JP2004314758A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2004314758A
JP2004314758A JP2003110455A JP2003110455A JP2004314758A JP 2004314758 A JP2004314758 A JP 2004314758A JP 2003110455 A JP2003110455 A JP 2003110455A JP 2003110455 A JP2003110455 A JP 2003110455A JP 2004314758 A JP2004314758 A JP 2004314758A
Authority
JP
Japan
Prior art keywords
sipe
inclined portion
block
depth
pneumatic tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003110455A
Other languages
Japanese (ja)
Inventor
Kentaro Saeki
賢太郎 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2003110455A priority Critical patent/JP2004314758A/en
Publication of JP2004314758A publication Critical patent/JP2004314758A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C11/1218Three-dimensional shape with regard to depth and extending direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • B29D30/0606Vulcanising moulds not integral with vulcanising presses
    • B29D2030/0607Constructional features of the moulds
    • B29D2030/0613Means, e.g. sipes or blade-like elements, for forming narrow recesses in the tyres, e.g. cuts or incisions for winter tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1209Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe straight at the tread surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pneumatic tire capable of making performance on ice and quality of a tire compatible. <P>SOLUTION: A central part in a depth direction of a second inclination part 20D is made to a position of approximately 50% of depth H of a siping 20 from a stepping surface 18A side and a central part in a depth direction of a first inclination part 20B is positioned within a range of 15-25% of depth H of the siping 20 from the stepping surface 18A side. Thereby, a deformation inhibition effect of a block 18 can be exhibited to the maximum at traction and braking and a deformation inhibition effect of the block having an equal level or more to that of a conventional siping made to a zig-zag shape in a depth direction is obtained. Thereby, high braking performance and traction performance on the ice and high deviation wearing-resistance are obtained. In this siping 20, since the deformation inhibition effect of the block is sufficiently obtained and the bending number in the depth direction is relatively less, rounding of a rubber between blades is sufficient at vulcanization. Since drawing resistance is less at hook removal, defect of the block can be prevented. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、空気入りタイヤにかかり、特に、ブロックに複数のサイプを形成した空気入りタイヤに関する。
【0002】
【従来の技術】
従来、空気入りタイヤにおいて、より高い氷上ブレーキ性能を狙うには、ブロックに形成するサイプの本数を増加させ、サイプのエッジで得られるエッジ効果を増加させる手法がとられていた。
【0003】
しかし、サイプ本数を増加させると、ブロック剛性の低下に伴うブロックの倒れこみ変形により接地性が悪化し、それほどの効果は望めず、しかも、接地性の悪化による編摩耗(ヒール・アンド・トゥ摩耗)を生ずる問題がある。
【0004】
そこで、サイプ壁面の形状に凹凸を持たせ、凹凸を係合させることによりブロック倒れ込みを抑える手法が提案されている(特許文献1、2参照)。
【0005】
【特許文献1】
特開平11−78432号公報
【特許文献2】
特開2002−192916号公報
【0006】
【発明が解決しようとする課題】
通常、サイプ壁面の凹凸が多いほど、互いに係合する部分が多くなり、ブロックの倒れ込み変形を抑制する効果は高い。
【0007】
しかしながら、サイプを形成するモールドのブレードの板厚が0.4〜2.0mmであり、しかもブレード間が狭いため、サイプ壁面の凹凸が多いと、加硫時のゴムの回りが悪化傾向となってブロックに割れや欠けなどが発生し易く、また、タイヤの釜抜け時にブレードによってブロックの一部分が引き抜かれて欠ける問題がある。
【0008】
即ち、従来では、氷上性能と、タイヤの品質とに二律背反の関係があった。
【0009】
本発明は、上記問題を解決すべく成されたもので、氷上性能とタイヤ品質とを両立可能な空気入りタイヤを提供することが目的である。
【0010】
【課題を解決するための手段】
請求項1に記載の発明は、トレッドのブロックに複数のサイプを形成した空気入りタイヤであって、前記ブロックを前記サイプの長手方向に直角な断面で見たときに、前記サイプは、前記ブロックの踏面側に形成され踏面に立てた法線に沿って延びる第1直線部、前記第1直線部のタイヤ半径方向内側に連結され前記法線に対して傾斜して延びる第1傾斜部、前記第1傾斜部のタイヤ半径方向内側に連結され前記法線に沿って延びる第2直線部、前記第2直線部のタイヤ半径方向内側に連結され前記法線に対して前記第1傾斜部とは反対方向に傾斜して延びる第2傾斜部、及び前記第2傾斜部のタイヤ径方向内側に連結され前記法線に沿って延びる第3直線部を備え、前記第2傾斜部の深さ方向中心部が、踏面側から前記サイプの深さの略50%の位置にあり、前記第1傾斜部の深さ方向中心部が、踏面側から前記サイプの深さの20〜30%の範囲内に位置している、ことを特徴としている。
【0011】
次に、請求項1に記載の空気入りタイヤの作用を説明する。
【0012】
請求項1に記載の空気入りタイヤでは、サイプが深さ方向に複数回折れ曲がってサイプ壁面が凹凸している。
【0013】
ブロックが外力により倒れ込み変形をしようとするとき、第1傾斜部の互いに対向する壁面同士、及び第2傾斜部の互いに対向する壁面同士が互いに強く密着し、ブロックの倒れ込み変形を抑制することができる。
【0014】
その際、傾斜部がサイプ深さ方向に対して深すぎる場合、また浅すぎる場合には、倒れ込み変形に対して効果が無いばかりか、逆に変形を悪化させる方向に作用する場合がある。
【0015】
請求項1に記載の空気入りタイヤのように、第2傾斜部の深さ方向中心部が踏面側からサイプの深さの略50%の位置にあり、第1傾斜部の深さ方向中心部が踏面側からサイプの深さの20〜30%の範囲内に位置していると、変形抑制効果を最大限に発揮することができる。
【0016】
これにより、同等の傾斜部をブロックの踏面から法線方向に沿って周期的にジグザグとなるようにしたサイプと同等以上のブロック変形抑制効果を得ることができる。
【0017】
したがって、氷上でのブレーキ性能及びトラクション性能、耐編摩耗性能を向上させることができる。
【0018】
また、このサイプは、ブロック変形抑制効果が十分得られる上に、深さ方向の折れ曲がり回数が比較的少ないため、ブレードの加工性が良く、また、釜抜け時の引き抜き抵抗が少ないためブロックの欠けを防止することができる。
【0019】
なお、第2傾斜部の深さ方向中心部が、踏面側からサイプの深さの略50%の位置にあるが、この略50%とは、50%±10%のことを意味する。
【0020】
請求項2に記載の発明は、請求項1に記載の空気入りタイヤにおいて、前記サイプは、踏面形状がジグザグ形状である、ことを特徴としている。
【0021】
次に、請求項2に記載の空気入りタイヤの作用を説明する。
【0022】
請求項2に記載の空気入りタイヤでは、踏面に表れるサイプの踏面形状をジグザグ形状としたので、サイプ壁面が3次元状に凹凸することになり、ブロックの変形をより一層効果的に抑えることが可能となる。
【0023】
請求項3に記載の発明は、請求項1または請求項2に記載の空気入りタイヤにおいて、前記ブロックを前記サイプの長手方向に直角な断面で見たときに、前記複数のサイプは、全て同位相とならないように形成されている、ことを特徴としている。
【0024】
次に、請求項3に記載の空気入りタイヤの作用を説明する。
【0025】
一つのブロック内において、複数のサイプの位相を全て同じにすると、ブロック剛性に方向性が生まれる場合がある。ブロック剛性に方向性が生まれると、例えば氷上ブレーキ性能と、氷上トラクション性能とのバランスが悪化する場合がある。
【0026】
したがって、ブロック剛性に方向性を持たせないためには、複数のサイプを、全て同位相とならないように形成することが好ましい。
【0027】
請求項4に記載の発明は、請求項1乃至請求項3の何れか1項に記載の空気入りタイヤにおいて、前記第1傾斜部の前記法線に対する角度θ1、及び前記第2傾斜部の前記法線に対する角度θ2は、各々35〜60°の範囲内に設定されている、ことを特徴としている。
【0028】
次に、請求項4に記載の空気入りタイヤの作用を説明する。
【0029】
角度θ1、及び角度θ2が35°未満になると、サイプ壁面の係合がほとんどなくなり、変形を抑制する効果が無くなる。
【0030】
一方、角度θ1、及び角度θ2が60°を越えると、ブレードの加工性が極端に悪くなるばかりか、釜抜け時に凹凸部が切り取られてしまう。
【0031】
したがって、角度θ1、及び角度θ2を各々35〜60°の範囲内に設定することが好ましい。
【0032】
請求項5に記載の発明は、請求項1乃至請求項4の何れか1項に記載の空気入りタイヤ前記第1傾斜部のサイプ深さ方向の長さDa、及び前記第2傾斜部のサイプ深さ方向の長さDbは、前記サイプの深さHの10〜30%の範囲内に設定されている、ことを特徴としている。
【0033】
次に、請求項5に記載の空気入りタイヤの作用を説明する。
【0034】
長さDa、及び長さDbが深さHの10%未満になると、ブレードの加工性が極端に悪くなるばかりか、釜抜け時に凹凸部が切り取られてしまう。
【0035】
長さDa、及び長さDbが深さHの30%を越えると、サイプ壁面の係合がほとんどなくなり、変形を抑制する効果が無くなる。
【0036】
【発明の実施の形態】
以下、本発明の空気入りタイヤの一実施形態を図1乃至図4にしたがって、説明する。
【0037】
図2に示される如く、本実施形態の空気入りタイヤ10のトレッド12には、周方向に延びる複数の主溝14と、これらの主溝14と交わる多数のラグ溝16とが形成されており、これらの主溝14とラグ溝16とによって複数のブロック18が区分されている。
【0038】
また、各ブロック18には、タイヤ幅方向(図2の矢印B方向)に沿って直線状に延びるサイプ20がタイヤ周方向に間隔をあけて複数形成されている。
【0039】
図1に示すように、ブロック18をサイプ20の長手方向に直角な断面で見たときに、サイプ20は、ブロック18の踏面18A側に形成され踏面18Aに立てた法線HLに沿って延びる第1直線部20A、第1直線部20Aのタイヤ半径方向内側に連結され法線HLに対して傾斜して延びる第1傾斜部20B、第1傾斜部20Bのタイヤ半径方向内側に連結され法線HLに沿って延びる第2直線部20C、第2直線部20Cのタイヤ半径方向内側に連結され法線HLに対して第1傾斜部20Bとは反対方向に傾斜して延びる第2傾斜部20D、及び第2傾斜部20Dのタイヤ径方向内側に連結され法線HLに沿って延びる第3直線部20Eを備えている。
【0040】
ここで、第2傾斜部20Dの深さ方向中心部20Dsを、踏面18A側からサイプ20の深さHの50%±10%の位置とし、第1傾斜部20Bの深さ方向中心部20Bsを、踏面18A側からサイプ20の深さHの20〜30%の範囲内に位置させる必要がある。
【0041】
なお、第1傾斜部20Bの法線HLに対する角度θ1、及び第2傾斜部20Dの法線HLに対する角度θ2は、各々35〜60°の範囲内が好ましい。
【0042】
第1直線部20Aのサイプ深さ方向の長さD1はサイプ20の深さHの12〜20%の範囲内が好ましく、第2直線部20Cのサイプ深さ方向の長さD2はサイプ20の深さHの12〜20%の範囲内が好ましく、第3直線部20Eのサイプ深さ方向の長さD3はサイプ20の深さHの30〜55%の範囲内が好ましい。
【0043】
また、第1傾斜部20Bのサイプ深さ方向の長さDaはサイプ20の深さHの10〜30%の範囲内が好ましく、第2傾斜部20Dのサイプ深さ方向の長さDbはサイプ20の深さHの10〜30%の範囲内が好ましい。
【0044】
なお、サイプ20の幅は、タイヤサイズにもよるが、0.4〜2.0mm程度である。
【0045】
なお、サイプ20の凹凸の向きは、図3に示すように、全て同位相に形成しても良く、図3または図4に示すように、全て同位相とならないように形成しても良い。
(作用)
本実施形態の空気入りタイヤ10のように、サイプ20の深さ方向の形状を設定し、第2傾斜部20Dの深さ方向中心部を踏面18A側からサイプ20の深さHの略50%の位置とし、第1傾斜部20Bの深さ方向中心部を踏面18A側からサイプ20の深さHの20〜30%の範囲内に位置させることにより、トラクション時、及びブレーキ時のブロック18の変形抑制効果を最大限に発揮することができ、深さ方向にジグザグ形状とした従来のサイプと同等以上のブロック変形抑制効果が得られる。
【0046】
これにより、氷上での高いブレーキ性能及びトラクション性能、また、高い耐偏摩耗性能が得られる。
【0047】
また、このサイプ20は、ブロック変形抑制効果が十分得られる上に、深さ方向の折れ曲がり回数が比較的少ないため、加硫時にブレード間のゴムの回りが良く、また、釜抜け時の引き抜き抵抗が少ないためブロックの欠けを防止することができる。
【0048】
ここで、一つのブロック18内において、図3に示すように、複数のサイプ20の位相を全て同じにすると、ブロック剛性に方向性が生まれる場合がある。このような方向性を解消するには、図4または図5に示すように、複数のサイプ20を、全て同位相とならないように形成すれば良い。
【0049】
なお、角度θ1、及び角度θ2が35°未満になると、サイプ壁面の係合がほとんどなくなり、変形を抑制する効果が無くなる。
【0050】
一方、角度θ1、及び角度θ2が60°を越えると、ブレードの加工性が極端に悪くなるばかりか、釜抜け時に凹凸部が切り取られてしまう。
【0051】
また、長さDa、及び長さDbが深さHの10%未満になると、ブレードの加工性が極端に悪くなるばかりか、釜抜け時に凹凸部が切り取られてしまう。
【0052】
長さDa、及び長さDbが深さHの30%を越えると、サイプ壁面の係合がほとんどなくなり、変形を抑制する効果が無くなる。
【0053】
なお、上記実施形態の空気入りタイヤ10では、サイプ20の踏面形状がタイヤ幅方向に直線形状であったが、サイプ20をタイヤ幅方向に沿ってジグザグ形状としても良い。
【0054】
これにより、サイプ壁面が3次元状に凹凸することになり、ブロック18の変形をより一層効果的に抑えることができる。
[試験例1]
本発明の効果を確かめるために、本発明の適用された実施例の空気入りタイヤ、及び比較例の空気入りタイヤを製造し、氷上ブレーキ性能、氷上トラクション性能、及び釜抜き抵抗のそれぞれに付いて比較を行った。
【0055】
タイヤサイズ:185/70R14
ブロック寸法:周方向長さ25mm、幅20mm、高さ10mm、サイプ深さ7mm。
【0056】
サイプの傾斜部の角度:35°
実施例1:図4に示すようにサイプ20を配置したタイヤ。
【0057】
実施例2:図3に示すようにサイプ20を配置したタイヤ。
【0058】
比較例1:図6(A)に示すような深さ方向中間部に第2傾斜部30Aを設け、その上側に第1直線部30B、下側に第2直線部30Cを設けたサイプ30を図7に示すように配置したタイヤ。
【0059】
比較例2: 上述したサイプ30を図8に示すように全て同位相に配置したタイヤ。
【0060】
比較例3:図6(B)に示すような深さ方向中間部に第1傾斜部32Aを設け、踏面側に第2傾斜部32B、第2傾斜部32Bと第1傾斜部32Aとの間に第1直線部32Cを設け、第1傾斜部32Aの下側に第2直線部32Dを設けたサイプ32を図9に示すように配置したタイヤ。
【0061】
比較例4:図6(C)に示すような深さ方向中間部に第1傾斜部34Aを設け、踏面側に第1直線部34B、第1直線部34Bと第1傾斜部34Aとの間に第2傾斜部34Cを設け、第1傾斜部34Aの下側に第2直線部34Dを設けたサイプ34を図10に示すように配置したタイヤ。
【0062】
比較例5:図6(D)に示すような深さ方向中間部に第1傾斜部36Aを設け、第1傾斜部36Aの踏面側に第1直線部36B、第1傾斜部36Aの下側に第2直線部36C、第2直線部36Cの下側に第2傾斜部36Dを設けたサイプ36を図11に示すように配置したタイヤ。
【0063】
比較例6:図6(E)に示すような深さ方向中間部に第1傾斜部38Aを設け、第1傾斜部38Aの踏面側に第1直線部38B、第1傾斜部38Aの下側に第2傾斜部38Cを設け、第2傾斜部38Cの下側に第2直線部38Dを設けたサイプ38を図12に示すように配置したタイヤ。
【0064】
比較例7:図6(F)に示すような深さ方向中間部に第1直線部40Aを設け、第1直線部40Aの踏面側に第1傾斜部40B、第1傾斜部40Bの踏面側に第2直線部40C、第2直線部40Cの踏面側に第2傾斜部40Dを設け、第1直線部40Aの下側に第3傾斜部40E、第3傾斜部40Eの下側に第3直線部40F、第3直線部40Fの下側に第4傾斜部40Gを設けたサイプ40を図13に示すように配置したタイヤ。
【0065】
氷上ブレーキ性能:タイヤサイズ185/70R14の供試タイヤを車両に装着し、20km/hで走行中急ブレーキをかけ、かけた地点から停止した地点までの距離を測定した。評価は、実施例の停止距離の逆数を100とする指数表示とし、数値が大きいほど氷上ブレーキ性能に優れていることを表す。なお、走行時のタイヤの回転方向は、図中の矢印R方向である。
【0066】
氷上トラクション性能:タイヤサイズ185/70R14の供試タイヤを車両に装着し、車両を停止状態から発進させ、100m通過時の加速タイムを計測。評価は、実施例の加速タイムの逆数を100とする指数表示とし、数値が大きいほど氷上トラクション性能に優れていることを表す。なお、走行時のタイヤの回転方向は、図中の矢印R方向である。
【0067】
抜き抵抗:供試タイヤをモールドから抜き出す時の抜き抵抗を測定した。評価は、実施例の抜き抵抗を100とする指数表示とし、数値が小さいほど抜き抵抗が小さいことを表す。なお、抜き抵抗が小さい方が生産性は良く、また、ブロック欠けの発生も少なくなる。
【0068】
【表1】

Figure 2004314758
試験の結果から、実施例の空気入りタイヤは、氷上性能と、生産性(ブロック欠けの防止)とを両立できていることが分かる。
[試験例2]
また、サイプの傾斜部の角度を種々変化させ、氷上ブレーキ性能、及び抜き抵抗を調べた。サイプ形状は上記試験例2の実施例1を採用し、傾斜部の角度(θ1、及びθ2)のみを変化させた。
【0069】
なお、評価は、傾斜部の角度が35°のものを100とした。
【0070】
【表2】
Figure 2004314758
試験の結果から、サイプの傾斜部の角度は、35°〜60°の範囲内が抜き抵抗を抑えつつ、氷上ブレーキ性能を向上できて好ましいことが分かる。
【図面の簡単な説明】
【図1】サイプの側面図である。
【図2】本発明の一実施形態に係る空気入りタイヤのトレッドの平面図である。
【図3】ブロックの側面図である。
【図4】ブロックの側面図である。
【図5】ブロックの側面図である。
【図6】(A)乃至(F)は比較例に係る空気入りタイヤのサイプの側面図である。
【図7】比較例1のブロックの側面図である。
【図8】比較例2のブロックの側面図である。
【図9】比較例3のブロックの側面図である。
【図10】比較例4のブロックの側面図である。
【図11】比較例5のブロックの側面図である。
【図12】比較例6のブロックの側面図である。
【図13】比較例7のブロックの側面図である。
【符号の説明】
10 空気入りタイヤ
18 ブロック
20 サイプ
20A 第1直線部
20B 第1傾斜部
20C 第2直線部
20D 第2傾斜部
20E 第3直線部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pneumatic tire, and more particularly to a pneumatic tire having a plurality of sipes formed on a block.
[0002]
[Prior art]
Conventionally, in a pneumatic tire, in order to aim at higher braking performance on ice, a method of increasing the number of sipes formed in a block and increasing the edge effect obtained at the edge of the sipe has been adopted.
[0003]
However, when the number of sipes is increased, the contact property deteriorates due to the falling down deformation of the block due to the decrease in the block rigidity, so that the effect cannot be expected so much. ).
[0004]
Therefore, a method has been proposed in which the shape of the sipe wall surface is provided with irregularities and the irregularities are engaged to suppress the block from falling down (see Patent Documents 1 and 2).
[0005]
[Patent Document 1]
JP-A-11-78432 [Patent Document 2]
JP 2002-192916 A
[Problems to be solved by the invention]
Normally, the more irregularities on the sipe wall surface, the greater the number of portions that engage with each other, and the effect of suppressing the falling deformation of the block is high.
[0007]
However, since the thickness of the blade of the mold that forms the sipe is 0.4 to 2.0 mm and the gap between the blades is narrow, if there are many irregularities on the sipe wall, the circumference of the rubber during vulcanization tends to deteriorate. In addition, there is a problem that the block is liable to be cracked or chipped, and a part of the block is pulled out by the blade when the tire comes off the shuttle, and the block is chipped.
[0008]
That is, conventionally, there was a trade-off relationship between the performance on ice and the quality of the tire.
[0009]
The present invention has been made to solve the above problems, and an object of the present invention is to provide a pneumatic tire capable of achieving both on-ice performance and tire quality.
[0010]
[Means for Solving the Problems]
The invention according to claim 1 is a pneumatic tire in which a plurality of sipes are formed in a block of a tread, and when the block is viewed in a cross section perpendicular to a longitudinal direction of the sipe, the sipe includes the block. A first straight portion formed on a tread surface side of the tread surface and extending along a normal line erected on the tread surface, a first inclined portion connected to a radial inside of the first straight portion in a tire radial direction and extending inclining with respect to the normal line; A second straight portion connected to the inside of the first inclined portion in the tire radial direction and extending along the normal line, and a second straight portion connected to the inside of the second straight portion in the tire radial direction and the first inclined portion with respect to the normal line; A second inclined portion that extends inclining in the opposite direction, and a third linear portion that is connected to the inside of the second inclined portion in the tire radial direction and extends along the normal line, and the center of the second inclined portion in the depth direction. Is approximately 5 depths of the sipe from the tread side. % Yes in the position, the depth direction center portion of the first inclined portion, the tread side is positioned within the range of 20-30% of the depth of the sipe, and characterized in that.
[0011]
Next, the operation of the pneumatic tire according to claim 1 will be described.
[0012]
In the pneumatic tire according to the first aspect, the sipe is bent a plurality of times in the depth direction and the sipe wall surface is uneven.
[0013]
When the block is to fall down due to external force, the opposing wall surfaces of the first inclined portion and the opposing wall surfaces of the second inclined portion are strongly adhered to each other, so that the falling down deformation of the block can be suppressed. .
[0014]
At this time, if the inclined portion is too deep or too shallow in the sipe depth direction, not only is there no effect on the falling deformation, but it may also act in a direction that worsens the deformation.
[0015]
As in the pneumatic tire according to claim 1, the center in the depth direction of the second inclined portion is located at approximately 50% of the depth of the sipe from the tread side, and the central portion in the depth direction of the first inclined portion. Is located within the range of 20 to 30% of the depth of the sipe from the tread side, the deformation suppressing effect can be maximized.
[0016]
Thereby, it is possible to obtain a block deformation suppressing effect equal to or greater than that of a sipe in which the same inclined portion periodically zigzags along the normal direction from the tread surface of the block.
[0017]
Therefore, braking performance, traction performance, and knitting wear resistance on ice can be improved.
[0018]
In addition, this sipe has a sufficient effect of suppressing block deformation, has a relatively small number of bends in the depth direction, and has good blade workability. Can be prevented.
[0019]
The center of the second inclined portion in the depth direction is located at approximately 50% of the depth of the sipe from the tread side. The approximately 50% means 50% ± 10%.
[0020]
The invention according to claim 2 is the pneumatic tire according to claim 1, wherein the sipe has a zigzag tread shape.
[0021]
Next, the operation of the pneumatic tire according to claim 2 will be described.
[0022]
In the pneumatic tire according to the second aspect, since the tread shape of the sipe appearing on the tread surface is formed in a zigzag shape, the sipe wall surface becomes three-dimensionally uneven, so that the deformation of the block can be more effectively suppressed. It becomes possible.
[0023]
According to a third aspect of the present invention, in the pneumatic tire according to the first or second aspect, when the block is viewed in a cross section perpendicular to the longitudinal direction of the sipe, the plurality of sipes are all the same. It is characterized in that it is formed so as not to be in phase.
[0024]
Next, the operation of the pneumatic tire according to claim 3 will be described.
[0025]
If the phases of a plurality of sipes are all the same in one block, directionality may be generated in the block rigidity. When the directionality of the block rigidity is generated, for example, the balance between the braking performance on ice and the traction performance on ice may be deteriorated.
[0026]
Therefore, in order not to give directionality to the block rigidity, it is preferable to form a plurality of sipes so that they do not all have the same phase.
[0027]
According to a fourth aspect of the present invention, in the pneumatic tire according to any one of the first to third aspects, the angle θ1 of the first inclined portion with respect to the normal line and the angle of the second inclined portion are different from each other. The angle θ2 with respect to the normal is set within a range of 35 to 60 °.
[0028]
Next, the operation of the pneumatic tire according to claim 4 will be described.
[0029]
When the angle θ1 and the angle θ2 are less than 35 °, the engagement of the sipe wall is almost eliminated, and the effect of suppressing the deformation is lost.
[0030]
On the other hand, when the angle θ1 and the angle θ2 exceed 60 °, not only the workability of the blade is extremely deteriorated, but also the uneven portion is cut off when the hook comes off.
[0031]
Therefore, it is preferable that each of the angle θ1 and the angle θ2 be set in the range of 35 to 60 °.
[0032]
According to a fifth aspect of the present invention, there is provided a pneumatic tire according to any one of the first to fourth aspects, wherein a length Da of the first inclined portion in the sipe depth direction and a sipe of the second inclined portion are provided. The length Db in the depth direction is set in a range of 10 to 30% of the depth H of the sipe.
[0033]
Next, the operation of the pneumatic tire according to claim 5 will be described.
[0034]
When the length Da and the length Db are less than 10% of the depth H, not only the workability of the blade is extremely deteriorated, but also the uneven portion is cut off when the shuttle comes off.
[0035]
When the length Da and the length Db exceed 30% of the depth H, there is almost no engagement of the sipe wall surface, and the effect of suppressing deformation is lost.
[0036]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the pneumatic tire of the present invention will be described below with reference to FIGS.
[0037]
As shown in FIG. 2, the tread 12 of the pneumatic tire 10 of the present embodiment has a plurality of circumferentially extending main grooves 14 and a number of lug grooves 16 intersecting with the main grooves 14. A plurality of blocks 18 are divided by the main groove 14 and the lug groove 16.
[0038]
In each block 18, a plurality of sipes 20 linearly extending in the tire width direction (the direction of arrow B in FIG. 2) are formed at intervals in the tire circumferential direction.
[0039]
As shown in FIG. 1, when the block 18 is viewed in a cross section perpendicular to the longitudinal direction of the sipe 20, the sipe 20 is formed on the tread surface 18 </ b> A side of the block 18 and extends along a normal HL standing on the tread surface 18 </ b> A. The first straight portion 20A, the first inclined portion 20B connected to the inside of the first straight portion 20A in the tire radial direction and extending obliquely with respect to the normal HL, and the normal connected to the inside of the first inclined portion 20B in the tire radial direction. A second linear portion 20C extending along the HL, a second inclined portion 20D connected to the inside of the second linear portion 20C in the tire radial direction and extending in a direction opposite to the first inclined portion 20B with respect to a normal HL, And a third straight portion 20E connected to the inside of the second inclined portion 20D in the tire radial direction and extending along the normal line HL.
[0040]
Here, the depth direction center portion 20Ds of the second inclined portion 20D is set to a position of 50% ± 10% of the depth H of the sipe 20 from the tread surface 18A side, and the depth direction center portion 20Bs of the first inclined portion 20B is set. The sipe 20 must be located within a range of 20 to 30% of the depth H of the sipe 20 from the tread surface 18A side.
[0041]
The angle θ1 of the first inclined portion 20B with respect to the normal HL and the angle θ2 of the second inclined portion 20D with respect to the normal HL are each preferably in the range of 35 to 60 °.
[0042]
The length D1 of the first straight portion 20A in the sipe depth direction is preferably in the range of 12 to 20% of the depth H of the sipe 20, and the length D2 of the second straight portion 20C in the sipe depth direction is The depth H is preferably in the range of 12 to 20% of the depth H, and the length D3 of the third straight portion 20E in the sipe depth direction is preferably in the range of 30 to 55% of the depth H of the sipe 20.
[0043]
Further, the length Da of the first inclined portion 20B in the sipe depth direction is preferably in the range of 10 to 30% of the depth H of the sipe 20, and the length Db of the second inclined portion 20D in the sipe depth direction is sipe. The depth H is preferably in the range of 10 to 30% of the depth H.
[0044]
The width of the sipe 20 is about 0.4 to 2.0 mm, depending on the size of the tire.
[0045]
The directions of the irregularities of the sipe 20 may be all formed in the same phase as shown in FIG. 3, or may be formed so as not to be all the same phase as shown in FIG. 3 or FIG.
(Action)
Like the pneumatic tire 10 of the present embodiment, the shape of the sipe 20 in the depth direction is set, and the center of the second inclined portion 20D in the depth direction is approximately 50% of the depth H of the sipe 20 from the tread surface 18A side. And the center of the first inclined portion 20B in the depth direction is located within the range of 20 to 30% of the depth H of the sipe 20 from the tread surface 18A side, so that the block 18 at the time of traction and at the time of braking is The deformation suppressing effect can be maximized, and a block deformation suppressing effect equal to or greater than that of a conventional sipe having a zigzag shape in the depth direction can be obtained.
[0046]
Thereby, high braking performance and traction performance on ice and high uneven wear resistance can be obtained.
[0047]
In addition, the sipe 20 has a sufficient effect of suppressing block deformation and has a relatively small number of bendings in the depth direction, so that the rubber between the blades is good at the time of vulcanization, and the pull-out resistance at the time of pulling-out of the shuttle. Is small, so that chipping of blocks can be prevented.
[0048]
Here, as shown in FIG. 3, if the phases of the plurality of sipes 20 are all the same in one block 18, the rigidity of the block may have directionality. In order to eliminate such directionality, a plurality of sipes 20 may be formed so as not to be in the same phase as shown in FIG. 4 or FIG.
[0049]
When the angle θ1 and the angle θ2 are less than 35 °, the engagement of the sipe wall is almost eliminated, and the effect of suppressing the deformation is lost.
[0050]
On the other hand, when the angle θ1 and the angle θ2 exceed 60 °, not only the workability of the blade is extremely deteriorated, but also the uneven portion is cut off when the hook comes off.
[0051]
Further, when the length Da and the length Db are less than 10% of the depth H, not only the workability of the blade is extremely deteriorated, but also the uneven portion is cut off when the shuttle comes off.
[0052]
When the length Da and the length Db exceed 30% of the depth H, there is almost no engagement of the sipe wall surface, and the effect of suppressing deformation is lost.
[0053]
In the pneumatic tire 10 of the above embodiment, the tread shape of the sipe 20 is linear in the tire width direction, but the sipe 20 may have a zigzag shape along the tire width direction.
[0054]
As a result, the sipe wall surface becomes three-dimensionally uneven, and the deformation of the block 18 can be more effectively suppressed.
[Test Example 1]
In order to confirm the effects of the present invention, a pneumatic tire according to an example to which the present invention is applied, and a pneumatic tire according to a comparative example were manufactured. A comparison was made.
[0055]
Tire size: 185 / 70R14
Block dimensions: circumferential length 25 mm, width 20 mm, height 10 mm, sipe depth 7 mm.
[0056]
Angle of slope of sipe: 35 °
Example 1: A tire in which the sipes 20 are arranged as shown in FIG.
[0057]
Example 2: A tire in which the sipes 20 are arranged as shown in FIG.
[0058]
Comparative Example 1: A sipe 30 in which a second inclined portion 30A is provided at an intermediate portion in the depth direction as shown in FIG. 6A, a first linear portion 30B is provided above the second inclined portion 30B, and a second linear portion 30C is provided below the second inclined portion 30C. Tire arranged as shown in FIG.
[0059]
Comparative Example 2: A tire in which all the above-mentioned sipes 30 are arranged in the same phase as shown in FIG.
[0060]
Comparative Example 3: A first inclined portion 32A is provided at a middle portion in the depth direction as shown in FIG. 6B, and a second inclined portion 32B is provided on the tread side, and between the second inclined portion 32B and the first inclined portion 32A. The tire in which a sipe 32 provided with a first linear portion 32C and a second linear portion 32D below the first inclined portion 32A is arranged as shown in FIG.
[0061]
Comparative Example 4: A first inclined portion 34A is provided at an intermediate portion in the depth direction as shown in FIG. 6C, and a first linear portion 34B is provided on the tread side, and between the first linear portion 34B and the first inclined portion 34A. A sipe 34 having a second inclined portion 34C provided thereon and a second linear portion 34D provided below the first inclined portion 34A is arranged as shown in FIG.
[0062]
Comparative Example 5: A first inclined portion 36A is provided at an intermediate portion in the depth direction as shown in FIG. 6D, and the first straight portion 36B and the lower side of the first inclined portion 36A are provided on the tread side of the first inclined portion 36A. A tire having a second straight portion 36C and a sipe 36 provided with a second inclined portion 36D below the second straight portion 36C as shown in FIG.
[0063]
Comparative Example 6: A first inclined portion 38A is provided at an intermediate portion in the depth direction as shown in FIG. 6 (E), and the first straight portion 38B and the lower side of the first inclined portion 38A are provided on the tread side of the first inclined portion 38A. A sipe 38 provided with a second inclined portion 38C and a second linear portion 38D below the second inclined portion 38C is arranged as shown in FIG.
[0064]
Comparative Example 7: A first straight portion 40A is provided at an intermediate portion in the depth direction as shown in FIG. 6F, and a first inclined portion 40B and a tread side of the first inclined portion 40B are provided on the tread side of the first straight portion 40A. The second straight portion 40C, the second inclined portion 40D is provided on the tread side of the second straight portion 40C, the third inclined portion 40E below the first straight portion 40A, the third inclined portion 40E below the third inclined portion 40E. A tire in which a sipe 40 provided with a fourth inclined portion 40G below the straight portion 40F and the third straight portion 40F is arranged as shown in FIG.
[0065]
Brake performance on ice: A test tire having a tire size of 185 / 70R14 was mounted on a vehicle, abrupt braking was applied during running at 20 km / h, and the distance from the applied point to the stopped point was measured. The evaluation is represented by an index in which the reciprocal of the stopping distance in the embodiment is set to 100, and the larger the numerical value, the better the braking performance on ice. The rotation direction of the tire during traveling is the direction of arrow R in the figure.
[0066]
Ice traction performance: A test tire with a tire size of 185 / 70R14 was mounted on the vehicle, the vehicle was started from a stopped state, and the acceleration time when passing 100 m was measured. The evaluation is represented by an index in which the reciprocal of the acceleration time in the example is set to 100, and the larger the numerical value, the better the traction performance on ice. The rotation direction of the tire during traveling is the direction of arrow R in the figure.
[0067]
Removal resistance: The removal resistance when the test tire was removed from the mold was measured. The evaluation is represented by an index with the extraction resistance of the example taken as 100, and the smaller the numerical value, the smaller the extraction resistance. It should be noted that the smaller the pullout resistance, the better the productivity and the less occurrence of block chipping.
[0068]
[Table 1]
Figure 2004314758
From the test results, it can be seen that the pneumatic tires of the examples can achieve both on-ice performance and productivity (prevention of block chipping).
[Test Example 2]
In addition, the angle of the inclined portion of the sipe was variously changed, and the braking performance on ice and the pulling resistance were examined. As the sipe shape, Example 1 of Test Example 2 was employed, and only the angles (θ1 and θ2) of the inclined portions were changed.
[0069]
Note that the evaluation was made such that the angle of the inclined portion was 35 ° and was 100.
[0070]
[Table 2]
Figure 2004314758
From the test results, it is understood that the angle of the inclined portion of the sipe is preferably in the range of 35 ° to 60 ° because it is possible to improve the braking performance on ice while suppressing the pulling resistance.
[Brief description of the drawings]
FIG. 1 is a side view of a sipe.
FIG. 2 is a plan view of a tread of the pneumatic tire according to one embodiment of the present invention.
FIG. 3 is a side view of the block.
FIG. 4 is a side view of the block.
FIG. 5 is a side view of the block.
FIGS. 6A to 6F are side views of a sipe of a pneumatic tire according to a comparative example.
FIG. 7 is a side view of a block of Comparative Example 1.
FIG. 8 is a side view of a block of Comparative Example 2.
FIG. 9 is a side view of a block of Comparative Example 3.
FIG. 10 is a side view of a block of Comparative Example 4.
FIG. 11 is a side view of a block of Comparative Example 5.
FIG. 12 is a side view of a block of Comparative Example 6.
FIG. 13 is a side view of a block of Comparative Example 7.
[Explanation of symbols]
Reference Signs List 10 Pneumatic tire 18 Block 20 Sipe 20A First straight portion 20B First inclined portion 20C Second straight portion 20D Second inclined portion 20E Third straight portion

Claims (5)

トレッドのブロックに複数のサイプを形成した空気入りタイヤであって、
前記ブロックを前記サイプの長手方向に直角な断面で見たときに、前記サイプは、前記ブロックの踏面側に形成され踏面に立てた法線に沿って延びる第1直線部、前記第1直線部のタイヤ半径方向内側に連結され前記法線に対して傾斜して延びる第1傾斜部、前記第1傾斜部のタイヤ半径方向内側に連結され前記法線に沿って延びる第2直線部、前記第2直線部のタイヤ半径方向内側に連結され前記法線に対して前記第1傾斜部とは反対方向に傾斜して延びる第2傾斜部、及び前記第2傾斜部のタイヤ径方向内側に連結され前記法線に沿って延びる第3直線部を備え、
前記第2傾斜部の深さ方向中心部が、踏面側から前記サイプの深さの略50%の位置にあり、
前記第1傾斜部の深さ方向中心部が、踏面側から前記サイプの深さの20〜30%の範囲内に位置している、ことを特徴とする空気入りタイヤ。
A pneumatic tire having a plurality of sipes formed on a tread block,
When the block is viewed in a cross section perpendicular to the longitudinal direction of the sipe, the sipe is formed on a tread surface side of the block and extends along a normal line erected on the tread surface. A first inclined portion connected to the tire radially inside and extending at an angle to the normal line; a second linear portion connected to the tire radial direction inside of the first inclined portion and extending along the normal line; A second inclined portion connected to a radially inner side of the two straight portions and extending in a direction opposite to the first inclined portion with respect to the normal line, and connected to a radially inner side of the second inclined portion; A third straight line portion extending along the normal line;
The depth direction center of the second inclined portion is located at a position of about 50% of the depth of the sipe from the tread side,
A pneumatic tire, wherein a central portion in a depth direction of the first inclined portion is located within a range of 20 to 30% of a depth of the sipe from a tread side.
前記サイプは、踏面形状がジグザグ形状である、ことを特徴とする請求項1に記載の空気入りタイヤ。The pneumatic tire according to claim 1, wherein the sipe has a zigzag tread shape. 前記ブロックを前記サイプの長手方向に直角な断面で見たときに、前記複数のサイプは、全て同位相とならないように形成されている、ことを特徴とする請求項1または請求項2に記載の空気入りタイヤ。3. The plurality of sipes are formed so as not to be in the same phase when the block is viewed in a cross section perpendicular to the longitudinal direction of the sipes. 4. Pneumatic tires. 前記第1傾斜部の前記法線に対する角度θ1、及び前記第2傾斜部の前記法線に対する角度θ2は、各々35〜60°の範囲内に設定されている、ことを特徴とする請求項1乃至請求項3の何れか1項に記載の空気入りタイヤ。The angle θ1 of the first inclined portion with respect to the normal and the angle θ2 of the second inclined portion with respect to the normal are each set within a range of 35 to 60 °. The pneumatic tire according to any one of claims 3 to 3. 前記第1傾斜部のサイプ深さ方向の長さDa、及び前記第2傾斜部のサイプ深さ方向の長さDbは、前記サイプの深さHの10〜30%の範囲内に設定されている、ことを特徴とする請求項1乃至請求項4の何れか1項に記載の空気入りタイヤ。The length Da of the first inclined portion in the sipe depth direction and the length Db of the second inclined portion in the sipe depth direction are set within a range of 10 to 30% of the depth H of the sipe. The pneumatic tire according to any one of claims 1 to 4, wherein
JP2003110455A 2003-04-15 2003-04-15 Pneumatic tire Pending JP2004314758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003110455A JP2004314758A (en) 2003-04-15 2003-04-15 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003110455A JP2004314758A (en) 2003-04-15 2003-04-15 Pneumatic tire

Publications (1)

Publication Number Publication Date
JP2004314758A true JP2004314758A (en) 2004-11-11

Family

ID=33471310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003110455A Pending JP2004314758A (en) 2003-04-15 2003-04-15 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP2004314758A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298055A (en) * 2005-04-18 2006-11-02 Bridgestone Corp Pneumatic tire
WO2007004369A1 (en) * 2005-06-30 2007-01-11 Bridgestone Corporation Pneumatic tire
JP2007045316A (en) * 2005-08-10 2007-02-22 Toyo Tire & Rubber Co Ltd Pneumatic tire
WO2007101794A1 (en) * 2006-03-08 2007-09-13 Societe De Technologie Michelin Running tread incision comprising blocking parts
EP1974956A1 (en) * 2007-03-28 2008-10-01 Continental Aktiengesellschaft Pneumatic tyres for a vehicle
JP2009029200A (en) * 2007-07-25 2009-02-12 Yokohama Rubber Co Ltd:The Pneumatic tire
EP2138330A1 (en) * 2008-06-28 2009-12-30 Continental Aktiengesellschaft Pneumatic tyres for a vehicle
JP2010511561A (en) * 2006-12-07 2010-04-15 ソシエテ ド テクノロジー ミシュラン Tread with double orientation cut
CN102343772A (en) * 2010-07-23 2012-02-08 横滨橡胶株式会社 Pneumatic tire
WO2013065304A1 (en) * 2011-11-04 2013-05-10 株式会社ブリヂストン Pneumatic tire
JP2013103579A (en) * 2011-11-11 2013-05-30 Bridgestone Corp Pneumatic tire
JP2013252751A (en) * 2012-06-05 2013-12-19 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2013252750A (en) * 2012-06-05 2013-12-19 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2017052346A (en) * 2015-09-08 2017-03-16 東洋ゴム工業株式会社 Pneumatic tire
JP2017052347A (en) * 2015-09-08 2017-03-16 東洋ゴム工業株式会社 Pneumatic tire
JP2017052345A (en) * 2015-09-08 2017-03-16 東洋ゴム工業株式会社 Pneumatic tire
WO2017212399A1 (en) * 2016-06-10 2017-12-14 Pirelli Tyre S.P.A. Winter tyre
WO2018081716A1 (en) * 2016-10-31 2018-05-03 Compagnie Generale Des Etablissements Michelin Tire treads having discontinuities extending depthwise along non-linear paths
DE102017215742A1 (en) 2017-09-07 2019-03-07 Continental Reifen Deutschland Gmbh Vehicle tires
US10308078B2 (en) 2015-09-08 2019-06-04 Toyo Tire Corporation Pneumatic tire
CN110785293A (en) * 2017-06-19 2020-02-11 株式会社普利司通 Tyre for vehicle wheels
US10766313B2 (en) 2014-06-30 2020-09-08 Compagnie Generale Des Etablissments Michelin Tire treads having tread elements with inclined leading sides
WO2020255453A1 (en) * 2019-06-19 2020-12-24 株式会社ブリヂストン Pneumatic tire
US20210276369A1 (en) * 2020-03-06 2021-09-09 Sumitomo Rubber Industries, Ltd. Tire

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298055A (en) * 2005-04-18 2006-11-02 Bridgestone Corp Pneumatic tire
WO2007004369A1 (en) * 2005-06-30 2007-01-11 Bridgestone Corporation Pneumatic tire
JP2007091197A (en) * 2005-06-30 2007-04-12 Bridgestone Corp Pneumatic tire
JP2007045316A (en) * 2005-08-10 2007-02-22 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP4689402B2 (en) * 2005-08-10 2011-05-25 東洋ゴム工業株式会社 Pneumatic tire
WO2007101794A1 (en) * 2006-03-08 2007-09-13 Societe De Technologie Michelin Running tread incision comprising blocking parts
FR2898298A1 (en) * 2006-03-08 2007-09-14 Michelin Soc Tech TIRE TREAD INCISION COMPRISING BLOCKING PARTS.
US8393366B2 (en) 2006-03-08 2013-03-12 Michelin Recherche Et Technique S.A. Tread sipe comprising locking parts
JP2009528946A (en) * 2006-03-08 2009-08-13 ソシエテ ド テクノロジー ミシュラン Tread sipe with locking part
JP2010511561A (en) * 2006-12-07 2010-04-15 ソシエテ ド テクノロジー ミシュラン Tread with double orientation cut
EP1974956A1 (en) * 2007-03-28 2008-10-01 Continental Aktiengesellschaft Pneumatic tyres for a vehicle
JP2009029200A (en) * 2007-07-25 2009-02-12 Yokohama Rubber Co Ltd:The Pneumatic tire
EP2138330A1 (en) * 2008-06-28 2009-12-30 Continental Aktiengesellschaft Pneumatic tyres for a vehicle
CN102343772A (en) * 2010-07-23 2012-02-08 横滨橡胶株式会社 Pneumatic tire
WO2013065304A1 (en) * 2011-11-04 2013-05-10 株式会社ブリヂストン Pneumatic tire
CN104024002A (en) * 2011-11-04 2014-09-03 株式会社普利司通 Pneumatic tire
US20140299245A1 (en) * 2011-11-04 2014-10-09 Bridgestone Corporation Pneumatic tire
US10179482B2 (en) * 2011-11-04 2019-01-15 Bridgestone Corporation Pneumatic tire
JP2013103579A (en) * 2011-11-11 2013-05-30 Bridgestone Corp Pneumatic tire
JP2013252751A (en) * 2012-06-05 2013-12-19 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2013252750A (en) * 2012-06-05 2013-12-19 Yokohama Rubber Co Ltd:The Pneumatic tire
US10766313B2 (en) 2014-06-30 2020-09-08 Compagnie Generale Des Etablissments Michelin Tire treads having tread elements with inclined leading sides
JP2017052345A (en) * 2015-09-08 2017-03-16 東洋ゴム工業株式会社 Pneumatic tire
US10245895B2 (en) 2015-09-08 2019-04-02 Toyo Tire & Rubber Co., Ltd. Pneumatic tire
JP2017052346A (en) * 2015-09-08 2017-03-16 東洋ゴム工業株式会社 Pneumatic tire
US10308078B2 (en) 2015-09-08 2019-06-04 Toyo Tire Corporation Pneumatic tire
JP2017052347A (en) * 2015-09-08 2017-03-16 東洋ゴム工業株式会社 Pneumatic tire
EP3778265A1 (en) * 2016-06-10 2021-02-17 Pirelli Tyre S.p.A. Winter tyre
WO2017212399A1 (en) * 2016-06-10 2017-12-14 Pirelli Tyre S.P.A. Winter tyre
RU2737706C2 (en) * 2016-06-10 2020-12-02 Пирелли Тайр С.П.А. Winter tire
CN109219530A (en) * 2016-06-10 2019-01-15 倍耐力轮胎股份公司 Tire used in winter
CN109219530B (en) * 2016-06-10 2021-02-09 倍耐力轮胎股份公司 Winter tyre
WO2018080550A1 (en) * 2016-10-31 2018-05-03 Compagnie Generale Des Etablissements Michelin Tire treads having discontinuities extending depthwise along non-linear paths
CN110062704A (en) * 2016-10-31 2019-07-26 米其林集团总公司 Tire tread with the discontinuous portion extended in the depth direction along non-directional route
WO2018081716A1 (en) * 2016-10-31 2018-05-03 Compagnie Generale Des Etablissements Michelin Tire treads having discontinuities extending depthwise along non-linear paths
CN110785293A (en) * 2017-06-19 2020-02-11 株式会社普利司通 Tyre for vehicle wheels
DE102017215742A1 (en) 2017-09-07 2019-03-07 Continental Reifen Deutschland Gmbh Vehicle tires
CN111433050A (en) * 2017-09-07 2020-07-17 大陆轮胎德国有限公司 Pneumatic tire for vehicle
WO2019048092A1 (en) 2017-09-07 2019-03-14 Continental Reifen Deutschland Gmbh Pneumatic tyre for a vehicle
WO2020255453A1 (en) * 2019-06-19 2020-12-24 株式会社ブリヂストン Pneumatic tire
JP2021000857A (en) * 2019-06-19 2021-01-07 株式会社ブリヂストン Pneumatic tire
JP7199311B2 (en) 2019-06-19 2023-01-05 株式会社ブリヂストン pneumatic tire
US20210276369A1 (en) * 2020-03-06 2021-09-09 Sumitomo Rubber Industries, Ltd. Tire
US11691459B2 (en) * 2020-03-06 2023-07-04 Sumitomo Rubber Industries, Ltd. Tire

Similar Documents

Publication Publication Date Title
JP2004314758A (en) Pneumatic tire
JP4656638B2 (en) Pneumatic tire
JP5060687B2 (en) Pneumatic radial tire
JP2005119415A (en) Pneumatic tire
JP2008001293A (en) Pneumatic tire
JP4769540B2 (en) Pneumatic tire
JP3607011B2 (en) Tire vulcanizing mold and pneumatic tire
WO2006075713A1 (en) Pneumatic tire
JP2003182314A (en) Pneumatic tire
JP2005193770A (en) Pneumatic tire and vulcanization mold
JP4715343B2 (en) Pneumatic tire
JP5015421B2 (en) Pneumatic tire
JP2007137110A (en) Pneumatic tire
JP2002019420A (en) Pneumatic tire
JPH10244813A (en) Pneumatic tire
JP5647462B2 (en) tire
JPH08175115A (en) Pneumatic tire
WO2010007995A1 (en) Pneumatic tire
JPH05162511A (en) Tire for heavy load
JP2000211322A (en) Pneumatic radial tire
JP2006051836A (en) Pneumatic tire
JPH11291717A (en) Pneumatic tire
JP2011157011A (en) Pneumatic tire
JP2004210043A (en) Pneumatic tire
JP4094168B2 (en) Pneumatic radial tire