JP2004315374A - Readily thermally decomposable organosilver salt - Google Patents

Readily thermally decomposable organosilver salt Download PDF

Info

Publication number
JP2004315374A
JP2004315374A JP2003107804A JP2003107804A JP2004315374A JP 2004315374 A JP2004315374 A JP 2004315374A JP 2003107804 A JP2003107804 A JP 2003107804A JP 2003107804 A JP2003107804 A JP 2003107804A JP 2004315374 A JP2004315374 A JP 2004315374A
Authority
JP
Japan
Prior art keywords
silver
salt
organic
acid
silver salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003107804A
Other languages
Japanese (ja)
Inventor
Tomoaki Inoue
智明 井上
Masakazu Takada
昌和 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2003107804A priority Critical patent/JP2004315374A/en
Publication of JP2004315374A publication Critical patent/JP2004315374A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new organosilver salt stable at normal temperatures but rapidly decomposed by heating at relative low temperatures and producing electroconductive silver. <P>SOLUTION: The readily thermally decomposable organosilver salt comprises an organic moiety which is a silver salt of an α-ketocarboxylic acid, preferably glyoxylic acid. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、熱により導電性銀を得るために用いる、熱分解性の良い有機酸の銀塩に関する。
【0002】
【従来の技術】
銀は高導電性材料や記録材料、表面の被覆剤、印刷刷版等に広汎に使われている素材である。とりわけ、有機銀塩は加熱焼成により導電性の金属銀が生じることより、導電性材料に用いたり、ハロゲン化銀と併用して熱現像記録材料として用いられたりしている。
【0003】
例えば、ドライシルバーとして実用化されてるベヘン酸銀塩は加熱により、分解して銀が生じるが、熱分解には250℃以上の温度が必要で、完全に分解するには400℃まで加熱する必要がある。逆に、しゅう酸銀は非常に分解しやすく、140℃でまで加熱するか、あるいは打撃により爆発してしまう。
【0004】
このようにカルボン酸の銀塩は作りやすいが、常温でも不安定なものか、常温では安定であるが、熱分解温度が比較的高いものが多く、常温では安定であるが、200℃前後の比較的低い温度で速やかに熱分解するような素材は知られていない。
【0005】
【発明が解決しようとする課題】
本発明の目的は、常温では安定であるが、150℃以上300℃以下の比較的低い温度による加熱で速やかに分解して導電性銀を生ずる新規な有機銀塩を提供することにある。この有機銀塩は、導電性材料や記録材料等、様々な分野に使うことが期待できる。
【0006】
【課題を解決するための手段】
本発明者は実験を繰り返し、カルボン酸の中でもα−ケトカルボン酸を用いて、有機銀塩を調製することにより、100℃以下では安定であり、200℃では熱分解の半分以上が、さらに300℃で熱分解がほとんど終了する有機銀塩を見つけ出し、上記の目的を達成することができた。
【0007】
【発明の実施の方法】
以下、発明の実施のための具体的方法を詳細に説明する。
【0008】
本発明の有機部がα−ケトカルボン酸である有機銀塩は、例えばα−ケトカルボン酸と銀化合物をそれぞれ溶媒、好ましくは水に溶解し、これを混合することにより作製する。
【0009】
銀化合物には特に制限はないが、水溶性の無機銀塩が好ましい。このようなものには硝酸銀、過塩素酸銀、アジ化銀等を挙げることができる。硝酸銀は水溶性が高く、比較的安定であり、安全性も高いため、特に好ましい。銀塩の純度は高いほど良いが、銀塩写真に用いるほど高純度のものは必ずしも必要ない。
【0010】
α−ケトカルボン酸にも特に制限はない。例としては、グリオキシル酸、ピルビン酸、2−ケトブタン酸等が挙げられるが、中でも特にグリオキシル酸が好ましい。また、α−ケトカルボン酸が遊離の有機酸である必要は必ずしもなく、ナトリウム塩やカリウム塩、その他の金属塩であっても一向に構わない。反応溶媒として水を用いる場合、α−ケトカルボン酸が溶けにくい場合がある。このような場合は、水酸化ナトリウムや水酸化カリウムによりα−ケトカルボン酸をナトリウム塩やカリウム塩にすることにより、水溶性になることが多い。
【0011】
銀化合物とα−ケトカルボン酸の混合比は特に制限はないが、銀1モルに対し、α−ケトカルボン酸0.01〜100モルが好ましい。銀化合物とα−ケトカルボン酸はそれぞれ少なくとも1種類ずつ用いればよいが、いずれか、あるいは両方とも複数の種類を併用してもかまわない。銀化合物とα−ケトカルボン酸は混合により、銀とα−ケトカルボン酸より成る溶媒不溶の沈澱を生じる。沈澱の形で生じた有機銀塩は濾過、遠心分離、その他の方法により溶媒と分離できるが、また分離せずにそのまま何らかの媒体に塗布・乾燥することにより取り出してもよい。この場合には、溶媒の一部をデカンテーションや蒸発により除去することにより、濃縮を行うこともできる。溶媒と分離された有機銀塩は、銀と有機酸より成るが、これ以外に水、無機イオン等を結晶水や配位子等の形で含むこともあるが、このような成分を含んでいても一向に構わない。
【0012】
得られた有機銀塩は非導電性であるが、熱処理により有機分が熱分解し、燃焼ガスとして放出され、重量が減少し、最後に金属銀が残る。熱分解が、100℃以下ではほとんど起こらず、100℃から200℃で熱分解が半分程度進行し、300℃でほとんど分解するのであれば、室温では比較的安定であり、かつ、熱分解の発生温度は比較的低いと言える。
【0013】
熱処理によって発生する重量減少の評価方法としては、熱分析法の1つであるTGA(熱重量測定)が有用である。これは試料を天秤にのせた状態で加熱していき、温度変化に対する重量の変化を連続的に測定するものである。このTGAを用いれば、少量の試料から各温度ごとの重量減少値を知ることができる。
【0014】
【実施例】
本発明を実施例によりさらに具体的に説明するが、本発明はその主旨を越えない限り、下記の実施例に限定されるものではない。なお、実施例中における「部」「%」はすべてそれぞれ「質量部」「質量%」を示す。
【0015】
実施例
グリオキシル酸一水和物(Aldrich製)20gに水100gを加え、さらに10%の水酸化ナトリウム水溶液87gを加えてよく撹拌し、グリオキシル酸のナトリウム塩水溶液を得た。この水溶液中に10%硝酸銀水溶液400gをゆっくりと添加した。生じた白色の沈澱を吸引濾過で濾取し、真空乾燥を行った。得られたグリオキシル酸銀の白色粉体の回収量を測定したところ、40gであった。
【0016】
グリオキシル酸銀が熱で分解し、重量が減少していく様子ををPerkin Elmer社製熱分析装置TGA7により測定した。昇温速度が20℃/分で、流量30ml/分で空気パージをしながら測定したところ、140℃までは重量減少が生じていない。そして、500℃までに生じる重量減少のうち、200℃までにその60%が、250℃までにその95%が生じた。そして、260℃において重量減少は終了し、以後500℃まで重量変化は見られず、安定である。測定結果を図1に示す。
【0017】
グリオキシル酸銀20部を、2%ポリビニルアルコール水溶液40部とガラスビーズ40部とともにペイントコンディショナーで粉砕・分散した。得られた分散液を塗液とし、ワイヤーバーを用いてスライドグラスに固形分塗抹量30g/mになるように塗布した。乾燥後、白色の塗布面の導通をテスターで調べたが、導通は全く見られなかった。
【0018】
この酸化銀を塗布したスライドグラスを電気炉に入れ、40℃/分の昇温速度250℃まで加熱した。250℃で30分保持後、放冷により常温まで冷ましてから電気炉より取り出した。加熱処理後の塗布面の導通を再びテスターで調べたところ、導通が生じていた。
【0019】
比較例
ベヘン酸銀(東京化成工業(株)製)のTGA測定を行った。実施例と同様の昇温速度、空気パージ流量で測定したところ、200℃までは重量減少が生じていない。そして、250℃においても、500℃までに生じる重量減少のうちその4%程度しか生じていない。さらに、重量減少が終了するのは450℃付近である。測定結果を図2に示す。
【0020】
グリオキシル酸銀をベヘン酸銀に置き換えただけで、他は実施例と同様にして、塗液を調製し、スライドグラスへの塗布を行った。塗布面の導通をテスターで調べたが、導通は全く見られなかった。さらに、このベヘン酸銀を塗布したスライドグラスを電気炉に入れ、40℃/分の昇温速度300℃まで加熱した。300℃で30分保持後、放冷により常温まで冷ましてから電気炉より取り出した。加熱処理後の塗布面の導通を再びテスターで調べたが、導通は生じていなかった。
【0021】
【発明の効果】
100℃以下で安定であり、250℃までに熱分解の50%以上が、300℃までに熱分解の90%以上が起こるような有機銀塩、例えばα−ケトカルボン酸の銀塩を用いることにより、比較的低温の加熱処理により有機銀塩から導電性銀を得ることができる。この素材は、導電性材料や記録材料等、様々な分野に使うことが期待できる。
【図面の簡単な説明】
【図1】グリオキシル酸銀のTGA測定結果である。
【図2】ベヘン酸銀のTGA測定結果である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a silver salt of an organic acid having good thermal decomposability, which is used to obtain conductive silver by heat.
[0002]
[Prior art]
Silver is a material widely used for highly conductive materials, recording materials, surface coating agents, printing plates, and the like. In particular, an organic silver salt is used as a conductive material or used as a heat-developable recording material in combination with silver halide because conductive silver is generated by heating and baking.
[0003]
For example, silver behenate, which is practically used as dry silver, is decomposed by heating to form silver. However, thermal decomposition requires a temperature of 250 ° C or higher, and requires heating to 400 ° C for complete decomposition. There is. Conversely, silver oxalate is very decomposable, exploding when heated to 140 ° C or struck.
[0004]
Thus, silver salts of carboxylic acids are easy to make, but are unstable at room temperature or stable at room temperature, but many have relatively high thermal decomposition temperatures, and are stable at room temperature. There is no known material that rapidly decomposes at a relatively low temperature.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a novel organic silver salt which is stable at room temperature but is rapidly decomposed by heating at a relatively low temperature of 150 ° C. to 300 ° C. to produce conductive silver. This organic silver salt can be expected to be used in various fields such as conductive materials and recording materials.
[0006]
[Means for Solving the Problems]
The inventor repeated the experiment and prepared an organic silver salt using α-ketocarboxylic acid among the carboxylic acids, whereby the organic silver salt was stable at 100 ° C. or lower, and at 200 ° C., more than half of the thermal decomposition was further increased to 300 ° C. As a result, an organic silver salt almost completely decomposed was found, and the above object was achieved.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a specific method for carrying out the invention will be described in detail.
[0008]
The organic silver salt of the present invention in which the organic portion is α-ketocarboxylic acid is prepared by, for example, dissolving α-ketocarboxylic acid and a silver compound in a solvent, preferably water, and mixing them.
[0009]
The silver compound is not particularly limited, but a water-soluble inorganic silver salt is preferred. Such materials include silver nitrate, silver perchlorate, silver azide and the like. Silver nitrate is particularly preferred because it has high water solubility, is relatively stable, and has high safety. The higher the purity of the silver salt, the better, but it is not always necessary to have a high purity for use in silver salt photography.
[0010]
There is no particular limitation on the α-ketocarboxylic acid. Examples include glyoxylic acid, pyruvic acid, 2-ketobutanoic acid and the like, with glyoxylic acid being particularly preferred. The α-ketocarboxylic acid does not necessarily need to be a free organic acid, and may be a sodium salt, a potassium salt, or another metal salt. When water is used as the reaction solvent, the α-ketocarboxylic acid may be hardly soluble. In such a case, the α-ketocarboxylic acid is often made water-soluble by converting the α-ketocarboxylic acid into a sodium salt or a potassium salt with sodium hydroxide or potassium hydroxide.
[0011]
The mixing ratio of the silver compound and the α-ketocarboxylic acid is not particularly limited, but is preferably 0.01 to 100 mol of α-ketocarboxylic acid per 1 mol of silver. The silver compound and the α-ketocarboxylic acid may be used at least one each, but either one or both may be used in combination of a plurality of types. Mixing of the silver compound with the α-ketocarboxylic acid results in a solvent-insoluble precipitate of silver and α-ketocarboxylic acid. The organic silver salt formed in the form of a precipitate can be separated from the solvent by filtration, centrifugation, or other methods. Alternatively, the organic silver salt may be directly applied to any medium and dried without separation. In this case, concentration can be performed by removing a part of the solvent by decantation or evaporation. The organic silver salt separated from the solvent is composed of silver and an organic acid, but may also contain water, inorganic ions, and the like in the form of water of crystallization, ligands, and the like. It does n’t matter if you ’re there.
[0012]
Although the obtained organic silver salt is non-conductive, the organic matter is thermally decomposed by the heat treatment, released as a combustion gas, the weight is reduced, and finally the metallic silver remains. If the thermal decomposition hardly occurs below 100 ° C., the thermal decomposition progresses about half from 100 ° C. to 200 ° C., and if it is almost decomposed at 300 ° C., it is relatively stable at room temperature and the thermal decomposition The temperature can be said to be relatively low.
[0013]
TGA (thermogravimetry), which is one of the thermal analysis methods, is useful as a method for evaluating weight loss caused by heat treatment. In this method, a sample is heated while being placed on a balance, and a change in weight with respect to a change in temperature is continuously measured. Using this TGA, the weight loss value at each temperature can be known from a small amount of sample.
[0014]
【Example】
The present invention will be described more specifically with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist of the present invention. In the examples, "parts" and "%" all indicate "parts by mass" and "% by mass", respectively.
[0015]
Example 20 g of glyoxylic acid monohydrate (manufactured by Aldrich) was added to 100 g of water, 87 g of a 10% aqueous sodium hydroxide solution was further added, and the mixture was stirred well to obtain an aqueous solution of sodium salt of glyoxylic acid. 400 g of a 10% silver nitrate aqueous solution was slowly added to this aqueous solution. The resulting white precipitate was collected by suction filtration and dried under vacuum. The amount of the recovered white powder of silver glyoxylate measured was 40 g.
[0016]
The state in which silver glyoxylate was decomposed by heat and the weight was reduced was measured by a thermal analyzer TGA7 manufactured by Perkin Elmer. When the temperature was increased at a rate of 20 ° C./min and the air purge was performed at a flow rate of 30 ml / min, no weight loss occurred up to 140 ° C. Of the weight loss occurring up to 500 ° C., 60% by 200 ° C. and 95% by 250 ° C. Then, at 260 ° C., the weight reduction is completed, and thereafter no change in weight is observed up to 500 ° C., which is stable. FIG. 1 shows the measurement results.
[0017]
20 parts of silver glyoxylate were pulverized and dispersed together with 40 parts of a 2% aqueous solution of polyvinyl alcohol and 40 parts of glass beads using a paint conditioner. The resulting dispersion was used as a coating liquid and applied to a slide glass using a wire bar so that the solid content was 30 g / m 2 . After drying, the conduction of the white coated surface was examined with a tester, but no conduction was observed.
[0018]
The slide glass coated with the silver oxide was placed in an electric furnace and heated to a heating rate of 250 ° C. at a rate of 40 ° C./min. After holding at 250 ° C. for 30 minutes, the mixture was allowed to cool to room temperature and then taken out of the electric furnace. When the conduction of the coated surface after the heat treatment was examined again by a tester, the conduction was found to have occurred.
[0019]
Comparative Example Silver behenate (manufactured by Tokyo Chemical Industry Co., Ltd.) was subjected to TGA measurement. When measured at the same temperature raising rate and air purge flow rate as in the example, no weight loss occurred up to 200 ° C. At 250 ° C., only about 4% of the weight loss occurring up to 500 ° C. occurs. Further, the weight loss ends around 450 ° C. FIG. 2 shows the measurement results.
[0020]
A coating solution was prepared and applied to a slide glass in the same manner as in Example except that silver glyoxylate was replaced with silver behenate. The conduction of the coated surface was examined with a tester, but no conduction was observed. Further, the slide glass coated with the silver behenate was placed in an electric furnace and heated to a heating rate of 40 ° C./min to 300 ° C. After holding at 300 ° C. for 30 minutes, the mixture was allowed to cool to room temperature and then taken out of the electric furnace. The conduction of the coated surface after the heat treatment was examined again by a tester, but no conduction occurred.
[0021]
【The invention's effect】
By using an organic silver salt that is stable at 100 ° C. or less and causes 50% or more of thermal decomposition by 250 ° C. and 90% or more of thermal decomposition by 300 ° C., for example, a silver salt of α-ketocarboxylic acid Conductive silver can be obtained from organic silver salts by heat treatment at a relatively low temperature. This material can be expected to be used in various fields such as conductive materials and recording materials.
[Brief description of the drawings]
FIG. 1 is a TGA measurement result of silver glyoxylate.
FIG. 2 is a TGA measurement result of silver behenate.

Claims (3)

室温より毎分100℃以下の昇温速度で加熱されたときの500℃までに生じる重量減少を100%とすると、100℃までの重量減少が5%以下であり、200℃までにその50%以上が、かつ、300℃までにその90%以上の重量減少が起こることを特徴とする、有機銀塩。Assuming that the weight loss occurring up to 500 ° C. when heated at a heating rate of 100 ° C. or less per minute from room temperature is 100%, the weight loss up to 100 ° C. is 5% or less, and 50% thereof by 200 ° C. An organic silver salt as described above, wherein a weight loss of 90% or more occurs by 300 ° C. 有機部がα−ケトカルボン酸である請求項1記載の有機銀塩。The organic silver salt according to claim 1, wherein the organic moiety is α-ketocarboxylic acid. 有機部がグリオキシル酸である請求項1または2記載の有機銀塩。3. The organic silver salt according to claim 1, wherein the organic part is glyoxylic acid.
JP2003107804A 2003-04-11 2003-04-11 Readily thermally decomposable organosilver salt Pending JP2004315374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003107804A JP2004315374A (en) 2003-04-11 2003-04-11 Readily thermally decomposable organosilver salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003107804A JP2004315374A (en) 2003-04-11 2003-04-11 Readily thermally decomposable organosilver salt

Publications (1)

Publication Number Publication Date
JP2004315374A true JP2004315374A (en) 2004-11-11

Family

ID=33469535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003107804A Pending JP2004315374A (en) 2003-04-11 2003-04-11 Readily thermally decomposable organosilver salt

Country Status (1)

Country Link
JP (1) JP2004315374A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004437A1 (en) 2005-07-04 2007-01-11 Osaka Industrial Promotion Organization SILVER β-KETOCARBOXYLATE, MATERIAL COMPRISING THE SAME FOR FORMING SILVER METAL, AND USE THEREOF
WO2012014933A1 (en) 2010-07-30 2012-02-02 トッパン・フォームズ株式会社 Silver ink composition and base material
JP2012072117A (en) * 2010-08-31 2012-04-12 Toppan Forms Co Ltd PRODUCTION METHOD OF SILVER β-KETOCARBOXYLATE
JP2012153634A (en) * 2011-01-25 2012-08-16 Nof Corp Silver-containing composition and substrate
WO2014013557A1 (en) 2012-07-17 2014-01-23 日油株式会社 Silver-containing composition, and base for use in formation of silver element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004437A1 (en) 2005-07-04 2007-01-11 Osaka Industrial Promotion Organization SILVER β-KETOCARBOXYLATE, MATERIAL COMPRISING THE SAME FOR FORMING SILVER METAL, AND USE THEREOF
JP2009221222A (en) * 2005-07-04 2009-10-01 Osaka Industrial Promotion Organization Material for forming metal silver, method for producing metal silver and metal silver
US7683195B2 (en) 2005-07-04 2010-03-23 Osaka Industrial Promotional Organization Silver β-ketocarboxylate, material comprising the same for forming silver metal, and use thereof
JP2012237071A (en) * 2005-07-04 2012-12-06 Toppan Forms Co Ltd Material subjected to heat treatment
WO2012014933A1 (en) 2010-07-30 2012-02-02 トッパン・フォームズ株式会社 Silver ink composition and base material
US9328254B2 (en) 2010-07-30 2016-05-03 Toppan Forms Co., Ltd. Silver ink composition and substrate
JP2012072117A (en) * 2010-08-31 2012-04-12 Toppan Forms Co Ltd PRODUCTION METHOD OF SILVER β-KETOCARBOXYLATE
JP2012153634A (en) * 2011-01-25 2012-08-16 Nof Corp Silver-containing composition and substrate
WO2014013557A1 (en) 2012-07-17 2014-01-23 日油株式会社 Silver-containing composition, and base for use in formation of silver element
US10017655B2 (en) 2012-07-17 2018-07-10 Nof Corporation Silver-containing composition, and base for use in formation of silver element

Similar Documents

Publication Publication Date Title
US8501269B2 (en) Sensitive materials for gas sensing and method of making same
UA123512C2 (en) SOLVOTHERMAL METHOD OF OBTAINING CARBON MATERIALS WITH grafted trifluoromethyl groups
JP2008190006A (en) Wire-shaped silver particle, and method for synthesizing the same
JP2004315374A (en) Readily thermally decomposable organosilver salt
JP6582356B2 (en) Chemical heat storage material
JPH02294414A (en) Production of fine copper powder
CN109596668A (en) The gas sensitive for enhancing gas sensing and its preparation and application are modified based on copper ion
JP2007335154A (en) Alkaline battery cathode active material
US20120164450A1 (en) Method for producing and treating nanosized doped zinc oxide particles
JP2008150258A (en) Precursor particle for tin dioxide, method for producing the same, and method for producing tin dioxide using the precursor particle
Holth Separation of calcium from magnesium by oxalate method
JPH02296732A (en) Manufacture of manganese oxide
CN109731577A (en) Carbon material, application and the halogenated aromatic compound of copper doping and the reaction method of ammonium hydroxide coupling reaction preparation level-one aromatic amine
Polat et al. Determination of the effects of carboxylic acids on calcium sulfate dihydrate crystallization
JP2006103983A (en) Method for producing rod-like electroconductive tin-containing indium oxide fine powder and rod-like electroconductive tin-containing indium oxide fine powder
JP2007126307A (en) Particulate tricobalt tetroxide containing acid component and its manufacturing method
WO2021138054A1 (en) Process for making high purity salts of cis-1,2-cyclohexandicarboxylic acid
JP2011162628A (en) Fluorescent nanoparticle and method for producing the same
JPS624241A (en) Purification of brominated diphenyl ether
Wendlandt et al. The thermal properties of some amine tetraphenylboron salts: 8-quinolinol and its derivatives
JPS6265931A (en) Novel neodium compound and its production
RU2216504C2 (en) Method of oxidation of gaseous hydrogen chloride to chlorine
TWI741237B (en) Silver oxalate
JP3577330B2 (en) Method of coating red light-emitting phosphor particles with hematite, red light-emitting phosphor particles obtained by this method, and color picture tube using the particles
JP2007076977A (en) Method for producing nanocrystal of metal oxide