JP2004319863A - Film forming device - Google Patents

Film forming device Download PDF

Info

Publication number
JP2004319863A
JP2004319863A JP2003113658A JP2003113658A JP2004319863A JP 2004319863 A JP2004319863 A JP 2004319863A JP 2003113658 A JP2003113658 A JP 2003113658A JP 2003113658 A JP2003113658 A JP 2003113658A JP 2004319863 A JP2004319863 A JP 2004319863A
Authority
JP
Japan
Prior art keywords
substrate
electrode
film forming
heater
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003113658A
Other languages
Japanese (ja)
Inventor
Masayuki Fukagawa
雅幸 深川
Akira Yamada
山田  明
Yasuhiro Yamauchi
康弘 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003113658A priority Critical patent/JP2004319863A/en
Publication of JP2004319863A publication Critical patent/JP2004319863A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film forming device capable of realizing the uniform rapid temperature increase of a substrate. <P>SOLUTION: This film forming device is provided with an electrode 3 arranged in a vacuum container 1 so as to be relatively inclined to a vertical surface, an electrode 4 arranged so as to be faced to the electrode 3 for holding a substrate 5 in the vacuum container 1 and a heater 7 arranged at the back side of the electrode 4, and configured to heat the substrate 5 by the heater 7 through the electrode 4 functioning as a heater cover. In this case, a uniform heating plate 11 formed of aluminum constituted of materials whose heat conductivity is high is butted to the back face of the electrode 3 so that the heat distribution of the substrate 5 can be made uniform. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は製膜装置に関し、特に大型のガラス基板に太陽電池のための製膜を行うプラズマCVD装置に適用して有用なものである。
【0002】
【従来の技術】
太陽電池の作製工程においては、基板上にアモルファスシリコン膜を形成する工程があり、このアモルファスシリコン膜は、通常プラズマCVD装置を用いて製膜している。
【0003】
従来技術に係るこの種のプラズマCVD装置の一例を図3に示す。同図に示すように、当該プラズマCVD装置は、真空容器1内に相対向して配設するとともに高周波電源2に接続した電極3、4を有している。ここで、両電極3、4は、垂直面に対して若干傾斜させて真空容器1内に配設してある。
【0004】
また、真空容器1内には、この場合の原料ガスであるシランガス(SiH)を供給するとともに、両電極3、4間に高周波(例えば13.56MHz〜100MHz)電力を印加するように構成してある。このことにより、電極3、4間に原料ガスである主としてシランガス(SiH)のプラズマを形成し、このとき生成する原料ガスのラジカル(主としてSiH ラジカル )を利用して基板5上にSi膜を形成する。
【0005】
ここで、当該プラズマCVD装置においては一方の電極3が原料ガスの供給手段としての機能も有する。すなわち、電極3は、外部から供給される原料ガスが流入する中空部を有するとともに、他方の電極4と相対向する面に形成した多数の孔3aを有しており、この孔3aを介して電極3、4間に原料ガスを供給するようになっている。
【0006】
他方の電極4はその表面に基板5を載置するとともに、この基板5の電極4との密着性を良好に保持するため、基板5の周辺部に当接してこれを電極4側に押圧する押え板6を有している。この押え板6は通常導電部材で形成してある。
【0007】
ヒータ7は、基板5を加熱する。電極4を介して基板5を所定の温度に保持することにより基板5上の膜の形成を容易、且つ良質なものとするためである。ここで、ヒータ7は電極4の裏面側に相対向して配設してある。したがって、電極4はプラズマに対するヒータカバーとしても機能する。なお、図中、8は真空容器1内を真空に引く真空ポンプである。
【0008】
【発明が解決しようとする課題】
太陽電池製造に関して稼動率向上を行うためには、連続製膜を行うことが必要不可欠である。連続製膜を行うに当たっては、各層(P層、I層、n層)の製膜に対して、基板5の温度をその層の製膜温度に急速に制御する必要がある。ちなみに、P層、I層及びn層を製膜する場合の基板5の温度は、例えば150°C、200°C、170°Cである。したがって、この例の場合には、P層の製膜後、I層を製膜する際には、基板5の温度を150°Cから200°Cに昇温する必要がある。前述の如く連続製膜により太陽電池製造に関する稼動率向上を実現するには、前記昇温を、例えば120秒程度の短時間で行う必要がある。すなわち、基板5の急速昇温を実現する必要がある。一方、発電効率の向上を図るベく、製膜の膜厚の均一化及び膜質の均質化等の観点からは、基板5の温度分布を均一にすることが肝要である。すなわち、温度分布が均一になるような急速昇温を実現することが肝要である。
【0009】
さらに、上述の如く従来技術に係るプラズマCVD装置では、基板5を、その周辺(四辺)部に当接してこれを電極4側に押え板6で押圧している。当該プラズマ処理装置において製膜後の基板5は、その周辺部の所定範囲(例えば端面から15mm程度の範囲)は切り落としているため、この切り落とし部分を押え板6で押さえるのは何の問題もないと考えられていたが、このように基板5を押え板6で押さえることによってその近傍部分の膜質に悪影響が及んでいることが判明した。そこで、加熱時の基板5の反りを防止するためのその拘束構造を工夫する必要もある。
【0010】
本発明は、上記従来技術に鑑み、基板の均一な昇温を可能にするとともに、この場合の基板の反りを有効に防止し得る製膜装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成する本発明の構成は次の点を特徴とする。
【0012】
1) 垂直面に対して若干傾斜させて真空容器内に配設した一方の電極と、この一方の電極に相対向するよう同様に若干傾斜させて前記真空容器内で基板を保持する他方の電極と、この他方の電極の反基板側である裏面側に配設したヒータとを有し、ヒータカバーとしても機能する前記他方の電極を介して前記ヒータで前記基板を加熱するとともに、前記真空容器内に原料ガスを供給しつつ前記両電極間に高周波電圧を印加して両電極間に原料ガスプラズマを形成することにより前記基板上に所定の製膜を行う製膜装置において、
前記基板の熱分布が均一になるよう他方の電極の裏面に熱伝導率が高い材料で形成した均熱板を当接させて構成したこと。
【0013】
2) 垂直面に対して若干傾斜させて真空容器内に配設した一方の電極と、この一方の電極に相対向するよう同様に若干傾斜させて前記真空容器内で基板を保持する他方の電極と、この他方の電極の反基板側である裏面側に配設したヒータとを有し、ヒータカバーとしても機能する前記他方の電極を介して前記ヒータで前記基板を加熱するとともに、前記真空容器内に原料ガスを供給しつつ前記両電極間に高周波電圧を印加して両電極間に原料ガスプラズマを形成することにより前記基板上に所定の製膜を行う製膜装置において、
前記基板の熱分布が均一になるよう他方の電極の裏面に熱伝導率が高い材料で形成した均熱板を当接させるとともに、
前記ヒータの加熱による前記基板の反りを規制するよう、前記基板の少なくとも4隅に、この基板の表面側から基板を押える押え棒を設けたこと。
【0014】
3) 上記1)又は2)に記載する製膜装置において、
他方の電極と均熱板との間に、さらに熱膨張係数がより前記他方の電極に近い材料で形成したパンチングメタル等の多孔質部材を介在させたこと。
【0015】
4) 上記1)乃至3)に記載する何れか一つの製膜装置において、
均熱板をアルミ板で形成したこと。
【0016】
5) 上記1)乃至4)に記載する何れか一つの製膜装置において、
製膜工程に先立つ基板の加熱工程において、真空容器内に分子量が小さいガスを供給し、このガスが均熱板と他方の電極との間、又は均熱板と多孔質部材及び多孔質部材と他方の電極間との間に充填された状態でヒータによる基板の加熱を行うように構成したこと。
【0017】
6) 上記5)に記載する製膜装置において、
ガスは水素ガスとしたこと。
【0018】
【発明の実施の形態】
以下本発明の実施の形態を図面に基づき詳細に説明する。
【0019】
<第1の実施の形態>
図1は本発明の第1の実施の形態に係る製膜装置であるプラズマCVD装置を示す構成図である。同図に示すように、本形態に係るプラズマCVD装置は、図3に示すプラズマCVD装置を改良したもので、多くの構成を共通にする。
【0020】
すなわち、当該プラズマCVD装置は、垂直面に対して若干傾斜させて真空容器1内に配設した一方の電極3と、この電極3に相対向するよう同様に若干傾斜させて真空容器1内で基板5を保持する他方の電極4と、この電極4の裏面側に配設したヒータ7とを有している。
【0021】
そして、ヒータカバーとしても機能する前記電極4を介してヒータ7で基板5を加熱するとともに、真空容器1内に原料ガス(例えば(SiH))を供給しつつ前記両電極3、4間に高周波電圧を印加して両電極3、4間に原料ガスプラズマを形成することにより基板5上に所定の製膜を行う。ここで、電極4は通常ステンレス(SUS)を材料として形成している。
【0022】
さらに、本形態に係るプラズマCVD装置は、熱伝導率が高い材料で形成した均熱板11を有する。この均熱板11は、SUSで形成した電極(ヒータカバー)4よりも数段熱伝導率が良好なアルミニュウム板で形成してあり、ヒータ7と相対向するよう電極4の裏面に固着してある。かくして基板5は均熱板11及びヒータカバーを兼用する電極4を介してヒータ7で加熱・昇温される。
【0023】
支持枠12は、電極4の周囲に配設した枠体で、端面を介して当接する基板5を支持するものである。本形態の場合、図3に示す従来技術に係るプラズマCVD装置の押え板6と異なり、基板5の外周部を押さえることなく支持するだけの構造となっている。
【0024】
押え棒13は、ヒータ7の加熱による基板5の反りを規制するよう、前記基板5の4隅でこの基板5を表面側から押えるように配設したものである。本形態に係る押え棒13はコ字状の部材で、その基端部が支持枠12の端部4箇所にそれぞれ回動可能に支持してある。すなわち、押え棒13は支持枠12の表面に垂直な軸(図示せず。)回りに回動可能に構成してあり、電極4に基板5を載置する際には、前記軸回りに回動して基板5と干渉しないよう退避し、基板5を支持枠12で支持した後に、反対方向に回動して図1に示す状態となり、その先端部の端面が基板5の4隅と相対向する位置に占位するように構成してある。
【0025】
また、本形態に係るプラズマCVD装置においては、製膜工程に先立つ基板5の加熱工程において、真空容器1内に電極3の孔3aを介して水素ガスを供給し、この水素ガスが均熱板11と電極4との間の間隙に充填されるように構成してある。ここで、製膜工程に先立つ基板5の加熱工程とは、例えばP層の製膜後、I層を製膜する際には、基板5の温度を150°Cから200°Cに昇温する必要があるが、この様に原料ガスプラスマを形成して各層の製膜を行う際に保持しなければならない基板温度を確保するための前処理としての昇温工程をいう。ちなみに、太陽電池製造に関して稼動率向上を達成すべく連続製膜を行うに当たっては、基板5の温度を特定の層の製膜温度に急速に昇温することが肝要である。
【0026】
かかる本形態においてはヒータ7の発熱により均熱板11及び電極4を介して基板5が昇温される。ここで、均熱板11は熱伝導率が高いアルミニュウム板で形成してあるので、電極4を均一に昇温するとともに基板5を均一に昇温する。したがって、基板5の各部の温度分布は均一になり、しかも所定の温度迄短時間で昇温される。
【0027】
この際、真空容器1内に電極3の孔3aを介して水素ガスを供給すれば、ヒータ7と均熱板11との間に水素ガスが充填されるばかりでなく、均熱板11と電極4との間の間隙にも充填される。水素ガスは、熱伝導率が良好なガスであるので、ヒータ7の熱は水素ガスを介して効率良く伝達され、その分速やかに基板5を昇温することができる。
【0028】
また、このように急速昇温した場合、基板5の電極4に接している部分である裏面と、逆の面である表面との間で温度差を発生し、この温度差に起因する熱膨張量の違いにより裏面側が表面側に比べて距離が長くなるので、裏面側が凸となるような反りを発生する。すなわち、基板5の周辺部が電極3側に跳ね上がろうとする。この跳ね上がりによる変形は、この変形に伴い基板5が押え棒13の先端面に当接した時点で規制され、それ以上の変形は防止される。すなわち、本形態では基板5の4隅を押え棒13で押え込むことにより急速昇温に伴う基板5の変形を防止し得る。
【0029】
かくして、本形態によれば、反りを防止しつつ基板5を所定の温度まで急速に昇温することができる。
【0030】
<第2の実施の形態>
図2は本発明の第2の実施の形態に係る製膜装置であるプラズマCVD装置を示す構成図である。同図に示すように、本形態に係るプラズマCVD装置は、図1に示すプラズマCVD装置における電極4と均熱板11との間に、さらに熱膨張係数がより電極4に近い材料で形成したパンチングメタル等の多孔質部材14を介在させたものである。その他の構成は、図1に示す第1の実施の形態と同様である。そこで、同一部分には同一番号を付し、重複する説明は省略する。
【0031】
本形態に係るプラズマCVD装置は多孔質部材14を有するので、この多孔質部材14が電極4と均熱板11との熱膨張係数の違いを吸収して電極4の熱変形を防止する。すなわち、電極4は通常SUSで形成するのに対し、均熱板11はそれよりも熱伝導率が飛躍的に高く、熱膨張係数も大きいアルミニュウムで形成しているので、両者を直接張り合わせた場合には、電極4が熱変形する虞があるが、例えばSUSで形成したパンチングメタルを電極4と均熱板11との間に介在させることにより、多孔質部材14が熱膨張率の違いに起因する熱変形を緩和して電極4の平面度を良好に保持する。
【0032】
一方、押え棒13は基板5の4隅で最小限の面積で相対向しているので、その存在が製膜に対する影響を可及的に小さくすることができる。
【0033】
なお、上記実施の形態では均熱板11をアルミニュウム板で形成したが、これに限定するものではない。熱伝導率が高いものであれば他の部材でも良い。例えば銅板で形成することもできる。また、伝熱効率を向上させるために真空容器1内に供給するガスも、水素ガスに限定する必要はない。分子量が小さいガスであれば、十分この種の実用に供し得る。ちなみに、窒素ガス程度までの分子量であれば利用し得る。ただ、水素ガスが最も分子量が小さくその分伝熱効率に優れるものである。さらに、ヒートカバーを兼用する電極4自体を熱伝導率が高いアルミニュウム等の材料で形成しても良い。
【0034】
さらに、均熱板11のみでも十分な均熱効果及び昇温効果が得られる場合には製膜工程に先立つ昇温工程での水素ガス等の供給は不要な場合もある。
【0035】
また、抑え棒13は、上記実施の形態のものに限る必要はない。要は、基板5の周辺部が電極3側に反ることによる変形を抑制し得るものとなっており、同時に基板5の表面に形成する製膜への影響を可及的に小さくし得る構造のものであれば、支持枠12で支持する必要もない。
【0036】
【発明の効果】
以上実施の形態とともに具体的に説明した通り、〔請求項1〕に記載する発明は、垂直面に対して若干傾斜させて真空容器内に配設した一方の電極と、この一方の電極に相対向するよう同様に若干傾斜させて前記真空容器内で基板を保持する他方の電極と、この他方の電極の反基板側である裏面側に配設したヒータとを有し、ヒータカバーとしても機能する前記他方の電極を介して前記ヒータで前記基板を加熱するとともに、前記真空容器内に原料ガスを供給しつつ前記両電極間に高周波電圧を印加して両電極間に原料ガスプラズマを形成することにより前記基板上に所定の製膜を行う製膜装置において、前記基板の熱分布が均一になるよう他方の電極の裏面に熱伝導率が高い材料で形成した均熱板を当接させて構成したので、
ヒータの発熱により均熱板が先ず均一に加熱される結果、電極も均一に加熱される。かくして、基板の表面温度分布が均一に保持される。
この結果、本発明によれば、製膜工程に先立つ基板の昇温による温度分布を均一にして膜厚及び膜質が均一な所望の製膜を実施することができる。
【0037】
〔請求項2〕に記載する発明は、垂直面に対して若干傾斜させて真空容器内に配設した一方の電極と、この一方の電極に相対向するよう同様に若干傾斜させて前記真空容器内で基板を保持する他方の電極と、この他方の電極の反基板側である裏面側に配設したヒータとを有し、ヒータカバーとしても機能する前記他方の電極を介して前記ヒータで前記基板を加熱するとともに、前記真空容器内に原料ガスを供給しつつ前記両電極間に高周波電圧を印加して両電極間に原料ガスプラズマを形成することにより前記基板上に所定の製膜を行う製膜装置において、前記基板の熱分布が均一になるよう他方の電極の裏面に熱伝導率が高い材料で形成した均熱板を当接させるとともに、前記ヒータの加熱による前記基板の反りを規制するよう、前記基板の少なくとも4隅に、この基板の表面側から基板を押える押え棒を設けたので、
基板を急速昇温した場合、基板の裏面と、表面との間で温度差を発生し、この温度差に起因する熱膨張量の違いにより裏面側が表面側に比べて距離が長くなる結果発生する裏面側が凸となるような反りを押えこむことができる。すなわち、基板の周辺部が一方の電極側に跳ね上がろうとするが、この跳ね上がりによる変形を、押え棒先端面に当接した時点で規制して、それ以上の変形を防止する。
この結果、本発明によれば、〔請求項1〕に記載する発明と同様の効果に加え、基板の4隅を押え棒で押え込むことにより急速昇温に伴う基板の変形を防止し得るという効果も奏する。
【0038】
〔請求項3〕に記載する発明は、〔請求項1〕又は〔請求項2〕に記載する製膜装置において、他方の電極と均熱板との間に、さらに熱膨張係数がより前記他方の電極に近い材料で形成したパンチングメタル等の多孔質部材を介在させたので、
多孔質部材が電極(ヒータカバー)と均熱板との熱膨張係数の違いを吸収して前記電極(ヒータカバー)の熱変形を防止する。すなわち、電極(ヒータカバー)に対し熱膨係数が格段に大きい材料で均熱板を形成しているので、両者を直接張り合わせた場合には、電極(ヒータカバー)が熱変形する虞があるが、例えば本発明の如く多孔質部材を電極(ヒータカバー)と均熱板との間に介在させることにより、多孔質部材が熱膨張率の違いに起因する熱変形を緩和して電極(ヒータカバー)の変形を防止するという効果を奏する。
【0039】
〔請求項4〕に記載する発明は、〔請求項1〕乃至〔請求項3〕に記載する何れか一つの製膜装置において、均熱板をアルミ板で形成したので、
〔請求項1〕乃至〔請求項3〕の作用・効果を良好に得ることができる。
【0040】
〔請求項5〕に記載する発明は、〔請求項1〕乃至〔請求項4〕に記載する何れか一つの製膜装置において、製膜工程に先立つ基板の加熱工程において、真空容器内に分子量が小さいガスを供給し、このガスが均熱板と他方の電極との間、又は均熱板と多孔質部材及び多孔質部材と他方の電極間との間に充填された状態でヒータによる基板の加熱を行うように構成したので、
良好な熱伝導性能を有するガスを介してもヒータの発熱を均熱板及び電極(ヒータカバー)に伝達することができる。
この結果、本発明によれば、さらに良好な基板の昇温特性を得ることができる。
【0041】
〔請求項6〕に記載する発明は、〔請求項5〕に記載する製膜装置において、ガスは水素ガスとしたので、
〔請求項6〕の作用・効果を良好に得ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る製膜装置であるプラズマCVD装置を示す概略構成図である。
【図2】本発明の第2の実施の形態に係る製膜装置であるプラズマCVD装置を示す概略構成図である。
【図3】従来技術に係るプラズマCVD装置を示す概略構成図である。
【符号の説明】
1 真空容器
2 高周波電源
3 電極
4 電極
5 基板
7 ヒータ
11 均熱板
12 支持枠
13 押え棒
14 多孔質部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a film forming apparatus, and is particularly useful when applied to a plasma CVD apparatus for forming a film for a solar cell on a large glass substrate.
[0002]
[Prior art]
In a manufacturing process of a solar cell, there is a step of forming an amorphous silicon film on a substrate, and this amorphous silicon film is usually formed using a plasma CVD apparatus.
[0003]
FIG. 3 shows an example of this type of plasma CVD apparatus according to the related art. As shown in FIG. 1, the plasma CVD apparatus has electrodes 3 and 4 which are disposed in a vacuum vessel 1 so as to face each other and are connected to a high frequency power supply 2. Here, the two electrodes 3 and 4 are disposed in the vacuum vessel 1 with a slight inclination with respect to the vertical plane.
[0004]
The vacuum vessel 1 is configured to supply a silane gas (SiH 4 ), which is a raw material gas in this case, and to apply a high frequency (for example, 13.56 MHz to 100 MHz) power between the electrodes 3 and 4. It is. As a result, a plasma of mainly a silane gas (SiH 4 ) as a source gas is formed between the electrodes 3 and 4, and a radical (primarily a SiH 3 radical) of the source gas generated at this time is used to form a Si film on the substrate 5. To form
[0005]
Here, in the plasma CVD apparatus, one electrode 3 also has a function as a source gas supply unit. That is, the electrode 3 has a hollow portion into which a raw material gas supplied from the outside flows, and has a large number of holes 3a formed on a surface facing the other electrode 4, and through this hole 3a A source gas is supplied between the electrodes 3 and 4.
[0006]
The other electrode 4 places the substrate 5 on its surface and contacts the peripheral portion of the substrate 5 to press it toward the electrode 4 in order to maintain good adhesion between the substrate 5 and the electrode 4. It has a holding plate 6. The holding plate 6 is usually formed of a conductive member.
[0007]
The heater 7 heats the substrate 5. By maintaining the substrate 5 at a predetermined temperature via the electrode 4, it is possible to easily form a film on the substrate 5 and obtain good quality. Here, the heater 7 is disposed on the back side of the electrode 4 so as to face each other. Therefore, the electrode 4 also functions as a heater cover for plasma. In the figure, reference numeral 8 denotes a vacuum pump for evacuating the vacuum chamber 1.
[0008]
[Problems to be solved by the invention]
In order to improve the operation rate in solar cell production, continuous film formation is indispensable. In performing continuous film formation, it is necessary to rapidly control the temperature of the substrate 5 to the film formation temperature of each layer (P layer, I layer, n layer). Incidentally, the temperatures of the substrate 5 when forming the P layer, the I layer, and the n layer are, for example, 150 ° C., 200 ° C., and 170 ° C. Therefore, in the case of this example, when forming the I layer after forming the P layer, it is necessary to increase the temperature of the substrate 5 from 150 ° C. to 200 ° C. As described above, in order to achieve an improvement in the operation rate related to solar cell production by continuous film formation, it is necessary to raise the temperature in a short time, for example, about 120 seconds. That is, it is necessary to realize rapid temperature rise of the substrate 5. On the other hand, in order to improve the power generation efficiency, it is important to make the temperature distribution of the substrate 5 uniform from the viewpoint of making the film thickness uniform and film quality uniform. That is, it is important to realize a rapid temperature rise such that the temperature distribution becomes uniform.
[0009]
Further, as described above, in the plasma CVD apparatus according to the related art, the substrate 5 is brought into contact with the periphery (four sides) thereof and is pressed against the electrode 4 by the pressing plate 6. In the plasma processing apparatus, a predetermined range (for example, a range of about 15 mm from an end face) of the peripheral portion of the substrate 5 after film formation is cut off. However, it has been found that pressing the substrate 5 with the pressing plate 6 in this way adversely affects the film quality in the vicinity thereof. Therefore, it is necessary to devise a restraining structure for preventing the substrate 5 from warping during heating.
[0010]
The present invention has been made in view of the above-described conventional technology, and has as its object to provide a film forming apparatus capable of uniformly raising the temperature of a substrate and effectively preventing warpage of the substrate in this case.
[0011]
[Means for Solving the Problems]
The configuration of the present invention that achieves the above object has the following features.
[0012]
1) One electrode disposed in the vacuum container with a slight inclination with respect to the vertical plane, and the other electrode holding the substrate in the vacuum container with a slight inclination in the same manner so as to face the one electrode. And a heater disposed on the back side of the other electrode opposite to the substrate, wherein the substrate is heated by the heater via the other electrode which also functions as a heater cover, and the vacuum vessel In a film forming apparatus for performing a predetermined film formation on the substrate by applying a high-frequency voltage between the two electrodes while supplying a source gas therein, and forming a source gas plasma between the two electrodes,
A heat equalizing plate made of a material having high thermal conductivity is brought into contact with the back surface of the other electrode so that the heat distribution of the substrate is uniform.
[0013]
2) One electrode disposed in the vacuum vessel with a slight inclination with respect to the vertical plane, and the other electrode holding the substrate in the vacuum vessel with a slight inclination in the same manner as opposed to the one electrode And a heater disposed on the back side of the other electrode opposite to the substrate, wherein the substrate is heated by the heater via the other electrode which also functions as a heater cover, and the vacuum vessel In a film forming apparatus for performing a predetermined film formation on the substrate by applying a high-frequency voltage between the two electrodes while supplying a source gas therein, and forming a source gas plasma between the two electrodes,
Attaching a heat equalizing plate formed of a material having high thermal conductivity to the back surface of the other electrode so that the heat distribution of the substrate becomes uniform,
Pressing rods are provided at at least four corners of the substrate to press the substrate from the front surface side of the substrate so as to regulate the warpage of the substrate due to the heating of the heater.
[0014]
3) In the film forming apparatus described in 1) or 2) above,
A porous member such as a punched metal made of a material having a thermal expansion coefficient closer to that of the other electrode is interposed between the other electrode and the heat equalizing plate.
[0015]
4) In any one of the film forming apparatuses described in 1) to 3) above,
The soaking plate was formed from an aluminum plate.
[0016]
5) In any one of the film forming apparatuses described in 1) to 4) above,
In the substrate heating step prior to the film forming step, a gas having a small molecular weight is supplied into the vacuum vessel, and the gas is supplied between the heat equalizing plate and the other electrode, or between the heat equalizing plate and the porous member and the porous member. A configuration in which the substrate is heated by the heater in a state of being filled between the other electrode.
[0017]
6) In the film forming apparatus described in 5) above,
The gas was hydrogen gas.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0019]
<First embodiment>
FIG. 1 is a configuration diagram showing a plasma CVD apparatus which is a film forming apparatus according to a first embodiment of the present invention. As shown in the figure, the plasma CVD apparatus according to the present embodiment is an improved version of the plasma CVD apparatus shown in FIG. 3, and has many common structures.
[0020]
That is, the plasma CVD apparatus has one electrode 3 disposed in the vacuum vessel 1 with a slight inclination with respect to the vertical plane, and a similar inclination in the vacuum vessel 1 so as to face the electrode 3. It has the other electrode 4 for holding the substrate 5 and a heater 7 disposed on the back side of the electrode 4.
[0021]
Then, the substrate 5 is heated by the heater 7 via the electrode 4 which also functions as a heater cover, and a raw material gas (for example, (SiH 4 )) is supplied into the vacuum vessel 1 while the two electrodes 3 and 4 are interposed therebetween. A predetermined film is formed on the substrate 5 by applying a high frequency voltage to form a source gas plasma between the electrodes 3 and 4. Here, the electrode 4 is usually formed of stainless steel (SUS).
[0022]
Further, the plasma CVD apparatus according to the present embodiment has a heat equalizing plate 11 formed of a material having high thermal conductivity. The heat equalizing plate 11 is formed of an aluminum plate having a higher thermal conductivity than the electrode (heater cover) 4 formed of SUS, and is fixed to the back surface of the electrode 4 so as to face the heater 7. is there. Thus, the substrate 5 is heated and heated by the heater 7 via the heat equalizing plate 11 and the electrode 4 which also serves as a heater cover.
[0023]
The support frame 12 is a frame disposed around the electrode 4 and supports the substrate 5 contacting via an end face. In the case of this embodiment, unlike the press plate 6 of the conventional plasma CVD apparatus shown in FIG. 3, the structure is such that the outer peripheral portion of the substrate 5 is supported without being pressed.
[0024]
The pressing rod 13 is provided so as to press the substrate 5 from the front side at four corners of the substrate 5 so as to regulate the warpage of the substrate 5 due to the heating of the heater 7. The presser bar 13 according to the present embodiment is a U-shaped member, and its base end is rotatably supported at four end portions of the support frame 12. That is, the presser bar 13 is configured to be rotatable around an axis (not shown) perpendicular to the surface of the support frame 12. When the substrate 5 is placed on the electrode 4, the presser bar 13 rotates around the axis. After being moved so as not to interfere with the substrate 5, the substrate 5 is supported by the support frame 12, and then rotated in the opposite direction to the state shown in FIG. It is configured to occupy the opposite position.
[0025]
Further, in the plasma CVD apparatus according to the present embodiment, in the heating step of the substrate 5 prior to the film forming step, hydrogen gas is supplied into the vacuum vessel 1 through the hole 3a of the electrode 3, and the hydrogen gas is supplied to the heat equalizing plate. The gap between the electrode 11 and the electrode 4 is filled. Here, the heating step of the substrate 5 prior to the film forming step means, for example, when forming the I layer after forming the P layer, the temperature of the substrate 5 is raised from 150 ° C. to 200 ° C. Although it is necessary, it refers to a temperature-raising step as a pretreatment for securing a substrate temperature that must be maintained when forming a source gas plasma and forming each layer in this manner. Incidentally, in performing continuous film formation in order to achieve an increase in the operation rate in the manufacture of solar cells, it is important to rapidly raise the temperature of the substrate 5 to the film formation temperature of a specific layer.
[0026]
In this embodiment, the temperature of the substrate 5 is increased by the heat generated by the heater 7 via the heat equalizing plate 11 and the electrode 4. Here, since the heat equalizing plate 11 is formed of an aluminum plate having a high thermal conductivity, the temperature of the electrode 4 and the temperature of the substrate 5 are uniformly increased. Therefore, the temperature distribution of each part of the substrate 5 becomes uniform, and the temperature is raised to a predetermined temperature in a short time.
[0027]
At this time, if hydrogen gas is supplied into the vacuum vessel 1 through the hole 3a of the electrode 3, not only the space between the heater 7 and the heat equalizing plate 11 is filled with hydrogen gas, but also 4 is also filled. Since the hydrogen gas is a gas having a good thermal conductivity, the heat of the heater 7 is efficiently transmitted through the hydrogen gas, and the temperature of the substrate 5 can be raised promptly.
[0028]
When the temperature is rapidly increased in this manner, a temperature difference is generated between the back surface, which is the portion of the substrate 5 in contact with the electrode 4, and the front surface, which is the opposite surface, and the thermal expansion caused by this temperature difference is caused. Since the distance is longer on the back side than on the front side due to the difference in the amount, warpage occurs such that the back side is convex. That is, the peripheral portion of the substrate 5 tends to jump toward the electrode 3. The deformation due to the jump is restricted when the substrate 5 comes into contact with the distal end surface of the holding rod 13 in accordance with the deformation, and further deformation is prevented. That is, in this embodiment, deformation of the substrate 5 due to rapid temperature rise can be prevented by pressing down the four corners of the substrate 5 with the pressing rods 13.
[0029]
Thus, according to the present embodiment, the substrate 5 can be rapidly heated to a predetermined temperature while preventing warpage.
[0030]
<Second embodiment>
FIG. 2 is a configuration diagram showing a plasma CVD apparatus which is a film forming apparatus according to a second embodiment of the present invention. As shown in the drawing, the plasma CVD apparatus according to the present embodiment is formed between the electrode 4 and the heat equalizing plate 11 in the plasma CVD apparatus shown in FIG. This is one in which a porous member 14 such as a punching metal is interposed. Other configurations are the same as those of the first embodiment shown in FIG. Therefore, the same portions are denoted by the same reference numerals, and duplicate description will be omitted.
[0031]
Since the plasma CVD apparatus according to the present embodiment has the porous member 14, the porous member 14 absorbs a difference in thermal expansion coefficient between the electrode 4 and the heat equalizing plate 11 to prevent the electrode 4 from being thermally deformed. That is, while the electrode 4 is usually formed of SUS, the heat equalizing plate 11 is formed of aluminum having significantly higher thermal conductivity and a large thermal expansion coefficient. However, there is a risk that the electrode 4 may be thermally deformed. For example, by interposing a punching metal formed of SUS between the electrode 4 and the heat equalizing plate 11, the porous member 14 is caused by a difference in thermal expansion coefficient. And the flatness of the electrode 4 is kept good.
[0032]
On the other hand, since the pressing rods 13 face each other at the four corners of the substrate 5 with a minimum area, the presence thereof can minimize the influence on the film formation.
[0033]
In the above embodiment, the heat equalizing plate 11 is formed of an aluminum plate. However, the present invention is not limited to this. Other members having a high thermal conductivity may be used. For example, it can be formed of a copper plate. Further, the gas supplied into the vacuum vessel 1 to improve the heat transfer efficiency need not be limited to hydrogen gas. A gas having a small molecular weight can be sufficiently used for this kind of practical use. Incidentally, any molecular weight up to about nitrogen gas can be used. However, hydrogen gas has the smallest molecular weight and is superior in heat transfer efficiency. Further, the electrode 4 itself also serving as a heat cover may be formed of a material such as aluminum having a high thermal conductivity.
[0034]
Furthermore, when a sufficient heat equalizing effect and a sufficient temperature increasing effect can be obtained with only the heat equalizing plate 11, the supply of hydrogen gas or the like in the temperature increasing step prior to the film forming step may not be necessary.
[0035]
Further, it is not necessary that the holding bar 13 is limited to the above embodiment. In short, a structure capable of suppressing deformation due to the peripheral portion of the substrate 5 warping toward the electrode 3 and at the same time minimizing the influence on the film formation formed on the surface of the substrate 5. It is not necessary to support with the support frame 12.
[0036]
【The invention's effect】
As described in detail with the above embodiment, the invention described in [Claim 1] is characterized in that one electrode disposed in the vacuum vessel with a slight inclination with respect to the vertical It also has another electrode for holding the substrate in the vacuum vessel with a slight inclination to face the same, and a heater disposed on the back side of the other electrode opposite to the substrate, and also functions as a heater cover. Heating the substrate with the heater through the other electrode, and applying a high-frequency voltage between the two electrodes while supplying the source gas into the vacuum vessel to form a source gas plasma between the two electrodes. In the film forming apparatus for performing a predetermined film formation on the substrate by contacting a heat equalizing plate formed of a material having a high thermal conductivity on the back surface of the other electrode so that the heat distribution of the substrate is uniform. Now that we have configured
As a result of the heat generated by the heater, the heat equalizing plate is first uniformly heated, so that the electrodes are also uniformly heated. Thus, the surface temperature distribution of the substrate is kept uniform.
As a result, according to the present invention, a desired film having a uniform film thickness and film quality can be obtained by making the temperature distribution by heating the substrate prior to the film forming process uniform.
[0037]
[Claim 2] The invention according to claim 2, wherein one of the electrodes arranged in the vacuum vessel with a slight inclination with respect to a vertical plane and the other of the vacuum vessel with a slight inclination to face the one electrode. The other electrode that holds the substrate within, and a heater disposed on the back side that is opposite to the substrate of the other electrode, the heater through the other electrode that also functions as a heater cover A predetermined film is formed on the substrate by heating the substrate and applying a high-frequency voltage between the two electrodes while supplying a source gas into the vacuum vessel to form a source gas plasma between the two electrodes. In the film forming apparatus, a heat equalizing plate formed of a material having high thermal conductivity is brought into contact with the back surface of the other electrode so that the heat distribution of the substrate becomes uniform, and the warpage of the substrate due to heating of the heater is regulated. So that the substrate At least four corners, is provided with the presser bar for pressing the substrate from the surface side of the substrate,
When the temperature of the substrate is rapidly increased, a temperature difference is generated between the back surface and the front surface of the substrate, and the difference in the amount of thermal expansion caused by the temperature difference results in the back surface being longer than the front surface. It is possible to suppress warpage such that the rear surface side is convex. That is, although the peripheral portion of the substrate tends to jump up to one electrode side, the deformation due to the jumping is restricted at the time of contact with the front end face of the presser bar, and further deformation is prevented.
As a result, according to the present invention, in addition to the same effect as the invention described in [Claim 1], deformation of the substrate due to rapid temperature rise can be prevented by pressing the four corners of the substrate with the pressing rods. It also has an effect.
[0038]
The invention described in [Claim 3] is a film forming apparatus according to [Claim 1] or [Claim 2], wherein a thermal expansion coefficient is further increased between the other electrode and the heat equalizing plate. Because a porous member such as a punching metal formed of a material close to the electrode was interposed,
The porous member absorbs a difference in thermal expansion coefficient between the electrode (heater cover) and the heat equalizing plate to prevent thermal deformation of the electrode (heater cover). That is, since the heat equalizing plate is formed of a material having a significantly higher coefficient of thermal expansion than the electrode (heater cover), when the two are directly adhered, the electrode (heater cover) may be thermally deformed. For example, by interposing a porous member between the electrode (heater cover) and the heat equalizing plate as in the present invention, the porous member can reduce thermal deformation caused by a difference in coefficient of thermal expansion, thereby reducing the electrode (heater cover). This has the effect of preventing the deformation of ()).
[0039]
In the invention described in [Claim 4], in any one of the film forming apparatuses described in [Claim 1] to [Claim 3], the heat equalizing plate is formed of an aluminum plate.
The actions and effects of [claims 1] to [claim 3] can be favorably obtained.
[0040]
The invention described in [Claim 5] is characterized in that, in any one of the film forming apparatuses according to [Claim 1] to [Claim 4], in the heating step of the substrate prior to the film forming step, the molecular weight is stored in a vacuum vessel. Is supplied between the heat equalizing plate and the other electrode, or between the heat equalizing plate and the porous member and between the porous member and the other electrode. Because it was configured to heat the
The heat generated by the heater can be transmitted to the heat equalizing plate and the electrode (heater cover) even through a gas having good heat conduction performance.
As a result, according to the present invention, it is possible to obtain more favorable temperature rising characteristics of the substrate.
[0041]
In the invention according to [claim 6], in the film forming apparatus according to [claim 5], the gas is hydrogen gas.
The operation and effect of [Claim 6] can be favorably obtained.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a plasma CVD apparatus which is a film forming apparatus according to a first embodiment of the present invention.
FIG. 2 is a schematic configuration diagram showing a plasma CVD apparatus which is a film forming apparatus according to a second embodiment of the present invention.
FIG. 3 is a schematic configuration diagram showing a plasma CVD apparatus according to a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vacuum container 2 High frequency power supply 3 Electrode 4 Electrode 5 Substrate 7 Heater 11 Heat equalizing plate 12 Support frame 13 Holding rod 14 Porous member

Claims (6)

垂直面に対して若干傾斜させて真空容器内に配設した一方の電極と、この一方の電極に相対向するよう同様に若干傾斜させて前記真空容器内で基板を保持する他方の電極と、この他方の電極の反基板側である裏面側に配設したヒータとを有し、ヒータカバーとしても機能する前記他方の電極を介して前記ヒータで前記基板を加熱するとともに、前記真空容器内に原料ガスを供給しつつ前記両電極間に高周波電圧を印加して両電極間に原料ガスプラズマを形成することにより前記基板上に所定の製膜を行う製膜装置において、
前記基板の熱分布が均一になるよう他方の電極の裏面に熱伝導率が高い材料で形成した均熱板を当接させて構成したことを特徴とする製膜装置。
One electrode disposed in the vacuum vessel with a slight inclination with respect to the vertical plane, and the other electrode holding the substrate in the vacuum vessel with a slight inclination in the same manner as opposed to the one electrode, A heater disposed on the back side of the other electrode opposite to the substrate, and heating the substrate with the heater via the other electrode also functioning as a heater cover, and into the vacuum vessel. In a film forming apparatus for forming a predetermined film on the substrate by applying a high-frequency voltage between the two electrodes while supplying a source gas to form a source gas plasma between the two electrodes,
A film forming apparatus characterized in that a heat equalizing plate made of a material having high thermal conductivity is brought into contact with the back surface of the other electrode so that the heat distribution of the substrate becomes uniform.
垂直面に対して若干傾斜させて真空容器内に配設した一方の電極と、この一方の電極に相対向するよう同様に若干傾斜させて前記真空容器内で基板を保持する他方の電極と、この他方の電極の反基板側である裏面側に配設したヒータとを有し、ヒータカバーとしても機能する前記他方の電極を介して前記ヒータで前記基板を加熱するとともに、前記真空容器内に原料ガスを供給しつつ前記両電極間に高周波電圧を印加して両電極間に原料ガスプラズマを形成することにより前記基板上に所定の製膜を行う製膜装置において、
前記基板の熱分布が均一になるよう他方の電極の裏面に熱伝導率が高い材料で形成した均熱板を当接させるとともに、
前記ヒータの加熱による前記基板の反りを規制するよう、前記基板の少なくとも4隅に、この基板の表面側から基板を押える押え棒を設けたことを特徴とする製膜装置。
One electrode disposed in the vacuum vessel with a slight inclination with respect to the vertical plane, and the other electrode holding the substrate in the vacuum vessel with a slight inclination in the same manner as opposed to the one electrode, A heater disposed on the back side of the other electrode opposite to the substrate, and heating the substrate with the heater via the other electrode also functioning as a heater cover, and into the vacuum vessel. In a film forming apparatus for forming a predetermined film on the substrate by applying a high-frequency voltage between the two electrodes while supplying a source gas to form a source gas plasma between the two electrodes,
Attaching a heat equalizing plate formed of a material having a high thermal conductivity to the back surface of the other electrode so that the heat distribution of the substrate becomes uniform,
A film forming apparatus, comprising: a holding rod for holding a substrate from the front surface side of the substrate at at least four corners of the substrate so as to regulate the warpage of the substrate due to the heating of the heater.
〔請求項1〕又は〔請求項2〕に記載する製膜装置において、
他方の電極と均熱板との間に、さらに熱膨張係数がより前記他方の電極に近い材料で形成したパンチングメタル等の多孔質部材を介在させたことを特徴とする製膜装置。
In the film forming apparatus according to [claim 1] or [claim 2],
A film forming apparatus characterized in that a porous member such as a punching metal formed of a material having a thermal expansion coefficient closer to that of the other electrode is interposed between the other electrode and the heat equalizing plate.
〔請求項1〕乃至〔請求項3〕に記載する何れか一つの製膜装置において、
均熱板をアルミ板で形成したことを特徴とする製膜装置。
In any one of the film forming apparatuses described in [Claim 1] to [Claim 3],
A film forming apparatus characterized in that a soaking plate is formed of an aluminum plate.
〔請求項1〕乃至〔請求項4〕に記載する何れか一つの製膜装置において、
製膜工程に先立つ基板の加熱工程において、真空容器内に分子量が小さいガスを供給し、このガスが均熱板と他方の電極との間、又は均熱板と多孔質部材及び多孔質部材と他方の電極間との間に充填された状態でヒータによる基板の加熱を行うように構成したことを特徴とする製膜装置。
In any one of the film forming apparatuses described in [Claim 1] to [Claim 4],
In the substrate heating step prior to the film forming step, a gas having a small molecular weight is supplied into the vacuum vessel, and the gas is supplied between the heat equalizing plate and the other electrode, or between the heat equalizing plate and the porous member and the porous member. A film forming apparatus characterized in that a substrate is heated by a heater in a state where the substrate is filled between the other electrodes.
〔請求項5〕に記載する製膜装置において、
ガスは水素ガスとしたことを特徴とする製膜装置。
In the film forming apparatus according to claim 5,
A film forming apparatus characterized in that the gas is hydrogen gas.
JP2003113658A 2003-04-18 2003-04-18 Film forming device Pending JP2004319863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003113658A JP2004319863A (en) 2003-04-18 2003-04-18 Film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003113658A JP2004319863A (en) 2003-04-18 2003-04-18 Film forming device

Publications (1)

Publication Number Publication Date
JP2004319863A true JP2004319863A (en) 2004-11-11

Family

ID=33473487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003113658A Pending JP2004319863A (en) 2003-04-18 2003-04-18 Film forming device

Country Status (1)

Country Link
JP (1) JP2004319863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294154A (en) * 2007-05-23 2008-12-04 Sharp Corp Cvd apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294154A (en) * 2007-05-23 2008-12-04 Sharp Corp Cvd apparatus

Similar Documents

Publication Publication Date Title
JP3310171B2 (en) Plasma processing equipment
US7565880B2 (en) Plasma CVD apparatus, and method for forming film and method for forming semiconductor device using the same
JPH09312269A (en) Heating control device
JP3990867B2 (en) Deposited film forming apparatus and deposited film forming method
JPH10223621A (en) Vacuum treating apparatus
US7032536B2 (en) Thin film formation apparatus including engagement members for support during thermal expansion
TW201541536A (en) Plasma processing apparatus and electrostatic chuck thereof
KR100730379B1 (en) Heater module of chemical vapor deposition apparatus
JP4633264B2 (en) Combined heater with serrated plate of ceramic foil and gas assist
KR20130102577A (en) Substrate heating device
JP2002146540A (en) Substrate heater
JP2004319863A (en) Film forming device
JPH06260422A (en) Method and device for heating glass substrate
EP1858061B1 (en) Plasma treatment apparatus and semiconductor thin film manufacturing method using same
KR20020011793A (en) wide area heating module for fabricating semiconductor device
JPH1064920A (en) Substrate heater
JP4890313B2 (en) Plasma CVD equipment
JP2000260720A (en) Apparatus for manufacturing semiconductor
JP2008244155A (en) Heating-cooling method and heating-cooling equipment for heating and cooling substrate in vacuum
JPH11100674A (en) Vacuum treating device
JP5052206B2 (en) CVD equipment
JP2000054141A (en) Substrate placing stand in vapor growth device and vapor growth device
JPH04289168A (en) Thin film forming substrate holder
TWM655800U (en) Wafer carrier with heating function
JPH10135227A (en) Heating apparatus for semiconductor manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Effective date: 20051117

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060808

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212