted by a portion 22 a extending in the radial direction of the rotor 11 and a portion 22 b subsequently extending in the circumferential direction of the rotor 11. .

永久磁石埋込部21には板状の永久磁石12が埋設されている。隣接する永久磁石12には互いに異なる磁極が配置されるため、隣接部23においてそれぞれの永久磁石より発生する磁束が隣接する磁極同士で短絡してしまい、固定子との間に磁界が形成されず、あるいは形成される磁界が弱くなる可能性がある。このため、磁束の短絡を防止すること目的とし、永久磁石12の両端部から回転子11の外周面近傍まで半径方向に伸びる磁束短絡防止用のL字状空隙22が形成されている。   The plate-shaped permanent magnet 12 is embedded in the permanent magnet embedded portion 21. Since different magnetic poles are arranged in the adjacent permanent magnets 12, magnetic fluxes generated from the respective permanent magnets in the adjacent portion 23 are short-circuited between the adjacent magnetic poles, and no magnetic field is formed between the adjacent magnetic poles and the stator. Alternatively, the formed magnetic field may be weak. For this reason, an L-shaped gap 22 for preventing a magnetic flux short circuit is formed extending from both ends of the permanent magnet 12 to the vicinity of the outer peripheral surface of the rotor 11 in order to prevent a short circuit of the magnetic flux.

図2は、前記回転子11の一部を拡大し、前記L字状空隙部の構造をより詳細に表したものである。図2において、回転子11の外周部11aは外接円半径Rよりも小さい半径R1を有する曲率円によって構成されている。その半径R1の前記曲率円の中心は、外接円の中心よりa1だけ外周に移動した永久磁石12の周方向中心位置を通る半径軸上に位置している。半径R1の円弧は、回転子11の外接円を4等分する半径軸上のそれぞれに設けられている。すなわち、回転子11の外周部11aは4つの円弧の組み合わせによって形成されており、図2は前記回転子11を直径軸にて切断した上半分を示している。   FIG. 2 is an enlarged view of a part of the rotor 11 to show the structure of the L-shaped gap in more detail. In FIG. 2, the outer peripheral portion 11a of the rotor 11 is formed by a curvature circle having a radius R1 smaller than the circumscribed circle radius R. The center of the curvature circle having the radius R1 is located on a radial axis passing through the circumferential center position of the permanent magnet 12 moved to the outer periphery by a1 from the center of the circumscribed circle. The arc having the radius R1 is provided on each of the radial axes that divide the circumscribed circle of the rotor 11 into four equal parts. That is, the outer peripheral portion 11a of the rotor 11 is formed by a combination of four arcs, and FIG. 2 shows an upper half of the rotor 11 cut along a diameter axis.

前記外周部11aを構成する曲率円の円弧の終端と外接円の中心11cを結んだ二つの直線によって成る角度θ1は、回転子11の回転子1極分を構成する角度である。   An angle θ1 formed by two straight lines connecting the end of the arc of the curvature circle constituting the outer peripheral portion 11a and the center 11c of the circumscribed circle is an angle forming one rotor pole of the rotor 11.

また、前記外周部11aを構成する曲率円の円弧の終端から、回転子内部に形成されているL字状空隙部22の内側先端までの角度をθ2としている。   Further, the angle from the end of the arc of the curvature circle constituting the outer peripheral portion 11a to the inner end of the L-shaped gap portion 22 formed inside the rotor is defined as θ2.

前記回転子11に設けたL字状空隙部22は、R、R1、θ1,θ2が、0.1≦θ2/θ1≦0.3という条件と0.1≦(R−R1)/R≦0.3という条件が成り立つように構成され、本発明の目的とする効果を生じることが可能となる。なお、θ2/θ1は、0.15≦θ2/θ1≦0.25に設定することがより好ましく、ほぼ0.2に設定しておくことが最も好ましい。また、(R−R1)/Rは、0.15≦(R−R1)/R≦0.25に設定することがより好ましく、ほぼ0.2に設定しておくことが最も好ましい。 The L-shaped gap portion 22 provided in the rotor 11 has a condition that R, R1, θ1, and θ2 are 0.1 ≦ θ2 / θ1 ≦ 0.3 and 0.1 ≦ (R−R1) / R ≦ It is configured such that the condition of 0.3 is satisfied, and the desired effect of the present invention can be obtained. Note that θ2 / θ1 is more preferably set to 0.15 ≦ θ2 / θ1 ≦ 0.25, and most preferably set to approximately 0.2. Further, (R−R1) / R is more preferably set to 0.15 ≦ (R−R1) /R≦0.25, and most preferably set to approximately 0.2.

次に、上記条件によって目的を達成しうる根拠について、次に示す図3、図4を用いて説明する。 Next, the grounds for achieving the object under the above conditions will be described with reference to FIGS.

図3は、前記実施の形態にかかる回転子11における、各限定要素を変化させ、それぞれの場合において、逆起電力歪率を示した線図である。図3(a)は前記回転子11のθ1とθ2の比を変化させたものである。θ2/θ1にて求められる値を横軸にし、縦軸は逆起電力歪率を示している。図3(a)から明らかなように、θ2/θ1が約0.2において、逆起電力歪率が最小となる。また、図3(b)は、前記回転子11のRとR1の比を変化させたものである。(R−R1)/Rにて求められる値を横軸にし、縦軸は逆起電力歪率を示している。図3(b)から明らかなように、(R−R1)/Rが約0.2である時、逆起電力歪率が最小となる。   FIG. 3 is a diagram showing the counter electromotive force distortion factor in each case of the rotor 11 according to the above-described embodiment, in which each limiting element is changed. FIG. 3A shows a state where the ratio between θ1 and θ2 of the rotor 11 is changed. The value obtained by θ2 / θ1 is plotted on the horizontal axis, and the vertical axis represents the back electromotive force distortion factor. As is clear from FIG. 3A, when θ2 / θ1 is about 0.2, the back electromotive force distortion factor becomes minimum. FIG. 3B shows a state where the ratio of R to R1 of the rotor 11 is changed. The value determined by (R-R1) / R is plotted on the horizontal axis, and the vertical axis represents the back electromotive force distortion factor. As is clear from FIG. 3B, when (R−R1) / R is about 0.2, the back electromotive force distortion factor becomes minimum.

図3から明らかなように、θ2/θ1が0.1より小さくなり、また、0.3より大きくなると逆起電力歪率が大きくなり、実用上好ましい結果が得られないため、θ2/θ1は0.1から0.3の範囲とするのが望ましい。なお、図3から明らかなように、θ2/θ1は、0.15≦θ2/θ1≦0.25に設定することがより好ましく、ほぼ0.2に設定しておくことが最も好ましい。また、(R−R1)/Rが0.1より小さくなり、また、0.3より大きくなると逆起電力が大きくなり、実用上好ましい結果が得られないため、(R−R1)/Rは0.1から0.3の範囲とするのが望ましい。なお、図3から明らかなように、(R−R1)/Rは、0.15≦(R−R1)/R≦0.25に設定することがより好ましく、ほぼ0.2に設定しておくことが最も好ましい。 As is clear from FIG. 3, when θ2 / θ1 is smaller than 0.1, and when it is larger than 0.3, the back electromotive force distortion rate is increased, and a practically preferable result cannot be obtained. It is desirable to be in the range of 0.1 to 0.3. As is clear from FIG. 3, θ2 / θ1 is more preferably set to 0.15 ≦ θ2 / θ1 ≦ 0.25, and most preferably set to approximately 0.2. When (R-R1) / R is smaller than 0.1, and when it is larger than 0.3, the back electromotive force increases, and a practically preferable result cannot be obtained. It is desirable to be in the range of 0.1 to 0.3. As is clear from FIG. 3, (R−R1) / R is more preferably set to 0.15 ≦ (R−R1) /R≦0.25, and set to approximately 0.2. Most preferably.

図4は、前記実施の形態にかかる回転子11における、各限定要素を変化させ、それぞれの場合において、コンキングトルクを示した線図である。図4(a)は前記回転子11のθ1とθ2の比を変化させたものである。θ2/θ1にて求められる値を横軸にし、縦軸はコンキングトルクを示している。図4(a)から明らかなように、θ2/θ1が約0.2において、コンキングトルクが最小となる。また、図4(b)は、前記回転子11のRとR1の比を変化させたものである。(R−R1)/Rにて求められる値を横軸にし、縦軸はコンキングトルクを示している。図4(b)から明らかなように、(R−R1)/Rが約0.2である時、コンキングトルクが最小となる。   FIG. 4 is a diagram showing the conking torque in each case of the rotor 11 according to the embodiment, with each limiting element being changed. FIG. 4A shows the relationship between the ratio of θ1 and θ2 of the rotor 11 changed. The value determined by θ2 / θ1 is shown on the horizontal axis, and the vertical axis shows the conking torque. As is clear from FIG. 4A, when θ2 / θ1 is about 0.2, the conking torque is minimized. FIG. 4B is a graph in which the ratio between R and R1 of the rotor 11 is changed. The value determined by (R−R1) / R is plotted on the horizontal axis, and the vertical axis represents the conking torque. As is clear from FIG. 4B, when (R−R1) / R is about 0.2, the conking torque is minimized.

図4から明らかなように、θ2/θ1が0.1より小さくなり、また、0.3より大きくなるとコンキングトルクが増大する。また、(R−R1)/Rが0.1より小さくなり、また、0.3より大きくなるとコンキングトルクが増大する。従って、θ2/θ1は0.1から0.3の範囲とするのが望ましく、(R−R1)/Rは0.1から0.3の範囲とするのが望ましい。なお、上記と同様に、図4から明らかなように、θ2/θ1は、0.15≦θ2/θ1≦0.25に設定することがより好ましく、ほぼ0.2に設定しておくことが最も好ましい。また、(R−R1)/Rは、0.15≦(R−R1)/R≦0.25に設定することがより好ましく、ほぼ0.2に設定しておくことが最も好ましい。 As is clear from FIG. 4, when θ2 / θ1 becomes smaller than 0.1, and when it becomes larger than 0.3, the conking torque increases. When (R-R1) / R is smaller than 0.1, and when it is larger than 0.3, the conking torque increases. Therefore, it is preferable that θ2 / θ1 be in the range of 0.1 to 0.3, and (R−R1) / R be in the range of 0.1 to 0.3. In addition, similarly to the above, as is clear from FIG. 4, θ2 / θ1 is more preferably set to 0.15 ≦ θ2 / θ1 ≦ 0.25, and is preferably set to approximately 0.2. Most preferred. Further, (R−R1) / R is more preferably set to 0.15 ≦ (R−R1) /R≦0.25, and most preferably set to approximately 0.2.

図5は、回転子11を用いた永久磁石埋込型モータにおける逆起電力の出力波形を示した線図である。図5における横軸は回転子11の回転角度を示し、縦軸は逆起電力の大きさを示している。図5(a)は、回転子11の円周を複数の曲率円を用いずに単一曲率円により構成し、L字状空隙部22を設けない従来例の場合を示している。図5(b)は、L字状間隙部を設けるが、回転子11の円周を複数の曲率円を用いずに単一曲率円により構成した本発明における実施例の場合を示しており、具体的には、図2におけるθ1、θ2、R、R1の関係が、θ2/θ1=0.2,(R−R1)/R=0.1以下で回転子11を用いた永久磁石埋込型モータにおける逆起電力の出力波形である。図5(a)に示す従来技術と比較すれば、線図の変化もなめらかであり、逆起電力歪率も改善されている。   FIG. 5 is a diagram showing an output waveform of the back electromotive force in the permanent magnet embedded motor using the rotor 11. The horizontal axis in FIG. 5 indicates the rotation angle of the rotor 11, and the vertical axis indicates the magnitude of the back electromotive force. FIG. 5A shows the case of a conventional example in which the circumference of the rotor 11 is formed by a single curvature circle without using a plurality of curvature circles and the L-shaped void portion 22 is not provided. FIG. 5B shows a case of an embodiment of the present invention in which an L-shaped gap is provided, but the circumference of the rotor 11 is constituted by a single curvature circle without using a plurality of curvature circles. Specifically, the relationship among θ1, θ2, R, and R1 in FIG. 2 is θ2 / θ1 = 0.2, (R−R1) /R=0.1 or less, and the permanent magnet embedded using the rotor 11 is used. 3 is an output waveform of a back electromotive force in a type motor. Compared with the prior art shown in FIG. 5A, the change in the diagram is smoother and the back electromotive force distortion factor is improved.

図5(c)は、回転子11の円周を、曲率R1の円を用いて4つの円弧により構成し、かつ、L字状空隙を設けた場合の逆起電力波形を示している。具体的には図2におけるθ1、θ2、R、R1の関係が、θ2/θ1=0.2,(R−R1)/R=0.2となるよう構成した回転子を用いている。 FIG. 5C shows a back electromotive force waveform in the case where the circumference of the rotor 11 is formed by four arcs using a circle having a curvature R1 and an L-shaped air gap is provided. Specifically, a rotor is used in which the relationship among θ1, θ2, R, and R1 in FIG. 2 is such that θ2 / θ1 = 0.2 and (R−R1) /R=0.2.

ところで、逆起電力はモータの構造上必ず発生するものであるが、その発生量によって、モータの特性を左右する重要な要素である。図5において、各線図の変化がなめらかなものほど、回転子11の回転が円滑で効率的に運動していることを示しており、これによって明らかなように、図5(c)に示した線図の変化が最もなめらかであり、逆起電力歪率が最も低いことを示している。 By the way, the back electromotive force is always generated due to the structure of the motor, but is an important factor that determines the characteristics of the motor depending on the amount of generation. In FIG. 5, it is shown that the smoother the change of each diagram, the smoother and more efficient the rotation of the rotor 11 moves, and as apparent from this, FIG. The change in the diagram is the smoothest, indicating that the back electromotive force distortion factor is the lowest.

図6は、前記回転子11を用いた永久磁石埋込型モータにおけるコギングトルクの出力波形を示した線図である。横軸は回転子11の回転角度を示し、縦軸はコギングトルクの大きさを示している。図6(a)は、回転子11の円周を、曲率R1の円を用いて4つの円弧により形成することはせず、L字状空隙部24を設けない従来技術の場合を示している。図6(b)は、L字状空隙部22を設けるが、回転子11の円周における複数の曲率円を用いない本発明における実施例の場合を示しており、具体的には図2におけるθ1、θ2、R、R1の関係が、θ2/θ1=0.2,(R−R1)/R=0.1以下である。     FIG. 6 is a diagram showing an output waveform of cogging torque in a permanent magnet embedded motor using the rotor 11. The horizontal axis indicates the rotation angle of the rotor 11, and the vertical axis indicates the magnitude of the cogging torque. FIG. 6A shows a case of a conventional technique in which the circumference of the rotor 11 is not formed by four arcs using a circle having the curvature R1 and the L-shaped void portion 24 is not provided. . FIG. 6B shows the case of the embodiment of the present invention in which the L-shaped gap portion 22 is provided but a plurality of curvature circles on the circumference of the rotor 11 are not used, and specifically, FIG. The relationship among θ1, θ2, R and R1 is θ2 / θ1 = 0.2 and (R−R1) /R=0.1 or less.

図6(c)は、回転子11の円周を、曲率R1の円を用いて4つの円弧により構成し、L字状空隙部24を設けた場合のコギングトルク波形を示している。具体的には図2におけるθ1、θ2、R1、R2の関係が、θ2/θ1=0.2,(R−R1)/R=0.2となるよう構成した回転子を用いている。   FIG. 6C shows a cogging torque waveform when the circumference of the rotor 11 is formed by four arcs using a circle having a curvature R1 and an L-shaped gap portion 24 is provided. Specifically, a rotor configured so that the relationship among θ1, θ2, R1, and R2 in FIG. 2 is θ2 / θ1 = 0.2, (R−R1) /R=0.2 is used.

ところで、コギングトルクはモータの構造上必ず発生するものであるが、その発生量によって、モータの特性を左右する重要な要素である。図6において示した実施例にて、各線図の変化が小さく、なめらかで、コギングトルクの値が小さなものほど、回転子11の回転が円滑で効率的に運動していることを示している。これによって明らかなように、図6(b)に示した実施例は、図6(a)に示す従来技術と比較すれば、線図の変化もなめらかであり、コギングトルクも改善されている。更に、図6(c)に示した線図の変化は最もなめらかであり、コギングトルクが最も低いことを示している。 Incidentally, the cogging torque is always generated due to the structure of the motor, but is an important factor that affects the characteristics of the motor depending on the amount of the generated cogging torque. In the embodiment shown in FIG. 6, the smaller the change of each diagram, the smoother and the smaller the value of the cogging torque, the smoother and more efficiently the rotation of the rotor 11 moves. As is clear from this, in the embodiment shown in FIG. 6B, the change in the diagram is smoother and the cogging torque is improved as compared with the prior art shown in FIG. 6A. Furthermore, the change in the diagram shown in FIG. 6C is the smoothest, indicating that the cogging torque is the lowest.

図7は、前記回転子11の別の実施形態を示したものである。図7(a)において、回転子11の外形は3つの曲率円、即ち、曲率円の半径R1,R2,R3の組み合わせによって構成されている。なお、回転子1極分の角度に対する半分のみを図示し、回転子11の外周側にその領域を図示している。この実施形態では、R>R1>R2>R3に設定された例である。図7(b)は回転子11の外形を2つの曲率円R1,R2で構成した例である。図7(b)において2つの曲率円の半径を表すR1とR2それぞれの中心が、回転子11の外接円半径の中心からの隔たりがa1、a2としたときに、a1×0.8≦a2≦a1×1.2の関係になるよう構成されている。   FIG. 7 shows another embodiment of the rotor 11. In FIG. 7A, the outer shape of the rotor 11 is configured by three curvature circles, that is, a combination of the radii R1, R2, and R3 of the curvature circle. Note that only half of the angle of one pole of the rotor is shown, and the area is shown on the outer peripheral side of the rotor 11. This embodiment is an example in which R> R1> R2> R3 is set. FIG. 7B shows an example in which the outer shape of the rotor 11 is constituted by two curvature circles R1 and R2. In FIG. 7B, when the center of each of R1 and R2 representing the radius of the two curvature circles is a1 and a2 from the center of the circumcircle radius of the rotor 11, a1 × 0.8 ≦ a2. ≦ a1 × 1.2.

図8は、本発明における永久磁石埋込型モータに用いる回転子の別の実施形態を示したものである。永久磁石埋込型モータの回転子11は、鋼板材からプレス機などで打ち抜かれた回転子片を積層し形成することによってなり、その外形は曲率の異なる複数の円弧部15および直線部16によって構成されている。回転子11の内部には少なくとも1対(図に示した実施例においては2対)の永久磁石12を埋設するためのスリット20が構成されており、スリット20は永久磁石を埋込ために設けられた部分すなわち永久磁石埋設部21とそのほかの部分すなわちL字状間隙部22より構成されている。L字状間隙部22は永久磁石埋設部21に続く両端に位置し、回転子11の半径方向に伸びる部分22aとそれに続き回転子11の円周方向に伸びる部分22bにより構成される。 FIG. 8 shows another embodiment of the rotor used in the permanent magnet embedded motor according to the present invention. The rotor 11 of the permanent magnet embedded motor is formed by laminating rotor pieces punched out of a steel plate material by a press or the like, and the outer shape is formed by a plurality of arc portions 15 and straight portions 16 having different curvatures. It is configured. A slit 20 for embedding at least one pair (two pairs in the illustrated embodiment) of the permanent magnet 12 is formed inside the rotor 11, and the slit 20 is provided for embedding the permanent magnet. And the other portion, that is, the L-shaped gap portion 22. The L-shaped gap portions 22 are located at both ends following the permanent magnet buried portion 21 and include a portion 22a extending in the radial direction of the rotor 11 and a portion 22b extending subsequently in the circumferential direction of the rotor 11.

前記回転子11は、前記永久磁石20の1極分を含む回転子11の1極分の中心角度をθ1とし、L字状空隙部22を囲む回転子11の中心角度、即ち、隣接する1極分の回転子11との境界部分から円周方向に伸びる部分22bの先端までの角度をθ2となるように構成されている。これらを元に回転子11における各部の寸法が0.1≦θ2/θ1≦0.3という条件が成り立つよう構成されている。   The rotor 11 has a center angle of one pole of the rotor 11 including one pole of the permanent magnet 20 as θ1, and a center angle of the rotor 11 surrounding the L-shaped gap portion 22, that is, one adjacent pole. The angle from the boundary between the pole segment and the rotor 11 to the tip of the portion 22b extending in the circumferential direction is configured to be θ2. Based on these, the dimensions of each part in the rotor 11 are configured to satisfy the condition of 0.1 ≦ θ2 / θ1 ≦ 0.3.

図9は、図8における回転子11を形成するための、材料となる鋼板30における回転子片31の配置を示す。鋼板30において、回転子片31は効率的に製造できるよう、隙間無く配置される。この実施形態の特徴は回転子11の円周の一部が直線部32でなり、この直線部32が相互に当接するように配置することによって、隣接する回転子片同士を隙間無く配置することが可能となり、鋼板30をプレスによって打ち抜く時の材料取りの効率化をはかることができる   FIG. 9 shows an arrangement of rotor pieces 31 on a steel plate 30 as a material for forming the rotor 11 in FIG. In the steel plate 30, the rotor pieces 31 are arranged without gaps so that they can be manufactured efficiently. The feature of this embodiment is that a part of the circumference of the rotor 11 is a linear portion 32, and by arranging the linear portions 32 so as to abut each other, adjacent rotor pieces are arranged without gaps. It is possible to improve the efficiency of material removal when the steel sheet 30 is punched by a press.

図10は、回転子片の形状における別の実施例を示す。回転子片の外周形状は、図9に示すような4極分の回転子を構成する四角状の丸形に限らず、図10に示すように6極分の回転子を構成する6角状の丸形でも良い。また、図示しないが8角状の丸形、10角状の丸形でも良い。 FIG. 10 shows another embodiment of the shape of the rotor piece. The outer peripheral shape of the rotor piece is not limited to the square round shape forming the rotor for four poles as shown in FIG. 9, but the hexagonal shape forming the rotor for six poles as shown in FIG. May be round. Although not shown, an octagonal round shape or a decagonal round shape may be used.

図11は、図9に示した回転子片31の外周に設ける前記直線状部32の別の実施例を示す。前記直線状部32は、図11(a)に示すように、L字状空隙部の狭間における外周部において、3角形の凹形状33を有しても良い。また、同様に図11(b)に示すように、円弧状の凹形状部34を設けても良い。また、同様に図11(c)に示すように、四角形の凹形状部35を設けても良い。さらに、凹形状であれば、図示した以外にも、多角形凹形状部(図示しない)でも良く、直線状部32において、複数の凹形状部(図示しない)を設けても良い。   FIG. 11 shows another embodiment of the linear portion 32 provided on the outer periphery of the rotor piece 31 shown in FIG. As shown in FIG. 11A, the linear portion 32 may have a triangular concave shape 33 at an outer peripheral portion between the L-shaped void portions. Further, similarly, as shown in FIG. 11B, an arcuate concave portion 34 may be provided. Further, similarly, as shown in FIG. 11C, a rectangular concave portion 35 may be provided. Further, as long as it is concave, a polygonal concave portion (not shown) may be used in addition to the illustrated one, and a plurality of concave portions (not shown) may be provided in the linear portion 32.

本発明にかかる永久磁石埋込型モータの回転子の実施の形態を示す断面図である。FIG. 2 is a cross-sectional view illustrating an embodiment of a rotor of the permanent magnet embedded motor according to the present invention. 上記実施の形態の要部を示す拡大断面図である。It is an expanded sectional view showing the important section of the above-mentioned embodiment. (a)は、本発明にかかる永久磁石埋込型モータの回転子における永久磁石1極分の角度とL字状空隙部近傍の角度の比を変化させたときの、逆起電力歪率の変化を示した線図であり、(b)は、外形円弧半径の外接円に対する比を変化させたときの、逆起電力歪率の変化を示した線図である。(A) shows the distortion of the back electromotive force when the ratio of the angle of one pole of the permanent magnet to the angle near the L-shaped gap in the rotor of the permanent magnet embedded motor according to the present invention is changed. FIG. 7B is a diagram illustrating a change, and FIG. 8B is a diagram illustrating a change in a back electromotive force distortion factor when a ratio of an outer circular arc radius to a circumscribed circle is changed. (a)は、本発明にかかる永久磁石埋込型モータの回転子における永久磁石1極分の角度とL字状空隙部近傍の角度の比を変化させたときの、コギングトルクの変化を示した線図であり、(b)は、外形円弧半径の外接円に対する比を変化させたときの、コギングトルクの変化を示した線図である。(A) shows a change in cogging torque when the ratio of the angle of one pole of the permanent magnet to the angle near the L-shaped gap in the rotor of the permanent magnet embedded motor according to the present invention is changed. FIG. 4B is a diagram illustrating a change in cogging torque when the ratio of the outer circular arc radius to the circumscribed circle is changed. 永久磁石埋込型モータにおける逆起電力の出力波形を示した線図であり、(a)は従来例、(b),(c)は、本発明の実施形態を示すものである。FIG. 3 is a diagram showing output waveforms of a back electromotive force in a permanent magnet embedded motor, where (a) shows a conventional example, and (b) and (c) show embodiments of the present invention. 永久磁石埋込型モータにおけるコギングトルクの変化を示した線図であり、(a)は従来例、(b),(c)は、本発明の実施形態を示すものである。FIG. 3 is a diagram showing a change in cogging torque in a permanent magnet embedded motor, in which (a) shows a conventional example, and (b) and (c) show an embodiment of the present invention. (a)、(b)は、本発明にかかる永久磁石埋込型モータの回転子の別の実施の形態を示す断面図である。(A), (b) is sectional drawing which shows another embodiment of the rotor of the permanent magnet embedded motor which concerns on this invention. 本発明にかかる永久磁石埋込型モータの回転子のさらに別の実施の形態を示す断面図である。It is sectional drawing which shows another embodiment of the rotor of the permanent magnet embedded type motor concerning this invention. 上記実施形態における回転子片を製造するために用いる鋼板に回転子片を配置した例を示す平面図である。It is a top view showing the example which arranged the rotor piece on the steel plate used for manufacturing the rotor piece in the above-mentioned embodiment. 回転子片配置の別の実施形態を示す平面図である。It is a top view which shows another embodiment of a rotor piece arrangement | positioning. 回転子のL字状空隙部近傍形状の別の例を示す拡大平面図である。It is an enlarged plan view which shows another example of the L-shaped gap part vicinity shape of a rotor.

符号の説明Explanation of reference numerals

11 回転子
12 永久磁石
23 L字状空隙部
11 rotor 12 permanent magnet 23 L-shaped gap

Claims (5)

複数のスリットに永久磁石を埋め込んだ回転子と、複数のスロットを有する鉄心に巻き線を巻いた固定子とを空隙を介して配置した永久磁石埋込型モータにおいて、
上記スリットは、回転子の半径方向と直交する方向に永久磁石が埋め込まれる部分と、この永久磁石埋込部に続く両端部のL字状空隙部とを有し、回転子1極分の角度(θ1)とL字型空隙部の角度(θ2)との比が以下の条件であることを特徴とする永久磁石埋込型モータ。
0.1≦θ2/θ1≦0.3
In a permanent magnet embedded motor in which a rotor in which permanent magnets are embedded in a plurality of slits and a stator in which a winding is wound on an iron core having a plurality of slots are arranged through a gap,
The slit has a portion in which a permanent magnet is embedded in a direction orthogonal to the radial direction of the rotor, and L-shaped gaps at both ends following the permanent magnet embedded portion. A permanent magnet embedded motor characterized in that the ratio of (θ1) to the angle (θ2) of the L-shaped gap is as follows.
0.1 ≦ θ2 / θ1 ≦ 0.3
請求項1記載の永久磁石埋込型モータにおいて、
前記回転子の外接円半径(R)とL字状空隙部近傍における回転子外径の曲率(R1)が以下の条件であることを特徴とする永久磁石埋込型モータ。
0.1≦(R−R1)/R≦0.3
The permanent magnet embedded motor according to claim 1,
A permanent magnet embedded motor characterized in that the circumscribed circle radius (R) of the rotor and the curvature (R1) of the rotor outer diameter in the vicinity of the L-shaped gap are as follows.
0.1 ≦ (R−R1) /R≦0.3
複数のスリットを有する回転子内部に永久磁石を埋め込んだ回転子と、複数のスロットを有する鉄心に巻き線を巻いた固定子とを空隙を介して配置した永久磁石埋込型モータにおいて、
上記回転子の外周の一部がほぼ直線であることを特徴とする永久磁石埋込型モータ。
In a permanent magnet embedded motor in which a rotor having a permanent magnet embedded inside a rotor having a plurality of slits, and a stator having a core wound with a plurality of slots and a winding wound therethrough are arranged through a gap.
An embedded permanent magnet motor, wherein a part of the outer periphery of the rotor is substantially straight.
請求項3記載の永久磁石埋込型モータにおいて、
前記スリットは、前記回転子の半径方向と直交する方向に永久磁石が埋め込まれる部分と、この永久磁石埋込部に続く両端部のL字状空隙部とを有しており、上記L字型空隙部近傍における前記回転子の外周がほぼ直線であることを特徴とする永久磁石埋込型モータ。
The permanent magnet embedded motor according to claim 3,
The slit has a portion in which a permanent magnet is embedded in a direction orthogonal to a radial direction of the rotor, and L-shaped voids at both ends following the permanent magnet embedded portion. An embedded permanent magnet motor, wherein the outer periphery of the rotor near the gap is substantially straight.
請求項4記載の永久磁石埋込型モータにおいて、
回転子1極分の角度(θ1)と前記L字型空隙部の角度(θ2)との比が以下の条件であることを特徴とする永久磁石埋込型モータ。
0.1≦θ2/θ1≦0.3
The permanent magnet embedded motor according to claim 4,
A permanent magnet embedded motor, wherein the ratio of the angle (θ1) of one pole of the rotor to the angle (θ2) of the L-shaped gap portion is as follows.
0.1 ≦ θ2 / θ1 ≦ 0.3
JP2004092834A 2003-04-02 2004-03-26 Permanent magnet embedded motor Expired - Lifetime JP4709495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004092834A JP4709495B2 (en) 2003-04-02 2004-03-26 Permanent magnet embedded motor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003099477 2003-04-02
JP2003099477 2003-04-02
JP2004092834A JP4709495B2 (en) 2003-04-02 2004-03-26 Permanent magnet embedded motor

Publications (2)

Publication Number Publication Date
JP2004320989A true JP2004320989A (en) 2004-11-11
JP4709495B2 JP4709495B2 (en) 2011-06-22

Family

ID=33478831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004092834A Expired - Lifetime JP4709495B2 (en) 2003-04-02 2004-03-26 Permanent magnet embedded motor

Country Status (1)

Country Link
JP (1) JP4709495B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238667A (en) * 2005-02-28 2006-09-07 Matsushita Electric Ind Co Ltd Electric motor
JP2006304446A (en) * 2005-04-19 2006-11-02 Mitsubishi Electric Corp Permanent magnet motor
JP2007295708A (en) * 2006-04-24 2007-11-08 Nidec Sankyo Corp Permanent magnet embedded motor
JP2008131813A (en) * 2006-11-24 2008-06-05 Hitachi Ltd Permanent magnet electrical rotating machine, wind power generation system, and magnetization method of permanent magnet
JP2009112181A (en) * 2007-11-01 2009-05-21 Nissan Motor Co Ltd Rotator of permanent magnet type motor
KR101025084B1 (en) * 2005-12-19 2011-03-25 다이킨 고교 가부시키가이샤 Electric motor and its rotor, and magnetic core for the rotor
JP2012016129A (en) * 2010-06-30 2012-01-19 Asmo Co Ltd Rotor and motor
WO2013011546A1 (en) * 2011-07-15 2013-01-24 三菱電機株式会社 Permanent magnet motor and compressor, ventilator, and frozen air condition device using same
WO2013098921A1 (en) * 2011-12-26 2013-07-04 三菱電機株式会社 Rotor for permanent magnet implanted-type motor, as well as compressor, blower, and cooling/air conditioning device using same
KR101443274B1 (en) * 2013-06-28 2014-09-23 대흥기전주식회사 Alternator For Improved Distortion Factor
JP2015073397A (en) * 2013-10-03 2015-04-16 シンフォニアテクノロジー株式会社 Synchronous motor
WO2015174145A1 (en) * 2014-05-15 2015-11-19 富士電機株式会社 Embedded-permanent-magnet dynamoelectric device
WO2020105465A1 (en) * 2018-11-22 2020-05-28 日立オートモティブシステムズ株式会社 Rotating electrical machine and automobile electric auxiliary system
US10720805B2 (en) 2013-02-08 2020-07-21 Fuji Electric Co., Ltd. Embedded permanent magnet type rotating electric machine with permanent magnet rotor having magnet holes and central bridge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198731A (en) * 1997-07-22 1999-04-09 Matsushita Electric Ind Co Ltd Motor using rotor with buried permanent magnet therein
JP2002136011A (en) * 2000-10-26 2002-05-10 Fujitsu General Ltd Permanent magnet motor
JP2002238193A (en) * 1996-02-23 2002-08-23 Matsushita Electric Ind Co Ltd Motor
JP2003037955A (en) * 2001-07-24 2003-02-07 Mitsubishi Heavy Ind Ltd Rotor for magnetic motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002238193A (en) * 1996-02-23 2002-08-23 Matsushita Electric Ind Co Ltd Motor
JPH1198731A (en) * 1997-07-22 1999-04-09 Matsushita Electric Ind Co Ltd Motor using rotor with buried permanent magnet therein
JP2002136011A (en) * 2000-10-26 2002-05-10 Fujitsu General Ltd Permanent magnet motor
JP2003037955A (en) * 2001-07-24 2003-02-07 Mitsubishi Heavy Ind Ltd Rotor for magnetic motor

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238667A (en) * 2005-02-28 2006-09-07 Matsushita Electric Ind Co Ltd Electric motor
JP2006304446A (en) * 2005-04-19 2006-11-02 Mitsubishi Electric Corp Permanent magnet motor
US8853909B2 (en) 2005-12-19 2014-10-07 Daikin Industries, Ltd. Motor and its rotor and magnetic core for rotor having arrangement of non-magnetic portions
KR101025084B1 (en) * 2005-12-19 2011-03-25 다이킨 고교 가부시키가이샤 Electric motor and its rotor, and magnetic core for the rotor
JP2007295708A (en) * 2006-04-24 2007-11-08 Nidec Sankyo Corp Permanent magnet embedded motor
JP2008131813A (en) * 2006-11-24 2008-06-05 Hitachi Ltd Permanent magnet electrical rotating machine, wind power generation system, and magnetization method of permanent magnet
JP2009112181A (en) * 2007-11-01 2009-05-21 Nissan Motor Co Ltd Rotator of permanent magnet type motor
JP2012016129A (en) * 2010-06-30 2012-01-19 Asmo Co Ltd Rotor and motor
JPWO2013011546A1 (en) * 2011-07-15 2015-02-23 三菱電機株式会社 Permanent magnet embedded motor and compressor, blower and refrigeration air conditioner using the same
WO2013011546A1 (en) * 2011-07-15 2013-01-24 三菱電機株式会社 Permanent magnet motor and compressor, ventilator, and frozen air condition device using same
US9369015B2 (en) 2011-07-15 2016-06-14 Mitsubishi Electric Corporation Permanent magnet embedded motor and compressor, blower, and refrigerating and air conditioning apparatus using permanent magnet embedded motor
JPWO2013098921A1 (en) * 2011-12-26 2015-04-30 三菱電機株式会社 Rotor of embedded permanent magnet motor and compressor, blower and refrigeration air conditioner using the same
WO2013098921A1 (en) * 2011-12-26 2013-07-04 三菱電機株式会社 Rotor for permanent magnet implanted-type motor, as well as compressor, blower, and cooling/air conditioning device using same
US9871419B2 (en) 2011-12-26 2018-01-16 Mitsubishi Electric Corporation Rotor of permanent-magnet embedded motor, and compressor, blower, and refrigerating/air conditioning device using the rotor
US10720805B2 (en) 2013-02-08 2020-07-21 Fuji Electric Co., Ltd. Embedded permanent magnet type rotating electric machine with permanent magnet rotor having magnet holes and central bridge
KR101443274B1 (en) * 2013-06-28 2014-09-23 대흥기전주식회사 Alternator For Improved Distortion Factor
JP2015073397A (en) * 2013-10-03 2015-04-16 シンフォニアテクノロジー株式会社 Synchronous motor
WO2015174145A1 (en) * 2014-05-15 2015-11-19 富士電機株式会社 Embedded-permanent-magnet dynamoelectric device
JPWO2015174145A1 (en) * 2014-05-15 2017-04-20 富士電機株式会社 Permanent magnet embedded rotary electric machine
EP3145057B1 (en) * 2014-05-15 2022-05-04 Fuji Electric Co., Ltd. Permanent magnet embedded rotating electrical machine
WO2020105465A1 (en) * 2018-11-22 2020-05-28 日立オートモティブシステムズ株式会社 Rotating electrical machine and automobile electric auxiliary system
JP2020089039A (en) * 2018-11-22 2020-06-04 日立オートモティブシステムズ株式会社 Rotary electric machine and electric auxiliary machine system for automobile
CN113016121A (en) * 2018-11-22 2021-06-22 日立安斯泰莫株式会社 Rotating electrical machine and electric auxiliary machine system for automobile

Also Published As

Publication number Publication date
JP4709495B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP6806352B2 (en) Manufacturing method of rotary electric machine and rotor core
US7042127B2 (en) Permanent magnet embedded motor
JP5862145B2 (en) Motor and motor manufacturing method
JP5813254B2 (en) Permanent magnet rotating electric machine
JP2016226267A (en) Single-phase outer-rotor motor and rotor thereof
JP4709495B2 (en) Permanent magnet embedded motor
JP2007014110A (en) Rotary electric machine
JP2012120326A (en) Interior magnet rotor, motor, and method for assembling motor
JP2011078298A (en) Rotating electric machine and manufacturing method thereof
JP2007104819A (en) Rotating electric machine
JP2008099418A (en) Permanent magnet embedded type motor
WO2001043259A1 (en) Permanent magnet type motor and method of producing permanent magnet type motor
JP2005033941A (en) Stator core for permanent magnet motor, and permanent magnet motor
JPH11299131A (en) Motor with gap having various shape
CN103427520A (en) Rotor and motor including the rotor
JP6196864B2 (en) Permanent magnet rotating electric machine
JP2007295708A (en) Permanent magnet embedded motor
JP2007028734A (en) Dynamo-electric machine
JP2009273304A (en) Rotor of rotating electric machine, and rotating electric machine
JP2003284276A (en) Dynamo-electric machine
JP2008312318A (en) Rotor of rotary electric machine, and rotary electric machine
WO2010110150A1 (en) Permanent magnet-embedded motor
JP2005224054A (en) Axial gap motor
JP2020088879A (en) Rotor, and rotary electric machine provided with the same
US11955841B2 (en) Stator and motor assembly including same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040819

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110318

R150 Certificate of patent or registration of utility model

Ref document number: 4709495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150