JP2004315853A - Copper powder, manufacturing method therefor, copper paste using the copper powder, copper paint and electrode - Google Patents

Copper powder, manufacturing method therefor, copper paste using the copper powder, copper paint and electrode Download PDF

Info

Publication number
JP2004315853A
JP2004315853A JP2003108106A JP2003108106A JP2004315853A JP 2004315853 A JP2004315853 A JP 2004315853A JP 2003108106 A JP2003108106 A JP 2003108106A JP 2003108106 A JP2003108106 A JP 2003108106A JP 2004315853 A JP2004315853 A JP 2004315853A
Authority
JP
Japan
Prior art keywords
copper
fine particles
copper powder
sulfur compound
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003108106A
Other languages
Japanese (ja)
Other versions
JP4252349B2 (en
Inventor
Masanori Tomonari
雅則 友成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2003108106A priority Critical patent/JP4252349B2/en
Publication of JP2004315853A publication Critical patent/JP2004315853A/en
Application granted granted Critical
Publication of JP4252349B2 publication Critical patent/JP4252349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper powder used for an electrode in a capacitor or the like, which has improved oxidation resistance. <P>SOLUTION: This copper powder has the surface of a copper particle modified with 0.1-20 wt.% sulfur compounds such as mercaptopropionate, dodecanthiol, hexanethiol, methyl thioglycolate, ethyl thioglycolate and cysteine. The method for producing such a copper powder comprises, for instance, reacting a copper compound with a reducing agent in a medium to obtain copper particles, and subsequently contacting the obtained copper particles with a sulfur compound to modify the surface of the copper particles with the sulfur compound. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、耐酸化性に優れた銅粉末及びその製造方法、並びにその銅粉末を用いた銅ペースト、銅塗料、更には電極に関する。
【0002】
【従来の技術】
銅粉末は良好な電気伝導性を有する廉価な材料であり、コンデンサー等の外部電極、プリント配線板の回路等の電極部材や、各種電気的接点部材などの電気的導通を確保するための材料として幅広く用いられている。また、近年、積層セラミックスコンデンサーの内部電極にも用いられ始めている。積層セラミックスコンデンサーは、電解コンデンサー、フィルムコンデンサー等他の形式のコンデンサーと比較して、大容量が得られ易く、実装性に優れ、安全性・安定性が高いので、急速に普及している。最近の電子機器の小型化に伴い、積層セラミックスコンデンサーも小型化する方向にあるが、大容量を維持するには、セラミックスシートの積層数を減らさずに小型化する必要があり、強度等の点でシートの薄層化には限界があるため、パラジウム、ニッケルや銅などの微細な金属粒子を用い内部電極を薄層化することで、積層セラミックスコンデンサーの小型化を実現している。
【0003】
このような銅粉末の製造方法としては、アラビアゴム等の高分子化合物を保護コロイドとして用い、ヒドラジン系還元剤により酸化銅を還元する方法(例えば特許文献1参照)や、メルカプトプロピオン酸等の硫黄化合物及び高分子化合物等の保護コロイドの存在下で、銅酸化物とヒドラジン系還元剤等の還元剤とを反応させる方法(例えば特許文献2参照)が知られている。
【0004】
【特許文献1】
特公昭61−55562号公報
【特許文献2】
特願2003−47382号明細書
【0005】
【発明が解決しようとする課題】
前記の方法などで得られた銅粉末は、エポキシ樹脂、フェノール樹脂などのバインダーと混合してペースト化あるいは塗料化し、この銅ペースト・塗料を、例えば、プリント配線板であれば、基板板にスクリーン印刷した後、積層セラミックスコンデンサーであれば、薄層のセラミックスシート上に塗布し、シートを積層した後、それぞれ加熱焼成して電気回路、電極等を形成している。電気的導通を確保するには、用いる銅粉末に酸化銅ができる限り含まれないものが良いが、銅粉末は非常に酸化され易く、保存の状態によっても、あるいは、ペースト化・塗料化の段階でも徐々に酸化が進むという問題がある。更には、銅ペースト、銅塗料を塗布した積層シート等を窒素ガス等の不活性ガスを用いて非酸化性雰囲気下で加熱焼成を行っても、銅微粒子表面の酸化を十分に防げず、所望の性能の電極が得られないという問題がある。そこで、本発明は、以上に述べた従来技術の問題点を克服し、耐酸化性に優れた銅粉末、及びその製造方法を提供するものである。
【0006】
【課題を解決するための手段】
本発明者は、これらの問題点を解決すべく鋭意研究を重ねた結果、銅微粒子の表面を硫黄化合物で修飾させることにより、銅微粒子の耐酸化性が改善されることを見出し、本発明を完成させた。
【0007】
即ち、本発明は、(1)銅微粒子の表面に0.1〜20重量%の範囲の硫黄化合物が処理され、非酸化性雰囲気下60℃の温度で10時間加熱後の重量(W)に対し、更に酸化性雰囲気下500℃の温度で20分間加熱後の重量(W)の増加率((W−W)/W×100)が最大で15%であることを特徴とする銅粉末であり、また、(2)媒液中で銅化合物と還元剤とを反応させて銅微粒子を得る工程、得られた銅微粒子と硫黄化合物とを接触させて銅微粒子の表面に硫黄化合物を処理する工程とからなることを特徴とする銅粉末の製造方法である。また、本発明は、前記(1)の銅粉末を配合してなる銅ペーストまたは銅塗料であり、更には、前記(1)の銅粉末を用いた電極である。
【0008】
【発明の実施の形態】
本発明は、耐酸化性を改善した銅粉末であって、銅微粒子の表面に0.1〜20重量%の範囲の硫黄化合物を表面修飾処理されたものである。硫黄化合物は金属銅と非常に反応し易く、両者を単に接触させるだけでも硫黄原子が金属銅原子と化学結合するので、硫黄化合物は銅微粒子の表面に強固に修飾される。この修飾された硫黄化合物は、電極を形成する際に高温で加熱焼成すると、硫黄化合物に含まれる有機成分が分解され、銅微粒子の表面で銅硫化物の皮膜が形成されるので、表面の酸化を防ぐことができるのではないかと推測される。一方、前記特許文献2に記載のように、銅酸化物を還元して銅微粒子が生成する過程で硫黄化合物を用いても、生成した金属銅原子と硫黄原子の配位的な結合状態が異なるためか、本発明のような優れた耐酸化性は得られていない。本発明では、硫黄化合物を銅微粒子に対して、少なくとも0.1〜20重量%の範囲処理すると、耐酸化性の向上が認められ、この範囲より少ないと所望の耐酸化性が得られず、この範囲より多くしても更なる効果は得られず経済的でない。より好ましい硫黄化合物の処理量は0.5〜10重量%である。
【0009】
本発明では、耐酸化性の指標として加熱焼成後の重量増加率を用いる。金属銅が完全に酸化されるとCuOとなり、理論上約25%の重量増加率となるが、本発明の銅粉末は、最大でも15%の重量増加率(即ち0〜15%)であり、好ましくは13%以下の重量増加率(即ち0〜13%)であり、より好ましくは10%以下の重量増加率(即ち0〜10%)である。重量増加率は、銅粉末を窒素ガス、ヘリウムガス、アルゴンガスなどの非酸化性雰囲気下60℃の温度で10時間加熱した後の金属銅重量(W)に対して、その後更に、空気、酸素ガスなどの酸化性雰囲気下500℃の温度で20分間加熱した後の重量(W)の増加率((W−W)/W×100)で算出する。
【0010】
銅微粒子表面の処理に用いられる硫黄化合物としては、メルカプト基(−SH)を持つ有機化合物RSH(Rはアルキル基などの炭化水素基)であるチオール化合物及びその誘導体の他に、チオン類、チオ炭酸類、チオ尿素類、硫化水素等の硫黄化合物及びそれらの誘導体等を用いることができ、例えば、メルカプトプロピオン酸、メルカプト酢酸、チオジプロピオン酸、メルカプトコハク酸、チオ酢酸等の酸チオール類、メチルメルカプタン、エチルメルカプタン、プロピルメルカプタン、イソプロピルメルカプタン、n−ブチルメルカプタン、ドデカンチオール、ヘキサンチオール、アリルメルカプタン、ジメチルメルカプタン、メルカプトエタノール、アミノエチルメルカプタン、チオジエチルアミン、システイン等の脂肪族チオール類、シクロヘキシルチオール等の脂環式チオール類、チオフェノール等の芳香族チオール類等のチオール類、チオジエチレングリコール、チオジグリコール酸、チオグリコール酸メチル、チオグリコール酸エチル、エチレンチオグリコール等のチオグリコール類、チオホルムアミド等のチオアミド類、ジチオール類、チオン類、ポリチオール類、チオ炭酸類、チオ尿素類、硫化水素等の硫黄化合物及びそれらの誘導体等が挙げられ、これらを1種または2種以上を用いても良い。中でもメルカプトプロピオン酸、ドデカンチオール、ヘキサンチオール、チオグリコール酸メチル、チオグリコール酸エチル、システインがその効果が高く好ましい。
【0011】
銅微粒子としては種々の形状のもの、あるいは、種々の粒子径のものを用いることができる。例えば、銅微粒子の平均粒子径を1.0μm以下にすると、欠陥がほとんど無い高密度の電極が得られ易く、0.005μm以上にするとペースト、塗料等への分散性に優れているので、0.005〜1.0μmの範囲とするのが好ましい。より好ましい範囲は0.05〜1.0μmの範囲であり、更に好ましい範囲は0.1〜1.0μmであり、最も好ましい範囲は0.2〜1.0μmである。また、粒子形状は充填性に影響を及ぼすので、ほぼ真球の球状粒子とするのが好ましい。平均粒子径は電子顕微鏡法により測定した累積50%径で表され、粒子形状も電子顕微鏡で観察される。
【0012】
銅微粒子は、公知の方法で製造することができ、例えば、アトマイズ法等の気相で還元反応させる方法、前記特許文献1に記載のアラビアゴム、ゼラチン等の高分子化合物を保護コロイドとして含む水性媒液中で、ヒドラジン系還元剤により酸化銅を還元する方法等が挙げられる。また、前記特許文献2に記載のメルカプトプロピオン酸等の硫黄化合物及び高分子化合物等の保護コロイドの存在下で、酸化第一銅、酸化第二銅等の銅酸化物とヒドラジン系還元剤等の還元剤とを媒液中で反応させる方法を用いることができる。
【0013】
本発明では、銅微粒子の製法として媒液中で銅化合物と還元剤とを反応させる方法が、生成した銅微粒子を乾燥せずにその媒液中で硫黄化合物の表面処理が行えるため、工業的に有利であるので好ましく、特に、銅酸化物と還元剤との反応を硫黄化合物及び保護コロイドの存在下で行うと、凝集粒子がほとんど無く分散性に優れ、粒子形状の整った銅微粒子が得られるので更に好ましい。これらの方法では、媒液中、例えば水系またはアルコール等の有機溶媒系媒液中で、好ましくは水系媒液中で、後述する銅化合物または銅酸化物と還元剤とを混合して、好ましくは硫黄化合物、保護コロイドの存在下で、還元反応を行う。反応温度は10℃〜用いた媒液の沸点の範囲であれば反応が進み易いので好ましく、40〜95℃の範囲であれば更に好ましい。反応液のpHを酸またはアルカリで3〜12の範囲に予め調整すると、銅酸化物の沈降を防ぎ、均一に反応させることができるので好ましい。銅微粒子が生成した後、必要に応じて通常の方法により、濾過、洗浄を行っても良い。その後、乾燥を行っても差し支えないが、敢えて乾燥を行う必要はなく、濾過、洗浄後の銅微粒子を媒液中に分散するのが良い。
【0014】
原料の銅化合物としては、塩化銅、塩素酸銅、臭化銅、ヨウ化銅、硫酸銅、硝酸銅、炭酸銅、水酸化銅、酸化銅、炭酸水酸化銅、テトラアンミン銅硫酸塩、テトラシアノ銅酸カリウム等やそれらの水和物の無機銅化合物、蟻酸銅、酢酸銅、シュウ酸銅等やそれらの水和物の有機銅化合物を用いることができる。また、銅酸化物としては、通常の銅の酸化物の他に、銅の含水酸化物、銅の水酸化物を包含する意味で用いており、銅の酸化物としては亜酸化銅(または酸化第一銅)、酸化銅(または酸化第二銅)等を用いることができる。還元剤としては公知のものを用いることができ、例えば、ヒドラジンや、塩酸ヒドラジン、硫酸ヒドラジン、抱水ヒドラジン等のヒドラジン化合物等のヒドラジン系還元剤、水素化ホウ素ナトリウム、亜硫酸ナトリウム、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、亜硝酸ナトリウム、次亜硝酸ナトリウム、亜リン酸及び亜リン酸ナトリウム等のその金属塩、次亜リン酸及び次亜リン酸ナトリウム等のその金属塩、アルデヒド類、アルコール類、アミン類、糖類等が挙げられ、これらを1種または2種以上を用いても良い。特に、ヒドラジン系還元剤は還元力が強く好ましい。還元剤の使用量は、銅化合物から銅微粒子を生成できる量であれば適宜設定することができ、銅化合物中に含まれる銅1モルに対し0.2〜5モルの範囲にあるのが好ましい。
【0015】
また、還元反応時に用いる硫黄化合物としては、前記の表面処理の硫黄化合物を用いることができる。硫黄化合物の使用量は適宜設定することができ、少なくとも、銅酸化物1000重量部に対し0.5〜50重量部の範囲に設定するとその効果が得られ易いので好ましく、1〜20重量部の範囲が更に好ましい。また、保護コロイドとして公知のものを用いることができ、例えば、ゼラチン、アラビアゴム、カゼイン、カゼイン酸ソーダ、カゼイン酸アンモニウム等のタンパク質系、デンプン、デキストリン、寒天、アルギン酸ソーダ等の天然高分子や、ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、エチルセルロース等のセルロース系、ポリビニルアルコール、ポリビニルピロリドン等のビニル系、ポリアクリル酸ソーダ、ポリアクリル酸アンモニウム等のアクリル酸系、ステアリン酸等の高級脂肪酸、ポリエチレングリコール等の合成高分子、クエン酸等の多価カルボン酸、アニリンまたはそれらの誘導体等が挙げられ、これらを1種または2種以上を用いても良い。保護コロイドは、生成した銅微粒子の分散安定化剤として作用するものであり、その使用量を銅酸化物100重量部に対し1〜100重量部の範囲にすると、生成した銅微粒子が分散安定化し易いので好ましく、2〜50重量部の範囲が更に好ましい。
【0016】
次いで、銅微粒子と硫黄化合物とを接触させて、銅微粒子の表面に硫黄化合物を処理する。その方法には特に制限は無く、銅微粒子と硫黄化合物とをヘンシェルミキサー、スーパーミキサー等の高速撹拌機を用いて混合する所謂乾式処理を用いても良い。しかし、銅微粒子を分散させた媒液に硫黄化合物を添加、撹拌する所謂湿式処理は、より均一に接触させることができるので好ましく、また、前記の媒液中で銅化合物と還元剤とを反応させる方法を適用する場合には、連続的に操作が行える。媒液に用いる分散媒は、硫黄化合物との相溶性に応じて、水やアルコール類等の有機溶媒を適宜選択する。硫黄化合物としては、前記の硫黄化合物を用いることができる。硫黄化合物の使用量は、銅微粒子中の銅に対し好ましくは0.1〜20重量%の範囲であり、この範囲より少ないと所望の耐酸化性が得られず、この範囲より多くしても更なる効果は得られず経済的でない。より好ましい範囲は0.5〜10重量%である。
【0017】
湿式処理で硫黄化合物を被覆した後は、必要に応じて通常の方法により、濾過、洗浄、乾燥を行い、乾式処理で硫黄化合物を被覆した後は必要に応じて乾燥を行う。乾燥は銅微粒子が酸化しないように、窒素ガス、ヘリウムガス、アルゴンガス等の非酸化性ガス(不活性ガス)の雰囲気下で行うのが好ましい。銅微粒子を非酸化性雰囲気下60℃の温度で10時間加熱乾燥すると、耐酸化性の指標となる重量増加率の算定基準とすることができる。乾燥後は、必要に応じて粉砕を行っても良い。
【0018】
本発明の銅粉末は、必要に応じて溶媒あるいはバインダー樹脂と混合して、銅ペーストあるいは銅塗料(銅インク)にして用いられる。溶媒は用途に応じて適宜選択することができ、例えば、比較的に高沸点な非極性溶剤あるいは低極性溶剤、具体的には、テルピネオール、ミネラルスピリット、キシレン、トルエン、エチルベンゼン、メシチレン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、シクロヘキサン、シクロオクタン等を用いることができる。また、バインダー樹脂も用途に応じて適宜選択することができ、例えば、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ジアリルフタレート樹脂、オリゴエステルアクリレート樹脂、キシレン樹脂、ビスマレイミドトリアジン樹脂、フラン樹脂、ユリア樹脂、ポリウレタン樹脂、メラミン樹脂、シリコン樹脂等の熱硬化性樹脂を挙げることができ、フェノール樹脂、エポキシ樹脂は、基板との密着性が良好であるので、樹脂成分としてより好ましいものである。溶媒、バインダー樹脂の配合量は用途に応じて適宜設定することができ、例えば、銅粉末100重量部に対して、溶媒は1〜500重量部程度、バインダー樹脂は1〜50重量部程度とすることができる。このような銅ペーストあるいは銅塗料(銅インク)は、通常の方法により基板に塗布後、加熱焼成して、積層セラミックスコンデンサーの内部電極、プリント配線基板の回路等や、その他の電極を製造するのに用いることができる。本発明の銅粉末は耐酸化性に優れているので、これを用いて製造した前記の電極は電気特性の優れたものとなる。
【0019】
【実施例】
以下に実施例を挙げて、本発明を更に詳細に説明するが、本発明はこれらの実施例により制限されるものではない。
【0020】
実施例1
保護コロイドとしてアラビアゴム2gを2900ミリリットルの純水に添加した後、工業用酸化銅(N−120:エヌシーテック社製)125gを添加し撹拌しながら、80%ヒドラジン一水和物を360ミリリットル添加した。ヒドラジン一水和物の添加後から3時間かけ室温から60℃に昇温し、更に2時間かけて酸化銅と反応させ、平均粒子径が0.6μmの銅微粒子を生成させた。次いで、銅微粒子中の銅に対し1重量%に相当する3−メルカプトプロピオン酸を添加し、30分間撹拌した。その後、濾液比抵抗が100μS/cm以下になるまで濾過洗浄し、窒素ガスの雰囲気下で60℃の温度で10時間かけて乾燥し、銅粉末(試料A)を得た。
【0021】
実施例2〜7
実施例1において3−メルカプトプロピオン酸の添加量を3重量%、5重量%としたものを実施例2、7(試料B、C)とし、3−メルカプトプロピオン酸に替えて、3重量%のヘキサンチオール、ドデカンチオール、チオグリコール酸エチル及びL−システインを用いたものをそれぞれ実施例4〜7(試料D〜G)とする。尚、ヘキサンチオール、ドデカンチオール、チオグリコール酸エチルは水に不溶であるため、分散媒を純水からエタノールに変更した。
【0022】
実施例8
工業用亜酸化銅(NC−102:エヌシーテック社製)30g、硫黄化合物として3−メルカプトプロピオン酸0.085g、保護コロイドとしてゼラチン5gを400ミリリットルの純水に添加、混合し、10%の硫酸を用いて混合液のpHを7に調整した後、20分かけて室温から90℃まで昇温した。昇温後、撹拌しながら80%ヒドラジン一水和物を添加し、2時間かけて亜酸化銅と反応させ、平均粒子径が0.45μmの銅微粒子を生成させた。次いで、銅微粒子中の銅に対し3重量%に相当する3−メルカプトプロピオン酸を添加し、30分間撹拌した。その後、濾液比抵抗が100μS/cm以下になるまで濾過洗浄し、窒素ガスの雰囲気下で60℃の温度で10時間かけて乾燥し、銅粉末(試料H)を得た。
【0023】
実施例9
分散媒を純水からエタノールに変更し、3−メルカプトプロピオン酸をドデカンチオールに変更した以外は実施例8と同様にして、銅粉末(試料I)を得た。
【0024】
比較例1、2
実施例1及び8において、3−メルカプトプロピオン酸を添加せずに得た銅粉末を、それぞれ比較例1、2(試料J、K)とする。
【0025】
評価1:耐酸化性の評価
実施例1〜9、比較例1、2で得られた試料A〜K10gを、150℃、200℃、300℃、400℃、500℃の温度で、それぞれ20分間加熱焼成した後の重量を測定した。結果を表1に示す。重量増加が少ない程、耐酸化性が優れており、本発明の銅粉末は、耐酸化性が優れていることが判る。
【0026】
【表1】

Figure 2004315853
【0027】
【発明の効果】
本発明は、銅微粒子の表面に0.1〜20重量%の範囲の、メルカプトプロピオン酸、ドデカンチオール、ヘキサンチオール、チオグリコール酸メチル、チオグリコール酸エチル、システイン等の硫黄化合物が処理された、耐酸化性が改善された銅粉末であり、コンデンサー等の外部電極、内部電極、プリント配線板の回路等の電極部材や、各種電気的接点部材などの電気的導通を確保するための材料として有用である。特に、本発明の銅粉末を銅ペースト、銅塗料(銅インク)等にして、例えば、積層セラミックスコンデンサーの内部電極、プリント配線基板の回路等や、その他の電極に用いると、電気特性の優れたものが得られると期待される。
【0028】
また、本発明は、媒液中で銅化合物と還元剤とを反応させて銅微粒子を得る工程、得られた銅微粒子と硫黄化合物とを接触させて銅微粒子の表面に硫黄化合物を処理する工程とからなることを特徴とする銅粉末の製造方法であり、耐酸化性が改善された銅粉末を簡便に製造することができる。特に、銅微粒子を得る工程において、銅酸化物と還元剤との反応を硫黄化合物及び保護コロイドの存在下で行うと、耐酸化性がより改善され、凝集粒子がほとんど無く分散性に優れ、粒子形状の整った銅粉末を製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a copper powder excellent in oxidation resistance, a method for producing the same, a copper paste using the copper powder, a copper paint, and an electrode.
[0002]
[Prior art]
Copper powder is an inexpensive material with good electrical conductivity, and as a material to ensure electrical continuity such as external electrodes such as capacitors, electrode members such as printed wiring board circuits, and various electrical contact members. Widely used. In recent years, it has begun to be used for internal electrodes of multilayer ceramic capacitors. Multilayer ceramic capacitors are rapidly spreading because they are easy to obtain a large capacity compared to other types of capacitors such as electrolytic capacitors and film capacitors, are excellent in mountability, and have high safety and stability. With the recent miniaturization of electronic equipment, multilayer ceramic capacitors are also in the direction of miniaturization, but in order to maintain a large capacity, it is necessary to miniaturize without reducing the number of laminated ceramic sheets. However, since there is a limit to thinning the sheet, the miniaturization of the multilayer ceramic capacitor is realized by thinning the internal electrode using fine metal particles such as palladium, nickel and copper.
[0003]
As a method for producing such copper powder, a method of reducing copper oxide with a hydrazine-based reducing agent using a polymer compound such as gum arabic as a protective colloid, or sulfur such as mercaptopropionic acid is used. A method of reacting a copper oxide and a reducing agent such as a hydrazine-based reducing agent in the presence of a protective colloid such as a compound or a polymer compound is known (see, for example, Patent Document 2).
[0004]
[Patent Document 1]
Japanese Patent Publication No. 61-55562 [Patent Document 2]
Japanese Patent Application No. 2003-47382 Specification
[Problems to be solved by the invention]
The copper powder obtained by the above method is mixed with a binder such as an epoxy resin or a phenol resin to form a paste or paint, and this copper paste / paint is, for example, a printed wiring board, screened on a substrate board. After printing, if it is a multilayer ceramic capacitor, it is applied onto a thin ceramic sheet, the sheets are laminated, and then heated and fired to form an electric circuit, an electrode, and the like. In order to ensure electrical continuity, the copper powder used should not contain copper oxide as much as possible, but the copper powder is very easy to oxidize, depending on the state of storage, or at the stage of pasting / painting However, there is a problem that oxidation proceeds gradually. Furthermore, it is not possible to sufficiently prevent the oxidation of the surface of the copper fine particles even when a copper paste, a laminated sheet coated with a copper paint is heated and fired in an inert gas such as nitrogen gas in a non-oxidizing atmosphere. There is a problem that an electrode of the performance cannot be obtained. Therefore, the present invention overcomes the problems of the prior art described above and provides a copper powder excellent in oxidation resistance and a method for producing the same.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve these problems, the present inventor has found that the oxidation resistance of the copper fine particles is improved by modifying the surface of the copper fine particles with a sulfur compound. Completed.
[0007]
That is, the present invention is as follows: (1) The weight (W 1 ) after heating for 10 hours at a temperature of 60 ° C. in a non-oxidizing atmosphere in which a sulfur compound in the range of 0.1 to 20% by weight is treated on the surface of the copper fine particles. On the other hand, the rate of increase in weight (W 2 ) after heating for 20 minutes at a temperature of 500 ° C. in an oxidizing atmosphere ((W 2 −W 1 ) / W 1 × 100) is a maximum of 15%. And (2) a step of obtaining a copper fine particle by reacting a copper compound and a reducing agent in a liquid medium, bringing the obtained copper fine particle and a sulfur compound into contact with each other on the surface of the copper fine particle. It is a manufacturing method of the copper powder characterized by comprising the process of processing a sulfur compound. Moreover, this invention is a copper paste or copper coating material which mix | blends the copper powder of said (1), Furthermore, it is an electrode using the copper powder of said (1).
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is a copper powder with improved oxidation resistance, wherein the surface of a copper fine particle is surface-modified with a sulfur compound in the range of 0.1 to 20% by weight. Sulfur compounds are very easy to react with metallic copper, and even if they are simply brought into contact with each other, sulfur atoms are chemically bonded to metallic copper atoms, so that the sulfur compounds are strongly modified on the surface of the copper fine particles. When this modified sulfur compound is heated and fired at a high temperature when forming an electrode, the organic component contained in the sulfur compound is decomposed, and a copper sulfide film is formed on the surface of the copper fine particles. It is speculated that this can be prevented. On the other hand, as described in Patent Document 2, even when a sulfur compound is used in the process of producing copper fine particles by reducing copper oxide, the coordination state of the produced metallic copper atom and sulfur atom is different. Therefore, the excellent oxidation resistance as in the present invention has not been obtained. In the present invention, if the sulfur compound is treated in a range of at least 0.1 to 20% by weight with respect to the copper fine particles, an improvement in oxidation resistance is recognized, and if it is less than this range, the desired oxidation resistance cannot be obtained, Even if it exceeds this range, a further effect is not acquired and it is not economical. A more preferable amount of the sulfur compound is 0.5 to 10% by weight.
[0009]
In the present invention, the rate of weight increase after heating and firing is used as an index of oxidation resistance. When the copper metal is completely oxidized, it becomes CuO and theoretically has a weight increase rate of about 25%, but the copper powder of the present invention has a weight increase rate of 15% at the maximum (that is, 0 to 15%), The weight increase rate is preferably 13% or less (that is, 0 to 13%), and more preferably 10% or less (that is, 0 to 10%). The weight increase rate is based on the weight of copper metal (W 1 ) after heating the copper powder at a temperature of 60 ° C. for 10 hours in a non-oxidizing atmosphere such as nitrogen gas, helium gas, and argon gas. The weight (W 2 ) increase rate ((W 2 −W 1 ) / W 1 × 100) after heating for 20 minutes at a temperature of 500 ° C. in an oxidizing atmosphere such as oxygen gas is calculated.
[0010]
As the sulfur compound used for the treatment of the copper fine particle surface, in addition to thiol compounds and derivatives thereof, which are organic compounds RSH (R is a hydrocarbon group such as an alkyl group) having a mercapto group (-SH), thiones, thio Sulfur compounds such as carbonic acids, thioureas, hydrogen sulfide and their derivatives can be used, for example, acid thiols such as mercaptopropionic acid, mercaptoacetic acid, thiodipropionic acid, mercaptosuccinic acid, thioacetic acid, Aliphatic thiols such as methyl mercaptan, ethyl mercaptan, propyl mercaptan, isopropyl mercaptan, n-butyl mercaptan, dodecanethiol, hexanethiol, allyl mercaptan, dimethyl mercaptan, mercaptoethanol, aminoethyl mercaptan, thiodiethylamine, cysteine Thiols such as cycloaliphatic thiols such as cyclohexylthiol, thiols such as aromatic thiols such as thiophenol, thioglycols such as thiodiethylene glycol, thiodiglycolic acid, methyl thioglycolate, ethyl thioglycolate, ethylenethioglycol Thioamides such as thioformamide, dithiols, thiones, polythiols, thiocarbonates, thioureas, sulfur compounds such as hydrogen sulfide and their derivatives, etc., and these may be used alone or in combination May be. Of these, mercaptopropionic acid, dodecanethiol, hexanethiol, methyl thioglycolate, ethyl thioglycolate, and cysteine are preferred because of their high effects.
[0011]
As the copper fine particles, those having various shapes or those having various particle sizes can be used. For example, if the average particle diameter of the copper fine particles is 1.0 μm or less, a high-density electrode with almost no defects is easily obtained, and if it is 0.005 μm or more, the dispersibility in pastes, paints, etc. is excellent. A range of 0.005 to 1.0 μm is preferable. A more preferable range is 0.05 to 1.0 μm, a further preferable range is 0.1 to 1.0 μm, and a most preferable range is 0.2 to 1.0 μm. In addition, since the particle shape affects the filling property, it is preferable that the particles are substantially spherical particles. The average particle diameter is expressed as a cumulative 50% diameter measured by electron microscopy, and the particle shape is also observed with an electron microscope.
[0012]
The copper fine particles can be produced by a known method, for example, a method in which a reduction reaction is performed in a gas phase such as an atomizing method, an aqueous solution containing a polymer compound such as gum arabic or gelatin described in Patent Document 1 as a protective colloid. Examples thereof include a method of reducing copper oxide with a hydrazine-based reducing agent in a liquid medium. In the presence of a protective colloid such as a sulfur compound such as mercaptopropionic acid and a polymer compound described in Patent Document 2, a copper oxide such as cuprous oxide and cupric oxide, a hydrazine-based reducing agent, etc. A method of reacting a reducing agent in a liquid medium can be used.
[0013]
In the present invention, a method of reacting a copper compound and a reducing agent in a liquid medium as a method for producing copper fine particles allows the surface treatment of the sulfur compound in the liquid medium without drying the produced copper fine particles, so that it is industrial. In particular, when the reaction between the copper oxide and the reducing agent is performed in the presence of a sulfur compound and a protective colloid, copper particles having almost no aggregated particles, excellent dispersibility, and a well-shaped particle shape can be obtained. More preferable. In these methods, a copper compound or a copper oxide, which will be described later, is mixed in a medium, for example, in an organic solvent medium such as aqueous or alcohol, preferably in an aqueous medium, preferably, The reduction reaction is carried out in the presence of a sulfur compound and a protective colloid. The reaction temperature is preferably in the range of 10 ° C. to the boiling point of the liquid medium used, since the reaction is easy to proceed, and more preferably in the range of 40 to 95 ° C. It is preferable to adjust the pH of the reaction solution in the range of 3 to 12 in advance with an acid or an alkali, since the precipitation of copper oxide can be prevented and the reaction can be performed uniformly. After the copper fine particles are generated, filtration and washing may be performed by ordinary methods as necessary. Thereafter, drying may be performed, but it is not necessary to perform drying. It is preferable to disperse the copper fine particles after filtration and washing in the liquid medium.
[0014]
The raw material copper compound includes copper chloride, copper chlorate, copper bromide, copper iodide, copper sulfate, copper nitrate, copper carbonate, copper hydroxide, copper oxide, copper carbonate hydroxide, tetraammine copper sulfate, tetracyano copper An inorganic copper compound such as potassium acid or the hydrate thereof, copper formate, copper acetate, copper oxalate or the like, or an organic copper compound of the hydrate thereof can be used. In addition to the usual copper oxide, copper oxide is used to include copper hydrated oxide and copper hydroxide. Copper oxide is cuprous oxide (or oxidized). Cuprous), copper oxide (or cupric oxide), or the like can be used. As the reducing agent, known ones can be used, for example, hydrazine, hydrazine reducing agents such as hydrazine compounds such as hydrazine hydrochloride, hydrazine sulfate, hydrazine hydrate, sodium borohydride, sodium sulfite, sodium bisulfite, Metal salts such as sodium thiosulfate, sodium nitrite, sodium hyponitrite, phosphorous acid and sodium phosphite, metal salts such as hypophosphorous acid and sodium hypophosphite, aldehydes, alcohols, amines And saccharides may be used, and one or more of these may be used. In particular, hydrazine-based reducing agents are preferred because of their strong reducing power. The amount of the reducing agent used can be appropriately set as long as it is an amount capable of producing copper fine particles from the copper compound, and is preferably in the range of 0.2 to 5 mol with respect to 1 mol of copper contained in the copper compound. .
[0015]
In addition, as the sulfur compound used in the reduction reaction, the above-described sulfur compound for the surface treatment can be used. The amount of the sulfur compound used can be set as appropriate, and is preferably at least 0.5 to 50 parts by weight with respect to 1000 parts by weight of the copper oxide because the effect is easily obtained, preferably 1 to 20 parts by weight. A range is more preferred. Further, known protective colloids can be used, for example, gelatin, gum arabic, casein, sodium caseinate, protein system such as ammonium caseinate, natural polymers such as starch, dextrin, agar, sodium alginate, Cellulose such as hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, ethyl cellulose, vinyl such as polyvinyl alcohol and polyvinyl pyrrolidone, acrylic acid such as sodium polyacrylate and ammonium polyacrylate, higher fatty acid such as stearic acid, polyethylene glycol, etc. Examples thereof include synthetic polymers, polyvalent carboxylic acids such as citric acid, anilines or derivatives thereof, and these may be used alone or in combination. The protective colloid acts as a dispersion stabilizer for the produced copper fine particles. When the amount used is in the range of 1 to 100 parts by weight with respect to 100 parts by weight of the copper oxide, the produced copper fine particles are dispersed and stabilized. Since it is easy, it is preferable and the range of 2-50 weight part is further more preferable.
[0016]
Next, the copper fine particles and the sulfur compound are brought into contact with each other to treat the surface of the copper fine particles with the sulfur compound. The method is not particularly limited, and a so-called dry process in which copper fine particles and a sulfur compound are mixed using a high-speed stirrer such as a Henschel mixer or a super mixer may be used. However, a so-called wet treatment in which a sulfur compound is added to and stirred in a liquid medium in which copper fine particles are dispersed is preferable because it can be brought into contact more uniformly, and the copper compound and the reducing agent are reacted in the liquid medium. When applying the method, the operation can be performed continuously. The dispersion medium used for the medium is appropriately selected from organic solvents such as water and alcohols according to the compatibility with the sulfur compound. As the sulfur compound, the above sulfur compounds can be used. The amount of sulfur compound used is preferably in the range of 0.1 to 20% by weight with respect to the copper in the copper fine particles, and if it is less than this range, the desired oxidation resistance cannot be obtained. There is no further effect and it is not economical. A more preferable range is 0.5 to 10% by weight.
[0017]
After the sulfur compound is coated by a wet treatment, filtration, washing and drying are performed by a usual method as necessary, and after the sulfur compound is coated by a dry treatment, drying is performed as necessary. Drying is preferably performed in an atmosphere of a non-oxidizing gas (inert gas) such as nitrogen gas, helium gas, or argon gas so that the copper fine particles are not oxidized. When copper fine particles are heat-dried at a temperature of 60 ° C. for 10 hours in a non-oxidizing atmosphere, the weight increase rate that is an index of oxidation resistance can be used as a calculation standard. After drying, you may grind | pulverize as needed.
[0018]
The copper powder of the present invention is used as a copper paste or a copper paint (copper ink) by mixing with a solvent or a binder resin as necessary. The solvent can be appropriately selected depending on the application. For example, a nonpolar solvent or a low polarity solvent having a relatively high boiling point, specifically, terpineol, mineral spirit, xylene, toluene, ethylbenzene, mesitylene, hexane, heptane. , Octane, decane, dodecane, cyclohexane, cyclooctane, and the like can be used. Further, the binder resin can also be appropriately selected according to the application, for example, phenol resin, epoxy resin, unsaturated polyester resin, vinyl ester resin, diallyl phthalate resin, oligoester acrylate resin, xylene resin, bismaleimide triazine resin, Examples include thermosetting resins such as furan resin, urea resin, polyurethane resin, melamine resin, and silicon resin. Phenol resin and epoxy resin are more preferable as resin components because they have good adhesion to the substrate. It is. The blending amount of the solvent and the binder resin can be appropriately set according to the use. For example, the solvent is about 1 to 500 parts by weight and the binder resin is about 1 to 50 parts by weight with respect to 100 parts by weight of the copper powder. be able to. Such a copper paste or copper paint (copper ink) is applied to a substrate by a normal method and then heated and fired to produce an internal electrode of a multilayer ceramic capacitor, a circuit of a printed wiring board, and other electrodes. Can be used. Since the copper powder of the present invention is excellent in oxidation resistance, the electrode manufactured using the copper powder has excellent electrical characteristics.
[0019]
【Example】
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
[0020]
Example 1
Add 2 g of gum arabic as protective colloid to 2900 ml of pure water, then add 125 g of industrial copper oxide (N-120: manufactured by NC Tech) and add 360 ml of 80% hydrazine monohydrate with stirring. did. After addition of hydrazine monohydrate, the temperature was raised from room temperature to 60 ° C. over 3 hours, and further reacted with copper oxide over 2 hours to produce copper fine particles having an average particle size of 0.6 μm. Subsequently, 3-mercaptopropionic acid corresponding to 1% by weight with respect to copper in the copper fine particles was added and stirred for 30 minutes. Then, it was washed by filtration until the filtrate specific resistance reached 100 μS / cm or less, and dried for 10 hours at a temperature of 60 ° C. in an atmosphere of nitrogen gas to obtain a copper powder (sample A).
[0021]
Examples 2-7
In Example 1, the amount of 3-mercaptopropionic acid added was 3% by weight and 5% by weight as Examples 2 and 7 (Samples B and C), and instead of 3-mercaptopropionic acid, 3% by weight Examples using hexanethiol, dodecanethiol, ethyl thioglycolate and L-cysteine are referred to as Examples 4 to 7 (samples D to G), respectively. Since hexanethiol, dodecanethiol, and ethyl thioglycolate are insoluble in water, the dispersion medium was changed from pure water to ethanol.
[0022]
Example 8
30 g of industrial cuprous oxide (NC-102: manufactured by NC Tech), 0.085 g of 3-mercaptopropionic acid as a sulfur compound and 5 g of gelatin as a protective colloid are added to 400 ml of pure water, mixed, and 10% sulfuric acid Was used to adjust the pH of the mixture to 7, and then the temperature was raised from room temperature to 90 ° C. over 20 minutes. After heating, 80% hydrazine monohydrate was added with stirring and reacted with cuprous oxide over 2 hours to produce copper fine particles having an average particle size of 0.45 μm. Subsequently, 3-mercaptopropionic acid corresponding to 3% by weight with respect to copper in the copper fine particles was added and stirred for 30 minutes. Thereafter, the filtrate was washed until the specific resistance of the filtrate reached 100 μS / cm or less, and dried at a temperature of 60 ° C. for 10 hours in an atmosphere of nitrogen gas to obtain a copper powder (Sample H).
[0023]
Example 9
A copper powder (Sample I) was obtained in the same manner as in Example 8 except that the dispersion medium was changed from pure water to ethanol and 3-mercaptopropionic acid was changed to dodecanethiol.
[0024]
Comparative Examples 1 and 2
In Examples 1 and 8, the copper powder obtained without adding 3-mercaptopropionic acid is referred to as Comparative Examples 1 and 2 (Samples J and K), respectively.
[0025]
Evaluation 1: Evaluation of oxidation resistance Samples A to K 10 g obtained in Examples 1 to 9 and Comparative Examples 1 and 2 were each subjected to temperatures of 150 ° C., 200 ° C., 300 ° C., 400 ° C., and 500 ° C. for 20 minutes. The weight after baking was measured. The results are shown in Table 1. It can be seen that the smaller the weight increase, the better the oxidation resistance, and the copper powder of the present invention is excellent in oxidation resistance.
[0026]
[Table 1]
Figure 2004315853
[0027]
【The invention's effect】
In the present invention, the surface of the copper fine particles was treated with sulfur compounds such as mercaptopropionic acid, dodecanethiol, hexanethiol, methyl thioglycolate, ethyl thioglycolate, and cysteine in the range of 0.1 to 20% by weight. Copper powder with improved oxidation resistance, useful as a material to ensure electrical continuity, such as external electrodes such as capacitors, internal electrodes, circuit members of printed wiring boards, and various electrical contact members It is. In particular, when the copper powder of the present invention is used as a copper paste, copper paint (copper ink) or the like, for example, for an internal electrode of a multilayer ceramic capacitor, a circuit of a printed wiring board, or other electrodes, it has excellent electrical characteristics. Expect to get something.
[0028]
The present invention also includes a step of reacting a copper compound and a reducing agent in a liquid medium to obtain copper fine particles, and a step of contacting the obtained copper fine particles with a sulfur compound to treat the surface of the copper fine particles with a sulfur compound. It is a manufacturing method of the copper powder characterized by these, The copper powder in which oxidation resistance was improved can be manufactured simply. In particular, when the reaction between the copper oxide and the reducing agent is carried out in the presence of a sulfur compound and a protective colloid in the step of obtaining copper fine particles, the oxidation resistance is further improved and there is almost no aggregated particles, and the dispersibility is excellent. A well-shaped copper powder can be produced.

Claims (6)

銅微粒子の表面に0.1〜20重量%の範囲の硫黄化合物が処理され、非酸化性雰囲気下60℃の温度で10時間加熱後の重量(W)に対し、更に酸化性雰囲気下500℃の温度で20分間加熱後の重量(W)の増加率((W−W)/W×100)が最大で15%であることを特徴とする銅粉末。The surface of the copper fine particles is treated with a sulfur compound in the range of 0.1 to 20% by weight, and the weight (W 1 ) after heating for 10 hours at a temperature of 60 ° C. in a non-oxidizing atmosphere is further reduced to 500 in an oxidizing atmosphere. A copper powder characterized in that the rate of increase in weight (W 2 ) after heating at a temperature of 20 ° C. for 20 minutes ((W 2 −W 1 ) / W 1 × 100) is at most 15%. 硫黄化合物がメルカプトプロピオン酸、ドデカンチオール、ヘキサンチオール、チオグリコール酸メチル、チオグリコール酸エチル、システインから選ばれる少なくとも1種であることを特徴とする請求項1記載の銅粉末。The copper powder according to claim 1, wherein the sulfur compound is at least one selected from mercaptopropionic acid, dodecanethiol, hexanethiol, methyl thioglycolate, ethyl thioglycolate, and cysteine. 媒液中で銅化合物と還元剤とを反応させて銅微粒子を得る工程、得られた銅微粒子と硫黄化合物とを接触させて銅微粒子の表面に硫黄化合物を処理する工程とからなることを特徴とする銅粉末の製造方法。It comprises a step of reacting a copper compound and a reducing agent in a liquid medium to obtain copper fine particles, and a step of contacting the obtained copper fine particles with a sulfur compound to treat the surface of the copper fine particles with a sulfur compound. A method for producing copper powder. 銅微粒子を得る工程において、硫黄化合物及び保護コロイドの存在下で銅酸化物と還元剤とを反応させることを特徴とする請求項3記載の銅粉末の製造方法。4. The method for producing copper powder according to claim 3, wherein in the step of obtaining the copper fine particles, the copper oxide and the reducing agent are reacted in the presence of a sulfur compound and a protective colloid. 請求項1記載の銅粉末を配合してなる銅ペーストまたは銅塗料。A copper paste or copper paint comprising the copper powder according to claim 1. 請求項1記載の銅粉末を用いた電極。An electrode using the copper powder according to claim 1.
JP2003108106A 2003-04-11 2003-04-11 Copper powder, method for producing the same, copper paste using the copper powder, copper paint, electrode Expired - Fee Related JP4252349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003108106A JP4252349B2 (en) 2003-04-11 2003-04-11 Copper powder, method for producing the same, copper paste using the copper powder, copper paint, electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003108106A JP4252349B2 (en) 2003-04-11 2003-04-11 Copper powder, method for producing the same, copper paste using the copper powder, copper paint, electrode

Publications (2)

Publication Number Publication Date
JP2004315853A true JP2004315853A (en) 2004-11-11
JP4252349B2 JP4252349B2 (en) 2009-04-08

Family

ID=33469744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003108106A Expired - Fee Related JP4252349B2 (en) 2003-04-11 2003-04-11 Copper powder, method for producing the same, copper paste using the copper powder, copper paint, electrode

Country Status (1)

Country Link
JP (1) JP4252349B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007518A1 (en) * 2005-07-08 2007-01-18 Murata Manufacturing Co., Ltd. Electrically conducting powder, electrically conducting paste and process for production of laminated ceramic electronic components
EP1787742A1 (en) * 2004-08-20 2007-05-23 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same
JP2007254846A (en) * 2006-03-24 2007-10-04 Mitsui Mining & Smelting Co Ltd Production method for copper powder and copper powder obtained by the production method
JP2009245938A (en) * 2008-03-12 2009-10-22 Hitachi Chem Co Ltd Conductive adhesive paste and electronic component mounting substrate
WO2011034019A1 (en) 2009-09-16 2011-03-24 日立化成工業株式会社 Printing ink, metal nanoparticles used in the same, wiring, circuit board, and semiconductor package
CN102266939A (en) * 2010-06-01 2011-12-07 株式会社村田制作所 Metal powder and manufacturing method thereof, and conductive paste using metal powder and laminated ceramic electronic component using conductive paste
JP2012241213A (en) * 2011-05-17 2012-12-10 Hokkaido Univ Method for producing copper fine particle
JP2013023699A (en) * 2011-07-15 2013-02-04 Tokyo Institute Of Technology Production of metal fine particle by microwave heating
CN103264167A (en) * 2013-06-09 2013-08-28 南通众诚生物技术有限公司 Surface modification nanometer copper particle and preparation method thereof
CN103390442A (en) * 2012-05-10 2013-11-13 三星电机株式会社 Conductive paste composition for internal electrode, multilayer ceramic electronic component, and method of manufacturing the same
JP2014129609A (en) * 2014-03-07 2014-07-10 Hokkaido Univ Method for producing copper fine particle
JP2016047941A (en) * 2014-08-27 2016-04-07 国立大学法人京都工芸繊維大学 Antioxidation and conduction enhancement technology of copper by polymer self-organization film
CN114516654A (en) * 2022-02-09 2022-05-20 广州科城环保科技有限公司 Preparation method of modified copper hydroxide and modified copper hydroxide prepared by same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2452767A1 (en) * 2004-08-20 2012-05-16 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same
EP1787742A1 (en) * 2004-08-20 2007-05-23 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same
EP1787742A4 (en) * 2004-08-20 2010-07-28 Ishihara Sangyo Kaisha Copper microparticle and process for producing the same
US7828872B2 (en) 2004-08-20 2010-11-09 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same
KR101242966B1 (en) 2004-08-20 2013-03-12 이시하라 산교 가부시끼가이샤 Copper microparticle and process for producing the same
WO2007007518A1 (en) * 2005-07-08 2007-01-18 Murata Manufacturing Co., Ltd. Electrically conducting powder, electrically conducting paste and process for production of laminated ceramic electronic components
JPWO2007007518A1 (en) * 2005-07-08 2009-01-29 株式会社村田製作所 Conductive powder, conductive paste, and method for manufacturing multilayer ceramic electronic component
JP2007254846A (en) * 2006-03-24 2007-10-04 Mitsui Mining & Smelting Co Ltd Production method for copper powder and copper powder obtained by the production method
JP2009245938A (en) * 2008-03-12 2009-10-22 Hitachi Chem Co Ltd Conductive adhesive paste and electronic component mounting substrate
KR20120094157A (en) 2009-09-16 2012-08-23 히다치 가세고교 가부시끼가이샤 Printing ink, metal nanoparticles used in the same, wiring, circuit board, and semiconductor package
WO2011034019A1 (en) 2009-09-16 2011-03-24 日立化成工業株式会社 Printing ink, metal nanoparticles used in the same, wiring, circuit board, and semiconductor package
CN102266939A (en) * 2010-06-01 2011-12-07 株式会社村田制作所 Metal powder and manufacturing method thereof, and conductive paste using metal powder and laminated ceramic electronic component using conductive paste
JP2011252194A (en) * 2010-06-01 2011-12-15 Murata Mfg Co Ltd Metal powder and method for producing the same, electrically conductive paste using metal powder, and laminated ceramic electronic component using the same
JP2012241213A (en) * 2011-05-17 2012-12-10 Hokkaido Univ Method for producing copper fine particle
JP2013023699A (en) * 2011-07-15 2013-02-04 Tokyo Institute Of Technology Production of metal fine particle by microwave heating
CN103390442A (en) * 2012-05-10 2013-11-13 三星电机株式会社 Conductive paste composition for internal electrode, multilayer ceramic electronic component, and method of manufacturing the same
JP2013235806A (en) * 2012-05-10 2013-11-21 Samsung Electro-Mechanics Co Ltd Conductive paste composition for internal electrode, multilayer ceramic electronic component, and method of manufacturing the same
US8908351B2 (en) 2012-05-10 2014-12-09 Samsung Electro-Mechanics Co., Ltd. Conductive paste composition for internal electrode, multilayer ceramic electronic component, and method of manufacturing the same
CN103264167A (en) * 2013-06-09 2013-08-28 南通众诚生物技术有限公司 Surface modification nanometer copper particle and preparation method thereof
JP2014129609A (en) * 2014-03-07 2014-07-10 Hokkaido Univ Method for producing copper fine particle
JP2016047941A (en) * 2014-08-27 2016-04-07 国立大学法人京都工芸繊維大学 Antioxidation and conduction enhancement technology of copper by polymer self-organization film
CN114516654A (en) * 2022-02-09 2022-05-20 广州科城环保科技有限公司 Preparation method of modified copper hydroxide and modified copper hydroxide prepared by same
CN114516654B (en) * 2022-02-09 2024-02-27 广州科城环保科技有限公司 Preparation method of modified copper hydroxide and modified copper hydroxide prepared by preparation method

Also Published As

Publication number Publication date
JP4252349B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
KR101310415B1 (en) Copper microparticle and process for producing the same
JP4252349B2 (en) Copper powder, method for producing the same, copper paste using the copper powder, copper paint, electrode
JP5596609B2 (en) Metal colloid solution and paint using the same
JP5556176B2 (en) Particles and inks and films using them
JP5239191B2 (en) Silver fine particles and method for producing the same
KR20170046164A (en) Metallic copper particles, and production method therefor
JP5003895B2 (en) Silver fine particles and method for producing the same, and method for producing a conductive film
JP4242176B2 (en) Copper fine particles and method for producing the same
JPWO2008001741A1 (en) Nickel fine particles, method for producing the same, and fluid composition using the same
KR20180047529A (en) Silver powder and manufacturing method of the same
JP4879473B2 (en) Flake copper powder, method for producing flake copper powder, and conductive slurry containing flake copper powder
JP4164009B2 (en) Copper powder, copper paste and paint using the same, electrode
KR100631025B1 (en) Method of manufacturing silver powder by chemical reduction
JP4208704B2 (en) Copper powder, method for producing the same, fluid composition containing the same, and electrode using the same
JP4164008B2 (en) Copper powder, method for producing the same, copper paste / paint using the same, and electrode
JP2015160964A (en) Nickel powder and method for producing the same
JP4176627B2 (en) Colloidal metal particles, method for producing the same, fluid composition containing the same, and electrode formed using the fluid composition
JP7069311B2 (en) How to make silver powder and conductive paste containing silver powder
JP2020176334A (en) Copper powder and conductive paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090121

R151 Written notification of patent or utility model registration

Ref document number: 4252349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees