JP2004313844A - Harmful substance decomposing method - Google Patents

Harmful substance decomposing method Download PDF

Info

Publication number
JP2004313844A
JP2004313844A JP2003107904A JP2003107904A JP2004313844A JP 2004313844 A JP2004313844 A JP 2004313844A JP 2003107904 A JP2003107904 A JP 2003107904A JP 2003107904 A JP2003107904 A JP 2003107904A JP 2004313844 A JP2004313844 A JP 2004313844A
Authority
JP
Japan
Prior art keywords
photocatalyst
film
adsorbent
titanium oxide
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003107904A
Other languages
Japanese (ja)
Inventor
Takao Wada
岳雄 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003107904A priority Critical patent/JP2004313844A/en
Publication of JP2004313844A publication Critical patent/JP2004313844A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that the decomposition removal capacity of a photocatalyst medium is not improved as expected because almost all of pores are closed by the photocatalyst film to lower the adsorbing capacity of the photocatalyst medium, in a conventional photocatalyst medium wherein the contact chance of a harmful substance with a photocatalyst is enhanced by increasing the total surface area of the photocatalyst film. <P>SOLUTION: In this harmful substance decomposing method, a reticulate holder 6 is obtained by forming the photocatalyst film on a substrate having a large number of air permeable openings, and the photocatalyst medium 1is obtained by supporting the photocatalyst film on the surface excepting the inner surfaces of pores of an adsorbent of which the pores communicate with the open air, and both of the reticulate holder 6 and the photocatalyst medium 1 are irradiated with light while allowing a gas containing a harmful substance to flow so as to successively bring the same into contact with the reticulate holder and the photocatalyst medium. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光の照射を受けることによって有害気相物質や不快臭などの原因となる気相物質を分解することのできる光触媒機能を有する光触媒体とその製造方法に関する。本発明に係る光触媒体および光触媒フィルタは、特に車両に取り付けてその室内空間を浄化する空気清浄機の浄化部に好適に使用することができる。
【0002】
【従来の技術】
従来、光の照射により励起されて光触媒反応を生じる半導体(以下、単に光触媒という)により様々な有害気相物質や不快臭の原因となる気相物質等(以下、有害物質という)を無害物質に分解することが行なわれているが、光触媒反応による分解速度は遅いためにそれだけでは十分な浄化能力を得ることは困難であった。また、光触媒の総表面積を単純に増大させることは装置の大型化や製造・管理コストの増大を招くため現実的ではない。
【0003】
光触媒の浄化能力を向上させる技術に他の浄化技術との併用があり、とりわけ吸着剤との併用について多くの報告がなされている。それらによると光触媒と吸着剤とを併用する技術は二つに大別される。
【0004】
ひとつの技術は吸着剤が被処理気体の流れの上流側に位置するように吸着剤と光触媒とを直列に配置し、先ず有害物質を吸着剤に吸着させ、そこで吸着されなかった有害物質を後続の光触媒により分解するものである。吸着剤に吸着しやすい有害物質と光触媒により比較的分解しやすい有害物質とが混在している場合に有効であり光触媒の負荷を低減することができる。また、有害物質に硫黄系ガスが含まれていると触媒毒が生じて光触媒が劣化することがあるが、このような場合に光触媒を触媒毒から守ることができる。しかし、吸着剤と光触媒とを直列に配置する構成は、吸着剤の吸着サイトが飽和すると吸着能力が失われるため、その度毎に吸着剤の交換作業または再生操作が必要となり維持管理コストが多大となる。また、除去された有害物質の殆どは吸着剤により吸着除去されたものであり光触媒により分解されるものは僅かであるため全体の除去能力は吸着剤に依るところが大きい。したがって触媒毒への対応が必要なケースを除き、コストを含めて考えると吸着剤と光触媒とを単純に直列配置する構成の技術的意義は小さいと考えられる。
【0005】
もうひとつの技術は光触媒と吸着剤とを並列に配置し両者の機能を見かけ上一体化させたものである。光触媒反応は固体表面反応であるため有害物質を触媒表面に一旦吸着する必要があるが、光触媒の比表面積はさほど大きくないため吸着速度が遅く光触媒だけでは十分な浄化能力は得られなかった。光触媒の機能と吸着剤の機能とを一体化させることにより光触媒の吸着速度を見かけ上速くすることができる。一体化させるには二種類の構造があり、ひとつは光触媒と吸着剤とバインダーとからなる塗膜層を担体に担持させてなる光触媒体である。もうひとつは光触媒を含む薄膜を吸着剤から構成される担体に担持させてなる光触媒体である。
【0006】
前者の光触媒体では、有害物質が吸着剤に吸着すると近傍の光触媒の分解作用により有害物質は分解される。吸着と分解の繰り返しにより吸着サイトは飽和しにくくなり吸着速度の向上により光触媒の反応速度はミクロ的には速くなる。しかし、光触媒と吸着剤はそれぞれ塗膜層の表面の一部を構成しているにすぎないため何れの表面積も小さく、マクロ的に見ると光触媒反応はあまり速くなっていない。
【0007】
後者の光触媒体は、例えばゼオライト等の吸着性のある多孔質粉粒体から作製した担体の外表面および空孔内表面に酸化銀や二酸化チタンを担持させてなる光触媒体である。これに紫外線照射することで一酸化窒素やメチルメルカプタンを分解でき、その分解除去速度が吸着のみによる除去速度より大きいというものである(特許文献1参照)。別の例は半径5〜20nmの空孔径分布を有するγ−アルミナ多孔体に空孔径が半径2〜10nmとなるように平均膜厚1〜400nmの光触媒薄膜を成膜するものである(特許文献2参照)。何れも吸着剤から構成される担体の外表面だけでなく空孔を塞がないようにその内部表面も光触媒を含む薄膜でコーティングしている点で共通している。吸着剤が有する総表面積において、その多くは空孔の内部表面に依るものである。空孔を塞がずにコーティングすることにより吸着剤の吸着能力を維持し、その吸着能力を光触媒に与えることができる点で優れた光触媒体といえる。
【0008】
【特許文献1】
特開2001−90214号公報
【特許文献2】
特開2002−45650号公報
【0009】
【発明が解決しようとする課題】
図7に光触媒を含む薄膜を吸着剤から構成される担体に担持させてなる光触媒体の断面の一部拡大部を模式的に示す。担体である吸着剤は吸着剤構成粒子3の集合体である。吸着剤の外表面には外気と通ずる空孔5があり、吸着剤構成粒子3は空孔5に通ずる直径1nm程度またはそれ以下の均一な細孔4を有する。光触媒膜2は吸着剤構成粒子3(吸着剤)の外表面と空孔5の内表面とに担持され、かつ空孔5を塞がない厚さである。被処理気体は表面のみならず空孔5から光触媒体1内部へも侵入して光触媒膜2に吸着される。そこで光触媒反応により有害物質は分解される。すなわち、図7の構成による光触媒体は光触媒膜2の総表面積を増大させることにより有害物質と光触媒との接触機会を増やし全体の分解除去能力を高めようとするものである。しかし、ほとんどの細孔が光触媒膜2で塞がれてしまうため吸着能力が低下し、光触媒体の分解除去能力は期待するほどには改善されない。
【0010】
本発明の目的は、上記の課題を解決し有害物質の分解除去能力を高めた光触媒体を提供することである。
【0011】
【課題を解決するための手段】
光触媒体の分解除去能力を向上させるには、吸着剤の吸着能力をできるだけ維持しつつ光触媒膜の表面積を増大させることが必要である。従来の光触媒体の光触媒膜の総表面積は大きいが実際に光の照射を受けることのできる有効面積はその外表面に限定されるためさほど大きくない。なぜなら照射光は空孔の内部までは達しないからである。光の照射を受けることのできない光触媒膜は有害物質を分解しないばかりか細孔を塞いでしまう。本発明者は、吸着剤の外表面に限定して光触媒膜を成膜してできるだけ細孔を塞がないようにすることで、光触媒膜の有効面積を確保しつつ吸着剤の吸着能力を実質的に維持することが可能であることを見出して本発明に到達した。
【0012】
すなわち本発明は、通風可能な多数の開口を有し基体に光触媒膜を形成してなる網状ホルダと、外気と通じる空孔を有する吸着剤の空孔内の表面を除いた表面に光触媒膜を担持させてなる光触媒体とを配置し、有害物質を含むガスを先ず網状ホルダと接触させ次いで光触媒体と接触させるように流しながら網状ホルダと光触媒体に光を照射することを特徴とする有害物質の分解方法である。本発明においては光触媒体を網状ホルダで挟んで保持することが望ましい。また、本発明は有害物質が光触媒に吸着しやすい物質と吸着し難い物質とが混合して存在するガスであるときに特に優れた分解能を発揮する。
【0013】
吸着剤は活性炭、ゼオライト、シリカゲル、活性アルミナ等が使用できるが吸着される物質の分圧が低い場合でも強い吸着力を示すことからゼオライトが好ましい。特性の安定している合成ゼオライトが特に好ましい。ゼオライトは機械的強度が高く振動下でも割れにくいことから車両搭載用の空気清浄機にも好適に適用できる。
【0014】
吸着剤は空孔に通じる細孔を有していることが好ましい。
【0015】
細孔の平均孔径は1nm以下とすることが好ましい。
【0016】
吸着剤の形状は球形とすることが好ましい。
【0017】
【発明の実施の形態】
ゼオライトは特に合成ゼオライトが好適に使用できる。合成ゼオライトは化学的にはアルカリ金属またはアルカリ土類金属の結晶性含水アルミノ珪酸塩で下記一般式で表される。この結晶水が加熱脱離したあとにできた空孔が強い吸着能を有し、またこれに通ずる直径1nm以下の均一な細孔が分子篩効果を示す。合成ゼオライトは品種により特有な細孔径を有する。
MeO・Al・mSiO・nH
[式中、Meはアルカリ金属2原子またはアルカリ土類金属1原子、m,nは整数を示す]
【0018】
本発明の光触媒体の製造方法は次の工程による。(1)光触媒層を成膜するための原料溶液を調製し、(2)外気と通じる空孔を有する吸着剤を加熱し、(3)前記原料溶液を噴霧して前記吸着剤の表面に塗布し、(4)前記原料溶液を塗布した吸着剤を焼成してその表面に光触媒層を成膜させることにより本発明の光触媒体が得られる。原料溶液の液滴が吸着剤に付着すると界面張力により広がろうとするが、その表面が加熱されているため素早く溶媒が蒸発して乾燥が進む。その結果、原料溶液は十分に広がることがないので空孔内にまで侵入することなく吸着剤の外表面で光触媒層を成膜させることができる。原料溶液を噴霧すると比表面積が大きくなるので噴霧された瞬間から吸着剤に付着するまでの間にも溶媒は急速に蒸発する。その時の雰囲気が高温乾燥状態であれば更に急速に蒸発が進むため吸着剤の加熱温度は低くてもよい。
【0019】
本発明の光触媒体の光触媒層は厚さが1〜5μmの範囲、好ましくは2〜3μmであることが良い。この光触媒膜は1μm以下であると充分に期待できる光触媒性能は発現できず、1μm以上であると性能には変化がない。しかしながら5μm以上の厚さで塗布すると、熱歪みにより膜内に亀裂が生じ、光触媒膜の剥離、脱離に繋がる。
【0020】
従来のアナターゼ型酸化チタンの吸収特性は約400nmから徐々に吸収を始め、約350nmで、ほぼ80%近くの紫外線を吸収する。この吸収特性と励起手段の発光特性との間で十分な整合がとれていない場合は、照射される光エネルギーのうち光触媒に吸収されないエネルギーの割合が多くなる。光触媒の吸収特性を長波長側へシフトして励起手段の発光特性との間で整合をとるには、ペルオキソチタン酸溶液、アナターゼ型酸化チタン粉末およびルチル型酸化チタン粉末を混合して原料溶液を調製することが好ましい。この原料溶液から作製した高効率光触媒では420nm付近から吸収を始め、370nmでアナターゼ型酸化チタンと同等の吸収を得ることができる。
【0021】
ルチル型酸化チタンはアナターゼ型酸化チタンに比べ、紫外線吸収特性が長波長側にあることは知られていたが、アナターゼ型に比べルチル型は光触媒性能が低いことも知られていた。アナターゼ型酸化チタンで長波長側(可視光側)に少しでも吸収を多くしようとする可視光型光触媒が開発されつつあるが、上記原料溶液から作製した光触媒は可視光型光触媒と言える程には長波長側にシフトしないが、安全であると言われているブラックライトを使用する上でも効果がある。
【0022】
ペルオキソチタン酸溶液、アナターゼ型酸化チタン粉末およびルチル型酸化チタン粉末を混合して原料溶液の調製方法を次に示す。
(1)膜厚を3μmにする場合にルチル型酸化チタン粉末は<5μmを用意する。
(2)混合する前にルチル型酸化チタン粉末の分散性を良くする為に0.1M硝酸溶液の中にルチル型酸化チタン粉末を10wt%の割合で混合し、ロータリーエバポレーター等の中に入れ、攪拌しながら加熱するか、または減圧させながら水分を蒸発させる。これによりルチル型酸化チタン粉末表面に硝酸が付着する。
(3)ペルオキソチタン酸溶液とアナターゼ型酸化チタンゾルを重量比で3:7に混合する。
(4)先の表面処理したルチル型酸化チタン粉末を先に混合したペルオキソチタン酸溶液とアナターゼ型酸化チタンゾル溶液の水分を蒸発させて乾燥した後の固形分に対して15wt%になるように添加する。溶液の固形分は事前に決められた重量の溶液を乾燥した時の重量を測定しておいた。今回のペルオキソチタン酸溶液とアナターゼ型酸化チタンゾル混合溶液では固形分が元の溶液の重量に対して1.7wt%であった為に、溶液の重量比で0.3wt%のルチル型酸化チタン粉末を添加して原料溶液とする。25wt%以上混合すると、膜強度が落ち、剥がれが生じるばかりか、光触媒性能も低下することがある。好ましくは15〜20wt%の範囲の添加量が良い。
(5)溶液は水ベースなので硝酸を修飾したルチル型酸化チタン粉末は溶液中で反発し合い、最適な分散状態になる。この状態は成膜の際もルチル型酸化チタン粉末の粒子間にアナターゼ型酸化チタン溶液が必ず入り込む効果をも生む。この様な酸による処理の他、親水性処理を行っても同様の効果が得られる。
【0023】
この原料溶液による成膜方法を次に示す。
(1)洗浄した金属基板を暖めながら、調整した本溶液を攪拌機付きのスプレーで所定の膜厚になるように塗布する。
(2)塗布した金属基板状の溶液を大気中で200〜450℃、好ましくは300〜400℃で焼成し、ルチル型酸化チタン粉末が均一に分散したペルオキソチタン酸溶液とアナターゼ型酸化チタンゾルからなる半アモルファス状態の酸化チタン膜を結晶化させ、金属基板上に固定する。この時、ペルオキソチタン酸溶液に含まれる過酸化基が金属基板を酸化させ、酸化チタン膜と金属基板の間にアモルファス反応層を設けて、酸化チタン膜と金属基板を強固に接合させ光触媒体となす。これはペルオキソチタン酸が酸化チタンの前駆体であり、過剰な酸素も有していることから、金属基板表面で酸化反応を引き起こしながら、酸化チタンに変化するためである。
【0024】
こうして作製した光触媒体の表面にはアナターゼ型酸化チタン膜の厚さより粒径の大きいルチル型酸化チタン粒子が分散している。
【0025】
金属基板上に形成された膜の構造はペルオキソチタン酸溶液とアナターゼ型酸化チタンゾルから焼成によって結晶化されたアナターゼ型酸化チタン膜の中にルチル型酸化チタン粒子が分散された構成になっている。光触媒の吸収特性を長波長側へシフトさせるには、膜の主成分であるアナターゼ型酸化チタンに励起源である紫外線が当たることは、もちろんであるが、膜中に分散されたルチル型酸化チタン粒子にも紫外線が当たる必要がある。あまり粒径の細かいルチル型酸化チタンを添加しても、光の当たらない膜の下部に沈殿してしまっては効果が発現しない。
【0026】
光触媒の吸収特性をシフトさせる原理は次のように推定される。すなわち、それぞれ吸収波長領域の異なるアナターゼ、ルチル型酸化チタンに紫外線があたり、それぞれの吸収波長で励起し、電子(または空孔)を放出する。ルチル型酸化チタン単体では、この励起された電子(または空孔)が結晶表面で保持されず、酸化分解に必要な活性酸素や水酸ラジカルの発生にまでに辿り着けないと推測される。本発明ではルチル型酸化チタンの周辺をペルオキソチタン酸溶液から結晶化によって生成されたアナターゼ型酸化チタンが隙間無く密着し包んでいる為に、ルチル型酸化チタンで励起された電子(または空孔)は遅滞なく、アナターゼ型酸化チタンに移動できる。移動した電子(または正孔)は本来のアナターゼ型酸化チタンで発生した電子(または正孔)と同様に使用される為に、アナターゼ型酸化チタンが吸収できない長波長側の光でも同様の効果が発現できると考えられる。
【0027】
ここで、原料溶液はペルオキソチタン酸溶液、チタニアゾル溶液、アナターゼ型酸化チタン粉末およびルチル型酸化チタン粉末を混合して調製することが好ましい。チタニアゾル溶液を追加しても溶液の調製方法は上記と同様である。ペルオキソチタン酸溶液を加熱焼成して得られる酸化チタン膜は結晶性が悪く、光触媒性能も低い。結晶性を上げようとして焼成温度を上げても、アナターゼ型酸化チタンからルチル型酸化チタンに転移することが多く、期待する光触媒性能は得られない。そこでペルオキソチタン酸溶液にチタニアゾル溶液を加える事であらかじめ結晶化しているチタニアゾル中の酸化チタン粒子が核となり、良好な結晶化が促進される。
【0028】
チタニアゾル溶液はペルオキソチタン酸を加熱し改質させたゾルを用いることが望ましい。このチタニアゾルはペルオキソチタン酸溶液を80〜100℃に加熱して得られるものであり、溶液中で微細なアナターゼ型酸化チタン結晶を意識的に作製させたものである。
【0029】
吸着剤を加熱する温度は100〜300℃、好ましくは150〜250℃が良い。温度が低すぎると液体である光触媒溶液の水分が瞬時に蒸発できずに毛細管現象によって吸着剤の空孔、細孔に入り込んでしまい、吸着面積を減少させてしまう。温度が高すぎると光触媒溶液は吸着剤表面で結晶化してしまい吸着剤の表面に固定されずに、剥離、脱離が引き起こされる。
【0030】
原料溶液を塗布した吸着剤を焼成する温度は200〜500℃、好ましくは200〜450℃、更に好ましくは300〜400℃が良い。温度が低すぎると光触媒溶液が結晶化されずに期待される光触媒作用を発現できない。温度が高すぎるとアナターゼ型酸化チタンがルチル型酸化チタンへ転移し始め、光触媒性能が損なわれる。ルチル型酸化チタンは光触媒溶液から焼成されたアナターゼ型酸化チタンに取り囲まれる構造であるとき光触媒性能を向上させる。焼成温度を上げすぎて光触媒表面がルチル型酸化チタンに転移したものの光触媒性能は低下する。
【0031】
使用により分解除去能力を失った本発明の光触媒体は、空気中で500℃以下の温度、好ましくは300〜400℃に加熱し1〜2時間程度保持することで再生される。500℃を超えるとアナターゼ型酸化チタンの結晶構造がルチルとなり光触媒活性が低化するので好ましくない。吸着剤の耐熱温度が500℃より低いときはその温度以下とする。再生時には多量の水を放出することがあるので容器内は乾燥空気を流すか真空にして再生を行なうことが好ましい。
【0032】
(実施例)
(光触媒体の作製)
図1は本発明の実施例に係る光触媒体の断面の一部拡大部を模式的に示す図である。図7の光触媒体と同様の機能を有する部位には同一符号を付す。本発明の光触媒体1は光触媒半導体を含む光触媒膜2を吸着剤(担体)に担持させてなるが吸着剤の外表面のみに担持させる。加えて吸着剤を構成する吸着剤構成粒子3のうち外表面の吸着剤構成粒子3間の空孔5を塞がないように光触媒膜2の成膜面積を抑制するのである。吸着剤には合成ゼオライトビーズ(NaO・Al・2.5SiO、細孔直径0.9nm、東ソー社製ゼオラムF−9球状品4〜8mesh(4.8〜2.4mm))を用いた。空孔5に通ずる細孔4は直径0.9nmである。ペルオキソチタン酸溶液、ペルオキソチタン酸を加熱し改質させたチタニアゾル溶液、アナターゼ型酸化チタン粉末およびルチル型酸化チタン粉末を固形分ベースの重量比率で2.4:5.7:1.4:0.5となるように成膜用の溶液を調製した。合成ゼオライトを200℃に加熱して転動させながら前記溶液をスプレーで表面に塗布し、この溶液を塗布した合成ゼオライトを400℃で大気中で焼成し表面に光触媒膜2を成膜させることにより図1の光触媒体1を得た。これを光触媒体Aとする。光触媒膜2の厚さは約3μmであった。光触媒膜2は空孔5を塞ぐことなく吸着剤の外表面のみに担持されていることが確認できた。
【0033】
合成ゼオライトを前記の成膜用の溶液中に浸漬させ引き上げて乾燥させることにより塗布した点を除き、前記と同様にして光触媒体Bを作製した。光触媒膜2の厚さは約1.5μmであった。空孔5は塞がれていないものの内部表面も光触媒膜2で被覆されていることを確認した。
【0034】
光触媒膜の状態の確認は次の手段により行なった。
▲1▼作製した光触媒体AおよびBの断面をSEM観察し、何れのものも空孔が塞がれていないことを確認した。
▲2▼比表面積を測定できるBET法比表面積測定装置で比表面積を測定。溶液に浸漬して作製した光触媒体Bが光触媒成膜前のゼオライトビーズに比較して、その比表面積が1/50まで減少したのに対し、本発明の光触媒体Aの比表面積は、数%程度の減少にとどまっていたことから確認した。
【0035】
(通気性を有するホルダの作製)
上記の球状光触媒体を被処理粒体の流れの中に保持するのに使用する網状のホルダを次のようにして作製し、光触媒体としての機能も持たせた。オーステナイト系ステンレス鋼(SUS304)製線材で形成後圧延された平織金網(#30メッシュ、厚さ300μm)を基板とし、その表面に少量の水と混合したSUS316粉末(平均粒径50μm)を塗布後燒結して多孔質層(空孔径50μm、厚さ100μm)を形成した網状基体を準備した。アモルファス型過酸化チタン水溶液(0.84質量%)とアナターゼ型酸化チタン水溶液(0.84質量%)とを3:7の比率で混合したゾルを基体の表面に0.7g/25cm2(wet状態)の吹付け後常温乾燥、加熱乾燥(300℃×1hr)して通風可能な多数の開口を有する網状ホルダを作製した。
【0036】
(実験装置)
図5に示すように作製した光触媒体1を二層に並べ前記ホルダ6でサンドイッチして内径30mmのガラス管9の中に固定した。励起手段8は被処理流体の流れの上流側から光触媒体1を照射するよう配置した。励起手段8は発光ダイオードであり窒化ガリウム系光半導体で形成されており発光波長ピーク380nm、強度1.0mW/cmで光触媒体1とホルダ6に照射されるように設置した。励起手段8からの光が照射されると光触媒体1とホルダ6は励起されて活性化し吸着した有害物質を分解する作用が高まる。実験では標準空気に有害物質ガスをガス混合器にて10ppmの濃度になるよう混合して流量0.2L/minでこの装置に供給した。
【0037】
(有害物質の分解1)
上記の光触媒体を用いてアセトアルデヒドの分解実験を行なった。実施例1では光触媒体Aを用いて紫外線照射し実験装置の出口濃度を測定した。比較例1では光触媒体Bを用いて紫外線照射した。比較例2では光触媒膜を担持していない合成ゼオライトビーズを用いて紫外線照射した。比較例3では光触媒膜を担持していない合成ゼオライトビーズを用いるのみで紫外線照射はしなかった。結果をアセトアルデヒドガス除去率と流通時間との関係として図2に示す。実施例1の分解能が最も高い。比較例1では広い面積の光触媒膜を担持しているにも拘わらず分解能が最も低い。これは空孔内表面まで光触媒膜で被覆されているため細孔が塞がれ吸着効果が大きく低下したことによるものと考えられる。比較例2と3はゼオライトの吸着能により比較例1より良好である。
【0038】
実験結果から本発明の光触媒体の特徴として以下が挙げられる。▲1▼スタートから100分近くまで出口濃度0(除去率100%)であることから初期性能が高く高濃度ガスにも対応できる。▲2▼吸着速度が高く1パスのガス接触にもかかわらず除去率が高い。▲3▼吸着量が多く光触媒作用により吸着飽和しにくい。すなわち寿命の長い光触媒体である。▲4▼励起手段8の発光波長ピークと整合した光吸収特性をもつ光触媒膜により照射光エネルギーを効率よく吸収できる。
【0039】
(有害物質の分解2)
上記の光触媒体を用いてアンモニアの分解実験を行なった。実施例2では光触媒体Aを用いて紫外線照射し実験装置の出口濃度を測定した。実施例3では光触媒体Aを用いて紫外線照射したが、ホルダは光触媒膜を塗布する前段階の平織金網とした。比較例4では光触媒体としての機能を持たせたホルダのみを用いた。結果をアンモニアガス除去率と流通時間との関係として図3に示す。比較例4によればホルダのみでの分解能は吸着サイトの急速な飽和により100分後は全く機能していない。実施例2と実施例3の違いはホルダの光触媒膜の有無だけであるが100分後以降も実施例2の分解能がやや優れている。このことから光触媒体Aと光触媒膜を有するホルダとの組み合わせが効果的であると考えられる。アセトアルデヒドガスの分解ではホルダの光触媒膜の有無で分解能に差が無かった(比較例2と3)が、アンモニアガスの分解では差がついた理由は次の通りである。すなわち、アセトアルデヒドガスに比較してアンモニアガスは光触媒による分解速度が速いため、TiO2ゼオライトビーズの前段に光触媒作用の高い光触媒膜を有するホルダを配置することでTiO2ゼオライトビーズ部に流れ込むアンモニアガスが予めホルダ部で分解されて濃度が下がり、その結果としてガス除去率が上がる。また、TiO2ゼオライトビーズの吸着飽和による寿命も延びる。光触媒作用による分解速度の速いガス種ほどこの効果は大きい。本発明の光触媒体によれば、光触媒である酸化チタンに吸着しにくいガスを含む有害気相物質や不快臭などを分解除去する為に、酸化チタンを担持した網状ホルダで吸着性能を損なわない様に表面に酸化チタンを担持した吸着材を挟み込む様にして、酸化チタンに吸着しやすいガスは網状ホルダで吸着分解でき、酸化チタンに吸着しにくいガスは酸化チタン付き吸着材で吸着分解できる。ここで、酸化チタンに吸着しやすい物質(ガス)にはアンモニア、硫化水素、酢酸、アルコール類などがあり、酸化チタンに吸着しにくい物質(ガス)にはアルデヒド類(アセトアルデヒド、ホルムアルデヒド)、メタン、エタン、エチレン、アセチレンなどがある。なお、アセトアルデヒドガスのように光触媒作用による分解速度の比較的遅いガスであっても分解速度に見合った流量にすれば十分な分解能が得られる。
【0040】
本発明の光触媒体を空気清浄機の浄化部に適用した例を図4により説明する。この空気清浄機11は被処理気体をファン12で吸入し、フィルタ10で浮遊粒子を補足し、光触媒フィルタ7で気相有害物質を分解し、浄化した空気を排出する。光触媒フィルタ7は本発明の光触媒体1をホルダ6により保持した構造である。ホルダ6は流通抵抗が小さく、励起手段8からの光照射をできるだけ遮らないようにするためメッシュ構造や穴開き構造とする。ホルダ6を光触媒体1の再生処理温度に耐えられる材質で作製しておくことで、光触媒フィルタ7を取り外してばらさずにそのまま再生処理することが可能である。空気清浄機11は車両等の室内に設置する場合は薄型であることが望まれる。励起手段8に発光ダイオード8aを用いれば励起手段8と光触媒フィルタ7とを接近させても均一な照射ができるため、空気清浄機11を薄型化するのに有利である。
【0041】
本発明で使用する光触媒膜の厚さの好適な範囲は次のようにして求めることができる。先ず、光触媒膜を平板状基板に担持させることと基板を転動させないことを除いて実施例の光触媒体Aと同様にして光触媒体を作製した。膜厚はスプレーによる塗布量を変えることにより変更した。この光触媒体にスプレーで有機色素を塗布し、窒化ガリウム系光半導体で形成された発光ダイオードを使い発光波長ピーク380nm、強度1.0mW/cmで1分間光触媒体を照射した。次いで、色差計で退色度を測定し有機色素分解量とした。図6に光触媒膜の厚さと有機色素分解量との関係を示す。本発明の光触媒体の光触媒層は厚さが1〜5μmの範囲、好ましくは2〜3μmであることが良い。この光触媒膜は1μm以下であると充分に期待できる光触媒性能は発現できず、1μm以上であると性能には変化がない。しかしながら5μm以上の厚さで塗布すると、熱歪みにより膜内に亀裂が生じ、光触媒膜の剥離、脱離に繋がる。この有機色素による評価は吸着の効果を排除し光触媒作用による分解能のみを評価できる点で優れている。
【0042】
【発明の効果】
本発明の光触媒体によれば、吸着剤の外表面に限定して光触媒膜を成膜してできるだけ細孔を塞がないようにしたので、光触媒膜の有効面積を確保しつつ吸着剤の吸着能力を実質的に維持することが可能となった。これにより従来より有害物質の分解除去能力を高めた光触媒体を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る光触媒体の断面の一部拡大部を模式的に示す図である。
【図2】アセトアルデヒドガスの分解実験の結果を示すグラフである。
【図3】アンモニアガスの分解実験の結果を示すグラフである。
【図4】本発明の光触媒体を空気清浄機の浄化部に適用した例。
【図5】有害物質の分解実験に用いた装置。
【図6】光触媒膜の厚さと有機色素分解量との関係を示すグラフである。
【図7】従来の光触媒体の断面の一部拡大部を模式的に示す図である。
【符号の説明】
1.光触媒体
2.光触媒膜
3.吸着剤構成粒子
4.細孔
5.空孔
6.ホルダ
7.光触媒フィルタ
8.励起手段
9.ガラス管
10.フィルタ
11.空気清浄機
12.ファン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a photocatalyst having a photocatalytic function capable of decomposing a gaseous substance causing a harmful gaseous substance or an unpleasant odor when irradiated with light, and a method for producing the same. INDUSTRIAL APPLICABILITY The photocatalyst and the photocatalyst filter according to the present invention can be suitably used particularly in a purifying section of an air purifier which is attached to a vehicle and purifies an indoor space thereof.
[0002]
[Prior art]
Conventionally, various harmful gas phase substances and gas phase substances causing unpleasant odors (hereinafter referred to as harmful substances) are converted into harmless substances by semiconductors (hereinafter simply referred to as photocatalysts) that are excited by light irradiation and generate photocatalytic reactions. Decomposition is carried out, but it is difficult to obtain sufficient purification ability by itself because the decomposition rate by the photocatalytic reaction is slow. Further, simply increasing the total surface area of the photocatalyst is not realistic because it increases the size of the apparatus and increases the manufacturing and management costs.
[0003]
A technique for improving the purification ability of a photocatalyst is a combination with another purification technique. In particular, many reports have been made on a combination with an adsorbent. According to them, the technology of using a photocatalyst and an adsorbent together is roughly classified into two.
[0004]
One technique is to arrange the adsorbent and photocatalyst in series so that the adsorbent is located on the upstream side of the flow of the gas to be treated, first adsorb the harmful substances to the adsorbent, and then remove the harmful substances not adsorbed there. Decomposed by the photocatalyst. This is effective when a harmful substance that is easily adsorbed by the adsorbent and a harmful substance that is relatively easily decomposed by the photocatalyst are mixed, and the load on the photocatalyst can be reduced. In addition, when a toxic substance contains a sulfur-based gas, a catalyst poison may be generated to deteriorate the photocatalyst. In such a case, the photocatalyst can be protected from the catalyst poison. However, in the configuration in which the adsorbent and the photocatalyst are arranged in series, the adsorption capacity is lost when the adsorption site of the adsorbent is saturated. Therefore, every time the adsorbent needs to be replaced or regenerated, the maintenance and management costs are high. It becomes. In addition, most of the removed harmful substances are adsorbed and removed by the adsorbent, and only a small amount is decomposed by the photocatalyst. Therefore, the entire removal ability largely depends on the adsorbent. Therefore, it is considered that the technical significance of the configuration in which the adsorbent and the photocatalyst are simply arranged in series is small in consideration of costs and excluding the case where it is necessary to deal with catalyst poisons.
[0005]
Another technique is to arrange a photocatalyst and an adsorbent in parallel, and apparently integrate the functions of both. Since the photocatalytic reaction is a solid surface reaction, it is necessary to once adsorb harmful substances to the surface of the catalyst. However, the specific surface area of the photocatalyst is not so large, the adsorption speed is low, and the photocatalyst alone cannot provide sufficient purification ability. By integrating the function of the photocatalyst and the function of the adsorbent, the adsorption speed of the photocatalyst can be apparently increased. There are two types of structures for integration, and one is a photocatalyst formed by supporting a coating layer composed of a photocatalyst, an adsorbent, and a binder on a carrier. The other is a photocatalyst formed by supporting a thin film containing a photocatalyst on a carrier composed of an adsorbent.
[0006]
In the former photocatalyst, when a harmful substance is adsorbed on the adsorbent, the harmful substance is decomposed by the decomposition action of a nearby photocatalyst. By repeating the adsorption and the decomposition, the adsorption site is hardly saturated, and the reaction speed of the photocatalyst is increased microscopically by the improvement of the adsorption speed. However, since the photocatalyst and the adsorbent each constitute only a part of the surface of the coating layer, the surface area of each is small, and the photocatalytic reaction is not so fast when viewed macroscopically.
[0007]
The latter photocatalyst is a photocatalyst in which silver oxide or titanium dioxide is supported on the outer surface and the inner surface of pores of a carrier made of adsorptive porous particles such as zeolite. By irradiating this with ultraviolet light, nitric oxide and methyl mercaptan can be decomposed, and the decomposition and removal rate is higher than the removal rate only by adsorption (see Patent Document 1). Another example is to form a photocatalytic thin film having an average film thickness of 1 to 400 nm on a porous γ-alumina having a pore size distribution of 5 to 20 nm in radius so that the pore size becomes 2 to 10 nm in radius (Patent Document 1). 2). Both have the common feature that not only the outer surface of the carrier composed of the adsorbent but also the inner surface thereof is coated with a thin film containing a photocatalyst so as not to block the pores. Most of the total surface area of the adsorbent depends on the internal surface of the pores. It can be said that the photocatalyst body is excellent in that it can maintain the adsorbing ability of the adsorbent and provide the adsorbing ability to the photocatalyst by coating without closing the pores.
[0008]
[Patent Document 1]
JP 2001-90214 A
[Patent Document 2]
JP 2002-45650 A
[0009]
[Problems to be solved by the invention]
FIG. 7 schematically shows a partially enlarged portion of a cross section of a photocatalyst obtained by supporting a thin film containing a photocatalyst on a carrier composed of an adsorbent. The adsorbent serving as a carrier is an aggregate of the adsorbent constituent particles 3. The outer surface of the adsorbent has pores 5 communicating with the outside air, and the adsorbent constituent particles 3 have uniform pores 4 communicating with the pores 5 having a diameter of about 1 nm or less. The photocatalyst film 2 is supported on the outer surface of the adsorbent-constituting particles 3 (adsorbent) and the inner surface of the holes 5 and has a thickness that does not block the holes 5. The gas to be treated enters not only the surface but also the inside of the photocatalyst 1 from the hole 5 and is adsorbed on the photocatalyst film 2. Then, the harmful substances are decomposed by the photocatalytic reaction. That is, the photocatalyst of the configuration shown in FIG. 7 increases the total surface area of the photocatalyst film 2 so as to increase the chance of contact between the harmful substance and the photocatalyst, thereby increasing the overall decomposition removal ability. However, since most of the pores are blocked by the photocatalyst film 2, the adsorption ability is reduced, and the decomposition and removal ability of the photocatalyst is not improved as expected.
[0010]
An object of the present invention is to provide a photocatalyst which solves the above-mentioned problems and has an enhanced ability to decompose and remove harmful substances.
[0011]
[Means for Solving the Problems]
In order to improve the ability to decompose and remove the photocatalyst, it is necessary to increase the surface area of the photocatalyst film while maintaining the ability to adsorb the adsorbent as much as possible. Although the total surface area of the photocatalyst film of the conventional photocatalyst is large, the effective area that can be actually irradiated with light is not so large because it is limited to the outer surface. This is because the irradiation light does not reach the inside of the hole. A photocatalytic film that cannot be irradiated with light not only decomposes harmful substances but also closes the pores. The present inventor has proposed that the photocatalytic film is formed only on the outer surface of the adsorbent so that pores are not closed as much as possible, thereby securing an effective area of the photocatalytic film and substantially improving the adsorbing capacity of the adsorbent. The present invention has been found that it is possible to maintain the characteristics.
[0012]
That is, the present invention provides a net-like holder having a large number of openings through which a photocatalyst film is formed on a substrate, and a photocatalyst film on the surface of the adsorbent having holes that communicate with the outside air except for the surface inside the holes. A toxic substance characterized by arranging a photocatalyst to be carried thereon and irradiating light to the mesh holder and the photocatalyst while flowing a gas containing a harmful substance first so as to contact the mesh holder and then contact the photocatalyst. Is a decomposition method. In the present invention, it is desirable that the photocatalyst be held between the mesh holders. Further, the present invention exerts particularly excellent resolution when the harmful substance is a gas in which a substance which is easily adsorbed by the photocatalyst and a substance which is hardly adsorbed are present as a mixture.
[0013]
Activated carbon, zeolite, silica gel, activated alumina and the like can be used as the adsorbent, but zeolite is preferred because it exhibits a strong adsorption force even when the partial pressure of the substance to be adsorbed is low. Synthetic zeolites with stable properties are particularly preferred. Since zeolite has high mechanical strength and is hard to crack even under vibration, it can be suitably applied to an air purifier mounted on a vehicle.
[0014]
The adsorbent preferably has pores that lead to the pores.
[0015]
The average pore diameter of the pores is preferably 1 nm or less.
[0016]
The shape of the adsorbent is preferably spherical.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
As the zeolite, a synthetic zeolite can be particularly preferably used. The synthetic zeolite is a crystalline hydrous aluminosilicate of an alkali metal or an alkaline earth metal chemically represented by the following general formula. The pores formed after the water of crystallization is desorbed by heating have a strong adsorption capacity, and the uniform pores having a diameter of 1 nm or less pass through the pores to exhibit a molecular sieve effect. Synthetic zeolites have a specific pore size depending on the variety.
MeO / Al 2 O 3 ・ MSiO 2 ・ NH 2 O
[In the formula, Me is 2 atoms of an alkali metal or 1 atom of an alkaline earth metal, and m and n are integers.]
[0018]
The method for producing a photocatalyst according to the present invention includes the following steps. (1) A raw material solution for forming a photocatalytic layer is prepared, (2) an adsorbent having pores communicating with the outside air is heated, and (3) the raw material solution is sprayed and applied to the surface of the adsorbent. (4) The adsorbent coated with the raw material solution is fired to form a photocatalyst layer on the surface of the adsorbent, whereby the photocatalyst of the present invention is obtained. When the droplets of the raw material solution adhere to the adsorbent, they tend to spread due to interfacial tension, but since the surface is heated, the solvent evaporates quickly and drying proceeds. As a result, since the raw material solution does not spread sufficiently, the photocatalytic layer can be formed on the outer surface of the adsorbent without penetrating into the pores. Since the specific surface area increases when the raw material solution is sprayed, the solvent evaporates rapidly from the moment of spraying to the time when the raw material solution adheres to the adsorbent. If the atmosphere at that time is in a high-temperature drying state, the heating temperature of the adsorbent may be low because evaporation proceeds more rapidly.
[0019]
The photocatalyst layer of the photocatalyst of the present invention has a thickness in the range of 1 to 5 μm, preferably 2 to 3 μm. This photocatalytic film cannot exhibit the photocatalytic performance that can be expected sufficiently when it is 1 μm or less, and there is no change in the performance when it is 1 μm or more. However, when applied with a thickness of 5 μm or more, cracks occur in the film due to thermal strain, which leads to separation and detachment of the photocatalytic film.
[0020]
The absorption characteristics of the conventional anatase-type titanium oxide gradually begin to absorb at about 400 nm, and absorb about 80% of ultraviolet rays at about 350 nm. If the absorption characteristics and the emission characteristics of the excitation means are not sufficiently matched, the proportion of the irradiated light energy that is not absorbed by the photocatalyst increases. In order to shift the absorption characteristics of the photocatalyst to the longer wavelength side to match with the emission characteristics of the excitation means, a peroxotitanic acid solution, an anatase type titanium oxide powder and a rutile type titanium oxide powder are mixed and the raw material solution is mixed. Preparation is preferred. The high-efficiency photocatalyst produced from this raw material solution starts to absorb at around 420 nm, and at 370 nm, can obtain the same absorption as anatase-type titanium oxide.
[0021]
It was known that rutile titanium oxide has an ultraviolet absorption characteristic on the longer wavelength side as compared with anatase titanium oxide, but it was also known that rutile type had lower photocatalytic performance than anatase type titanium oxide. Visible light photocatalysts are being developed that attempt to increase the absorption at least on the long wavelength side (visible light side) with anatase-type titanium oxide. Although it does not shift to longer wavelengths, it is also effective in using black light, which is said to be safe.
[0022]
A method for preparing a raw material solution by mixing a peroxotitanic acid solution, an anatase type titanium oxide powder and a rutile type titanium oxide powder will be described below.
(1) When the film thickness is set to 3 μm, rutile type titanium oxide powder is prepared at <5 μm.
(2) Before mixing, in order to improve the dispersibility of the rutile-type titanium oxide powder, the rutile-type titanium oxide powder is mixed at a ratio of 10 wt% in a 0.1 M nitric acid solution, and put into a rotary evaporator or the like. Heat with stirring or evaporate the water while reducing the pressure. Thereby, nitric acid adheres to the surface of the rutile type titanium oxide powder.
(3) A peroxotitanic acid solution and an anatase type titanium oxide sol are mixed in a weight ratio of 3: 7.
(4) The surface-treated rutile-type titanium oxide powder is added so that the water content of the peroxotitanic acid solution and the anatase-type titanium oxide sol solution previously mixed is evaporated to 15 wt% with respect to the solid content after drying. I do. The solid content of the solution was measured by drying a predetermined weight of the solution. Since the solid content of the peroxotitanic acid solution and the anatase-type titanium oxide sol mixed solution was 1.7 wt% with respect to the weight of the original solution, the rutile-type titanium oxide powder having a weight ratio of 0.3 wt% of the solution was used. To obtain a raw material solution. If the content is more than 25% by weight, not only the film strength is reduced and the film is peeled off, but also the photocatalytic performance may be reduced. Preferably, the addition amount is in the range of 15 to 20 wt%.
(5) Since the solution is water-based, the rutile-type titanium oxide powder modified with nitric acid repels in the solution to be in an optimal dispersion state. This state also produces an effect that the anatase-type titanium oxide solution always enters between the particles of the rutile-type titanium oxide powder during film formation. A similar effect can be obtained by performing a hydrophilic treatment in addition to the treatment with such an acid.
[0023]
A film forming method using this raw material solution will be described below.
(1) While warming the washed metal substrate, the adjusted main solution is applied by a spray with a stirrer to a predetermined thickness.
(2) The coated metal substrate-like solution is baked in the air at 200 to 450 ° C., preferably 300 to 400 ° C., and is composed of a peroxotitanic acid solution in which rutile-type titanium oxide powder is uniformly dispersed and an anatase-type titanium oxide sol. The semi-amorphous titanium oxide film is crystallized and fixed on a metal substrate. At this time, the peroxide group contained in the peroxotitanic acid solution oxidizes the metal substrate, an amorphous reaction layer is provided between the titanium oxide film and the metal substrate, and the titanium oxide film and the metal substrate are firmly joined to form a photocatalyst. Eggplant This is because peroxotitanic acid is a precursor of titanium oxide and also has excess oxygen, so that it is changed to titanium oxide while causing an oxidation reaction on the metal substrate surface.
[0024]
Rutile-type titanium oxide particles having a particle size larger than the thickness of the anatase-type titanium oxide film are dispersed on the surface of the photocatalyst thus produced.
[0025]
The structure of the film formed on the metal substrate is such that rutile-type titanium oxide particles are dispersed in an anatase-type titanium oxide film crystallized by firing from a peroxotitanic acid solution and an anatase-type titanium oxide sol. In order to shift the absorption characteristics of the photocatalyst to longer wavelengths, the anatase-type titanium oxide, which is the main component of the film, is irradiated with ultraviolet light, which is an excitation source. The particles also need to be exposed to ultraviolet light. Even if rutile-type titanium oxide having a very small particle size is added, the effect is not exhibited if it precipitates below the film not exposed to light.
[0026]
The principle of shifting the absorption characteristics of the photocatalyst is presumed as follows. That is, ultraviolet rays hit anatase and rutile-type titanium oxide having different absorption wavelength regions, and are excited at each absorption wavelength to emit electrons (or vacancies). In the case of rutile-type titanium oxide alone, it is assumed that the excited electrons (or vacancies) are not retained on the crystal surface and cannot reach active oxygen or hydroxyl radicals required for oxidative decomposition. In the present invention, since the anatase-type titanium oxide produced by crystallization from the peroxotitanic acid solution is tightly wrapped around the rutile-type titanium oxide, the electrons (or vacancies) excited by the rutile-type titanium oxide Can move to anatase-type titanium oxide without delay. Since the transferred electrons (or holes) are used in the same way as the electrons (or holes) generated by the original anatase-type titanium oxide, the same effect can be obtained even with light on the long wavelength side where the anatase-type titanium oxide cannot absorb. It is thought that it can be expressed.
[0027]
Here, the raw material solution is preferably prepared by mixing a peroxotitanic acid solution, a titania sol solution, an anatase type titanium oxide powder and a rutile type titanium oxide powder. Even if the titania sol solution is added, the solution preparation method is the same as described above. A titanium oxide film obtained by heating and firing a peroxotitanic acid solution has poor crystallinity and low photocatalytic performance. Even if the sintering temperature is increased to increase the crystallinity, the transition from anatase-type titanium oxide to rutile-type titanium oxide often occurs, and the expected photocatalytic performance cannot be obtained. Therefore, by adding the titania sol solution to the peroxotitanic acid solution, the titanium oxide particles in the titania sol that have been crystallized in advance become nuclei, and favorable crystallization is promoted.
[0028]
It is desirable to use a sol obtained by heating and modifying peroxotitanic acid as the titania sol solution. This titania sol is obtained by heating a peroxotitanic acid solution to 80 to 100 ° C., and consciously produces fine anatase-type titanium oxide crystals in the solution.
[0029]
The temperature at which the adsorbent is heated is 100 to 300 ° C, preferably 150 to 250 ° C. If the temperature is too low, the water of the liquid photocatalyst solution cannot evaporate instantaneously, and will enter pores and pores of the adsorbent due to capillary action, thereby reducing the adsorption area. If the temperature is too high, the photocatalyst solution is crystallized on the surface of the adsorbent, and is not fixed to the surface of the adsorbent, causing separation and desorption.
[0030]
The temperature at which the adsorbent coated with the raw material solution is fired is 200 to 500C, preferably 200 to 450C, and more preferably 300 to 400C. If the temperature is too low, the photocatalytic solution cannot be crystallized and the expected photocatalytic action cannot be exhibited. If the temperature is too high, anatase-type titanium oxide starts to be transferred to rutile-type titanium oxide, and photocatalytic performance is impaired. Rutile-type titanium oxide improves photocatalytic performance when it has a structure surrounded by anatase-type titanium oxide calcined from a photocatalytic solution. Although the photocatalyst surface was transferred to rutile-type titanium oxide by excessively raising the firing temperature, the photocatalytic performance was lowered.
[0031]
The photocatalyst of the present invention, which has lost its decomposition removal ability by use, is regenerated by heating it to a temperature of 500 ° C. or less, preferably 300 to 400 ° C. in air, and holding it for about 1 to 2 hours. If the temperature exceeds 500 ° C., the crystal structure of the anatase type titanium oxide becomes rutile, and the photocatalytic activity decreases, which is not preferable. When the heat-resistant temperature of the adsorbent is lower than 500 ° C., the temperature is lower than that temperature. Since a large amount of water may be released during regeneration, it is preferable to regenerate the container by flowing dry air or evacuating it.
[0032]
(Example)
(Preparation of photocatalyst body)
FIG. 1 is a diagram schematically showing a partially enlarged portion of a cross section of a photocatalyst according to an example of the present invention. Parts having the same functions as those of the photocatalyst in FIG. 7 are denoted by the same reference numerals. The photocatalyst 1 of the present invention has a photocatalyst film 2 containing a photocatalytic semiconductor supported on an adsorbent (carrier), but is supported only on the outer surface of the adsorbent. In addition, the formation area of the photocatalytic film 2 is suppressed so that the pores 5 between the adsorbent constituting particles 3 on the outer surface of the adsorbent constituting particles 3 constituting the adsorbent are not closed. Synthetic zeolite beads (Na 2 O ・ Al 2 O 3 ・ 2.5SiO 2 And a zeolam F-9 spherical product 4-8 mesh (4.8-2.4 mm) manufactured by Tosoh Corporation with a pore diameter of 0.9 nm. The pores 4 communicating with the pores 5 have a diameter of 0.9 nm. A peroxotitanic acid solution, a titania sol solution obtained by heating and modifying peroxotitanic acid, an anatase-type titanium oxide powder and a rutile-type titanium oxide powder in a weight ratio of 2.4: 5.7: 1.4: 0 on a solid basis. A solution for film formation was prepared so as to have a thickness of 0.5. The solution is applied to the surface by spraying while the synthetic zeolite is heated and rolled at 200 ° C., and the synthetic zeolite coated with this solution is fired at 400 ° C. in the air to form the photocatalytic film 2 on the surface. The photocatalyst 1 of FIG. 1 was obtained. This is designated as photocatalyst A. The thickness of the photocatalyst film 2 was about 3 μm. It was confirmed that the photocatalyst film 2 was supported only on the outer surface of the adsorbent without closing the holes 5.
[0033]
Photocatalyst B was prepared in the same manner as described above, except that the synthetic zeolite was applied by dipping in the above-mentioned solution for film formation, pulled up and dried. The thickness of the photocatalyst film 2 was about 1.5 μm. Although the pores 5 were not closed, it was confirmed that the inner surface was also covered with the photocatalytic film 2.
[0034]
The state of the photocatalytic film was confirmed by the following means.
{Circle around (1)} The cross sections of the prepared photocatalysts A and B were observed by SEM, and it was confirmed that the pores were not blocked in any of the photocatalysts A and B.
(2) The specific surface area is measured by a BET specific surface area measuring device capable of measuring the specific surface area. The specific surface area of the photocatalyst B produced by immersion in the solution was reduced to 1/50 as compared with the zeolite beads before the formation of the photocatalyst, whereas the specific surface area of the photocatalyst A of the present invention was several%. It was confirmed from the fact that the degree was only reduced.
[0035]
(Production of a holder having air permeability)
A mesh-like holder used for holding the above-mentioned spherical photocatalyst in the flow of the particles to be treated was prepared as follows, and was also provided with a function as a photocatalyst. A plain woven wire mesh (# 30 mesh, thickness 300 μm) formed and rolled with austenitic stainless steel (SUS304) wire rod is used as a substrate, and SUS316 powder (average particle size 50 μm) mixed with a small amount of water is applied to the surface thereof. A reticular substrate was prepared by sintering to form a porous layer (pore diameter 50 μm, thickness 100 μm). A sol obtained by mixing an amorphous titanium oxide aqueous solution (0.84% by mass) and an anatase type titanium oxide aqueous solution (0.84% by mass) at a ratio of 3: 7 is applied to the surface of the substrate at 0.7 g / 25 cm2 (wet state). ) Was sprayed at room temperature and then dried by heating (300 ° C. × 1 hr) to produce a net-like holder having a large number of openings through which air can pass.
[0036]
(Experimental device)
The photocatalyst 1 produced as shown in FIG. 5 was arranged in two layers, sandwiched by the holder 6, and fixed in a glass tube 9 having an inner diameter of 30 mm. The excitation means 8 was arranged to irradiate the photocatalyst 1 from the upstream side of the flow of the fluid to be treated. The excitation means 8 is a light emitting diode, which is formed of a gallium nitride based optical semiconductor, has an emission wavelength peak of 380 nm, and an intensity of 1.0 mW / cm. 2 And the photocatalyst 1 and the holder 6 were set so as to be irradiated. When the light from the excitation means 8 is irradiated, the photocatalyst 1 and the holder 6 are excited and activated, and the action of decomposing the adsorbed harmful substances increases. In the experiment, a harmful substance gas was mixed with standard air to a concentration of 10 ppm by a gas mixer and supplied to the apparatus at a flow rate of 0.2 L / min.
[0037]
(Decomposition of harmful substances 1)
An acetaldehyde decomposition experiment was performed using the above photocatalyst. In Example 1, the photocatalyst A was used to irradiate ultraviolet rays, and the outlet concentration of the experimental apparatus was measured. In Comparative Example 1, ultraviolet irradiation was performed using the photocatalyst B. In Comparative Example 2, ultraviolet irradiation was performed using synthetic zeolite beads not carrying a photocatalytic film. In Comparative Example 3, only synthetic zeolite beads not carrying a photocatalytic film were used, and no ultraviolet irradiation was performed. The results are shown in FIG. 2 as the relationship between the acetaldehyde gas removal rate and the flow time. The first embodiment has the highest resolution. In Comparative Example 1, the resolution is the lowest despite the fact that a photocatalytic film having a large area is supported. This is considered to be because the pores were covered with the photocatalyst film up to the inner surface of the pores, and the pores were blocked, and the adsorption effect was greatly reduced. Comparative Examples 2 and 3 are better than Comparative Example 1 due to their ability to adsorb zeolite.
[0038]
From the experimental results, the features of the photocatalyst of the present invention include the following. {Circle around (1)} Since the outlet concentration is 0 (removal rate 100%) until nearly 100 minutes from the start, the initial performance is high and it can cope with high concentration gas. (2) The adsorption rate is high and the removal rate is high despite one-pass gas contact. {Circle around (3)} The amount of adsorption is large and adsorption saturation is unlikely due to photocatalysis. That is, the photocatalyst has a long life. (4) Irradiation light energy can be efficiently absorbed by the photocatalytic film having light absorption characteristics matched with the emission wavelength peak of the excitation means 8.
[0039]
(Decomposition of harmful substances 2)
An ammonia decomposition experiment was performed using the above photocatalyst. In Example 2, the photocatalyst A was used to irradiate ultraviolet rays to measure the outlet concentration of the experimental apparatus. In Example 3, the photocatalyst A was used to irradiate ultraviolet rays, but the holder was a plain woven wire mesh before the photocatalytic film was applied. In Comparative Example 4, only a holder having a function as a photocatalyst was used. The results are shown in FIG. 3 as the relationship between the ammonia gas removal rate and the circulation time. According to Comparative Example 4, the resolution using only the holder did not function at all after 100 minutes due to rapid saturation of the adsorption site. The difference between the second embodiment and the third embodiment is only the presence or absence of the photocatalytic film of the holder, but the resolution of the second embodiment is slightly superior even after 100 minutes. From this, it is considered that the combination of the photocatalyst A and the holder having the photocatalyst film is effective. In the decomposition of acetaldehyde gas, there was no difference in resolution depending on the presence or absence of the photocatalytic film on the holder (Comparative Examples 2 and 3), but the difference was found in the decomposition of ammonia gas for the following reasons. That is, since the decomposition rate of ammonia gas by the photocatalyst is higher than that of acetaldehyde gas, by disposing a holder having a photocatalytic film having a high photocatalytic action in front of the TiO2 zeolite beads, the ammonia gas flowing into the TiO2 zeolite bead portion is preliminarily retained. The concentration is reduced in the part and the gas removal rate is increased as a result. Further, the life of the TiO2 zeolite beads due to adsorption saturation is extended. This effect is greater for gas species having a higher photocatalytic decomposition rate. ADVANTAGE OF THE INVENTION According to the photocatalyst of this invention, in order to decompose | eliminate and remove harmful gaseous substances containing gas which is hard to adsorb | suck to a photocatalyst titanium oxide, unpleasant odor, etc., the adsorption performance is not impaired by the net-like holder holding titanium oxide. By adsorbing an adsorbent having titanium oxide on its surface, a gas that is easily adsorbed on titanium oxide can be adsorbed and decomposed by a mesh holder, and a gas that is hardly adsorbed on titanium oxide can be adsorbed and decomposed by an adsorbent with titanium oxide. Here, substances (gases) that are easily adsorbed on titanium oxide include ammonia, hydrogen sulfide, acetic acid, and alcohols, and substances (gases) that are hardly adsorbed on titanium oxide include aldehydes (acetaldehyde, formaldehyde), methane, Examples include ethane, ethylene, and acetylene. Note that a sufficient resolution can be obtained even with a gas such as acetaldehyde gas, which has a relatively slow decomposition rate by photocatalysis, if the flow rate is commensurate with the decomposition rate.
[0040]
An example in which the photocatalyst of the present invention is applied to a purification unit of an air purifier will be described with reference to FIG. The air purifier 11 sucks the gas to be treated by a fan 12, captures suspended particles with a filter 10, decomposes gas-phase harmful substances with a photocatalytic filter 7, and discharges purified air. The photocatalyst filter 7 has a structure in which the photocatalyst 1 of the present invention is held by the holder 6. The holder 6 has a low flow resistance, and has a mesh structure or a perforated structure so as to block light irradiation from the excitation means 8 as much as possible. By preparing the holder 6 with a material that can withstand the regeneration processing temperature of the photocatalyst body 1, it is possible to perform the regeneration processing without removing the photocatalyst filter 7 and separating it. When the air purifier 11 is installed in a room such as a vehicle, it is desired that the air purifier 11 be thin. If the light emitting diode 8a is used as the excitation means 8, even if the excitation means 8 and the photocatalytic filter 7 are brought close to each other, uniform irradiation can be performed, which is advantageous for reducing the thickness of the air purifier 11.
[0041]
The preferred range of the thickness of the photocatalyst film used in the present invention can be determined as follows. First, a photocatalyst was prepared in the same manner as the photocatalyst A of the example except that the photocatalyst film was supported on a flat substrate and the substrate was not rolled. The film thickness was changed by changing the amount of application by spraying. An organic dye is applied to this photocatalyst by spraying, and an emission wavelength peak is 380 nm and intensity is 1.0 mW / cm using a light emitting diode formed of a gallium nitride based optical semiconductor. 2 For 1 minute. Next, the degree of fading was measured with a color difference meter to determine the amount of organic dye decomposition. FIG. 6 shows the relationship between the thickness of the photocatalytic film and the amount of organic dye decomposition. The photocatalyst layer of the photocatalyst of the present invention has a thickness in the range of 1 to 5 μm, preferably 2 to 3 μm. This photocatalytic film cannot exhibit the photocatalytic performance that can be expected sufficiently when it is 1 μm or less, and there is no change in the performance when it is 1 μm or more. However, when applied with a thickness of 5 μm or more, cracks occur in the film due to thermal strain, which leads to separation and detachment of the photocatalytic film. The evaluation using an organic dye is excellent in that the effect of adsorption can be eliminated and only the resolution by photocatalysis can be evaluated.
[0042]
【The invention's effect】
According to the photocatalyst of the present invention, the photocatalyst film is formed only on the outer surface of the adsorbent so as not to block the pores as much as possible. Capability can be substantially maintained. This makes it possible to provide a photocatalyst having a higher ability to decompose and remove harmful substances than before.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a partially enlarged portion of a cross section of a photocatalyst body according to the present invention.
FIG. 2 is a graph showing the results of an acetaldehyde gas decomposition experiment.
FIG. 3 is a graph showing the results of an ammonia gas decomposition experiment.
FIG. 4 is an example in which the photocatalyst of the present invention is applied to a purifying unit of an air purifier.
FIG. 5 shows an apparatus used in an experiment for decomposing harmful substances.
FIG. 6 is a graph showing the relationship between the thickness of a photocatalytic film and the amount of organic dye decomposition.
FIG. 7 is a diagram schematically showing a partially enlarged portion of a cross section of a conventional photocatalyst body.
[Explanation of symbols]
1. Photocatalyst
2. Photocatalytic film
3. Adsorbent constituent particles
4. pore
5. Vacancy
6. holder
7. Photocatalytic filter
8. Excitation means
9. Glass tube
10. filter
11. Air cleaner
12. fan

Claims (3)

通風可能な多数の開口を有し基体に光触媒膜を形成してなる網状ホルダと、外気と通じる空孔を有する吸着剤の空孔内の表面を除いた表面に光触媒膜を担持させてなる光触媒体とを配置し、有害物質を含むガスを先ず網状ホルダと接触させ次いで光触媒体と接触させるように流しながら網状ホルダと光触媒体に光を照射することを特徴とする有害物質の分解方法。A mesh-like holder having a large number of openings through which a photocatalyst film is formed on a substrate, and a photocatalyst having a photocatalyst film carried on a surface of an adsorbent having holes that communicate with the outside air, excluding the surface inside the holes A method for decomposing a harmful substance, comprising arranging a body and a gas containing a harmful substance being first brought into contact with a reticulated holder, and then irradiating the reticulated holder and the photocatalyst with light while flowing so as to make contact with the photocatalyst. 光触媒体を網状ホルダで挟んで保持する請求項1記載の有害物質の分解方法。The method for decomposing harmful substances according to claim 1, wherein the photocatalyst is held between the mesh holders. 有害物質が光触媒に吸着しやすい物質と吸着し難い物質とが混合して存在するガスである請求項1又は2に記載の有害物質の分解方法。The method for decomposing a harmful substance according to claim 1 or 2, wherein the harmful substance is a gas in which a substance that is easily adsorbed by the photocatalyst and a substance that is hardly adsorbed are present as a mixture.
JP2003107904A 2003-04-11 2003-04-11 Harmful substance decomposing method Pending JP2004313844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003107904A JP2004313844A (en) 2003-04-11 2003-04-11 Harmful substance decomposing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003107904A JP2004313844A (en) 2003-04-11 2003-04-11 Harmful substance decomposing method

Publications (1)

Publication Number Publication Date
JP2004313844A true JP2004313844A (en) 2004-11-11

Family

ID=33469612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003107904A Pending JP2004313844A (en) 2003-04-11 2003-04-11 Harmful substance decomposing method

Country Status (1)

Country Link
JP (1) JP2004313844A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279534A (en) * 2004-03-30 2005-10-13 Okaya Electric Ind Co Ltd Photocatalyst carrying body
JP2009030921A (en) * 2007-07-30 2009-02-12 Panasonic Corp Direct cooling type refrigerator and disinfecting device
JP2009030917A (en) * 2007-07-30 2009-02-12 Panasonic Corp Direct cooling type refrigerator, and disinfecting device
EP2144021A1 (en) * 2007-04-20 2010-01-13 Panasonic Corporation Refrigerator, and disinfecting device
JP5111690B1 (en) * 2012-01-26 2013-01-09 パナソニック株式会社 Method for decomposing organic compounds contained in an aqueous solution
WO2013111199A1 (en) * 2012-01-26 2013-08-01 パナソニック株式会社 Method for decomposing organic compound contained in aqueous solution
JP2019025377A (en) * 2017-07-25 2019-02-21 国立大学法人横浜国立大学 Catalyst used for oxidation coupling reaction of methane and method for producing same, and method and apparatus for oxidation coupling reacting methane
CN117228782A (en) * 2023-11-16 2023-12-15 吉林省农业科学院(中国农业科技东北创新中心) Photocatalysis sewage treatment device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279534A (en) * 2004-03-30 2005-10-13 Okaya Electric Ind Co Ltd Photocatalyst carrying body
EP2144021A4 (en) * 2007-04-20 2013-03-06 Panasonic Corp Refrigerator, and disinfecting device
EP2144021A1 (en) * 2007-04-20 2010-01-13 Panasonic Corporation Refrigerator, and disinfecting device
JP2009030921A (en) * 2007-07-30 2009-02-12 Panasonic Corp Direct cooling type refrigerator and disinfecting device
JP2009030917A (en) * 2007-07-30 2009-02-12 Panasonic Corp Direct cooling type refrigerator, and disinfecting device
WO2013111199A1 (en) * 2012-01-26 2013-08-01 パナソニック株式会社 Method for decomposing organic compound contained in aqueous solution
JP5111690B1 (en) * 2012-01-26 2013-01-09 パナソニック株式会社 Method for decomposing organic compounds contained in an aqueous solution
CN103459030A (en) * 2012-01-26 2013-12-18 松下电器产业株式会社 Method for decomposing organic compound contained in aqueous solution
US9290394B2 (en) 2012-01-26 2016-03-22 Panasonic Intellectual Property Management Co., Ltd. Method for decomposing organic compound contained in aqueous solution
CN103459030B (en) * 2012-01-26 2017-08-25 松下知识产权经营株式会社 The method that organic compound contained in the aqueous solution is decomposed
JP2019025377A (en) * 2017-07-25 2019-02-21 国立大学法人横浜国立大学 Catalyst used for oxidation coupling reaction of methane and method for producing same, and method and apparatus for oxidation coupling reacting methane
JP7066159B2 (en) 2017-07-25 2022-05-13 国立大学法人横浜国立大学 A catalyst used for the oxidative coupling reaction of methane and its production method, as well as an oxidative coupling reaction method of methane and an oxidative coupling reactor.
CN117228782A (en) * 2023-11-16 2023-12-15 吉林省农业科学院(中国农业科技东北创新中心) Photocatalysis sewage treatment device

Similar Documents

Publication Publication Date Title
KR100763226B1 (en) Photocatalyst materials manufacturing method of transition metal ion added and 10? mean particle diameter sized metal oxide having semiconductor characteristic, material manufactured thereby, and filter, fan filter unit and clean room system having the same material
JP5486497B2 (en) Deodorizing catalyst, deodorizing method using the same, and regenerating method of the catalyst
JP2019534159A (en) Surface modified carbon and adsorbents for improved efficiency in the removal of gaseous pollutants
US20040258581A1 (en) Bifunctional manganese oxide/titanium dioxide photocatalyst/thermocatalyst for improving indoor air quality
WO2007023558A1 (en) Tungsten oxide photocatalyst, process for producing the same, and fiber cloth having deodorizing/antifouling function
JP3326836B2 (en) Catalyst body and method for producing catalyst body
US20050129591A1 (en) Bifunctional layered photocatalyst/thermocatalyst for improving indoor air quality
EP1601436A2 (en) Method and a composite for mercury capture from fluid streams
JP3710323B2 (en) Deodorizing device
JP2004313844A (en) Harmful substance decomposing method
JP2009247546A (en) Air cleaning filter and air cleaner
CN113926443A (en) Multi-element composite material for visible light catalytic aldehyde removal, preparation method and air purifier
JP4930910B2 (en) Ozone decomposition removal catalyst and method for producing ozone decomposition removal catalyst
JP4163374B2 (en) Photocatalytic membrane
JP2004141737A (en) Photocatalyst body, its manufacturing method, its regeneration method and photocatalyst filter
JP2005254128A (en) Photocatalyst particle and method of immobilizing it, and photocatalytic member
JP3689754B2 (en) Photocatalyst material and air purification film
JP2006217995A (en) Deodorant, method of manufacturing deodorant, and deodorizer using the deodrant
JP3604740B2 (en) Ozone decomposition catalyst and ozone decomposition method
RU2465046C1 (en) Composite adsorption-catalytic material for photocatalytic oxidation
JP4277226B2 (en) Catalyst for oxidizing metal mercury, catalyst for purifying exhaust gas provided with catalyst for oxidizing metal mercury, and method for producing the same
JP2003144937A (en) Silica gel molded body carried with titanium oxide photocatalyst and manufacturing method therefor
JP2001009281A (en) Ammonia decomposition catalyst and treatment of ammonia-containing waste gas
JP3554343B2 (en) Sheet-shaped ethylene cracking catalyst and ethylene cracking device
JP2002263449A (en) Activated carbon filter