JP2004315705A - Modified polyimide resin composition and prepreg and laminate using the same - Google Patents

Modified polyimide resin composition and prepreg and laminate using the same Download PDF

Info

Publication number
JP2004315705A
JP2004315705A JP2003113528A JP2003113528A JP2004315705A JP 2004315705 A JP2004315705 A JP 2004315705A JP 2003113528 A JP2003113528 A JP 2003113528A JP 2003113528 A JP2003113528 A JP 2003113528A JP 2004315705 A JP2004315705 A JP 2004315705A
Authority
JP
Japan
Prior art keywords
resin composition
laminate
resin
modified polyimide
polyimide resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003113528A
Other languages
Japanese (ja)
Other versions
JP4317380B2 (en
Inventor
Kosuke Hirota
晃輔 廣田
Takashi Iiyama
高志 飯山
Hitoshi Sakuraba
仁 桜庭
Kotaro Asahina
浩太郎 朝比奈
Kenji Shima
健二 志摩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003113528A priority Critical patent/JP4317380B2/en
Publication of JP2004315705A publication Critical patent/JP2004315705A/en
Application granted granted Critical
Publication of JP4317380B2 publication Critical patent/JP4317380B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition having resistance to moist heat, moisture resistance and peel strength and further being relatively inexpensive and having high stiffness and to provide a prepreg and a laminate by using the resin composition. <P>SOLUTION: The modified polyimide resin composition comprises (A) a polymaleimide compound represented by general formula [1] (wherein R<SB>1</SB>is an organic group having a k value; Xa and Xb are the same or different monovalent atom or group selected from a hydrogen atom, halogen atoms and organic groups; k is an integer of ≥2), (B) a compound having at least one phenolic OH group and at least one naphthalene skeleton in the molecule, (C) an epoxy resin having at least two or more glycidyl groups in the molecule and (D) inorganic filler having 0.1 μm to 3.0 μm average particle diameter D50. The prepreg is obtained by impregnating a varnish obtained by dissolving the resin composition in a solvent into a base material and drying the impregnated base material. The laminate is obtained by laminating one or a plurality of sheets of prepregs and forming the laminated sheet. In the laminate, a metal foil or a metal plate may be integrally laminated to one side or both sides of the outermost layer of the laminate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子・電気部品、プリント配線板、半導体基板、IC封止材等の電子材料分野に関し、特に高耐熱性と低誘電率が要求されるプリント配線板、半導体基板用として好適な樹脂組成物、これを用いたプリプレグおよび積層板に関する。
【0002】
【従来の技術】
従来、電子材料分野における耐熱材料としては、エポキシ樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、フェノール樹脂等の熱硬化性樹脂が用いられてきており、その用途ならびに要求特性により使い分けられている。
【0003】
このなかでもエポキシ樹脂は、耐熱性の他、誘電特性、低吸湿性、接着性、靭性等の要求性能に対してバランス良く良好な性能を有しているため、幅広い用途で用いられている。またポリイミド樹脂は、特に耐熱性、誘電特性に優れていることから高耐熱用途に使用されると共に、エポキシ樹脂や芳香族ジアミン等との組み合わせにより性能改良がなされた変性樹脂も広く使用されている。
【0004】
近年、半導体基板分野では、COB、PGA、BGA、MCM基板等、基板上へ半導体チップを直接実装する実装方法が普及してきているため、使用する材料として実装工程内の高温処理などに耐えうる高度の耐熱性および耐湿熱性(吸湿後の耐熱性)が要求されている。また最近の環境問題への意識の高まりに伴い、部品−部品間あるいは部品−基板間の接続時に使用するハンダを、環境に有害な重金属成分特に鉛を含まない(鉛フリー)ハンダとする傾向にある。これら鉛フリーハンダを使用する場合、従来のハンダを使用する場合に比してプロセス温度の上昇が見込まれており、これに伴って部品、基板材料に対してさらなる耐熱性向上の要求が強まっている。現在のプリント配線板用銅張積層板のハンダ耐熱性試験温度は260℃が一般的だが、鉛フリーハンダの場合、20℃〜60℃より高い温度が必要との見方がある。汎用的に使用されているエポキシ樹脂はこれら耐熱性・耐湿熱性向上への要求に対応するには限界があり、各種耐熱性樹脂材料が検討されている。
【0005】
また、最近の電子機器の軽薄短小化に伴い、半導体基板の厚みは薄くなることが望まれ、500μm厚み以下の基板材料が使用されるようになってきている。その中で基板製造ライン内を問題なく搬送するためには基板材料の高剛性化が求められている。剛性の目安としては曲げ弾性率を指標とすることが一般的であるが、1.6mmの基材厚みで曲げ弾性率を測定した場合の弾性率が20GPaから30GPa程度の値を持つことが薄板基板材料として望まれる剛性である。
【0006】
一方、ビスマレイミドと芳香族ジアミンからなるポリアミノビスマレイミド樹脂(特許文献1参照)やビスマレイミド−トリアジン樹脂(特許文献2参照)、これらのエポキシ変性物による基板材料の使用が検討されているが、耐熱性、吸湿性、剥離強度など個々に欠点を有しており、全般の性能を満足できる樹脂組成物が望まれている。また出願人らもビスマレイミドと特定のフェノール樹脂、特定のエポキシ樹脂、特定の化合物とを反応させた変性イミド樹脂を報告しているが(特許文献3)、耐湿熱性、耐湿性、剥離強度の点で更なる改善が求められていた。
【0007】
また高剛性化の一般的な手法としては使用するガラスクロスを、硬度の高いガラス(Sガラス、Hガラスなど)を使用する方法、使用するガラスクロスの重ね枚数を増やす方法、などの手法が一般的である。しかし硬度の高いガラスは通常のガラスクロス(Eガラス)に比して高価であり、また加工性に劣るなどの欠点がある。重ね枚数を増やす場合は積層板1枚あたりの使用プリプレグの枚数が増えるためコストが高いなどの問題がある。そのため、これらの手法を用いず、比較的安価で、高剛性を有する材料の開発が望まれていた。
【0008】
【特許文献1】
特開昭61−200149号公報
【0009】
【特許文献2】
特開平6−345864号公報
【0010】
【特許文献3】
特開平6−263843号公報
【0011】
【発明が解決しようとする課題】
本発明の目的は、耐湿熱性、耐湿性、剥離強度を有し、更に比較的安価で、高剛性を有する樹脂組成物、及びこれを、用いたプリプレグ及び積層板を提供することである。
【0012】
【課題を解決するための手段】
本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、ポリマレイミド化合物を、分子中に少なくとも一つ以上のフェノール性OH基を有し、少なくとも一つのナフタレン骨格を有する化合物、特定の骨格を持ち、かつ少なくとも3個以上のグリシジル基を持つエポキシ樹脂で変性し、さらに特定粒径の無機充填剤を加えることにより高い耐熱性、高度の耐湿性、接着性、と同時に高い剛性を有する積層板用樹脂材料が得られることを見出し、本発明を完成した。
【0013】
すなわち、本発明は、
(1)(A)下記一般式[1]で示されるポリマレイミド化合物
【0014】
【化2】

Figure 2004315705
(式中、R1はk価の有機基、Xa、Xbは水素原子、ハロゲン原子および有機基から選ばれた同一または異なる一価の原子または基、kは2以上の整数を表わす)
(B)分子中に少なくとも1個以上のフェノール性OH基および少なくとも1つのナフタレン骨格を有する化合物
(C)分子中に少なくとも2個以上のグリシジル基を有するエポキシ樹脂
(D)平均粒径D50が0.1μm〜3.0μmの範囲である無機充填剤
を含有してなることを特徴とする変性ポリイミド樹脂組成物。
(2)(C)分子中に少なくとも2個以上のグリシジル基を有するエポキシ樹脂が、少なくとも1つのナフタレン骨格を有するものである(1)記載の変性ポリイミド樹脂組成物。
【0015】
(3)無機充填剤が球状シリカである(1)または(2)記載の変性ポリイミド樹脂組成物。
(4)(3)記載の変性ポリイミド樹脂樹脂組成物を溶剤に溶解させたことを特徴とする変性ポリイミド樹脂ワニス。
(5)(4)記載の変性ポリイミド樹脂ワニスを基材に塗布または含浸させ、さらに溶剤を乾燥除去して製造することを特徴とするプリプレグ。
(6)(5)記載のプリプレグを1枚または2枚以上積層し、加熱加圧してなることを特徴とする複合材。
(7)(6)記載の複合材の最外層の片面または両面に金属箔または金属板を積層してなる積層板に関するものである。
【0016】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0017】
まず、本発明の変性ポリイミド樹脂組成物の使用原料について説明する。本発明に係る樹脂組成物は、
(A)下記一般式[1]で示されるポリマレイミド化合物
【0018】
【化3】
Figure 2004315705
(式中、R1はk価の有機基、Xa、Xbは水素原子、ハロゲン原子および有機基から選ばれた同一または異なる一価の原子または基、kは2以上の整数を表わす)
(B)分子中に少なくとも1個以上のフェノール性OH基および少なくとも1つのナフタレン骨格を有する化合物
(C)分子中に少なくとも2個以上のグリシジル基を有するエポキシ樹脂
(D)平均粒径D50が0.1μm〜3.0μmの範囲である無機充填剤
を含有してなることを特徴とする変性ポリイミド樹脂組成物である。
【0019】
(A)のポリマレイミド化合物
本発明で用いられるポリマレイミド化合物(A)は、下記一般式[1]で示される1分子中に2個以上のマレイミド基を有する化合物である。
【0020】
【化4】
Figure 2004315705
式中、R1はk価の有機基、Xa、Xbは水素原子、ハロゲン原子および有機基から選ばれた同一または異なる一価の原子または基、kは2以上の整数であり、好ましくは2〜10である。好ましいポリマレイミド化合物としては、一般式[1]中のRが下記一般式[2]
【0021】
【化5】
Figure 2004315705
(式中、Zは―CY―、―CO―、―O―、―、―S―、―SO−を示し、Yは−CH、−CF、CHCH−、CHO―、―OH、−NH、Br−、F−または水素原子を示し、同一であっても異なってもよい。またrは1〜10の整数を表わす)
からなる群より選ばれたものである。
【0022】
Xa又はXbのハロゲン原子としては塩素原子などが例示でき、有機基としてはアルキル基が望ましく、中でもメチル基などが望ましい。
【0023】
このようなポリマレイミド化合物としては、例えば、N,N’−エチレンビスマレイミド、N,N’−ヘキサメチレンビスマレイミド、N,N’−(1,3−フェニレン)ビスマレイミド、N,N’−[1,3−(2−メチルフェニレン)]ビスマレイミド、N,N’−(1,4−フェニレン)ビスマレイミド、ビス(4−マレイミドフェニル)メタン、ビス(3−メチル−4−マレイミドフェニル)メタン、ビス(4−マレイミドフェニル)エーテル、ビス(4−マレイミドフェニル)スルホン、ビス(4−マレイミドフェニル)スルフィド、ビス(4−マレイミドフェニル)ケトン、ビス(4−マレイミドシクロヘキシル)メタン、1,4−ビス(4−マレイミドフェニル)シクロヘキサン、1,4−ビス(4−マレイミドメチル)シクロヘキサン、1,4−ビス(マレイミドメチル)ベンゼン、1,3−ビス(3−マレイミドフェノキシ)ベンゼン、ビス[4−(4−マレイミドフェノキシ)フェニル]メタン、1,1−ビス[4−(3−マレイミドフェノキシ)フェニル]エタン、1,1−ビス[4−(4−マレイミドフェノキシ)フェニル]エタン、1,2−ビス[4−(3−マレイミドフェノキシ)フェニル]エタン、1,2−ビス[4−(4−マレイミドフェノキシ)フェニル]エタン、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]プロパン、2,2−ビス[4−(3−マレイミドフェノキシ)フェニル]ブタン、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]ブタン、2,2−ビス[4−(3−マレイミドフェノキシ)フェニル]−1,1,1,3,3,3ヘキサフルオロプロパン、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]−1,1,1,3,3,3ヘキサフルオロプロパン、
【0024】
4,4’−ビス(3−マレイミドフェノキシ)ビフェニル、4,4’−ビス(4−マレイミドフェノキシ)ビフェニル、ビス[4−(3−マレイミドフェノキシ)フェニル]ケトン、ビス[4−(4−マレイミドフェノキシ)フェニル]ケトン、ビス[4−(3−マレイミドフェノキシ)フェニル]スルフィド、ビス[4−(4−マレイミドフェノキシ)フェニル]スルフィド、ビス[4−(3−マレイミドフェノキシ)フェニル]スルホキシド、ビス[4−(4−マレイミドフェノキシ)フェニル]スルホキシド、ビス[4−(3−マレイミドフェノキシ)フェニル]スルホン、ビス[4−(4−マレイミドフェノキシ)フェニル]スルホン、ビス[4−(3−マレイミドフェノキシ)フェニル]エーテル、ビス[4−(4−マレイミドフェノキシ)フェニル]エーテル、1,4−ビス[4−(4−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(3−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(3−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(4−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(3−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(3−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン等があげられ、また一般式[3]
【0025】
【化6】
Figure 2004315705
(式中、sは平均値で0〜10である)
で表されるポリマレイミド化合物、および一般式[4]
【0026】
【化7】
Figure 2004315705
(式中、tは平均値で0〜10である)
で表されるポリマレイミド化合物、および一般式[5]
【0027】
【化8】
Figure 2004315705
(式中、uは平均値で0〜6である)
で表されるポリマレイミド化合物等も挙げられる。また、これらのポリマレイミド化合物は、単独で用いても2種以上を混合して用いてもよい。
【0028】
(B)のフェノール性OH基を有する化合物
本発明で用いられるフェノール性OH基を有する化合物(B)は、分子中に少なくとも1つ以上のOH基を有し、少なくとも1つのナフタレン骨格を有する化合物である。これらについて例示すると、1−ナフトール、2−ナフトール、1,4−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、1,3−ジヒドロキシナフタレンなどのヒドロキシナフタレン類、これらのヒドロキシナフタレン類とフェノール、クレゾール、レゾルシノール等のフェノール類との混合物と、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、ヒドロキシベンズアルデヒド、グリオキザール、アルカンジアール等のアルデヒド類との反応生成物であるノボラック樹脂、および上記ヒドロキシナフタレン類とアラルキルアルコール誘導体またはアラルキルハライド誘導体との反応生成物であるアラルキル樹脂等が挙げられる。また上記のアラルキルアルコール誘導体としては、p−キシリレングリコール、p−キシリレングリコールジメチルエーテル類等が、アラルキルハイドライド誘導体としてはp−キシリレンジクロライド等が好ましい。
【0029】
これら化合物の中では1−ナフトール、2−ナフトールおよびそのアラルキル樹脂が特に好ましい。これら化合物は1種または2種以上組み合わせて用いることができる。
【0030】
(C)のエポキシ樹脂
本発明で用いられるエポキシ樹脂(C)は、分子中に少なくとも2個以上のグリシジル基を有するエポキシ樹脂であれば特に制限を受けない。これらについて例示すると、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂などが挙げられ、また下記一般式[6]で示されるジシクロペンタジエン型エポキシなども挙げられる。
【0031】
【化9】
Figure 2004315705
(式中、Gはグリシジル基を、lは平均値で0〜6である)
【0032】
さらにジヒドロキシナフタレン、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ナフタレン環を含むフェノールアラルキル樹脂、ナフタレン骨格を含むノボラック樹脂など2つ以上のフェノール性OH基を含む化合物にエピクロルヒドリンを反応させグリシジル化させたエポキシ樹脂、または下記一般式[7]で示されるナフタレン環を含むエポキシ樹脂も挙げられる。
【0033】
【化10】
Figure 2004315705
(式中、Gはグリシジル基を、jは平均値で0〜10である)
【0034】
これらエポキシ樹脂の中ではナフタレン環を含むエポキシ樹脂が好ましく、下記一般式[8]および[9]で表されるナフタレン環を含むエポキシ樹脂が特に好ましい。
【0035】
【化11】
Figure 2004315705
(式中Gはグリシジル基を、q、qは1以上の整数を表し、かつq+q≦8である)
【0036】
【化12】
Figure 2004315705
(式中、Gはグリシジル基を、pは1または2、nは1〜10の整数を表す)
これらのエポキシ樹脂は1種単独でまたは2種以上組み合わせて用いることができる。
【0037】
(D)無機充填剤
本発明で用いられる無機充填剤(D)は、平均粒径D50が0.1μm〜3.0μmの範囲の無機充填剤であれば特に制限は受けない。尚、平均粒径D50とは、粒度分布測定を行った際の粒度加積曲線において加積通過率が50%となる粒径のことであり、レーザー回折・散乱法という方法を用いて測定することが一般的であり、市販のレーザー回折・散乱法による粒度分布測定装置により、測定可能である。
【0038】
粒径としては平均粒径D50が0.1μm〜3.0μmの範囲であれば特に制限は受けないが、D50が1.0μm以下であれば特に好ましい。0.1μm以下であると取り扱い時に二次凝集があり、均一に分散させるのが困難になる。D50が3.0μm以上では樹脂ワニスとなった場合に沈降などが生じ安定性が悪い。D50が1.0μm以上であると沈降などは生じにくいが積層用にガラスクロスに含浸した場合にクロス内に進入しにくいため、添加数量に制限が必要となる場合がある。
【0039】
無機充填剤の種類の好ましい例としてはシリカ、アルミナ、酸化チタン、タルク、マイカ、クレー、窒化アルミニウム、ガラスなどが挙げられる。シリカ、アルミナ、酸化チタンがより好ましく、特に球状のシリカが好ましい。シリカ、アルミナ、酸化チタンは硬度が高いため少量の添加で弾性率向上に寄与することが可能である。形状については球状のものを用いた場合、樹脂ワニスとなった場合に粘度の極端な上昇がなく、その後の作業性に優れるため好ましい。
【0040】
また弾性率向上の目的に併せて、難燃効果をもつ無機充填剤として水酸化アルミニウム、水酸化マグネシウム等を添加してもよい。この中では水酸化アルミニウムが好ましく、特に水酸化アルミニウム中に不純物として含まれるNaO量が0.3%以下のものが特に好ましい。水酸化アルミニウムは比較的少量で難燃効果を発現することができる。不純物として含まれるNaO量が0.3%以上の場合は、樹脂中に残留するナトリウムイオンが硬化物の電気特性を悪化させる場合がある。
【0041】
これらの無機充填剤はカップリング剤による表面処理を行うことが好ましい。表面処理に必要なカップリング剤の種類としてはシランカップリング剤、チタネートカップリング剤などがあるが、特にシランカップリング剤が好ましい。シランカップリング剤の種類としては3−グリシドキシプロピルトリエトキシシランなどのエポキシシラン、N−フェニル−3−アミノプロピルトリメトキシシランなどのアミノシラン、ビニルトリメトキシシランなどのビニルシランなどが挙げられるが、特に制限は受けない。
【0042】
樹脂組成物
本発明に係る樹脂組成物は、
(A)下記一般式[1]で示されるポリマレイミド化合物
【0043】
【化13】
Figure 2004315705
(式中、R1はk価の有機基、Xa、Xbは水素原子、ハロゲン原子および有機基から選ばれた同一または異なる一価の原子または基、kは2以上の整数を表わす)
(B)分子中に少なくとも1個以上のフェノール性OH基および少なくとも1つのナフタレン骨格を有する化合物
(C)分子中に少なくとも2個以上のグリシジル基を有するエポキシ樹脂
(D)平均粒径D50が0.1μm〜3.0μmの範囲である無機充填剤
とを含んでいる。
【0044】
本発明に係る樹脂組成物は、本発明の目的を損なわない範囲内において、上記(A)、(B)、および(C)以外のほかの樹脂成分(以下単に「他の樹脂成分」ともいう。)を含有してもよい。ポリマレイミド化合物(A)は、樹脂成分[(A)+(B)+(C)+他の樹脂成分]の質量の合計に対して、好ましくは20.0質量%以上90.0質量%以下、より好ましくは25.0質量%以上80.0質量%以下の量で含有することが望ましい。
【0045】
樹脂組成物中のポリマレイミド(A)の含有量が上記範囲内にあると得られる樹脂組成物から得られる基板、積層板などは十分な耐熱性および耐湿熱性を有する。
【0046】
フェノール性OH基を有する化合物(B)とエポキシ樹脂(C)の合計の含有量は、樹脂成分[(A)+(B)+(C)+他の樹脂成分]の質量の合計に対して、好ましくは10.0〜80.0質量%、より好ましくは20.0〜75.0質量%の範囲にあることが好ましい。
【0047】
フェノール性OH基を有する化合物(B)とエポキシ樹脂(C)の合計の含有量が、樹脂成分[(A)+(B)+(C)+他の樹脂成分]の質量の合計に対して10.0質量%以下である場合、得られる樹脂組成物からなる積層板における金属箔や金属板との接着強度が著しく劣る場合があり、また80.0質量%を上回ると十分な耐熱性が得られない場合がある。
【0048】
フェノール性OH基を有する化合物(B)とエポキシ樹脂(C)の配合比には特に制限はないが、フェノール性OH基を有する化合物(B)のOH基に対する、エポキシ樹脂(C)のグリシジル基のモル比が、好ましくは0.2〜5.0の範囲、より好ましくは0.3〜3.0の範囲である。フェノール性OH基を有する化合物(B)のOH基に対する、エポキシ樹脂(C)のグリシジル基のモル比が、0.2より小さいか5.0より大きい場合は、樹脂組成物の硬化が不完全になるため硬化物の曲げ強度が著しく低下する場合がある。
【0049】
無機充填剤(D)の添加量としては、樹脂成分[(A)+(B)+(C)+他の樹脂成分]の質量の合計に対して、5.0質量部〜250質量部が好ましい。添加量が5.0質量部未満の場合、添加効果があまり期待できず、また250質量部を上回ると粘度が高すぎて含浸性に劣る場合がある。添加量はさらに好ましくは、20質量部〜150質量部である。添加する充填剤の種類に依存する部分もあるが、添加量が20質量部〜150質量部の範囲にあると樹脂硬化物の弾性率が向上し、基材となった際の曲げ弾性率が20GPa以上の好ましい値となる。
【0050】
硬化促進剤
本発明に係る樹脂組成物は、硬化促進剤を含有することが望ましい。硬化促進剤としては、例として2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−ヘプタデシルイミダゾール等のイミダゾール類;トリエタノールアミン、トリエチレンジアミン、N−メチルモルホリン等のアミン類、トリフェニルホスフィン、トリトリルホスフィン等の有機ホスフィン類;テトラフェニルホスホニウムテトラフェニルボレート、トリエチルアンモニウムテトラフェニルボレート等のテトラフェニルボロン塩類;1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7およびその誘導体;ナフテン酸鉛、ステアリン酸鉛、ナフテン酸亜鉛、オレイン酸錫、ナフテン酸マンガン、ナフテン酸コバルト、オクチル酸コバルト等の有機金属塩等が挙げられる。これらの硬化促進剤は、単独で用いても2種以上を併用してもよく、また必要に応じて有機過酸化物やアゾ化合物等を併用することもできる。
【0051】
これら硬化促進剤の含有量は、後述するワニスまたはプリプレグの所望するゲル化時間が得られるように配合するのが望ましいが、一般的には、樹脂成分の合計に対し好ましくは0.005〜10質量%の範囲で用いられる。
【0052】
反応性稀釈剤
本発明の樹脂組成物は、必要に応じて反応性稀釈剤を含むことが望ましい。
反応性稀釈剤としては、グリシドール、メチルグリシジルエーテル、アリルグリシジルエーテル、ブチルグリシジルエーテル、フェニルグリシジルエーテルなどのエポキシ樹脂に対して一般的に使用される反応性稀釈剤や、ジアリルフタレート、0,0’−ジアリルビスフェノールA、ビスフェノールAジアリルエーテル、ビスフェノールAジシアネート等のイミド樹脂に対して一般的に使用される反応性稀釈剤が挙げられる。これらの反応性稀釈剤は単独で用いても2種以上を併用してもよい。これら反応性稀釈剤の含有量は、樹脂成分に対して0.1〜30質量%の範囲で用いられることが望ましい。0.1質量%未満では反応性稀釈剤としての効果が小さい可能性があり、30質量%以上では樹脂組成物からなる樹脂ワニスの粘度が著しく低下するために作業性に劣る場合がある。
【0053】
難燃剤
本発明の樹脂組成物は、必要に応じて難燃剤を含むことが望ましい。難燃剤としては、ブロム化エポキシ樹脂のようなブロム化合物および縮合リン酸エステルのようなリン化合物等の有機難燃剤、水酸化アルミニウム、水酸化マグネシウム、スズ化合物、アンチモン化合物等の無機難燃剤などが挙げられる。これらの難燃剤は単独で用いても2種以上を併用してもよい。
【0054】
これら難燃剤の含有量は、樹脂組成物の耐熱性、耐湿熱性を損なわずに十分な難燃性(例えばUL94規格におけるV−0条件合格)を持つために必要十分な量含有することが望ましいが、有機難燃剤の場合一般的には有機難燃剤を含めた樹脂成分の合計に対し、好ましくは1〜20質量%の範囲で、無機難燃剤の場合、樹脂成分に対して、好ましくは10〜300質量%の範囲で用いられることが望ましい。
【0055】
その他の成分
本発明の樹脂組成物は、上記各主成分の他、必要に応じて各種シリコーンオイル;熱可塑性樹脂、その他適宜添加剤等を配合しても良い。配合量としては樹脂成分の合計に対し、その他添加剤0.1〜20質量%程度が好ましい。
【0056】
樹脂組成物の調整方法
本発明に係る組成物は、例えばポリマレイミド化合物(A)と、フェノール性OH基を有する化合物(B)とエポキシ樹脂(C)とを同時に80〜200℃で、0.1〜10時間加熱混合することにより調整することができる。
【0057】
樹脂ワニス
本発明に係る樹脂ワニスは、
(A)上記一般式[1]で表されるポリマレイミド化合物と、
(B)分子中に少なくとも2個以上のOH基および少なくとも1つのナフタレン骨格を有する化合物と、
(C)分子中に少なくとも2個以上のグリシジル基を有するエポキシ樹脂
(D)平均粒径D50が0.1μm〜3.0μmの範囲である無機充填剤を含有してなる樹脂租組成物を溶剤に溶解させたものである。
【0058】
樹脂ワニスに用いられる溶剤としては、好ましくはエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジオキサン、アセトン、N−メチル−2−ピロリドン、ジメチルスルホキシド、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサン、2−ヘプタノン等が使用できるが、溶剤としては比較的沸点の低い物がより好ましく、メチルエチルケトン、アセトン、ジオキサンあるいはこれらを主成分とする混合物が好ましく用いられる。
【0059】
樹脂ワニス中には上記樹脂成分が通常40〜80質量%、好ましくは50〜70質量%の範囲で含まれることが望ましい。
【0060】
樹脂ワニスは、上記樹脂組成物を有機溶剤中に溶解させて得ることもできるし、有機溶剤中で上記(A)、(B)、(C)および(D)を加熱混合しての樹脂組成物を得ると同時に樹脂ワニスを得ることもできる。また(A)、(B)、(C)を加熱混合して得た樹脂ワニスに(D)の無機充填剤を添加することもできる。加熱混合をする場合、有機溶剤の沸点にもよるが、一般的には、約50〜200℃で、0.1〜20時間程度必要になる。
【0061】
プリプレグ
本発明に係るプリプレグは、上記樹脂ワニスを基材に塗布または含浸せしめ、次いで乾燥して溶剤を除去することにより製造することができる。
基材としては、ガラス不織布、ガラスクロス、炭素繊維布、有機繊維布、紙などの従来プリプレグに用いられる公知の基材が全て使用可能である。上記樹脂ワニスを上記基材に塗布または含浸した後、乾燥工程を経てプリプレグを製造するが、塗布方法、含浸方法、乾燥方法は従来公知の方法が用いられ特に限定されるものではない。乾燥条件については、使用する溶剤の沸点により適宜決められるが、あまり高温は好ましくなく、またプリプレグ中の残存溶剤の量が3質量%以下となることが望ましい。
【0062】
複合材
本発明に係る複合材は、プリプレグ1枚が熱プレスされ加熱硬化されてなるか、または複数枚積層されたプリプレグが熱プレスされ加熱硬化して一体化されてなる。複合材を製造する時の加熱加圧条件は特に限定されるものではないが、加熱温度は100〜300℃、好ましくは150〜250℃、圧力は10〜100Kg/cm、加熱加圧時間は10〜300分程度である。
【0063】
積層板
本発明に係る積層板は、複合材の片面または両面に金属箔または金属板が積層一体化されてなる。本発明に係る積層板は、1枚のプリプレグの片面もしくは両面に金属箔もしくは金属板を積層し熱プレスするか、または複数枚積層されたプリプレグの最外層となる片面または両面に金属箔または金属板を積層し熱プレスすることにより、プリプレグを加熱硬化させ一体化させることにより製造することができる。金属箔または金属板としては銅、アルミニウム、鉄、ステンレス等が使用できる。加熱硬化させる際の条件は、複合材を製造する際の条件と同様の条件が好ましい。また、内層コア材を用いて多層プリント配線板用積層板としてもよい。
【0064】
【実施例】
以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。実施例における性能の試験方法は次の通りである。
(1)加湿後ハンダ耐熱性:
JIS C−6481に準じて、試験片を121℃、2.1気圧、100%RHの条件下で、6時間吸水処理後、任意の温度のハンダ浴に60秒間フロートし、銅箔部分に膨れがでない最高の温度を耐熱温度とした。
(2)耐湿性:
プレッシャークッカー試験機(PC−422RIII:(株)平山製作所製)を使用し、121℃、2.1気圧、100%RHの条件において保持した際に、外観上のふくれ、白化が生じるまでの時間を測定した。
(3)吸湿率:
プレッシャークッカー試験機(PC−422RIII:(株)平山製作所製)を使用し、121℃、2.1気圧、100%RHの条件において保持した際に、100時間後の重量変化を測定した。
(4)ピール強度:
JIS C−6481に準じて、1cm幅で90℃引張り試験を行った。
(5)曲げ弾性率:
JIS C−6481の曲げ強度試験に準じて測定を行い、以下の計算式で求めた。
【0065】
【数1】
Figure 2004315705
【0066】
実施例および比較例では、以下の原料を使用した。
(A)ポリマレイミド化合物;
・BMI−S(三井化学(株)社製)
【0067】
【化14】
Figure 2004315705
・BMI−MP(三井化学(株)社製)
【0068】
【化15】
Figure 2004315705
(B)フェノール性OH基を含む化合物;
・1−ナフトール(試薬、東京化成(株)社製、分子量144)
・ナフトールアラルキル樹脂SN485(OH当量215、新日鐵化学(株)社製)
・ナフトールアラルキル樹脂SN180(OH当量190、新日鐵化学(株)社製)
・ナフトール・フェノールノボラック樹脂カヤハードNHN(OH当量140、日本化薬(株)社製)
【0069】
(C)エポキシ樹脂;
・ビスフェノールA型エポキシ樹脂エピコート828(エポキシ当量190、ジャパンエポキシレジン(株)社製)
・ビスフェノールAノボラック型エポキシ樹脂エピコート157(エポキシ当量210、ジャパンエポキシレジン(株)社製)
・ジシクロペンタジエン型エポキシ樹脂エピクロンHP7200(エポキシ当量250、大日本インキ化学(株)社製)
・ナフタレン型エポキシ樹脂エピクロンHP4032(エポキシ当量150、大日本インキ化学(株)社製)
・ナフトールアラルキル型エポキシ樹脂ESN175(エポキシ当量260、新日鐵化学(株)社製)
・ナフタレン含有エポキシ樹脂NC7000(エポキシ当量230、日本化薬(株)社製)
【0070】
(D)無機充填剤
・球状シリカSO−C5(D50=1.7μm、龍森(株)社製)
・球状シリカSO−C2(D50=0.5μm、龍森(株)社製)
・球状シリカFB−10(D50=10μm、電気化学(株)社製)
・水酸化アルミニウムB1403(D50=2.0μm、日本軽金属(株)社製
【0071】
・硬化促進剤;2−エチル−4メチルイミダゾール(2E4MZ、四国化成(株)社製)
・反応性稀釈剤;アリルグリシジルエーテル(エピオールA、日本油脂(株)社製)
・難燃剤、リン酸エステルCR741(大八化学(株)社製)
【0072】
実施例1〜5および比較例1〜3
表−1に示す組成(質量部)の配合物を、フラスコ内メチルエチルケトン溶媒中で80℃、5〜8時間溶解し、樹脂ワニスを得、沈降の有無を確認した。このようにして得られた樹脂ワニスを攪拌し、108g/m(厚み約100μ)のガラスクロスに含浸し、150℃で5分間乾燥して、約200g/m(厚み約100μ)のプリプレグを得た。このプリプレグを5枚重ね合わせ、さらにその上下の最外層に18μの銅箔を配して、40kg/cmの圧力で、180〜220℃、120分の加熱条件で成形し、0.5〜0.6mm厚みの銅張積層板を得た。また同様にしてプリプレグを16枚重ね合わせた1.6〜1.7mm厚みの積層板を得た。このようにして得られた積層板の試験結果も同様に表中に示した。
【0073】
比較のために、表−1に示すような実施例と異なる原料および組成(質量部)の配合物を用いて実施例同様に変性ポリイミド樹脂ワニス、プリプレグ、および両面銅張積層板を作成し、実施例同様の試験を行った。得られた試験結果は表中に示した。
【0074】
【表1】
Figure 2004315705
【0075】
実施例に比較して、比較例1は、無機充填剤を使用していないため曲げ弾性率が劣る。比較例2は無機充填剤の粒径が特定の範囲にないためワニス取扱い時に沈降が生じた。比較例3はフェノール性OH基を含む化合物を使用していないため実施例に比して耐湿熱性および接着性が劣る。
【0076】
【発明の効果】
本発明による変性ポリイミド樹脂組成物ならびにそれを用いたプリプレグおよび積層板は、吸湿性が低く、吸湿後のはんだ耐熱性および耐湿性、接着性に優れた上弾性率が高く、新しい積層板用樹脂材料である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to the field of electronic materials such as electronic / electric parts, printed wiring boards, semiconductor substrates, and IC encapsulants, and is particularly suitable for printed wiring boards and semiconductor substrates requiring high heat resistance and low dielectric constant. The present invention relates to a composition, a prepreg and a laminate using the composition.
[0002]
[Prior art]
Conventionally, as heat-resistant materials in the field of electronic materials, thermosetting resins such as epoxy resins, polyimide resins, unsaturated polyester resins, and phenol resins have been used, and they are properly used depending on their use and required characteristics.
[0003]
Among them, epoxy resins have been used in a wide range of applications because they have good performance in a well-balanced manner with respect to required properties such as heat resistance, dielectric properties, low moisture absorption, adhesiveness, and toughness. In addition, polyimide resins are particularly used for high heat resistance because of their excellent heat resistance and dielectric properties, and modified resins whose performance has been improved by combination with epoxy resins and aromatic diamines are also widely used. .
[0004]
In recent years, in the field of semiconductor substrates, mounting methods for directly mounting a semiconductor chip on a substrate, such as COB, PGA, BGA, and MCM substrates, have become widespread. Is required to have heat resistance and heat and moisture resistance (heat resistance after moisture absorption). In addition, with the recent increase in awareness of environmental problems, the solder used for connection between components and components or between components and boards has been replaced by a lead-free (lead-free) solder that is harmful to the environment, especially heavy metal components. is there. When these lead-free solders are used, the process temperature is expected to rise compared to the case where conventional solders are used.Accordingly, there is a growing demand for further improvement in heat resistance of components and substrate materials. I have. The current soldering heat resistance test temperature of a copper clad laminate for a printed wiring board is generally 260 ° C., but it is considered that a temperature higher than 20 ° C. to 60 ° C. is required for lead-free solder. Epoxy resins used for general purposes have limitations in meeting the demand for improved heat resistance and wet heat resistance, and various heat resistant resin materials are being studied.
[0005]
In addition, as electronic devices have become lighter and thinner, it is desired that the thickness of a semiconductor substrate be reduced, and a substrate material having a thickness of 500 μm or less has been used. Under these circumstances, in order to convey the substrate material within the substrate manufacturing line without any problem, it is required to increase the rigidity of the substrate material. As a measure of the rigidity, it is common to use the flexural modulus as an index. However, when the flexural modulus is measured at a substrate thickness of 1.6 mm, the elastic plate has a value of about 20 to 30 GPa. Rigidity desired as a substrate material.
[0006]
On the other hand, use of a polyaminobismaleimide resin composed of bismaleimide and an aromatic diamine (see Patent Document 1), a bismaleimide-triazine resin (see Patent Document 2), and a substrate material obtained by modifying these epoxy compounds has been studied. Resin compositions which individually have disadvantages such as heat resistance, hygroscopicity, and peel strength, and which can satisfy the overall performance are desired. The applicants have also reported a modified imide resin obtained by reacting a bismaleimide with a specific phenol resin, a specific epoxy resin, and a specific compound (Patent Document 3). Further improvement was required in this respect.
[0007]
As a general method of increasing rigidity, a method of using glass cloth having high hardness (S glass, H glass, etc.), a method of increasing the number of glass cloths to be used, and the like are common methods. It is a target. However, glass having high hardness is more expensive than ordinary glass cloth (E glass) and has drawbacks such as poor workability. When the number of stacked sheets is increased, the number of prepregs to be used per one laminated sheet increases, so that there is a problem that the cost is high. Therefore, development of a relatively inexpensive material having high rigidity without using these methods has been desired.
[0008]
[Patent Document 1]
JP-A-61-200149 [0009]
[Patent Document 2]
JP-A-6-345864
[Patent Document 3]
JP-A-6-263843
[Problems to be solved by the invention]
An object of the present invention is to provide a resin composition having moisture and heat resistance, moisture resistance, and peel strength, which is relatively inexpensive and has high rigidity, and a prepreg and a laminate using the same.
[0012]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, a polymaleimide compound having at least one or more phenolic OH groups in the molecule and a compound having at least one naphthalene skeleton, Modified with an epoxy resin having at least 3 glycidyl groups and further adding an inorganic filler with a specific particle size to achieve high heat resistance, high moisture resistance, adhesion, and high rigidity at the same time. It has been found that a resin material for a laminate having the same can be obtained, and the present invention has been completed.
[0013]
That is, the present invention
(1) (A) A polymaleimide compound represented by the following general formula [1]
Embedded image
Figure 2004315705
(In the formula, R1 is a k-valent organic group, Xa and Xb are the same or different monovalent atoms or groups selected from a hydrogen atom, a halogen atom and an organic group, and k represents an integer of 2 or more.)
(B) a compound having at least one or more phenolic OH groups and at least one naphthalene skeleton in a molecule; (C) an epoxy resin having at least two or more glycidyl groups in a molecule; and (D) an average particle diameter D50 of 0. A modified polyimide resin composition comprising an inorganic filler in a range of from 1 μm to 3.0 μm.
(2) The modified polyimide resin composition according to (1), wherein (C) the epoxy resin having at least two or more glycidyl groups in a molecule has at least one naphthalene skeleton.
[0015]
(3) The modified polyimide resin composition according to (1) or (2), wherein the inorganic filler is spherical silica.
(4) A modified polyimide resin varnish obtained by dissolving the modified polyimide resin composition according to (3) in a solvent.
(5) A prepreg, which is produced by coating or impregnating a substrate with the modified polyimide resin varnish according to (4), and drying and removing a solvent.
(6) A composite material obtained by laminating one or more of the prepregs according to (5), and heating and pressing the laminate.
(7) A laminated plate obtained by laminating a metal foil or a metal plate on one or both surfaces of the outermost layer of the composite material according to (6).
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0017]
First, raw materials used for the modified polyimide resin composition of the present invention will be described. The resin composition according to the present invention,
(A) A polymaleimide compound represented by the following general formula [1]
Embedded image
Figure 2004315705
(In the formula, R1 is a k-valent organic group, Xa and Xb are the same or different monovalent atoms or groups selected from a hydrogen atom, a halogen atom and an organic group, and k represents an integer of 2 or more.)
(B) a compound having at least one or more phenolic OH groups and at least one naphthalene skeleton in a molecule; (C) an epoxy resin having at least two or more glycidyl groups in a molecule; and (D) an average particle diameter D50 of 0. A modified polyimide resin composition comprising an inorganic filler in a range of 0.1 μm to 3.0 μm.
[0019]
Polymaleimide compound (A) The polymaleimide compound (A) used in the present invention is a compound represented by the following general formula [1] and having two or more maleimide groups in one molecule.
[0020]
Embedded image
Figure 2004315705
In the formula, R1 is a k-valent organic group, Xa and Xb are the same or different monovalent atoms or groups selected from a hydrogen atom, a halogen atom and an organic group, k is an integer of 2 or more, preferably 2 to It is 10. As a preferable polymaleimide compound, R 1 in the general formula [1] is the following general formula [2]
[0021]
Embedded image
Figure 2004315705
(Where Z represents —CY 2 —, —CO—, —O—, —, —S—, —SO 2 —, and Y represents —CH 3 , —CF 3 , CH 3 CH 2 —, CH 3 O -, -. OH, -NH 2, Br-, indicates F-, or a hydrogen atom, may be the same or different the r represents an integer of 1 to 10)
Selected from the group consisting of
[0022]
Examples of the halogen atom for Xa or Xb include a chlorine atom and the like, and the organic group is preferably an alkyl group, and particularly preferably a methyl group.
[0023]
Examples of such a polymaleimide compound include N, N'-ethylenebismaleimide, N, N'-hexamethylenebismaleimide, N, N '-(1,3-phenylene) bismaleimide, N, N'- [1,3- (2-methylphenylene)] bismaleimide, N, N '-(1,4-phenylene) bismaleimide, bis (4-maleimidophenyl) methane, bis (3-methyl-4-maleimidophenyl) Methane, bis (4-maleimidophenyl) ether, bis (4-maleimidophenyl) sulfone, bis (4-maleimidophenyl) sulfide, bis (4-maleimidophenyl) ketone, bis (4-maleimidocyclohexyl) methane, 1,4 -Bis (4-maleimidophenyl) cyclohexane, 1,4-bis (4-maleimidomethyl) cyclohexyl 1,4-bis (maleimidomethyl) benzene, 1,3-bis (3-maleimidophenoxy) benzene, bis [4- (4-maleimidophenoxy) phenyl] methane, 1,1-bis [4- (3 -Maleimidophenoxy) phenyl] ethane, 1,1-bis [4- (4-maleimidophenoxy) phenyl] ethane, 1,2-bis [4- (3-maleimidophenoxy) phenyl] ethane, 1,2-bis [ 4- (4-maleimidophenoxy) phenyl] ethane, 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane, 2,2-bis [4- (3-maleimidophenoxy) phenyl] butane, 2, 2-bis [4- (4-maleimidophenoxy) phenyl] butane, 2,2-bis [4- (3-maleimidophenoxy) phenyl] -1,1 , 1,3,3,3 hexafluoropropane, 2,2-bis [4- (4-maleimidophenoxy) phenyl] -1,1,1,3,3,3 hexafluoropropane,
[0024]
4,4'-bis (3-maleimidophenoxy) biphenyl, 4,4'-bis (4-maleimidophenoxy) biphenyl, bis [4- (3-maleimidophenoxy) phenyl] ketone, bis [4- (4-maleimide) Phenoxy) phenyl] ketone, bis [4- (3-maleimidophenoxy) phenyl] sulfide, bis [4- (4-maleimidophenoxy) phenyl] sulfide, bis [4- (3-maleimidophenoxy) phenyl] sulfoxide, bis [ 4- (4-maleimidophenoxy) phenyl] sulfoxide, bis [4- (3-maleimidophenoxy) phenyl] sulfone, bis [4- (4-maleimidophenoxy) phenyl] sulfone, bis [4- (3-maleimidophenoxy) phenyl Phenyl] ether, bis [4- (4-maleimidofe) Xy) phenyl] ether, 1,4-bis [4- (4-maleimidophenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-maleimidophenoxy) -α, α-dimethyl Benzyl] benzene, 1,4-bis [4- (3-maleimidophenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (3-maleimidophenoxy) -α, α-dimethylbenzyl] Benzene, 1,4-bis [4- (4-maleimidophenoxy) -3,5-dimethyl-α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-maleimidophenoxy) -3,5 -Dimethyl-α, α-dimethylbenzyl] benzene, 1,4-bis [4- (3-maleimidophenoxy) -3,5-dimethyl-α, α-dimethylbenzyl] benzene, 1,3 Bis [4- (3-maleimido) -3,5-dimethyl-.alpha., alpha-dimethylbenzyl] benzene, and the like, also the general formula [3]
[0025]
Embedded image
Figure 2004315705
(Where s is an average of 0 to 10)
And a polymaleimide compound represented by the general formula [4]:
[0026]
Embedded image
Figure 2004315705
(Where t is an average value of 0 to 10)
A polymaleimide compound represented by the general formula [5]:
[0027]
Embedded image
Figure 2004315705
(In the formula, u is an average value of 0 to 6.)
And the like. These polymaleimide compounds may be used alone or in combination of two or more.
[0028]
Compound <br/> compound having a phenolic OH group used in the present invention having a phenolic OH group of (B) (B) has at least one or more OH groups in the molecule, at least one naphthalene It is a compound having a skeleton. Examples thereof include hydroxynaphthalenes such as 1-naphthol, 2-naphthol, 1,4-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, and the like. And phenol, cresol, a mixture of phenols such as resorcinol, and formaldehyde, acetaldehyde, benzaldehyde, hydroxybenzaldehyde, glyoxal, a novolak resin which is a reaction product of aldehydes such as alkandial, and the above-described hydroxynaphthalenes An aralkyl resin, which is a reaction product with an aralkyl alcohol derivative or an aralkyl halide derivative, and the like can be given. The aralkyl alcohol derivative is preferably p-xylylene glycol, p-xylylene glycol dimethyl ether, and the like, and the aralkyl hydride derivative is preferably p-xylylene dichloride.
[0029]
Among these compounds, 1-naphthol, 2-naphthol and aralkyl resins thereof are particularly preferred. These compounds can be used alone or in combination of two or more.
[0030]
(C) an epoxy resin <br/> epoxy resin used in the present invention (C) of not particularly restricted as long as the epoxy resin having at least two glycidyl groups in the molecule. Examples thereof include bisphenol A epoxy resin, bisphenol F epoxy resin, novolak epoxy resin, cresol novolak epoxy resin, bisphenol A novolak epoxy resin, bisphenol F novolak epoxy resin, and the like. The dicyclopentadiene type epoxy represented by [6] is also included.
[0031]
Embedded image
Figure 2004315705
(In the formula, G is a glycidyl group, and l is an average of 0 to 6.)
[0032]
Furthermore, epoxy resin obtained by reacting epichlorohydrin with a compound containing two or more phenolic OH groups such as dihydroxynaphthalene, phenol aralkyl resin, naphthol aralkyl resin, phenol aralkyl resin containing a naphthalene ring, novolak resin containing a naphthalene skeleton, and glycidylation, Alternatively, an epoxy resin containing a naphthalene ring represented by the following general formula [7] is also included.
[0033]
Embedded image
Figure 2004315705
(In the formula, G is a glycidyl group, and j is an average value of 0 to 10.)
[0034]
Among these epoxy resins, an epoxy resin containing a naphthalene ring is preferable, and an epoxy resin containing a naphthalene ring represented by the following general formulas [8] and [9] is particularly preferable.
[0035]
Embedded image
Figure 2004315705
(Wherein G represents a glycidyl group, q 1 and q 2 each represent an integer of 1 or more, and q 1 + q 2 ≦ 8)
[0036]
Embedded image
Figure 2004315705
(In the formula, G represents a glycidyl group, p represents 1 or 2, and n represents an integer of 1 to 10.)
These epoxy resins can be used alone or in combination of two or more.
[0037]
(D) Inorganic filler The inorganic filler (D) used in the present invention is not particularly limited as long as it has an average particle diameter D50 in the range of 0.1 μm to 3.0 μm. The average particle size D50 is the particle size at which the product transmissivity is 50% in the particle size product curve when the particle size distribution is measured, and is measured using a method called a laser diffraction / scattering method. This is generally possible, and can be measured by a commercially available particle size distribution measuring device using a laser diffraction / scattering method.
[0038]
The particle size is not particularly limited as long as the average particle size D50 is in the range of 0.1 μm to 3.0 μm, but it is particularly preferable that the D50 is 1.0 μm or less. When it is 0.1 μm or less, secondary aggregation occurs during handling, and it is difficult to uniformly disperse the particles. When D50 is 3.0 μm or more, when a resin varnish is formed, sedimentation or the like occurs, resulting in poor stability. When D50 is 1.0 μm or more, sedimentation is unlikely to occur, but when impregnated into a glass cloth for lamination, it is difficult for the glass cloth to enter the cloth, so the amount of addition may need to be limited.
[0039]
Preferred examples of the type of the inorganic filler include silica, alumina, titanium oxide, talc, mica, clay, aluminum nitride, and glass. Silica, alumina and titanium oxide are more preferred, and spherical silica is particularly preferred. Silica, alumina, and titanium oxide have high hardness and can contribute to an improvement in elastic modulus with a small amount of addition. Regarding the shape, it is preferable to use a spherical shape, because when the resin varnish is used, there is no extreme increase in viscosity and the subsequent workability is excellent.
[0040]
In addition, aluminum hydroxide, magnesium hydroxide, or the like may be added as an inorganic filler having a flame retardant effect in accordance with the purpose of improving the elastic modulus. Among these, aluminum hydroxide is preferred, and particularly preferred is one in which the amount of Na 2 O contained as an impurity in the aluminum hydroxide is 0.3% or less. Aluminum hydroxide can exhibit the flame retardant effect with a relatively small amount. When the amount of Na 2 O contained as an impurity is 0.3% or more, sodium ions remaining in the resin may deteriorate the electrical characteristics of the cured product.
[0041]
These inorganic fillers are preferably subjected to a surface treatment with a coupling agent. Examples of the type of coupling agent required for the surface treatment include a silane coupling agent and a titanate coupling agent, and a silane coupling agent is particularly preferable. Examples of the type of the silane coupling agent include epoxy silane such as 3-glycidoxypropyltriethoxysilane, aminosilane such as N-phenyl-3-aminopropyltrimethoxysilane, and vinylsilane such as vinyltrimethoxysilane. There are no particular restrictions.
[0042]
Resin compositionResin composition according to the present invention,
(A) A polymaleimide compound represented by the following general formula [1]
Embedded image
Figure 2004315705
(In the formula, R1 is a k-valent organic group, Xa and Xb are the same or different monovalent atoms or groups selected from a hydrogen atom, a halogen atom and an organic group, and k represents an integer of 2 or more.)
(B) a compound having at least one or more phenolic OH groups and at least one naphthalene skeleton in a molecule; (C) an epoxy resin having at least two or more glycidyl groups in a molecule; and (D) an average particle diameter D50 of 0. An inorganic filler ranging from 0.1 μm to 3.0 μm.
[0044]
The resin composition according to the present invention includes other resin components other than the above (A), (B), and (C) (hereinafter, also simply referred to as “other resin components”) as long as the object of the present invention is not impaired. )). The polymaleimide compound (A) is preferably 20.0% by mass or more and 90.0% by mass or less based on the total mass of the resin components [(A) + (B) + (C) + the other resin components]. , More preferably 25.0% by mass or more and 80.0% by mass or less.
[0045]
When the content of the polymaleimide (A) in the resin composition is within the above range, a substrate, a laminate, and the like obtained from the obtained resin composition have sufficient heat resistance and wet heat resistance.
[0046]
The total content of the compound (B) having a phenolic OH group and the epoxy resin (C) is based on the total mass of the resin components [(A) + (B) + (C) + the other resin components]. It is preferably in the range of 10.0 to 80.0% by mass, more preferably 20.0 to 75.0% by mass.
[0047]
The total content of the compound (B) having a phenolic OH group and the epoxy resin (C) is based on the total mass of the resin components [(A) + (B) + (C) + the other resin components]. When the content is 10.0% by mass or less, the adhesive strength to a metal foil or a metal plate in a laminate made of the obtained resin composition may be extremely poor, and when it exceeds 80.0% by mass, sufficient heat resistance may be obtained. May not be obtained.
[0048]
The mixing ratio of the compound (B) having a phenolic OH group and the epoxy resin (C) is not particularly limited, but the glycidyl group of the epoxy resin (C) is compared with the OH group of the compound (B) having the phenolic OH group. Is preferably in the range of 0.2 to 5.0, more preferably in the range of 0.3 to 3.0. When the molar ratio of the glycidyl group of the epoxy resin (C) to the OH group of the compound (B) having a phenolic OH group is smaller than 0.2 or larger than 5.0, curing of the resin composition is incomplete. , The bending strength of the cured product may be significantly reduced.
[0049]
The amount of the inorganic filler (D) to be added is 5.0 parts by mass to 250 parts by mass with respect to the total mass of the resin components [(A) + (B) + (C) + the other resin components]. preferable. If the amount is less than 5.0 parts by mass, the effect of the addition cannot be expected much. If the amount exceeds 250 parts by mass, the viscosity may be too high and the impregnation may be poor. The addition amount is more preferably 20 parts by mass to 150 parts by mass. There is also a portion that depends on the type of filler to be added, but when the amount added is in the range of 20 parts by mass to 150 parts by mass, the elastic modulus of the resin cured product is improved, and the flexural modulus when used as a base material is increased. This is a preferable value of 20 GPa or more.
[0050]
Curing accelerator The resin composition according to the present invention preferably contains a curing accelerator. Examples of the curing accelerator include imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole and 2-heptadecylimidazole; amines such as triethanolamine, triethylenediamine and N-methylmorpholine; triphenyl Organic phosphines such as phosphine and tolylphosphine; Tetraphenylboron salts such as tetraphenylphosphonium tetraphenylborate and triethylammonium tetraphenylborate; 1,8-diaza-bicyclo (5,4,0) undecene-7 and derivatives thereof Organic metal salts such as lead naphthenate, lead stearate, zinc naphthenate, tin oleate, manganese naphthenate, cobalt naphthenate and cobalt octylate. These curing accelerators may be used alone or in combination of two or more, and if necessary, an organic peroxide or an azo compound may be used in combination.
[0051]
The content of these curing accelerators is desirably blended so as to obtain a desired gel time of a varnish or prepreg described below, but generally, it is preferably 0.005 to 10 based on the total of the resin components. It is used in the range of mass%.
[0052]
Reactive diluent The resin composition of the present invention preferably contains a reactive diluent as needed.
Examples of the reactive diluent include reactive diluents generally used for epoxy resins such as glycidol, methyl glycidyl ether, allyl glycidyl ether, butyl glycidyl ether, and phenyl glycidyl ether; diallyl phthalate; -Reactive diluents generally used for imide resins such as diallyl bisphenol A, bisphenol A diallyl ether and bisphenol A dicyanate. These reactive diluents may be used alone or in combination of two or more. The content of these reactive diluents is desirably used in the range of 0.1 to 30% by mass based on the resin component. If the amount is less than 0.1% by mass, the effect as a reactive diluent may be small. If the amount is more than 30% by mass, the viscosity of a resin varnish composed of a resin composition is significantly reduced, and thus the workability may be poor.
[0053]
Flame retardant It is desirable that the resin composition of the present invention contains a flame retardant as needed. Examples of the flame retardant include an organic flame retardant such as a bromine compound such as a brominated epoxy resin and a phosphorus compound such as a condensed phosphate ester, and an inorganic flame retardant such as aluminum hydroxide, magnesium hydroxide, a tin compound, and an antimony compound. No. These flame retardants may be used alone or in combination of two or more.
[0054]
It is desirable that the content of these flame retardants is sufficient and sufficient to have sufficient flame retardancy (for example, pass V-0 condition in UL94 standard) without impairing the heat resistance and wet heat resistance of the resin composition. However, in the case of an organic flame retardant, it is generally in the range of preferably 1 to 20% by mass relative to the total of the resin components including the organic flame retardant, and in the case of the inorganic flame retardant, it is preferably 10% by mass. It is desirable to use it in the range of 300% by mass.
[0055]
Other components In addition to the above main components, the resin composition of the present invention may contain various silicone oils; thermoplastic resins, and other additives as needed. The amount of other additives is preferably about 0.1 to 20% by mass based on the total amount of the resin components.
[0056]
Method for adjusting resin composition The composition according to the present invention comprises, for example, a polymaleimide compound (A), a compound (B) having a phenolic OH group, and an epoxy resin (C) simultaneously at 80 to 200 ° C. Can be adjusted by heating and mixing for 0.1 to 10 hours.
[0057]
Resin varnishResin varnish according to the present invention,
(A) a polymaleimide compound represented by the general formula [1];
(B) a compound having at least two or more OH groups and at least one naphthalene skeleton in a molecule;
(C) an epoxy resin having at least two glycidyl groups in the molecule; (D) a resin composition containing an inorganic filler having an average particle diameter D50 in the range of 0.1 μm to 3.0 μm. It was dissolved in
[0058]
As the solvent used for the resin varnish, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, ethylene glycol monobutyl ether, N, N-dimethylformamide, N, N-dimethylacetamide, dioxane, acetone, N-methyl-2 are preferable. -Pyrrolidone, dimethyl sulfoxide, methyl ethyl ketone, methyl isobutyl ketone, cyclohexane, 2-heptanone and the like can be used, but a solvent having a relatively low boiling point is more preferable, and methyl ethyl ketone, acetone, dioxane or a mixture containing these as a main component is preferable. It is preferably used.
[0059]
It is desirable that the resin component is contained in the resin varnish in a range of usually 40 to 80% by mass, preferably 50 to 70% by mass.
[0060]
The resin varnish can be obtained by dissolving the above resin composition in an organic solvent, or by mixing the above (A), (B), (C) and (D) in an organic solvent by heating. A resin varnish can be obtained at the same time as obtaining a product. Further, the inorganic filler of (D) can be added to a resin varnish obtained by heating and mixing (A), (B) and (C). In the case of heating and mixing, it generally requires about 50 to 200 ° C. and about 0.1 to 20 hours, depending on the boiling point of the organic solvent.
[0061]
Prepreg The prepreg according to the present invention can be produced by applying or impregnating the above-mentioned resin varnish on a substrate, followed by drying to remove the solvent.
As the substrate, any known substrate used in conventional prepregs, such as glass nonwoven fabric, glass cloth, carbon fiber cloth, organic fiber cloth, and paper, can be used. After the resin varnish is applied or impregnated on the base material, a prepreg is manufactured through a drying step, and the coating method, the impregnation method, and the drying method are conventionally known methods, and are not particularly limited. The drying conditions are appropriately determined depending on the boiling point of the solvent to be used. However, a high temperature is not preferred, and the amount of the residual solvent in the prepreg is desirably 3% by mass or less.
[0062]
Composite material The composite material according to the present invention is obtained by hot pressing one sheet of prepreg and heat-curing, or by integrally pressing a plurality of laminated prepregs by heat pressing and heat-curing. The heating and pressing conditions when producing the composite material are not particularly limited, but the heating temperature is 100 to 300 ° C, preferably 150 to 250 ° C, the pressure is 10 to 100 kg / cm 2 , and the heating and pressing time is It takes about 10 to 300 minutes.
[0063]
Laminated plate The laminated plate according to the present invention is obtained by laminating and integrating a metal foil or a metal plate on one or both surfaces of a composite material. The laminate according to the present invention may be formed by laminating a metal foil or a metal plate on one or both sides of one prepreg and hot pressing, or a metal foil or a metal on one or both sides to be the outermost layer of the laminated prepreg. It can be manufactured by laminating and hot-pressing the plates to heat and cure the prepreg to integrate them. Copper, aluminum, iron, stainless steel or the like can be used as the metal foil or metal plate. The conditions for the heat curing are preferably the same as the conditions for producing the composite material. Further, a laminated board for a multilayer printed wiring board may be formed by using an inner layer core material.
[0064]
【Example】
Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples. The performance test method in the examples is as follows.
(1) Solder heat resistance after humidification:
According to JIS C-6481, the test piece was subjected to a water absorption treatment at 121 ° C., 2.1 atm, and 100% RH for 6 hours, then floated in a solder bath at an arbitrary temperature for 60 seconds, and swollen to the copper foil portion. The highest temperature at which no heat was applied was taken as the heat resistant temperature.
(2) Moisture resistance:
Using a pressure cooker tester (PC-422RIII: manufactured by Hirayama Seisakusho) under the conditions of 121 ° C., 2.1 atm, and 100% RH, the time until blistering and whitening appear on the appearance. Was measured.
(3) Moisture absorption:
Using a pressure cooker tester (PC-422RIII: manufactured by Hirayama Seisakusho Co., Ltd.), the weight change after 100 hours was measured under the conditions of 121 ° C., 2.1 atm, and 100% RH.
(4) Peel strength:
According to JIS C-6481, a 90 ° C. tensile test was performed at a width of 1 cm.
(5) Flexural modulus:
The measurement was performed according to the bending strength test of JIS C-6481, and the value was calculated by the following formula.
[0065]
(Equation 1)
Figure 2004315705
[0066]
The following raw materials were used in Examples and Comparative Examples.
(A) a polymaleimide compound;
・ BMI-S (manufactured by Mitsui Chemicals, Inc.)
[0067]
Embedded image
Figure 2004315705
・ BMI-MP (manufactured by Mitsui Chemicals, Inc.)
[0068]
Embedded image
Figure 2004315705
(B) a compound containing a phenolic OH group;
-1-naphthol (reagent, manufactured by Tokyo Chemical Industry Co., Ltd., molecular weight 144)
・ Naphthol aralkyl resin SN485 (OH equivalent: 215, manufactured by Nippon Steel Chemical Co., Ltd.)
・ Naphthol aralkyl resin SN180 (OH equivalent: 190, manufactured by Nippon Steel Chemical Co., Ltd.)
・ Naphthol phenol novolak resin Kayahard NHN (OH equivalent 140, Nippon Kayaku Co., Ltd.)
[0069]
(C) an epoxy resin;
-Bisphenol A type epoxy resin Epicoat 828 (epoxy equivalent 190, manufactured by Japan Epoxy Resin Co., Ltd.)
-Bisphenol A novolak type epoxy resin epicoat 157 (epoxy equivalent 210, manufactured by Japan Epoxy Resin Co., Ltd.)
・ Dicyclopentadiene type epoxy resin Epicron HP7200 (Epoxy equivalent 250, manufactured by Dainippon Ink and Chemicals, Inc.)
・ Naphthalene type epoxy resin Epicron HP4032 (Epoxy equivalent: 150, manufactured by Dainippon Ink and Chemicals, Inc.)
・ Naphthol aralkyl type epoxy resin ESN175 (epoxy equivalent 260, manufactured by Nippon Steel Chemical Co., Ltd.)
-Naphthalene-containing epoxy resin NC7000 (epoxy equivalent 230, manufactured by Nippon Kayaku Co., Ltd.)
[0070]
(D) Inorganic filler / spherical silica SO-C5 (D50 = 1.7 μm, manufactured by Tatsumori Corporation)
・ Spherical silica SO-C2 (D50 = 0.5 μm, manufactured by Tatsumori Corporation)
・ Spherical silica FB-10 (D50 = 10 μm, manufactured by Denki Kagaku Co., Ltd.)
Aluminum hydroxide B1403 (D50 = 2.0 μm, manufactured by Nippon Light Metal Co., Ltd.)
・ Curing accelerator: 2-ethyl-4-methylimidazole (2E4MZ, manufactured by Shikoku Chemicals Co., Ltd.)
・ Reactive diluent: allyl glycidyl ether (Epiol A, manufactured by NOF Corporation)
・ Flame retardant, phosphate ester CR741 (made by Daihachi Chemical Co., Ltd.)
[0072]
Examples 1 to 5 and Comparative Examples 1 to 3
A composition having a composition (parts by mass) shown in Table 1 was dissolved in a methyl ethyl ketone solvent in a flask at 80 ° C. for 5 to 8 hours to obtain a resin varnish, and the presence or absence of sedimentation was confirmed. The resin varnish thus obtained was stirred, impregnated in a glass cloth of 108 g / m 2 (thickness of about 100 μ), dried at 150 ° C. for 5 minutes, and prepreg of about 200 g / m 2 (thickness of about 100 μ). Got. Five prepregs were stacked, 18 μm copper foil was further disposed on the upper and lower outermost layers, and molded at a pressure of 40 kg / cm 2 under heating conditions of 180 to 220 ° C. for 120 minutes. A 0.6 mm thick copper-clad laminate was obtained. Similarly, a laminated plate having a thickness of 1.6 to 1.7 mm obtained by laminating 16 prepregs was obtained. The test results of the laminate thus obtained are also shown in the table.
[0073]
For comparison, a modified polyimide resin varnish, a prepreg, and a double-sided copper-clad laminate were prepared in the same manner as in the example using a raw material and a composition (parts by mass) different from those in the example as shown in Table 1. A test similar to the example was performed. The test results obtained are shown in the table.
[0074]
[Table 1]
Figure 2004315705
[0075]
Comparative Example 1 is inferior in flexural modulus to no Comparative Example 1 because no inorganic filler was used. In Comparative Example 2, sedimentation occurred during varnish handling because the particle size of the inorganic filler was not in the specific range. Comparative Example 3 does not use a compound containing a phenolic OH group, and thus is inferior in wet heat resistance and adhesiveness as compared with the examples.
[0076]
【The invention's effect】
The modified polyimide resin composition according to the present invention and the prepreg and laminate using the same have low moisture absorption, excellent solder heat resistance and moisture resistance after moisture absorption, high adhesiveness, high elastic modulus, and a new laminate resin. Material.

Claims (7)

(A)下記一般式[1]で示されるポリマレイミド化合物
Figure 2004315705
(式中、R1はk価の有機基、Xa、Xbは水素原子、ハロゲン原子および有機基から選ばれた同一または異なる一価の原子または基、kは2以上の整数を表わす)
(B)分子中に少なくとも1個以上のフェノール性OH基および少なくとも1つのナフタレン骨格を有する化合物
(C)分子中に少なくとも2個以上のグリシジル基を有するエポキシ樹脂
(D)平均粒径D50が0.1μm〜3.0μmである無機充填剤
を含有してなることを特徴とする変性ポリイミド樹脂組成物。
(A) Polymaleimide compound represented by the following general formula [1]
Figure 2004315705
(In the formula, R1 is a k-valent organic group, Xa and Xb are the same or different monovalent atoms or groups selected from a hydrogen atom, a halogen atom and an organic group, and k represents an integer of 2 or more.)
(B) a compound having at least one or more phenolic OH groups and at least one naphthalene skeleton in a molecule; (C) an epoxy resin having at least two or more glycidyl groups in a molecule; and (D) an average particle diameter D50 of 0. A modified polyimide resin composition comprising an inorganic filler having a particle size of from 1 μm to 3.0 μm.
(C)分子中に少なくとも2個以上のグリシジル基を有するエポキシ樹脂が、少なくとも1つのナフタレン骨格を有するものである請求項1記載の変性ポリイミド樹脂組成物。The modified polyimide resin composition according to claim 1, wherein (C) the epoxy resin having at least two or more glycidyl groups in a molecule has at least one naphthalene skeleton. 無機充填剤が、球状シリカである請求項1または2記載の変性ポリイミド樹脂組成物。3. The modified polyimide resin composition according to claim 1, wherein the inorganic filler is spherical silica. 請求項3記載の変性ポリイミド樹脂組成物を溶剤に溶解させたことを特徴とする変性ポリイミド樹脂ワニス。A modified polyimide resin varnish obtained by dissolving the modified polyimide resin composition according to claim 3 in a solvent. 請求項4記載の変性ポリイミド樹脂ワニスを基材に塗布または含浸させ、さらに溶剤を乾燥除去して製造することを特徴とするプリプレグ。A prepreg produced by applying or impregnating a substrate with the modified polyimide resin varnish according to claim 4, and drying and removing a solvent. 請求項5記載のプリプレグを1枚または2枚以上積層し、加熱加圧してなることを特徴とする複合材。A composite material obtained by laminating one or more prepregs according to claim 5 and heating and pressing. 請求項6記載の複合材の最外層の片面または両面に金属箔または金属板を積層してなる積層板。A laminate comprising a metal foil or a metal plate laminated on one or both outermost layers of the composite material according to claim 6.
JP2003113528A 2003-04-18 2003-04-18 Modified polyimide resin composition and prepreg and laminate using the same Expired - Lifetime JP4317380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003113528A JP4317380B2 (en) 2003-04-18 2003-04-18 Modified polyimide resin composition and prepreg and laminate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003113528A JP4317380B2 (en) 2003-04-18 2003-04-18 Modified polyimide resin composition and prepreg and laminate using the same

Publications (2)

Publication Number Publication Date
JP2004315705A true JP2004315705A (en) 2004-11-11
JP4317380B2 JP4317380B2 (en) 2009-08-19

Family

ID=33473401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003113528A Expired - Lifetime JP4317380B2 (en) 2003-04-18 2003-04-18 Modified polyimide resin composition and prepreg and laminate using the same

Country Status (1)

Country Link
JP (1) JP4317380B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294702A (en) * 2006-04-26 2007-11-08 Hitachi Ltd Electric insulation coil, total impregnation coil, and rotating-electric machine using these
JP2008101062A (en) * 2006-10-17 2008-05-01 Sumitomo Bakelite Co Ltd Resin composition, prepreg, laminated plate and semiconductor device
JP2010100802A (en) * 2008-09-24 2010-05-06 Sekisui Chem Co Ltd Epoxy-based resin composition, sheet-like molded product, prepreg, cured product, laminated plate, and multilayer laminated plate
JP2010106150A (en) * 2008-10-30 2010-05-13 Hitachi Chem Co Ltd Thermosetting resin composition, and prepreg, laminate and printed wiring board using the same
JP2011068779A (en) * 2009-09-25 2011-04-07 Panasonic Electric Works Co Ltd Liquid thermosetting resin composition, prepreg, metal foil-clad laminate, and printed wiring board
JP2011140661A (en) * 2011-03-18 2011-07-21 Hitachi Chem Co Ltd Resin composition, and prepreg and printed wiring board using the same
JP2012246395A (en) * 2011-05-27 2012-12-13 Hitachi Chemical Co Ltd Prepreg, laminated plate, and printed wiring board using thermocurable resin composition
JP2017002208A (en) * 2015-06-11 2017-01-05 ソマール株式会社 Powder coating
KR20200078638A (en) 2017-11-10 2020-07-01 가부시키가이샤 프린테크 Resin composition
CN113059875A (en) * 2015-09-30 2021-07-02 积水化学工业株式会社 Laminate
CN113105498A (en) * 2021-04-23 2021-07-13 艾蒙特成都新材料科技有限公司 Halogen-free silicon flame-retardant allyl compound, preparation method thereof and application thereof in copper-clad plate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294702A (en) * 2006-04-26 2007-11-08 Hitachi Ltd Electric insulation coil, total impregnation coil, and rotating-electric machine using these
JP2008101062A (en) * 2006-10-17 2008-05-01 Sumitomo Bakelite Co Ltd Resin composition, prepreg, laminated plate and semiconductor device
JP2010100802A (en) * 2008-09-24 2010-05-06 Sekisui Chem Co Ltd Epoxy-based resin composition, sheet-like molded product, prepreg, cured product, laminated plate, and multilayer laminated plate
JP2010106150A (en) * 2008-10-30 2010-05-13 Hitachi Chem Co Ltd Thermosetting resin composition, and prepreg, laminate and printed wiring board using the same
JP2011068779A (en) * 2009-09-25 2011-04-07 Panasonic Electric Works Co Ltd Liquid thermosetting resin composition, prepreg, metal foil-clad laminate, and printed wiring board
JP2011140661A (en) * 2011-03-18 2011-07-21 Hitachi Chem Co Ltd Resin composition, and prepreg and printed wiring board using the same
JP2012246395A (en) * 2011-05-27 2012-12-13 Hitachi Chemical Co Ltd Prepreg, laminated plate, and printed wiring board using thermocurable resin composition
JP2017002208A (en) * 2015-06-11 2017-01-05 ソマール株式会社 Powder coating
CN113059875A (en) * 2015-09-30 2021-07-02 积水化学工业株式会社 Laminate
CN113059875B (en) * 2015-09-30 2023-07-07 积水化学工业株式会社 Laminate body
KR20200078638A (en) 2017-11-10 2020-07-01 가부시키가이샤 프린테크 Resin composition
CN113105498A (en) * 2021-04-23 2021-07-13 艾蒙特成都新材料科技有限公司 Halogen-free silicon flame-retardant allyl compound, preparation method thereof and application thereof in copper-clad plate

Also Published As

Publication number Publication date
JP4317380B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP5614048B2 (en) Thermosetting insulating resin composition, and prepreg, laminate and multilayer printed wiring board using the same
JP5832444B2 (en) Resin composition, prepreg and laminate using the same
JP6822268B2 (en) Thermosetting resin composition, prepreg, copper-clad laminate, printed wiring board and semiconductor package
JP6307236B2 (en) Curable resin composition, cured product, electrical / electronic component and circuit board material
JP2017101152A (en) Modified polyimide resin composition and manufacturing method therefor, and prepreg and laminate using the same
TWI274771B (en) Resin composition, prepreg and laminate using the same
JP4317380B2 (en) Modified polyimide resin composition and prepreg and laminate using the same
JP6819921B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP5914988B2 (en) Prepreg, laminate and printed wiring board using thermosetting resin composition
JP4672930B2 (en) Modified polyimide resin composition and prepreg and laminate using the same
JP4676739B2 (en) Resin composition and prepreg and laminate using the same
JP2005154739A (en) Resin composition, and prepreg and laminate using the composition
JP6221203B2 (en) Resin composition, prepreg and laminate using the same
JP5909916B2 (en) Resin production method, thermosetting resin composition, prepreg and laminate
JP2003147170A (en) Resin composition, and prepreg and laminate made of it
JP4198508B2 (en) Modified polyimide resin composition and prepreg and laminate using the same
JP2005126566A (en) Modified polyimide resin composition, and prepreg, laminate board and wiring board using the same
JP6194603B2 (en) Thermosetting resin composition, prepreg and laminate
JP2004168930A (en) Modified polyimide resin composition and its use
JP6408752B2 (en) Compatibilized resin, and prepreg and laminate using the same
JP2003119348A (en) Flame-retardant resin composition and use thereof
JPH10158363A (en) Thermosetting resin composition and prepreg and laminated board produced by using the composition
JP2003335925A (en) Modified polyimide resin composition and prepreg and laminated sheet using the same
JP6183081B2 (en) Compatibilizing resin production method, thermosetting resin composition, prepreg, laminate, and printed wiring board
JP6425873B2 (en) Thermosetting resin composition, prepreg and laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090522

R150 Certificate of patent or registration of utility model

Ref document number: 4317380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term