JP2004307969A - Insoluble electrode, and its production method - Google Patents

Insoluble electrode, and its production method Download PDF

Info

Publication number
JP2004307969A
JP2004307969A JP2003105539A JP2003105539A JP2004307969A JP 2004307969 A JP2004307969 A JP 2004307969A JP 2003105539 A JP2003105539 A JP 2003105539A JP 2003105539 A JP2003105539 A JP 2003105539A JP 2004307969 A JP2004307969 A JP 2004307969A
Authority
JP
Japan
Prior art keywords
alloy
oxide
insoluble electrode
volume
platinum group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003105539A
Other languages
Japanese (ja)
Other versions
JP4163986B2 (en
Inventor
Yasushi Kurisu
泰 栗栖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003105539A priority Critical patent/JP4163986B2/en
Publication of JP2004307969A publication Critical patent/JP2004307969A/en
Application granted granted Critical
Publication of JP4163986B2 publication Critical patent/JP4163986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insoluble electrode which has satisfactory electrical conductivity and has a surface film with a longer service life, and to provide its production method. <P>SOLUTION: In the insoluble electrode, the surface of the base material consisting of Ti, a Ti alloy, Ta, a Ta alloy, Nb, an Nb alloy, Zr or a Zr alloy is provided with an intermediate layer consisting of Ti, a Ti alloy, Ta, a Ta alloy, Nb, an Nb alloy, Zr or a Zr alloy, and the oxide of the metal or the alloy, and in which the amount of the oxide is 0.01 to 2% by volume, and the surface of the intermediate layer is provided with the outermost surface layer consisting of platinum group metal oxide. Alternatively, in the insoluble electrode, the surface of the base metal is provided with a surface layer consisting of Ti, a Ti alloy, Ta, a Ta alloy, Nb, an Nb alloy, Zr or a Zr alloy, and the oxide of the metal or the alloy in 0.01 to 2% by volume, and further consisting of platinum group metal oxide in 10 to 90% by volume. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電気めっきなどに使用される不溶性電極に関するものである。
【0002】
【従来の技術】
一般に、電気めっき用の陽極として耐久性の高い不溶性電極の使用が考えられているが、更なる電極寿命の延長を図るため、例えば、特許文献1に示すように、チタン基体上に粒径10〜60μmのチタン粉末を溶射して、厚さ100〜200μm、表面粗さRaが5〜6.3μmの粗面化溶射被膜を形成し、該被膜の上に白金族金属又はその酸化物を含む電極触媒物質をコーティングした不溶性電極が提案されている。なお、溶射法としては減圧プラズマ溶射が推奨されている。
しかし、この方法では、ある程度の寿命延長効果は認められたが、本発明が成膜対象とするTi、Ta、Nb、Zrを既存の溶射法で溶射する場合には、高温であるため酸化が激しく、電気伝導性を低下させるおそれがある。また、減圧プラズマ溶射では被膜の密着性が十分でないという問題があった。
【0003】
【特許文献1】
特開平10−60690号公報(特許請求の範囲)
【0004】
【発明が解決しようとする課題】
本発明は、このような既存の溶射方式では得られないような十分な電気伝導性を有し、かつ、より高寿命の表面被膜を有する不溶性電極とその製造方法を提供することを課題とする。
【0005】
【課題を解決するための手段】
上記課題を解決するための本発明の要旨は次のとおりである。
(1) Ti、Ti合金、Ta、Ta合金、Nb、Nb合金、Zr、Zr合金の何れかからなる母材の表面に、Ti、Ti合金、Ta、Ta合金、Nb、Nb合金、Zr、Zr合金の何れかと、該金属又は該合金の酸化物からなり、該酸化物の量が体積%で0.01〜2%である中間層を有し、該中間層の表面に白金族金属酸化物からなる最表層を有することを特徴とする不溶性電極。
(2) Ti、Ti合金、Ta、Ta合金、Nb、Nb合金、Zr、Zr合金の何れかからなる母材の表面に、Ti、Ti合金、Ta、Ta合金、Nb、Nb合金、Zr、Zr合金の何れかと、体積%で0.01〜2%の該金属又は該合金の酸化物、更に体積%で10〜90%の白金族金属酸化物からなる表層を有することを特徴とする不溶性電極。
(3) 中間層または表層の空隙率が1〜50%であり、厚さが1〜100μmであることを特徴とする(1)又は(2)記載の不溶性電極。
(4) 最表層の厚さが1〜100μmであることを特徴とする(1)又は(3)記載の不溶性電極。
(5) 白金族金属酸化物がIrOであることを特徴とする(1)〜(4)の何れか1項に記載の不溶性電極。
(6) 中間層を、Ti、Ti合金、Ta、Ta合金、Nb、Nb合金、Zr、Zr合金の何れかを原料として、コールドスプレーにより成膜し、最表層を塗布焼き付け法により形成することを特徴とする(1)、(3)〜(5)の何れか1項に記載の不溶性電極の製造方法
(7) 表層を、Ti、Ti合金、Ta、Ta合金、Nb、Nb合金、Zr、Zr合金の何れかと、体積%で10〜90%の白金族金属酸化物の混合物を原料として、コールドスプレーにより形成することを特徴とする(2)、(3)、(5)の何れか1項に記載の不溶性電極の製造方法。
(8) コールドスプレーの原料が、初期粒径0.001〜10μmの白金族金属酸化物粒子と初期粒径1〜100μmのTi、Ti合金、Ta、Ta合金、Nb、Nb合金、Zr、Zr合金の何れかの粒子とを造粒した大きさ1〜100μmの造粒粉であることを特徴とする(7)記載の不溶性電極の製造方法。
【0006】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
まず、本発明にかかる不溶性電極は、電極母材の表面に被膜を形成したものであり、その被膜の一例は、中間層の表面に最表層が形成されている2層形態である。母材は、Ti、Ti合金、Ta、Ta合金、Nb、Nb合金、Zr、Zr合金の何れかからなる。母材の表面の中間層は、Ti、Ti合金、Ta、Ta合金、Nb、Nb合金、Zr、Zr合金の何れかと、その金属又は合金の酸化物からなり、その酸化物量が0.01〜2体積%である。中間層の表面の最表層は、白金族金属酸化物を含む導電層である。
また、本発明にかかる不溶性電極の他の例は、電極母材の表面に、被膜として表層が形成されている1層形態である。母材は、Ti、Ti合金、Ta、Ta合金、Nb、Nb合金、Zr、Zr合金の何れかからなり、表層は、Ti、Ti合金、Ta、Ta合金、Nb、Nb合金、Zr、Zr合金の何れかとその金属又は合金の酸化物を体積%で0.01〜2%含有し、更に白金族金属酸化物を10〜90体積%含むものである。
【0007】
上記の2層形態の被膜の中間層又は1層形態の被膜の表層において、層を構成する金属又は合金の酸化物量を0.01〜2体積%の範囲に規定したのは、酸化物をこの範囲内に抑えれば導電性を低下させないからである。
また、これら中間層、表層は、その空隙率を1〜50%とし、厚さを1〜100μmとすることが望ましい。特に、空隙率を50%として緻密な被膜とせずに多孔質とすれば、電極比表面積を大きくできるため使用時の電圧が低くてすみ、寿命を延ばすこともできる。中間層、表層の厚みについては効果を発揮するには最低でも1μmは必要であり、また、100μmを超えて成膜しても意味はない。特に、効果的な厚みとしては10〜50μmの範囲を選択することが好ましい。更に、最表層の厚みに関しても、同様に1〜100μmの範囲とし、特に、10〜60μmの範囲が好適である。
【0008】
なお、本発明にかかる不溶性電極の最も好適な材料としては、電極母材がTiからなり、中間層又は表層の金属がTaであり、白金族金属酸化物がIrOである。母材をTiとしたのは、Ta、Nb、Zrに比較し安価な材料であることが理由であり、また、中間層又は表層の金属をTaとしたのは、この層をTa或いはTaと白金族金属酸化物の組成とすることで、顕著な寿命延長効果が期待できるという理由による。更に、白金族金属酸化物をIrOとしたのは、硫酸溶液中で電気化学的に安定であり、かつ良好な電気伝導性と酸素発生の触媒特性を持つものとしてIrOが広く用いられていたという理由による。なお、通常の溶射ではIrOは溶射中に還元されて金属Irとなり特性を失うが、後述するコールドスプレーで成膜すれば還元せず特性劣化もないという点も理由の一つである。
中間層、表層の酸化物量は、コールドスプレーで形成した中間層、表層の断面を研磨してエッチングし、組織写真を走査型電子顕微鏡(SEMという)にて、1000倍で観察し、10視野の写真を撮影し、そのSEM組織写真を用いて、画像処理によって求めることができる。画像処理には、図1に示したように、SEM写真を模式化したスケッチ図を用いても良い。図1において、図面の黒く塗りつぶした部分が空隙部、ハッチング部が酸化物である。酸化物量は、上述のSEM組織写真又はスケッチ図の空隙部を画像処理によって除外してから、酸化物の単位面積当りの面積率を測定し、10視野の単純平均値を体積%とすれば良い。
また、表層の白金族金属酸化物の体積%も、酸化物量と同様にして求めることができる。中間層及び表層の空隙率は、上述のSEM組織写真又はスケッチ図を用いて、画像処理し、空隙部の単位面積当りの面積率を測定し、10視野の平均値として求めれば良い。
【0009】
また、本発明は、上記した被膜を有する不溶性電極の製造方法として、その被膜をコールドスプレーによって成膜することを特徴するものである。
「コールドスプレー」とは、技術文献である「溶射技術」VOL.20−NO.2 別刷(2000年8月発行)の「新しい溶射プロセス」及び「溶射技術」VOL.21−NO.3 別刷(2002年2月5日発行)の「コールドスプレーテクノロジー」(いずれも信州大学 榊 和彦氏発表)に説明されているように、溶射材料の融点又は軟化温度よりも低い温度のガスを超音速流にして、前記超音速流のガス中に前記溶射材料の粒子を投入し、固相状態のまま基材に衝突させて被膜を形成する技術である。これを実現する設備として上記文献には、先細末広形の超音速ガスノズルの後方から所望の溶射粉末材料を加熱・加圧した作動ガスにて送給して基体表面に衝突させる形式のものが開示されている。
このコールドスプレーは、従来のプラズマ溶射法、フレーム溶射法、高速フレーム溶射法などに比べ、溶射材料粒子を加熱・加速する作動ガスの温度が著しく低く、溶射粒子をあまり加熱せずに固相状態のまま基材へ高速で衝突させ、そのエネルギーにより基材と粒子に塑性変形を生じさせて成膜させるものである。これによって得た被膜は、緻密で密度、熱・電気伝導性が高く、酸化や熱変質も少なく、密着性も良好であるという、優れた性質を有する。
【0010】
本発明では、このコールドスプレーを不溶性電極の表面被膜形成に利用すれば、狙いとする優れた性質を有する被膜が得られることを知見したものである。すなわち、中間層と最表層を有する2層形態の被膜を形成する場合には、中間層として、Ti、Ti合金、Ta、Ta合金、Nb、Nb合金、Zr、Zr合金の何れかからなり、酸化物量が0.01〜2体積%からなる材料を選択し、これを粒子の形で超音速ガス流にのせてコールドスプレーにより成膜する。また、最表層は、白金族金属酸化物(例えば、IrO)を塗布焼付け法により形成することが望ましい。塗布焼付け法は、Ir等の白金族金属化合物を主成分とする溶液を中間層に塗布し、酸化性雰囲気でIr等の金属が酸化物になる温度で焼成し、所望の厚さになるまでこれを繰り返して行う方法である。
【0011】
一方、表層だけの1層形態の被膜を形成する場合には、Ti、Ti合金、Ta、Ta合金、Nb、Nb合金、Zr、Zr合金の何れかと、10〜90体積%の白金族金属酸化物を混合し、粒子の形で超音速ガス流にのせてコールドスプレーにより母材の表面に成膜すればよい。なお、原料を体積%で所定量として混合するには、予めTi、Ti合金、Ta、Ta合金、Nb、Nb合金、Zr、Zr合金、白金族金属酸化物の密度を測定し、重量を体積に換算すればよい。
【0012】
前記の中間層及び表層をコールドスプレーで成膜する際、コールドスプレーの原料は、初期粒径0.001〜10μmの白金族金属酸化物粒子と、初期粒径1〜100μmの金属粒子(Ti、Ti合金、Ta、Ta合金、Nb、Nb合金、Zr、Zr合金の何れかの粒子)を燒結或いはバインダーを介して造粒した大きさ1〜100μmの造粒粉であることが望ましい。このような造粒粉を用いた場合、ナノレベルで材料が均一に分散することから、従来のような結晶粒界からの局部腐食が発生しない。この造粒粉をコールドスプレーする際には、空気、窒素或いはヘリウムを作動ガスとして、衝突速度を600m/s以上として10〜50mmの距離でロール本体表面に衝突させて成膜されることが確認された。
【0013】
【実施例】
本発明を電気亜鉛めっきラインの電極(陽極)に適用した場合を実施例として示す。実施例のNo.1〜4がTi、Ta、Nb、Zrのいずれかからなる中間層とIrOからなる最表層で被膜を形成した場合(2膜形態)、No.5〜10がTi、Ta、Nb、ZrのいずれかとIrOを配合した表層で被膜を形成した場合(1膜形態)を示す。なお、本発明の中間層及び表層はコールドスプレーで形成したものであり、本発明及び比較例の最表層は、塗布焼付け法にて形成したものである。
コールドスプレーの条件及びスプレー設備は、すべて前掲した技術文献(「溶射技術」)に記載された範囲内での条件や設備を用いた。めっき条件は次のとおりである。
・ライン速度:180m/m
・電流密度:100A/dm
・めっき液:硫酸亜鉛280g/l、硫酸30g/l、pH1.2、浴温60℃
【0014】
表1の酸化物量、空隙率及び本発明No.5〜10の表層の組成におけるIrOの体積%は、次のようにして算定した。すなわち、コールドスプレーで形成した中間層及び表層の断面を研磨し、エッチングして組織をSEMにて1000倍で観察し、10視野の写真を撮影し、図1に例示したように模式化したスケッチ図とした。このスケッチ図を用いて画像処理により、空隙率、酸化物量及び表層のIrOの体積%を求めた。
まず、図1の黒く塗りつぶした空隙部の、単位面積当りの面積率を測定し、10視野の平均値を空隙率とした。次に、空隙部を除外して、図1のハッチング部である酸化物の単位面積当りの面積率を測定し、10視野の単純平均値を体積%とした。表層のIrOの体積%も酸化物量と同様にして求めた。表1のvol%は体積%を意味する。
【0015】
本発明により形成された被膜は、いずれも酸化物量はきわめて少なく、また、実施結果として示す電極の寿命延長効果についても比較例に比し高い寿命延長効果を有することが認められる。表1の寿命延長効果は、比較例を100%として、本発明の寿命を百分率で示したものである。また、表には示していないが、密着性も良好であり、電気伝導性についても十分実用に耐える程度のものが得られた。
【0016】
【表1】

Figure 2004307969
【0017】
【発明の効果】
以上説明したごとく本発明に係る不溶性電極によれば、良好な電気伝導性を有すると共に、従来のものより高寿命の表面被膜をもった電極とすることができるため、電気めっきラインの電極として最適なものといえる。また、本発明のコールドスプレーを利用した製造方法によって、上記した被膜を有する電極を容易に得ることができ、その産業上の利益は非常に大きい。
【図面の簡単な説明】
【図1】コールドスプレーで形成した被膜の断面組織写真に基づき模式化して作成したスケッチ図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an insoluble electrode used for electroplating and the like.
[0002]
[Prior art]
In general, use of a highly durable insoluble electrode as an anode for electroplating is considered. However, in order to further extend the electrode life, for example, as shown in Patent Document 1, a particle size of 10チ タ ン 60 μm titanium powder is sprayed to form a roughened thermal spray coating having a thickness of 100 to 200 μm and a surface roughness Ra of 5 to 6.3 μm, and a platinum group metal or an oxide thereof is included on the coating. Insoluble electrodes coated with an electrocatalytic substance have been proposed. In addition, reduced pressure plasma spraying is recommended as a thermal spraying method.
However, in this method, although a certain effect of prolonging the life was recognized, when Ti, Ta, Nb, and Zr to be formed into a film in the present invention were sprayed by the existing thermal spraying method, oxidation was carried out because of the high temperature. Violently, the electric conductivity may be reduced. Further, there is a problem that the adhesion of the coating is not sufficient in the low pressure plasma spraying.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 10-60690 (claims)
[0004]
[Problems to be solved by the invention]
It is an object of the present invention to provide an insoluble electrode having a sufficient electric conductivity that cannot be obtained by such an existing thermal spraying method, and having a surface coating having a longer life, and a method for producing the same. .
[0005]
[Means for Solving the Problems]
The gist of the present invention for solving the above problems is as follows.
(1) On the surface of a base material made of any of Ti, Ti alloy, Ta, Ta alloy, Nb, Nb alloy, Zr, Zr alloy, Ti, Ti alloy, Ta, Ta alloy, Nb, Nb alloy, Zr, An intermediate layer comprising any one of a Zr alloy and an oxide of the metal or the alloy, wherein the amount of the oxide is 0.01 to 2% by volume by volume; An insoluble electrode having an outermost layer made of a material.
(2) Ti, Ti alloy, Ta, Ta alloy, Nb, Nb alloy, Zr, Ti, Ti alloy, Ta, Ta alloy, Nb, Nb alloy, Zr, An insoluble material having a surface layer composed of any one of a Zr alloy and 0.01 to 2% by volume of the metal or an oxide of the alloy, and further including 10 to 90% by volume of a platinum group metal oxide. electrode.
(3) The insoluble electrode according to (1) or (2), wherein the intermediate layer or the surface layer has a porosity of 1 to 50% and a thickness of 1 to 100 μm.
(4) The insoluble electrode according to (1) or (3), wherein the outermost layer has a thickness of 1 to 100 μm.
(5) a platinum group metal oxide is characterized in that it is a IrO 2 (1) insoluble electrode according to any one of - (4).
(6) The intermediate layer is formed by cold spraying using any of Ti, Ti alloy, Ta, Ta alloy, Nb, Nb alloy, Zr, and Zr alloy as a raw material, and the outermost layer is formed by coating and baking. (1) The method for producing an insoluble electrode according to any one of (1) and (3) to (5), wherein the surface layer is made of Ti, Ti alloy, Ta, Ta alloy, Nb, Nb alloy, Zr , Zr alloy, and a mixture of 10 to 90% by volume of a platinum group metal oxide as a raw material, and formed by cold spraying. (2), (3), (5) 2. The method for producing an insoluble electrode according to claim 1.
(8) The raw materials of the cold spray are platinum group metal oxide particles having an initial particle diameter of 0.001 to 10 μm and Ti, Ti alloy, Ta, Ta alloy, Nb, Nb alloy, Zr, Zr having an initial particle diameter of 1 to 100 μm. (7) The method for producing an insoluble electrode according to (7), wherein the powder is a granulated powder having a size of 1 to 100 μm obtained by granulating any of the alloy particles.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
First, the insoluble electrode according to the present invention has a coating formed on the surface of the electrode base material, and one example of the coating is a two-layer form in which the outermost layer is formed on the surface of the intermediate layer. The base material is made of any of Ti, Ti alloy, Ta, Ta alloy, Nb, Nb alloy, Zr, and Zr alloy. The intermediate layer on the surface of the base material is made of any of Ti, Ti alloy, Ta, Ta alloy, Nb, Nb alloy, Zr, Zr alloy, and an oxide of the metal or alloy, and the amount of the oxide is 0.01 to 2% by volume. The outermost layer on the surface of the intermediate layer is a conductive layer containing a platinum group metal oxide.
Another example of the insoluble electrode according to the present invention is a one-layer form in which a surface layer is formed as a coating on the surface of the electrode base material. The base material is made of any of Ti, Ti alloy, Ta, Ta alloy, Nb, Nb alloy, Zr, Zr alloy, and the surface layer is Ti, Ti alloy, Ta, Ta alloy, Nb, Nb alloy, Zr, Zr. The alloy contains 0.01 to 2% by volume of any one of the alloys and the oxide of the metal or alloy, and further contains 10 to 90% by volume of a platinum group metal oxide.
[0007]
In the intermediate layer of the two-layered film or the surface layer of the one-layered film, the amount of the oxide of the metal or alloy constituting the layer is defined in the range of 0.01 to 2% by volume. This is because the conductivity is not reduced if the content is within the range.
The intermediate layer and the surface layer preferably have a porosity of 1 to 50% and a thickness of 1 to 100 μm. In particular, if the porosity is 50% and the coating is made porous instead of a dense coating, the electrode specific surface area can be increased, so that the voltage at the time of use can be reduced and the life can be extended. Regarding the thickness of the intermediate layer and the surface layer, a thickness of at least 1 μm is necessary for exhibiting the effect, and it is meaningless to form a film exceeding 100 μm. In particular, it is preferable to select an effective thickness in the range of 10 to 50 μm. Further, the thickness of the outermost layer is similarly set in the range of 1 to 100 μm, and particularly preferably in the range of 10 to 60 μm.
[0008]
In addition, as the most preferable material of the insoluble electrode according to the present invention, the electrode base material is made of Ti, the metal of the intermediate layer or the surface layer is Ta, and the platinum group metal oxide is IrO 2 . The reason why the base material was made of Ti was that it was an inexpensive material as compared with Ta, Nb, and Zr, and that the metal of the intermediate layer or the surface layer was made of Ta because this layer was made of Ta or Ta. The reason for this is that a significant life extension effect can be expected by using a platinum group metal oxide composition. Further, IrO 2 is used as the platinum group metal oxide because IrO 2 is widely used because it is electrochemically stable in a sulfuric acid solution and has good electric conductivity and catalytic properties for generating oxygen. For the reason. It should be noted that IrO 2 is reduced during thermal spraying to form Ir as a metal and loses its properties during normal thermal spraying. One of the reasons is that IrO 2 is not reduced and has no property deterioration when formed by a cold spray described later.
The oxide amount of the intermediate layer and the surface layer was determined by polishing and etching the cross section of the intermediate layer and the surface layer formed by cold spraying, and observing a micrograph of the structure with a scanning electron microscope (SEM) at 1000 times. A photograph can be taken and determined by image processing using the SEM micrograph. For the image processing, as shown in FIG. 1, a sketch diagram in which a SEM photograph is typically used may be used. In FIG. 1, black portions in the drawing are void portions, and hatched portions are oxides. The amount of oxide may be obtained by removing the voids in the above-mentioned SEM micrograph or sketch by image processing, measuring the area ratio per unit area of the oxide, and setting the simple average value of 10 visual fields as volume%. .
Further, the volume% of the platinum group metal oxide in the surface layer can be determined in the same manner as the amount of the oxide. The porosity of the intermediate layer and the surface layer may be obtained as an average value of 10 visual fields by performing image processing using the above-mentioned SEM micrograph or sketch drawing, measuring the area ratio of the void portion per unit area.
[0009]
According to the present invention, as a method for producing an insoluble electrode having the above-mentioned coating, the coating is formed by cold spraying.
"Cold spray" is a technical document of "spraying technology" VOL. 20-NO. 2 “New Spray Process” and “Spray Technology”, Vol. 21-NO. 3. As described in “Cold Spray Technology” in a separate print (issued on February 5, 2002) (both announced by Kazuhiko Sakaki, Shinshu University), a gas with a temperature lower than the melting point or softening temperature of the sprayed material is superimposed. This is a technique in which particles of the thermal spray material are charged into the supersonic flow gas in a sonic flow, and the particles are made to collide with a substrate in a solid state to form a coating. As a facility for realizing this, the above-mentioned document discloses a type in which a desired sprayed powder material is fed from behind a tapered and divergent supersonic gas nozzle with a heated and pressurized working gas to collide with a substrate surface. Have been.
Compared to conventional plasma spraying, flame spraying, and high-speed flame spraying, the cold spray uses a significantly lower temperature of the working gas that heats and accelerates the sprayed material particles. The substrate is made to collide with the substrate at high speed as it is, and the energy causes plastic deformation of the substrate and particles to form a film. The coating thus obtained has excellent properties of being dense, having high density, high thermal and electrical conductivity, less oxidation and thermal deterioration, and having good adhesion.
[0010]
In the present invention, it has been found that if this cold spray is used for forming a surface film of an insoluble electrode, a film having desired excellent properties can be obtained. That is, when forming a two-layered film having an intermediate layer and an outermost layer, the intermediate layer is made of any of Ti, Ti alloy, Ta, Ta alloy, Nb, Nb alloy, Zr, and Zr alloy, A material having an oxide amount of 0.01 to 2% by volume is selected, and the material is placed in a supersonic gas flow in the form of particles and formed into a film by cold spraying. The outermost layer is desirably formed by applying and baking a platinum group metal oxide (for example, IrO 2 ). In the coating baking method, a solution containing a platinum group metal compound such as Ir as a main component is applied to the intermediate layer, and baked in an oxidizing atmosphere at a temperature at which a metal such as Ir becomes an oxide, until a desired thickness is obtained. This is a method of repeating this.
[0011]
On the other hand, in the case of forming a single-layer coating film having only the surface layer, any one of Ti, Ti alloy, Ta, Ta alloy, Nb, Nb alloy, Zr, and Zr alloy is mixed with 10 to 90% by volume of a platinum group metal oxide. The materials may be mixed, placed in a supersonic gas flow in the form of particles, and formed into a film on the surface of the base material by cold spraying. In order to mix the raw materials as a predetermined amount in volume%, the density of Ti, Ti alloy, Ta, Ta alloy, Nb, Nb alloy, Zr, Zr alloy, and platinum group metal oxide is measured in advance, and the weight is measured by volume. It can be converted to
[0012]
When the intermediate layer and the surface layer are formed by cold spraying, the raw materials for cold spraying include platinum group metal oxide particles having an initial particle size of 0.001 to 10 μm and metal particles having an initial particle size of 1 to 100 μm (Ti, It is desirable to use granulated powder having a size of 1 to 100 μm obtained by granulating Ti alloy, Ta, Ta alloy, Nb, Nb alloy, Zr, or Zr alloy) through sintering or a binder. When such a granulated powder is used, since the material is uniformly dispersed at the nano level, local corrosion from the crystal grain boundary does not occur as in the related art. When cold-spraying this granulated powder, it was confirmed that the film was formed by colliding with air, nitrogen or helium as a working gas at a collision speed of 600 m / s or more at a distance of 10 to 50 mm at a distance of 10 to 50 mm. Was done.
[0013]
【Example】
An example in which the present invention is applied to an electrode (anode) of an electrogalvanizing line will be described. No. of the embodiment. Nos. 1 to 4 were formed of a coating of an intermediate layer made of any of Ti, Ta, Nb, and Zr and an outermost layer made of IrO 2 (two-film form). Nos. 5 to 10 show the case where a coating was formed with a surface layer containing one of Ti, Ta, Nb and Zr and IrO 2 (one film form). The intermediate layer and the surface layer of the present invention were formed by cold spraying, and the outermost layers of the present invention and the comparative examples were formed by coating and baking.
The cold spray conditions and spray equipment used were all within the ranges described in the above-mentioned technical literature ("spraying technique"). The plating conditions are as follows.
・ Line speed: 180m / m
・ Current density: 100 A / dm 2
-Plating solution: zinc sulfate 280 g / l, sulfuric acid 30 g / l, pH 1.2, bath temperature 60 ° C
[0014]
Table 1 shows the amount of oxide, porosity, and No. Vol% of IrO 2 in the surface layer of the composition of 5 to 10 was calculated as follows. That is, the cross section of the intermediate layer and the surface layer formed by the cold spray is polished, etched, and the structure is observed with a SEM at a magnification of 1000 times. A photograph of 10 fields of view is taken, and a sketch schematically illustrated as illustrated in FIG. Figure. The porosity, the amount of oxide, and the volume percentage of IrO 2 in the surface layer were determined by image processing using the sketch diagram.
First, the area ratio per unit area of the black void portion in FIG. 1 was measured, and the average value of 10 visual fields was defined as the void ratio. Next, excluding the voids, the area ratio per unit area of the oxide, which is the hatched portion in FIG. 1, was measured, and the simple average value of 10 visual fields was defined as volume%. The volume percentage of IrO 2 in the surface layer was determined in the same manner as the oxide amount. In Table 1, vol% means% by volume.
[0015]
It is recognized that the coatings formed according to the present invention have very small amounts of oxides, and that the electrode has a longer life-extending effect than the comparative example. The life extension effect in Table 1 shows the life of the present invention as a percentage, with the comparative example taken as 100%. Although not shown in the table, the adhesiveness was good, and the electrical conductivity was sufficiently high to withstand practical use.
[0016]
[Table 1]
Figure 2004307969
[0017]
【The invention's effect】
As described above, the insoluble electrode according to the present invention has good electrical conductivity and can be an electrode having a surface coating having a longer life than conventional ones, and thus is most suitable as an electrode for an electroplating line. It can be said that. Further, by the manufacturing method using the cold spray of the present invention, an electrode having the above-mentioned coating can be easily obtained, and its industrial advantage is very large.
[Brief description of the drawings]
FIG. 1 is a sketch diagram schematically created based on a photograph of a cross-sectional structure of a film formed by cold spraying.

Claims (8)

Ti、Ti合金、Ta、Ta合金、Nb、Nb合金、Zr、Zr合金の何れかからなる母材の表面に、Ti、Ti合金、Ta、Ta合金、Nb、Nb合金、Zr、Zr合金の何れかと、該金属又は該合金の酸化物からなり、該酸化物の量が体積%で0.01〜2%である中間層を有し、該中間層の表面に白金族金属酸化物からなる最表層を有することを特徴とする不溶性電極。Ti, Ti alloy, Ta, Ta alloy, Nb, Nb alloy, Zr, Zr, Zr alloy, Zr, Zr alloy An intermediate layer comprising an oxide of the metal or the alloy, wherein the amount of the oxide is 0.01 to 2% by volume, and a surface of the intermediate layer comprising a platinum group metal oxide An insoluble electrode having an outermost layer. Ti、Ti合金、Ta、Ta合金、Nb、Nb合金、Zr、Zr合金の何れかからなる母材の表面に、Ti、Ti合金、Ta、Ta合金、Nb、Nb合金、Zr、Zr合金の何れかと、体積%で0.01〜2%の該金属又は該合金の酸化物、更に体積%で10〜90%の白金族金属酸化物からなる表層を有することを特徴とする不溶性電極。Ti, Ti alloy, Ta, Ta alloy, Nb, Nb alloy, Zr, Zr, Zr alloy, Zr, Zr alloy An insoluble electrode comprising: any one of the above, and a surface layer composed of 0.01 to 2% by volume of the oxide of the metal or the alloy, and 10 to 90% by volume of a platinum group metal oxide. 中間層または表層の空隙率が1〜50%であり、厚さが1〜100μmであることを特徴とする請求項1又は2記載の不溶性電極。3. The insoluble electrode according to claim 1, wherein the porosity of the intermediate layer or the surface layer is 1 to 50%, and the thickness is 1 to 100 μm. 4. 最表層の厚さが1〜100μmであることを特徴とする請求項1又は3記載の不溶性電極。The insoluble electrode according to claim 1, wherein the outermost layer has a thickness of 1 to 100 μm. 白金族金属酸化物がIrOであることを特徴とする請求項1〜4の何れか1項に記載の不溶性電極。Insoluble electrode according to any one of claims 1 to 4 platinum group metal oxide is characterized in that it is a IrO 2. 中間層を、Ti、Ti合金、Ta、Ta合金、Nb、Nb合金、Zr、Zr合金の何れかを原料として、コールドスプレーにより成膜し、最表層を塗布焼き付け法により形成することを特徴とする請求項1、3〜5の何れか1項に記載の不溶性電極の製造方法The intermediate layer is formed by cold spraying using any one of Ti, Ti alloy, Ta, Ta alloy, Nb, Nb alloy, Zr, and Zr alloy as a raw material, and the outermost layer is formed by coating and baking. The method for producing an insoluble electrode according to any one of claims 1 to 3, 表層を、Ti、Ti合金、Ta、Ta合金、Nb、Nb合金、Zr、Zr合金の何れかと、体積%で10〜90%の白金族金属酸化物の混合物を原料として、コールドスプレーにより形成することを特徴とする請求項2、3、5の何れか1項に記載の不溶性電極の製造方法。The surface layer is formed by cold spraying using, as a raw material, a mixture of any of Ti, Ti alloy, Ta, Ta alloy, Nb, Nb alloy, Zr, and Zr alloy and 10 to 90% by volume of a platinum group metal oxide. The method for producing an insoluble electrode according to any one of claims 2, 3, and 5, wherein: コールドスプレーの原料が、初期粒径0.001〜10μmの白金族金属酸化物粒子と初期粒径1〜100μmのTi、Ti合金、Ta、Ta合金、Nb、Nb合金、Zr、Zr合金の何れかの粒子とを造粒した大きさ1〜100μmの造粒粉であることを特徴とする請求項7記載の不溶性電極の製造方法。Raw materials for cold spraying are platinum group metal oxide particles having an initial particle diameter of 0.001 to 10 μm and Ti, Ti alloy, Ta, Ta alloy, Nb, Nb alloy, Zr, and Zr alloy having an initial particle diameter of 1 to 100 μm. The method for producing an insoluble electrode according to claim 7, wherein the powder is granulated powder having a size of 1 to 100 µm obtained by granulating the particles.
JP2003105539A 2003-04-09 2003-04-09 Insoluble electrode and method for producing the same Expired - Fee Related JP4163986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003105539A JP4163986B2 (en) 2003-04-09 2003-04-09 Insoluble electrode and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003105539A JP4163986B2 (en) 2003-04-09 2003-04-09 Insoluble electrode and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004307969A true JP2004307969A (en) 2004-11-04
JP4163986B2 JP4163986B2 (en) 2008-10-08

Family

ID=33468024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003105539A Expired - Fee Related JP4163986B2 (en) 2003-04-09 2003-04-09 Insoluble electrode and method for producing the same

Country Status (1)

Country Link
JP (1) JP4163986B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231547A (en) * 2007-03-23 2008-10-02 National Institute For Materials Science Coating method
JP2008540822A (en) * 2005-05-05 2008-11-20 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Coating method and coated product on substrate surface
WO2008156093A1 (en) * 2007-06-21 2008-12-24 Toyota Jidosha Kabushiki Kaisha Method of forming film, heat transfer member, power module, inverter for vehicle and vehicle
WO2009011457A1 (en) * 2007-07-19 2009-01-22 Toyota Jidosha Kabushiki Kaisha Method for producing heat transfer member, power module, inverter for vehicle, and vehicle
JP2009068059A (en) * 2007-09-12 2009-04-02 Sanyo Shinku Kogyo Kk Electrode for electrolysis
US8961867B2 (en) 2008-09-09 2015-02-24 H.C. Starck Inc. Dynamic dehydriding of refractory metal powders
US9095932B2 (en) 2006-12-13 2015-08-04 H.C. Starck Inc. Methods of joining metallic protective layers
US9108273B2 (en) 2011-09-29 2015-08-18 H.C. Starck Inc. Methods of manufacturing large-area sputtering targets using interlocking joints
US9783882B2 (en) 2007-05-04 2017-10-10 H.C. Starck Inc. Fine grained, non banded, refractory metal sputtering targets with a uniformly random crystallographic orientation, method for making such film, and thin film based devices and products made therefrom

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8802191B2 (en) 2005-05-05 2014-08-12 H. C. Starck Gmbh Method for coating a substrate surface and coated product
JP2008540822A (en) * 2005-05-05 2008-11-20 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Coating method and coated product on substrate surface
US9095932B2 (en) 2006-12-13 2015-08-04 H.C. Starck Inc. Methods of joining metallic protective layers
JP2008231547A (en) * 2007-03-23 2008-10-02 National Institute For Materials Science Coating method
US9783882B2 (en) 2007-05-04 2017-10-10 H.C. Starck Inc. Fine grained, non banded, refractory metal sputtering targets with a uniformly random crystallographic orientation, method for making such film, and thin film based devices and products made therefrom
WO2008156093A1 (en) * 2007-06-21 2008-12-24 Toyota Jidosha Kabushiki Kaisha Method of forming film, heat transfer member, power module, inverter for vehicle and vehicle
JP2009001859A (en) * 2007-06-21 2009-01-08 Toyota Motor Corp Film deposition method, heat transfer member, power module, vehicular inverter, and vehicle
JP4586823B2 (en) * 2007-06-21 2010-11-24 トヨタ自動車株式会社 Film forming method, heat transfer member, power module, vehicle inverter, and vehicle
US8025921B2 (en) 2007-06-21 2011-09-27 Toyota Jidosha Kabushiki Kaisha Method of forming a metal powder film a thermal conduction member, power module, vehicle inverter, and vehicle formed thereof
US8499825B2 (en) 2007-07-19 2013-08-06 Toyota Jidosha Kabushiki Kaisha Method for manufacturing heat transfer member, power module, vehicle inverter, and vehicle
WO2009011457A1 (en) * 2007-07-19 2009-01-22 Toyota Jidosha Kabushiki Kaisha Method for producing heat transfer member, power module, inverter for vehicle, and vehicle
JP2009068059A (en) * 2007-09-12 2009-04-02 Sanyo Shinku Kogyo Kk Electrode for electrolysis
US8961867B2 (en) 2008-09-09 2015-02-24 H.C. Starck Inc. Dynamic dehydriding of refractory metal powders
US9108273B2 (en) 2011-09-29 2015-08-18 H.C. Starck Inc. Methods of manufacturing large-area sputtering targets using interlocking joints
US9120183B2 (en) 2011-09-29 2015-09-01 H.C. Starck Inc. Methods of manufacturing large-area sputtering targets
US9293306B2 (en) 2011-09-29 2016-03-22 H.C. Starck, Inc. Methods of manufacturing large-area sputtering targets using interlocking joints
US9412568B2 (en) 2011-09-29 2016-08-09 H.C. Starck, Inc. Large-area sputtering targets

Also Published As

Publication number Publication date
JP4163986B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
JP4560089B2 (en) Electrode used for electrolysis of aqueous solution to produce hypochlorite
JP4585867B2 (en) Insoluble anode
US8142898B2 (en) Smooth surface morphology chlorate anode coating
TWI455820B (en) Ceramic coating comprising yttrium which is resistant to a reducing plasma
TW201135770A (en) Electrode material for aluminum electrolytic capacitor and production method therefor
JP2022051582A (en) Titanium base material, method for manufacturing the same, electrode for water electrolysis and water electrolysis apparatus
JP4163986B2 (en) Insoluble electrode and method for producing the same
JPS60184690A (en) Durable electrode and its manufacture
JPS6320313B2 (en)
Aghasibeig et al. Fabrication of nickel electrode coatings by combination of atmospheric and suspension plasma spray processes
JP2002030495A (en) Electrode characterized by surface catalytic layer having extremely high adhesive property
TW200825212A (en) Method of reactivating electrode for electrolysis
JP3259869B2 (en) Electrode substrate for electrolysis and method for producing the same
KR102360423B1 (en) Anode for Alkaline Water Electrolysis having Porous Ni-Fe-Al Catalyst Layer and Preparation Method thereof
JPH0633287A (en) Electrode for electrolysis and its production
JP6222121B2 (en) Method for producing insoluble electrode
US7374647B2 (en) Arrangement of an electrode, method for making same, and use thereof
JPH0633285A (en) Electrode for electrolysis and its production
JPH05171483A (en) Manufacture of anode for generating oxygen
JP2979691B2 (en) Manufacturing method of anode for oxygen generation
US20010031375A1 (en) High porosity three-dimensional structures in chromium based alloys
JP2004307968A (en) Energizing roll and its manufacturing method
JPS5925985A (en) Low overvoltage cathode having high durability and its production
JP3463966B2 (en) Manufacturing method of electrode for electrolysis
RU2425176C2 (en) Method to produce electrode, electrode (versions) and electrolytic cell (versions)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees