JP2004306016A - Apparatus and method for manufacturing hydrogen storage body, and hydrogen storage body - Google Patents

Apparatus and method for manufacturing hydrogen storage body, and hydrogen storage body Download PDF

Info

Publication number
JP2004306016A
JP2004306016A JP2004036967A JP2004036967A JP2004306016A JP 2004306016 A JP2004306016 A JP 2004306016A JP 2004036967 A JP2004036967 A JP 2004036967A JP 2004036967 A JP2004036967 A JP 2004036967A JP 2004306016 A JP2004306016 A JP 2004306016A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage material
container
hydrogen
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004036967A
Other languages
Japanese (ja)
Other versions
JP4754174B2 (en
Inventor
Hironobu Fujii
博信 藤井
Takayuki Ichikawa
貴之 市川
Toyoyuki Kubokawa
豊之 窪川
Kazuhiko Tokiyoda
和彦 常世田
Shigeru Matsuura
茂 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2004036967A priority Critical patent/JP4754174B2/en
Priority to PCT/JP2004/009538 priority patent/WO2005014165A1/en
Publication of JP2004306016A publication Critical patent/JP2004306016A/en
Priority to US11/351,244 priority patent/US7537748B2/en
Application granted granted Critical
Publication of JP4754174B2 publication Critical patent/JP4754174B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Crushing And Grinding (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storage body having a high hydrogen storage capacity by mechanically crushing a hydrogen storage material exerting a hydrogen storage function into fine particles in a gaseous hydrogen atmosphere, with high energy and on a mass production basis. <P>SOLUTION: The subject manufacturing apparatus for hydrogen storage body comprises: a cylindrical crushing vessel 1 crushing the hydrogen storage material; a gaseous hydrogen introducing port 8 introducing gaseous hydrogen into the crushing vessel to keep the inside of the vessel 1 in a hydrogen atmosphere; a hydrogen storage material introducing port 9 introducing the material into the vessel 1; a hydrogen storage material discharge port 10 discharging the material in the vessel 1; a plurality of crushing rollers 5 with rotary shafts 5a disposed in conformity with a lengthwise direction of the crushing vessel 1 and along the inner wall of the vessel 1; and a drive mechanism causing a relative rotary movement between the crushing vessel 1 and the plurality of crushing rollers, and rotation of the plurality of crushing rollers. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、比較的低温で多量の水素を吸蔵できる水素貯蔵体の製造装置およびその製造方法、ならびに水素貯蔵体に関する。   The present invention relates to an apparatus and a method for manufacturing a hydrogen storage body capable of storing a large amount of hydrogen at a relatively low temperature, and a hydrogen storage body.

化石燃料の枯渇や地球環境問題から、化石燃料に替わる2次エネルギーとして自然エネルギーや再生可能エネルギーが有望視されている。特に、水素ガスは、エネルギーサイクルの中で重要な位置を占める物質として期待されている。   Due to the depletion of fossil fuels and global environmental problems, natural energy and renewable energy are promising as secondary energy alternatives to fossil fuels. In particular, hydrogen gas is expected to be an important material in the energy cycle.

しかしながら、水素を燃料とする最大の問題は、燃料である水素の貯蔵にある。現在は、水素を気体として貯蔵する手段としては、高圧ガスボンベによる水素の貯蔵があるが、水素貯蔵量を増加させるためには、水素圧力を高めていく必要があり、容器の重量が重くなるとともに、バルブなどの耐圧性や信頼性に問題がある。また、水素を液体として貯蔵する手段としては、液体水素を断熱容器に貯蔵する方法がある。しかし、液体水素は、沸点が非常に低く、液化のために多くのエネルギーを要するとともに、断熱容器への液体水素の供給時に蒸発による損失が10〜20%、断熱をしても8%の水素が蒸発すると言われており、経済的に問題がある。   However, the biggest problem using hydrogen as fuel is the storage of hydrogen as fuel. At present, as a means of storing hydrogen as a gas, there is storage of hydrogen by a high-pressure gas cylinder, but in order to increase the amount of stored hydrogen, it is necessary to increase the hydrogen pressure, and as the weight of the container increases, There are problems with the pressure resistance and reliability of valves and the like. As a means for storing hydrogen as a liquid, there is a method of storing liquid hydrogen in a heat insulating container. However, liquid hydrogen has a very low boiling point, requires a lot of energy for liquefaction, and a loss due to evaporation of 10 to 20% during supply of liquid hydrogen to an insulated container, and 8% of hydrogen even when insulated. Is said to evaporate, which is economically problematic.

最近、これらの問題を解決する水素貯蔵材料としてカーボンナノチューブ、活性炭等の炭素系材料が注目されており、盛んに研究が行われている。例えば、本発明者は先に、高い水素貯蔵能を有する水素貯蔵材として水素雰囲気下で機械的粉砕してナノ構造化されたグラファイトを提案している(特許文献1)。このような微細な粉砕には高エネルギーが必要なことから、この文献では、高エネルギーで機械的粉砕を行うことができる遊星型ボールミルを用いることが記載されている。   Recently, attention has been paid to carbon-based materials such as carbon nanotubes and activated carbon as hydrogen storage materials for solving these problems, and active research has been conducted. For example, the present inventor has previously proposed a nanostructured graphite that has been mechanically pulverized in a hydrogen atmosphere as a hydrogen storage material having a high hydrogen storage capacity (Patent Document 1). Since high energy is required for such fine grinding, this document describes the use of a planetary ball mill capable of performing mechanical grinding with high energy.

しかしながら、上記特許文献1で用いている遊星型ボールミルは、高エネルギーを被粉砕物に与えることは可能であるものの、重力式であるため大型化には限界があり、量産には不向きである。
特開2001−302224号公報
However, although the planetary ball mill used in Patent Literature 1 can apply high energy to the material to be pulverized, it is not suitable for mass production because it is of a gravitational type, which limits its size.
JP 2001-302224A

本発明はかかる事情に鑑みてなされたものであって、水素ガス雰囲気下で機械的粉砕により細粒化することで水素貯蔵機能を発現する水素貯蔵材料を高エネルギーでかつ量産レベルで機械的粉砕して水素貯蔵能力の高い水素貯蔵体を得ることができる水素貯蔵体の製造装置および製造方法、ならびに水素貯蔵体を提供することを目的とする。   The present invention has been made in view of the above circumstances, and mechanically pulverizes a hydrogen storage material that exhibits a hydrogen storage function by mechanically pulverizing it under a hydrogen gas atmosphere at a high energy and mass production level. It is an object of the present invention to provide an apparatus and a method for producing a hydrogen storage body capable of obtaining a hydrogen storage body having a high hydrogen storage capacity by performing the method, and a hydrogen storage body.

上記課題を解決するために、本発明の第1の観点では、その中で水素貯蔵材料を粉砕する円筒状の粉砕容器と、前記粉砕容器内を水素雰囲気に保つことが可能なように前記粉砕容器内に水素ガスを導入する水素ガス導入部と、前記粉砕容器内の水素ガス雰囲気を維持したまま前記粉砕容器内に水素貯蔵材料を導入可能な水素貯蔵材料導入部と、前記粉砕容器内の水素貯蔵材料を排出する水素貯蔵材料排出部と、回転軸を前記粉砕容器の長手方向に一致させるとともに前記粉砕容器の内壁に沿って配置された複数の粉砕ローラと、前記粉砕容器と前記複数の粉砕ローラとの間の相対的な回転移動および前記複数の粉砕ローラの自転を生じさせる駆動機構と、を具備し、
前記粉砕容器内を水素雰囲気にして水素貯蔵材料を前記粉砕容器内に導入し、前記粉砕容器の内壁と前記粉砕ローラとの間の圧縮力およびせん断力によって水素貯蔵材料を機械的粉砕して水素貯蔵体とすることを特徴とする水素貯蔵体の製造装置、を提供する。
In order to solve the above-mentioned problems, according to a first aspect of the present invention, there is provided a cylindrical pulverizing container in which a hydrogen storage material is pulverized, and the pulverization container capable of maintaining the inside of the pulverizing container in a hydrogen atmosphere. A hydrogen gas introduction unit that introduces hydrogen gas into the container, a hydrogen storage material introduction unit that can introduce a hydrogen storage material into the grinding container while maintaining the hydrogen gas atmosphere in the grinding container, A hydrogen storage material discharge unit that discharges the hydrogen storage material, a plurality of grinding rollers arranged along the inner wall of the grinding container with a rotation axis coinciding with the longitudinal direction of the grinding container, the grinding container and the plurality of grinding rollers. A driving mechanism for causing relative rotation between the crushing roller and rotation of the plurality of crushing rollers,
The inside of the pulverizing container is set to a hydrogen atmosphere, a hydrogen storage material is introduced into the pulverizing container, and the hydrogen storage material is mechanically pulverized by a compressive force and a shearing force between an inner wall of the pulverizing container and the pulverizing roller. An apparatus for producing a hydrogen storage, which is used as a storage.

本発明の第2の観点では、同軸的に設けられた内筒と外筒とを有し、これら内筒と外筒との間に環状粉砕室が形成される粉砕容器と、前記環状粉砕室内を水素雰囲気に保つことが可能なように前記環状粉砕室内に水素ガスを導入する水素ガス導入部と、前記環状粉砕室内の水素ガス雰囲気を維持したまま前記環状粉砕室内に水素貯蔵材料を導入可能な水素貯蔵材料導入部と、前記環状粉砕室内の水素貯蔵材料を排出する水素貯蔵材料排出部と、前記内筒と前記外筒との間に相対的な回転移動を生じさせる駆動機構と、を具備し、
前記環状粉砕室内を水素雰囲気にして、水素貯蔵材料および粉砕媒体を前記環状粉砕室内に導入し、前記内筒と外筒との間の相対的な回転移動を生じさせて水素貯蔵材料を機械的粉砕して水素貯蔵体とすることを特徴とする水素貯蔵体の製造装置、を提供する。
According to a second aspect of the present invention, there is provided a grinding container having an inner cylinder and an outer cylinder provided coaxially, and an annular grinding chamber formed between the inner cylinder and the outer cylinder; A hydrogen gas introduction unit for introducing hydrogen gas into the annular grinding chamber so that the hydrogen gas can be maintained in a hydrogen atmosphere, and a hydrogen storage material can be introduced into the annular grinding chamber while maintaining the hydrogen gas atmosphere in the annular grinding chamber. A hydrogen storage material introduction unit, a hydrogen storage material discharge unit that discharges the hydrogen storage material in the annular grinding chamber, and a drive mechanism that causes relative rotation between the inner cylinder and the outer cylinder. Equipped,
The annular grinding chamber is set to a hydrogen atmosphere, a hydrogen storage material and a grinding medium are introduced into the annular grinding chamber, and a relative rotational movement between the inner cylinder and the outer cylinder is caused to mechanically convert the hydrogen storage material. An apparatus for producing a hydrogen storage, which is pulverized into a hydrogen storage.

本発明の第3の観点では、その中で水素貯蔵材料を粉砕する回転可能な円筒状の粉砕容器と、前記粉砕容器内を水素雰囲気に保つことが可能なように前記粉砕容器内に水素ガスを導入する水素ガス導入部と、前記粉砕容器内の水素ガス雰囲気を維持したまま前記粉砕容器内に水素貯蔵材料を導入可能な水素貯蔵材料導入部と、前記粉砕容器内の水素貯蔵材料を排出する水素貯蔵材料排出部と、回転軸を前記容器の長手方向に一致させて前記粉砕容器の中に設けられたインペラと、前記粉砕容器と前記インペラとを互いに反対方向に回転させる駆動機構と、を具備し、
前記粉砕容器内を水素雰囲気にして、水素貯蔵材料および粉砕媒体を前記粉砕容器内に充填させ、前記粉砕容器と前記インペラとを互いに反対方向に回転させることにより、水素貯蔵材料を機械的粉砕して水素貯蔵体とすることを特徴とする水素貯蔵体の製造装置、を提供する。
According to a third aspect of the present invention, there is provided a rotatable cylindrical pulverization container for pulverizing a hydrogen storage material therein, and a hydrogen gas in the pulverization container so that the pulverization container can be maintained in a hydrogen atmosphere. A hydrogen gas introduction unit for introducing hydrogen, a hydrogen storage material introduction unit capable of introducing a hydrogen storage material into the grinding container while maintaining the hydrogen gas atmosphere in the grinding container, and discharging the hydrogen storage material from the grinding container. A hydrogen storage material discharge unit, an impeller provided in the pulverizing container with a rotation axis coinciding with the longitudinal direction of the container, and a driving mechanism for rotating the pulverizing container and the impeller in directions opposite to each other, With
Making the inside of the pulverizing container a hydrogen atmosphere, filling a hydrogen storage material and a pulverizing medium into the pulverizing container, and mechanically pulverizing the hydrogen storage material by rotating the pulverizing container and the impeller in mutually opposite directions. An apparatus for producing a hydrogen storage, characterized in that the apparatus is used as a hydrogen storage.

上記第1〜第3の観点の製造装置では、前記水素導入部には前記粉砕容器内に連続的に水素を導入する機構が設けられ、前記水素貯蔵材料導入部には前記粉砕容器内に連続的に水素貯蔵材料を導入する機構が設けられ、前記水素貯蔵材料排出部には前記粉砕容器から連続的に水素貯蔵材料を排出する機構が設けられている構成とすることができる。   In the manufacturing apparatus according to the first to third aspects, a mechanism for continuously introducing hydrogen into the grinding container is provided in the hydrogen introduction unit, and a mechanism for continuously introducing hydrogen into the hydrogen storage material introduction unit is provided in the grinding container. A mechanism for introducing the hydrogen storage material may be provided, and a mechanism for continuously discharging the hydrogen storage material from the grinding container may be provided in the hydrogen storage material discharge unit.

本発明の第4の観点では、その中で水素貯蔵材料を粉砕し、粉砕された水素貯蔵材を外部に排出するための水素貯蔵材料排出口を側壁下部に有する有底円筒状の粉砕容器と、前記粉砕容器を収容し、内部を所定のガス雰囲気に保持することができるハウジングと、円柱曲面を有し、その曲面と前記粉砕容器の側壁内面との間に所定の間隙ができるように配置された1または複数のインナーピースと、前記インナーピースを保持する保持部材と、前記粉砕容器と前記インナーピースとの間の間隙幅が実質的に変わらないように前記粉砕容器および/または前記保持部材を回転させる容器回転機構と、を具備し、
前記ハウジングは、その内部に水素ガスを導入するガス導入部と、その内部を水素ガス雰囲気に保持したまま前記粉砕容器内に水素貯蔵材料を導入する水素貯蔵材料導入部と、前記粉砕容器から前記水素貯蔵材料排出口を通って排出された水素貯蔵材料の一部をその内部からその外部に排出する水素貯蔵材料排出部と、前記粉砕容器から前記水素貯蔵材料排出口を通って排出された水素貯蔵材料の一部を前記粉砕容器内に戻す水素貯蔵材循環部と、を有し、
前記ハウジング内を水素雰囲気にして水素貯蔵材料を前記粉砕容器内に導入し、前記粉砕容器の側壁と前記インナーピースとの間の圧縮力およびせん断力によって水素貯蔵材料を機械的粉砕して水素貯蔵体とすることを特徴とする水素貯蔵体の製造装置、を提供する。
According to a fourth aspect of the present invention, there is provided a bottomed cylindrical pulverizing container having a hydrogen storage material discharge port for discharging a pulverized hydrogen storage material to the outside at a lower portion of a side wall. A housing capable of accommodating the crushing container and maintaining the inside thereof in a predetermined gas atmosphere, and having a cylindrical curved surface, disposed so as to have a predetermined gap between the curved surface and the inner surface of the side wall of the crushing container. One or more inner pieces, a holding member for holding the inner piece, and the crushing container and / or the holding member such that a gap width between the crushing container and the inner piece does not substantially change. And a container rotating mechanism for rotating the
The housing includes a gas introduction unit that introduces hydrogen gas therein, a hydrogen storage material introduction unit that introduces a hydrogen storage material into the pulverization container while maintaining the inside of the housing in a hydrogen gas atmosphere, A hydrogen storage material discharge part for discharging a part of the hydrogen storage material discharged through the hydrogen storage material discharge port from the inside to the outside, and hydrogen discharged from the grinding container through the hydrogen storage material discharge port A hydrogen storage material circulation unit that returns a part of the storage material into the grinding container,
The inside of the housing is set to a hydrogen atmosphere, a hydrogen storage material is introduced into the pulverization container, and the hydrogen storage material is mechanically pulverized by a compressive force and a shear force between a side wall of the pulverization container and the inner piece to store hydrogen. An apparatus for producing a hydrogen storage body characterized in that the apparatus is a body.

この第4の観点の製造装置では、前記水素ガス導入部には前記ハウジング内に連続的に水素を導入する機構が設けられ、前記水素貯蔵材料導入部には前記ハウジング内に収容された粉砕容器内に連続的に水素貯蔵材料を導入する機構が設けられ、前記水素貯蔵材料排出部には前記ハウジングから連続的に水素貯蔵材料を排出する機構が設けられている構成とすることができる。   In the manufacturing apparatus according to the fourth aspect, a mechanism for continuously introducing hydrogen into the housing is provided in the hydrogen gas introduction unit, and a pulverizing container housed in the housing is provided in the hydrogen storage material introduction unit. A mechanism for continuously introducing a hydrogen storage material is provided therein, and a mechanism for continuously discharging the hydrogen storage material from the housing may be provided in the hydrogen storage material discharge section.

本発明の第5の観点では、水素を含む所定の処理ガスを高圧噴射するジェットノズルと、その内部に前記ジェットノズルから噴射された高圧処理ガスが導入され、前記高圧処理ガスの気流によって水素貯蔵材料を粉砕する所定形状の粉砕容器と、前記粉砕容器内のガス雰囲気を維持したまま前記粉砕容器内に水素貯蔵材料を導入可能な水素貯蔵材料導入部と、前記粉砕容器内の水素貯蔵材料を排出する水素貯蔵材料排出部と、を具備し、
前記粉砕容器内を水素ガスを含む雰囲気にして水素貯蔵材料を前記粉砕容器内に導入し、前記ジェットノズルから噴射された高圧処理ガスの気流に乗った水素貯蔵材料どうしの衝突もしくは磨砕または前記高圧処理ガスの気流から与えられるせん断力によって、水素貯蔵材料を機械的粉砕して水素貯蔵体とすることを特徴とする水素貯蔵体の製造装置、を提供する。
In a fifth aspect of the present invention, a jet nozzle for injecting a predetermined processing gas containing hydrogen at a high pressure, and a high-pressure processing gas injected from the jet nozzle is introduced into the jet nozzle, and hydrogen is stored by an air flow of the high-pressure processing gas. A crushing vessel of a predetermined shape for crushing the material, a hydrogen storage material introduction unit capable of introducing a hydrogen storage material into the crushing vessel while maintaining a gas atmosphere in the crushing vessel, and a hydrogen storage material in the crushing vessel. And a hydrogen storage material discharging unit for discharging.
Introducing a hydrogen storage material into the pulverizing container by setting the inside of the pulverizing container to an atmosphere containing hydrogen gas, and colliding or grinding the hydrogen storage materials riding on the gas flow of the high-pressure processing gas injected from the jet nozzle or Provided is an apparatus for manufacturing a hydrogen storage material, wherein a hydrogen storage material is mechanically pulverized into a hydrogen storage material by a shear force given from an air flow of a high-pressure processing gas.

この第5の観点の製造装置では、前記水素貯蔵材料導入部には前記粉砕容器内に連続的に水素貯蔵材料を導入する機構が設けられ、前記水素貯蔵材料排出部には前記粉砕容器から連続的に所定の粒径に微粉砕された水素貯蔵材料を選択して排出する機構が設けられている構成とすることができる。   In the manufacturing apparatus according to the fifth aspect, the hydrogen storage material introduction unit is provided with a mechanism for continuously introducing a hydrogen storage material into the grinding container, and the hydrogen storage material discharge unit is connected to the hydrogen storage material discharge unit continuously from the grinding container. A structure may be provided in which a mechanism for selectively selecting and discharging a hydrogen storage material finely pulverized to a predetermined particle size is provided.

上記第1〜第5の観点の製造装置では、前記粉砕容器内で水素貯蔵材料を粉砕している際に、前記粉砕容器内のガス雰囲気を維持したまま、前記粉砕容器内に水素分子を水素原子へ解離させる機能を有する金属成分を導入する金属成分導入機構をさらに具備する構成とすることができる。   In the manufacturing apparatus according to the first to fifth aspects, when the hydrogen storage material is pulverized in the pulverization container, hydrogen molecules are introduced into the pulverization container while maintaining the gas atmosphere in the pulverization container. The structure may further include a metal component introduction mechanism for introducing a metal component having a function of dissociating into atoms.

本発明の第6の観点では、円筒状の粉砕容器内を水素雰囲気にしつつ、前記粉砕容器内に水素貯蔵材料を導入し、前記粉砕容器と前記粉砕容器の内壁に沿って設けられた複数の粉砕ローラとの間の相対的な回転移動および前記複数の粉砕ローラの自転により前記粉砕容器の内壁と前記粉砕ローラとの間に生じる圧縮力およびせん断力によって、水素貯蔵材料を機械的粉砕して水素貯蔵体とすることを特徴とする水素貯蔵体の製造方法、を提供する。   According to a sixth aspect of the present invention, a hydrogen storage material is introduced into the pulverizing container while the inside of the cylindrical pulverizing container is in a hydrogen atmosphere, and a plurality of pulverization containers are provided along the inner wall of the pulverizing container and the pulverizing container. The hydrogen storage material is mechanically pulverized by a compressive force and a shear force generated between the inner wall of the pulverizing container and the pulverizing roller due to relative rotational movement between the pulverizing roller and rotation of the plurality of pulverizing rollers. A method for producing a hydrogen storage, which is a hydrogen storage.

本発明の第7の観点では、同軸的に設けられた内筒と外筒とを有する粉砕容器の前記内筒と外筒との間に形成された環状粉砕室内を水素雰囲気にしつつ、前記環状粉砕室内に粉砕媒体および水素貯蔵材料を導入し、前記内筒と外筒との間の相対的な回転移動を生じさせて水素貯蔵材料を機械的粉砕して水素貯蔵体とすることを特徴とする水素貯蔵体の製造方法、を提供する。   According to a seventh aspect of the present invention, the annular grinding chamber formed between the inner cylinder and the outer cylinder of the grinding container having the inner cylinder and the outer cylinder provided coaxially is formed while the annular grinding chamber is in a hydrogen atmosphere. A grinding medium and a hydrogen storage material are introduced into the grinding chamber, and a relative rotation between the inner cylinder and the outer cylinder is caused to mechanically pulverize the hydrogen storage material into a hydrogen storage body. And a method for producing a hydrogen storage medium.

本発明の第8の観点では、円筒状の粉砕容器内を水素雰囲気にしつつ、前記粉砕容器内に粉砕媒体および水素貯蔵材料を充填させ、前記粉砕容器内と前記粉砕容器内に設けられたインペラとを互いに反対方向に回転させることにより水素貯蔵材料を機械的粉砕して水素貯蔵体とすることを特徴とする水素貯蔵体の製造方法、を提供する。   According to an eighth aspect of the present invention, a pulverizing medium and a hydrogen storage material are filled in the pulverizing container while the inside of the cylindrical pulverizing container is in a hydrogen atmosphere, and an impeller provided in the pulverizing container and the pulverizing container is provided. A hydrogen storage material is mechanically pulverized into a hydrogen storage material by rotating the hydrogen storage material in directions opposite to each other.

本発明の第9の観点では、有底円筒状の粉砕容器内を水素雰囲気にしつつ、水素貯蔵材料を前記粉砕容器内に導入し、前記粉砕容器内に設けられた円柱曲面を有するインナーピースの該円柱曲面と前記粉砕容器の側壁との間隙幅が実質的に変化しないように前記インナーピースを回動させるかまたは前記粉砕容器を回転させることにより前記インナーピースと前記粉砕容器の側壁との間に生ずる圧縮力およびせん断力によって、水素貯蔵材料を機械的粉砕して水素貯蔵体とすることを特徴とする水素貯蔵体の製造方法、を提供する。   According to a ninth aspect of the present invention, a hydrogen storage material is introduced into the pulverizing container while the inside of the cylindrical pulverizing container having a bottom is in a hydrogen atmosphere, and an inner piece having a cylindrical curved surface provided in the pulverizing container is provided. By rotating the inner piece or rotating the pulverizing container so that the gap width between the cylindrical curved surface and the side wall of the pulverizing container does not substantially change, the distance between the inner piece and the side wall of the pulverizing container is reduced. A method for producing a hydrogen storage material, wherein a hydrogen storage material is mechanically pulverized into a hydrogen storage material by a compressive force and a shear force generated in the hydrogen storage material.

上記第6〜第9の観点の製造方法では、前記粉砕容器内に水素ガスおよび水素貯蔵材料を連続的に導入して水素貯蔵材料を粉砕し、それによって形成された水素貯蔵体を連続的に前記粉砕容器から排出させることが好ましい。また、前記粉砕容器内で水素貯蔵材料を粉砕している途中で、前記粉砕容器内の水素雰囲気を維持したまま、前記粉砕容器内に水素分子を水素原子へ解離させる機能を有する金属成分を導入することが好ましい。   In the manufacturing method according to the sixth to ninth aspects, the hydrogen storage material is pulverized by continuously introducing the hydrogen gas and the hydrogen storage material into the pulverization container, and the hydrogen storage body formed thereby is continuously reduced. It is preferable to discharge from the crushing container. In addition, a metal component having a function of dissociating hydrogen molecules into hydrogen atoms is introduced into the grinding container while the hydrogen atmosphere in the grinding container is maintained while the hydrogen storage material is being ground in the grinding container. Is preferred.

本発明の第10の観点では、粉砕容器に水素を含む所定の処理ガスを高圧噴射しつつ、前記粉砕容器内に生ずる前記処理ガスの気流に乗るように水素貯蔵材料を前記粉砕容器に導入することにより、前記気流に乗った水素貯蔵材料どうしの衝突もしくは磨砕または前記気流から与えられるせん断力によって、水素貯蔵材料を機械的粉砕して水素貯蔵体とすることを特徴とする水素貯蔵体の製造方法、を提供する。   According to a tenth aspect of the present invention, a high-pressure injection of a predetermined processing gas containing hydrogen into a grinding container is performed, and a hydrogen storage material is introduced into the grinding container so as to ride on an air flow of the processing gas generated in the grinding container. Thereby, the collision or grinding of the hydrogen storage material riding on the gas flow or the shear force given from the gas flow, mechanically pulverize the hydrogen storage material into a hydrogen storage material characterized by the hydrogen storage material Manufacturing method.

この第10の観点の製造方法では、前記粉砕容器内に水素貯蔵材料を連続的に導入して水素貯蔵材料を粉砕し、それによって形成された水素貯蔵体を前記処理ガスの気流を利用して前記粉砕容器から連続的に排出することが好ましい。また、前記粉砕容器内で水素貯蔵材料を粉砕している途中で、前記粉砕容器内の処理ガス雰囲気を維持したまま、前記粉砕容器内に水素分子を水素原子へ解離させる機能を有する金属成分を導入することが好ましい。   In the manufacturing method according to the tenth aspect, a hydrogen storage material is continuously introduced into the pulverization container to pulverize the hydrogen storage material, and a hydrogen storage body formed by using the gas flow of the processing gas. It is preferable to discharge continuously from the grinding container. In the course of crushing the hydrogen storage material in the crushing vessel, while maintaining the processing gas atmosphere in the crushing vessel, a metal component having a function of dissociating hydrogen molecules into hydrogen atoms in the crushing vessel is provided. Preferably, it is introduced.

本発明によれば、水素ガス雰囲気下での機械的粉砕による細粒化によって水素貯蔵機能を発現する水素貯蔵材料を、高エネルギーで粉砕することができるために、水素貯蔵能力の高い水素貯蔵体を得ることができる。しかも、粉砕機構上、遊星ボールミルのような粉砕量の制約がなく、工業化が可能であり、大量生産に十分に対応することができる。また、水素ガス雰囲気下での機械的粉砕による細粒化によって水素貯蔵機能を発現する水素貯蔵機能材料を用いて水素貯蔵体を製造するにあたり、水素分子を水素原子へ解離させる機能を有する金属成分を、前記水素貯蔵機能材料の機械的粉砕の途中に添加した場合には、その金属成分が水素貯蔵機能材料に厚く覆われることなく、しかも金属成分を高分散状態で担持することができ、その金属成分の作用によって高い水素貯蔵能力が得られる。   According to the present invention, a hydrogen storage material exhibiting a hydrogen storage function by atomization by mechanical pulverization under a hydrogen gas atmosphere can be pulverized with high energy, so that a hydrogen storage body having a high hydrogen storage capacity Can be obtained. Moreover, there is no restriction on the amount of pulverization unlike a planetary ball mill due to the pulverization mechanism, industrialization is possible, and it is possible to sufficiently cope with mass production. In addition, in producing a hydrogen storage body using a hydrogen storage function material that exhibits a hydrogen storage function by mechanically pulverizing under a hydrogen gas atmosphere, a metal component having a function of dissociating hydrogen molecules into hydrogen atoms. Is added during the mechanical pulverization of the hydrogen storage function material, the metal component is not thickly covered with the hydrogen storage function material, and the metal component can be supported in a highly dispersed state. High hydrogen storage capacity is obtained by the action of the metal component.

以下、添付図面を参照して本発明の実施形態について説明する。
[第1の実施形態]
図1は、本発明の第1の実施形態に係る水素貯蔵体の製造装置を示す図であり、(a)は水平断面図、(b)は垂直断面図である。この水素貯蔵体の製造装置は高速遠心ローラーミルタイプのものであり、円筒状の粉砕容器1を有しており、その周囲に水冷ジャケット2が設けられている。水冷ジャケット2には冷却水導入口3と冷却水排出口4とが設けられている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[First Embodiment]
FIGS. 1A and 1B are diagrams showing a hydrogen storage device manufacturing apparatus according to a first embodiment of the present invention, wherein FIG. 1A is a horizontal sectional view and FIG. 1B is a vertical sectional view. The hydrogen storage device manufacturing apparatus is of a high-speed centrifugal roller mill type, has a cylindrical crushing vessel 1, and a water cooling jacket 2 is provided around the crushing vessel. The water cooling jacket 2 is provided with a cooling water inlet 3 and a cooling water outlet 4.

粉砕容器1の内部には3本の粉砕ローラ5が回転軸を粉砕容器1の長手方向に一致させるとともに粉砕容器1の内壁に沿って配置されている。これら粉砕ローラ5は、その周面に螺旋状の溝が形成されており、かつ粉砕容器1の長手方向に沿って回転軸5aを有している。これら複数の粉砕ローラ5の両端は一対のベアリングアッセンブリー6に自転可能に取り付けられている。この一対のベアリングアッセンブリー6および粉砕容器1の中央を貫通するように回転軸7が設けられている。そして、図示しない駆動機構により、ベアリングアッセンブリー6を回転させて3本の粉砕ローラ5を一体的に粉砕容器2の内壁に沿って公転させるとともに、回転軸5aにより各粉砕ローラ5を自転させるようになっている。   Inside the pulverizing container 1, three pulverizing rollers 5 are arranged along the inner wall of the pulverizing container 1 with the rotation axis aligned with the longitudinal direction of the pulverizing container 1. These crushing rollers 5 have spiral grooves formed on the peripheral surface thereof, and have a rotating shaft 5 a along the longitudinal direction of the crushing container 1. Both ends of the plurality of crushing rollers 5 are rotatably attached to a pair of bearing assemblies 6. A rotating shaft 7 is provided so as to pass through the center of the pair of bearing assemblies 6 and the crushing container 1. Then, the drive mechanism (not shown) rotates the bearing assembly 6 to revolve the three crushing rollers 5 integrally along the inner wall of the crushing container 2 and rotate each crushing roller 5 by the rotating shaft 5a. Has become.

粉砕容器1の一方の端面には、粉砕容器1内に水素ガスを導入する水素ガス導入口8および水素貯蔵材料を導入する水素貯蔵材料導入口9が設けられている。また、他方の端面には、粉砕容器1から水素貯蔵材料を粉砕して得られた水素貯蔵体を排出する水素貯蔵体排出口10が設けられている。   On one end surface of the crushing container 1, a hydrogen gas inlet 8 for introducing hydrogen gas into the crushing container 1 and a hydrogen storage material inlet 9 for introducing a hydrogen storage material are provided. In addition, a hydrogen storage material discharge port 10 for discharging a hydrogen storage material obtained by crushing the hydrogen storage material from the crushing container 1 is provided on the other end surface.

このように構成される水素貯蔵体の製造装置においては、まず、水素ガス導入口8から粉砕容器1内に水素ガスを導入し、粉砕容器1内を所定の圧力に維持する。この状態で図示しない開閉機構を開にして水素貯蔵材料導入口9から粉砕容器1内に所定量の水素貯蔵材料を導入する。   In the hydrogen storage device manufacturing apparatus configured as described above, first, hydrogen gas is introduced into the crushing vessel 1 from the hydrogen gas inlet 8 and the inside of the crushing vessel 1 is maintained at a predetermined pressure. In this state, the opening / closing mechanism (not shown) is opened to introduce a predetermined amount of the hydrogen storage material into the pulverizing container 1 from the hydrogen storage material inlet 9.

この状態で開閉機構を閉にして水素貯蔵材料の粉砕を開始する。粉砕に際しては図示しない駆動機構によりベアリングアッセンブリー6に取り付けられた3本の粉砕ローラ5を図1の(a)に示す矢印の方向に自転させながら、粉砕容器1の内壁に沿って自転の方向と反対方向に公転させる。この際に水冷ジャケット2に冷却水を流し粉砕容器1を冷却する。   In this state, the opening / closing mechanism is closed to start pulverization of the hydrogen storage material. At the time of crushing, the three crushing rollers 5 attached to the bearing assembly 6 are rotated in the direction of the arrow shown in FIG. 1A by a drive mechanism (not shown), while rotating along the inner wall of the crushing container 1. Orbit in the opposite direction. At this time, cooling water is supplied to the water cooling jacket 2 to cool the crushing container 1.

このように粉砕ローラ5を自転および公転させることにより、粉砕容器1の内壁と粉砕ローラ5との間の圧縮力およびせん断力によって水素貯蔵材料11(図1の(a)を参照)を機械的粉砕する。   By rotating and revolving the crushing roller 5 in this manner, the hydrogen storage material 11 (see FIG. 1A) is mechanically moved by the compressive force and the shearing force between the inner wall of the crushing container 1 and the crushing roller 5. Smash.

この場合に、粉砕容器1内は所定圧力の水素ガス雰囲気となっており、水素貯蔵材料11が水素ガス雰囲気下でこのように機械的粉砕により微細化する過程で、微細化された水素貯蔵材料に水素が侵入し、微細化された水素貯蔵材料の表面および結晶粒子間に水素が貯蔵される。このようにして所定の粉砕が終了した後、得られた水素貯蔵体は水素貯蔵体排出口10から排出される。   In this case, the inside of the pulverizing container 1 is in a hydrogen gas atmosphere at a predetermined pressure, and the hydrogen storage material 11 is pulverized by the mechanical pulverization under the hydrogen gas atmosphere in this way. Hydrogen penetrates into the surface of the hydrogen storage material and hydrogen particles are stored between crystal grains. After the predetermined pulverization is completed in this manner, the obtained hydrogen storage is discharged from the hydrogen storage outlet 10.

ここで、水素貯蔵材料としては、グラファイト、非晶質炭素、活性炭、カーボンナノチューブおよびフラーレン等の炭素質材料を用いることができる。この場合、水素の侵入の形態は、炭素水素共有結合をともなうものと、共有結合をともなわないものとがあるが、これらのうち主に共有結合をともなわない水素は可逆的に取り出し可能であり、貯蔵水素として有効である。上記炭素質材料の中でグラファイトが水素貯蔵能が大きく好ましい。グラファイトの結晶は層状構造を有しているため、水素雰囲気中での粉砕過程でその表面および層間に多量の水素を貯蔵することができる。   Here, as the hydrogen storage material, a carbonaceous material such as graphite, amorphous carbon, activated carbon, carbon nanotube, and fullerene can be used. In this case, the form of hydrogen intrusion includes those with a carbon-hydrogen covalent bond and those without a covalent bond, and among these, hydrogen mainly without a covalent bond can be reversibly extracted, Effective as stored hydrogen. Among the carbonaceous materials, graphite is preferable because of its high hydrogen storage capacity. Since graphite crystals have a layered structure, a large amount of hydrogen can be stored between the surfaces and between layers during the pulverization process in a hydrogen atmosphere.

本実施形態では、水素貯蔵材料の粉砕に際して、粉砕ローラ5を自転および公転させて、粉砕容器1の内壁と粉砕ローラ5との間の圧縮力およびせん断力により水素貯蔵材料を高エネルギーで粉砕することができ、水素貯蔵能力の高い水素貯蔵体を得ることができる。しかも粉砕機構上、遊星ボールミルのような粉砕量の制約がなく、量産に十分対応可能である。   In the present embodiment, when pulverizing the hydrogen storage material, the pulverizing roller 5 is rotated and revolved, and the hydrogen storage material is pulverized with high energy by the compressive force and the shearing force between the inner wall of the pulverizing container 1 and the pulverizing roller 5. Thus, a hydrogen storage body having a high hydrogen storage capacity can be obtained. In addition, due to the pulverizing mechanism, there is no restriction on the amount of pulverization unlike a planetary ball mill, and it is possible to cope with mass production.

図1の装置において、水素貯蔵材料導入口9および水素貯蔵体排出口10に、それぞれ粉砕容器1内の水素ガス圧と同等の水素圧に維持可能な図示しない水素貯蔵材料導入機構および水素貯蔵体排出機構を取り付けることにより、水素貯蔵材料を連続的に粉砕容器1内に導入し、かつ粉砕後の水素貯蔵体を連続的に粉砕容器1から排出するようにすることができる。   In the apparatus shown in FIG. 1, a hydrogen storage material introduction mechanism and a hydrogen storage body (not shown) capable of maintaining a hydrogen pressure equivalent to the hydrogen gas pressure in the crushing vessel 1 at a hydrogen storage material introduction port 9 and a hydrogen storage body discharge port 10, respectively. By attaching the discharge mechanism, the hydrogen storage material can be continuously introduced into the crushing container 1 and the crushed hydrogen storage body can be continuously discharged from the crushing container 1.

また、水素分子を水素原子へ解離させる機能を有する金属成分を、水素貯蔵材料の機械的粉砕の途中に添加することにより、水素貯蔵量を増加させることができるが、このような金属成分の添加には、例えば粉砕容器1の水素貯蔵材料導入口9と同じ端面に金属成分導入口を設け、この導入口にそのような金属成分を貯留し、その中が水素雰囲気に保持される金属成分容器を連結し、この金属成分容器と粉砕容器1との間を開閉する開閉機構を設ければよい。そして、粉砕容器1内の水素ガス圧力を測定し、金属成分容器内の水素ガス圧力を粉砕容器1内の水素ガス圧力と同じ値にした後、開閉機構を開いてそのような金属成分を粉砕容器1内に導入することができる。このような機能を有する金属成分としてはMn、Fe、Co、Ni、Pt、Pd、Rh、Li、B、Na、Mg、K、Ir、Nd、La、Ca、V、Ti、Cr、Cu、Zn、Al、Si、RuおよびAgから選ばれた1種または2種以上、もしくは水素貯蔵合金を挙げることができる。   In addition, by adding a metal component having a function of dissociating hydrogen molecules into hydrogen atoms during the mechanical pulverization of the hydrogen storage material, the amount of hydrogen storage can be increased. For example, a metal component introduction port is provided on the same end face as the hydrogen storage material introduction port 9 of the pulverizing vessel 1, and such a metal component is stored in the introduction port, and the metal component container in which the metal component is kept in a hydrogen atmosphere And an opening / closing mechanism for opening and closing the metal component container and the crushing container 1 may be provided. Then, the hydrogen gas pressure in the crushing container 1 is measured, and the hydrogen gas pressure in the metal component container is set to the same value as the hydrogen gas pressure in the crushing container 1. Then, the opening and closing mechanism is opened to crush such metal components. It can be introduced into the container 1. Examples of the metal component having such a function include Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, B, Na, Mg, K, Ir, Nd, La, Ca, V, Ti, Cr, Cu, One or more selected from Zn, Al, Si, Ru and Ag, or a hydrogen storage alloy can be given.

なお、図1の装置では、粉砕容器1自体は固定で、粉砕ローラ5の自転および公転により粉砕を行ったが、これに加えて粉砕容器1を回転させるようにすることもできる。この場合に粉砕容器1の回転方向を粉砕ローラ5の公転方向と反対方向することにより、より高いエネルギーで粉砕を行うことができる。また、粉砕ローラ5は自転するのみとして、粉砕容器1を回転させる構成とすることもできる。さらに、粉砕ローラ5に形成される溝も螺旋状のものに限らず、円形溝等他の形状であってもよい。   In the apparatus shown in FIG. 1, the crushing container 1 itself is fixed, and the crushing is performed by rotating and revolving the crushing roller 5, but in addition, the crushing container 1 may be rotated. In this case, by setting the rotation direction of the crushing container 1 to the direction opposite to the revolving direction of the crushing roller 5, crushing can be performed with higher energy. Further, the pulverizing roller 5 may rotate only, and the pulverizing container 1 may be rotated. Further, the groove formed in the crushing roller 5 is not limited to a spiral groove, but may be another shape such as a circular groove.

[第2の実施形態]
図2は、本発明の第2の実施形態に係る水素貯蔵体の製造装置を示す断面図である。この水素貯蔵体の製造装置は、この水素貯蔵体の製造装置は内外筒回転型ミルタイプのものであり、同軸的に設けられた内筒22と外筒23とを有し、これら内筒22と外筒23との間に環状粉砕室24が形成された粉砕容器21を有している。内筒22の内側には内筒用水冷ジャケット25が設けられており、外筒23の外側には外筒用水冷ジャケット26が設けられている。内筒用水冷ジャケット25には冷却水供給管25aおよび冷却水排出管25bが接続されており、外筒用水冷ジャケット26には冷却水供給管26aおよび冷却水排出管26bが接続されている。
[Second embodiment]
FIG. 2 is a cross-sectional view showing a hydrogen storage device manufacturing apparatus according to a second embodiment of the present invention. The hydrogen storage device manufacturing apparatus is an inner and outer cylinder rotary mill type, and has an inner cylinder 22 and an outer cylinder 23 provided coaxially. And a pulverizing container 21 having an annular pulverizing chamber 24 formed between the pulverizing container 21 and the outer cylinder 23. An inner cylinder water cooling jacket 25 is provided inside the inner cylinder 22, and an outer cylinder water cooling jacket 26 is provided outside the outer cylinder 23. A cooling water supply pipe 25a and a cooling water discharge pipe 25b are connected to the inner cylinder water cooling jacket 25, and a cooling water supply pipe 26a and a cooling water discharge pipe 26b are connected to the outer cylinder water cooling jacket 26.

粉砕容器21の内筒22には、その外表面から垂直に延びる複数の攪拌翼27が設けられており、外筒23には、その内表面から垂直に延びる複数の攪拌翼28が設けられている。これら攪拌翼27、28は、環状粉砕室24内において水素貯蔵材料の攪拌を行う。   The inner cylinder 22 of the pulverizing container 21 is provided with a plurality of stirring blades 27 extending vertically from the outer surface thereof, and the outer cylinder 23 is provided with a plurality of stirring blades 28 extending vertically from the inner surface thereof. I have. These stirring blades 27 and 28 stir the hydrogen storage material in the annular grinding chamber 24.

内筒22の両側には、その長手方向に沿って回転軸29が固定されており、この回転軸29には駆動用スプロケット30が固定されており、図示しない駆動機構によりこの回転軸29を介して内筒22が図中矢印方向へ回転するようになっている。回転軸29はベアリング32を介して固定台31に回転可能に支持されている。一方、外筒23は固定台31に固定されており、外筒23と回転軸との間にはベアリング33が設けられている。   On both sides of the inner cylinder 22, a rotating shaft 29 is fixed along the longitudinal direction, and a driving sprocket 30 is fixed to the rotating shaft 29. The inner cylinder 22 is rotated in the direction of the arrow in the figure. The rotating shaft 29 is rotatably supported by the fixed base 31 via a bearing 32. On the other hand, the outer cylinder 23 is fixed to a fixed base 31, and a bearing 33 is provided between the outer cylinder 23 and the rotating shaft.

外筒23の上部の粉砕容器21の一方側端部近傍には、粉砕容器1内すなわち環状粉砕室24に水素ガスを導入する水素ガス導入口34および水素貯蔵材料を導入する水素貯蔵材料導入口35が設けられている。また、外筒23の下部の粉砕容器21の他方側端部近傍には、粉砕容器21内の環状粉砕室24から水素貯蔵材料を粉砕して得られた水素貯蔵体を排出する水素貯蔵体排出口36が設けられている。環状粉砕室24の水素貯蔵体排出口36近傍には分級目板37が配置されている。   A hydrogen gas inlet 34 for introducing hydrogen gas into the grinding container 1, that is, the annular grinding chamber 24, and a hydrogen storage material inlet for introducing hydrogen storage material are provided near the one end of the grinding container 21 above the outer cylinder 23. 35 are provided. In addition, near the other end of the crushing vessel 21 below the outer cylinder 23, a hydrogen storage body discharger for discharging a hydrogen storage body obtained by crushing the hydrogen storage material from the annular crushing chamber 24 in the crushing vessel 21 is provided. An outlet 36 is provided. A classifying plate 37 is disposed near the hydrogen storage outlet 36 in the annular crushing chamber 24.

このように構成される水素貯蔵体の製造装置においては、まず、粉砕容器21の環状粉砕室24内に図3に示すように粉砕媒体である粉砕用ボール38を入れておき、次いで、水素ガス導入口34から粉砕容器21の環状粉砕室24内に水素ガスを導入し、環状粉砕室24内を所定の圧力に維持する。この状態で図示しない開閉機構を開にして水素貯蔵材料導入口35から環状粉砕室24内に所定量の水素貯蔵材料を導入する。   In the hydrogen storage device manufacturing apparatus configured as described above, first, a grinding ball 38 as a grinding medium is put in the annular grinding chamber 24 of the grinding container 21 as shown in FIG. Hydrogen gas is introduced into the annular crushing chamber 24 of the crushing container 21 from the introduction port 34, and the inside of the annular crushing chamber 24 is maintained at a predetermined pressure. In this state, the opening / closing mechanism (not shown) is opened to introduce a predetermined amount of the hydrogen storage material into the annular crushing chamber 24 from the hydrogen storage material introduction port 35.

この状態で開閉機構を閉にして水素貯蔵材料の粉砕を開始する。粉砕に際しては図示しない駆動機構により駆動用スプロケット30および回転軸29を介して内筒22を矢印の方向へ回転させる。この際に水冷ジャケット25、26に冷却水を流し、内筒22および外筒23を冷却する。   In this state, the opening / closing mechanism is closed to start pulverization of the hydrogen storage material. At the time of pulverization, the inner cylinder 22 is rotated in the direction of the arrow via the driving sprocket 30 and the rotating shaft 29 by a driving mechanism (not shown). At this time, cooling water flows through the water cooling jackets 25 and 26 to cool the inner cylinder 22 and the outer cylinder 23.

このように内筒22を回転させることにより、図3に示すように、攪拌翼27、28により粉砕用ボール38が流動し、その際の粉砕用ボールのエネルギーにより水素貯蔵材料が機械的に粉砕されつつ、図2に示すように水素貯蔵体排出口3側に向けて移動して、水素貯蔵体となり、分級用目板37を通って水素貯蔵体排出口36から排出される。   By rotating the inner cylinder 22 in this manner, as shown in FIG. 3, the crushing balls 38 flow by the stirring blades 27 and 28, and the hydrogen storage material is mechanically crushed by the energy of the crushing balls at that time. While moving, as shown in FIG. 2, it moves toward the hydrogen storage body discharge port 3 side, becomes a hydrogen storage body, and is discharged from the hydrogen storage body discharge port 36 through the classification plate 37.

この場合に、環状粉砕室24内は所定圧力の水素ガス雰囲気となっており、水素貯蔵材料が水素ガス雰囲気下でこのように機械的粉砕により微細化する過程で、微細化された水素貯蔵材料に水素が侵入し、微細化された水素貯蔵材料の表面および/または内部に水素が貯蔵される。ここで内部とは、結晶粒子間、層間、欠陥をいう。   In this case, the inside of the annular crushing chamber 24 is in a hydrogen gas atmosphere of a predetermined pressure, and the hydrogen storage material is finely divided by the mechanical pulverization under the hydrogen gas atmosphere. Hydrogen infiltrates into the surface of and / or inside the miniaturized hydrogen storage material. Here, the term “inside” means between crystal grains, between layers, and in defects.

本実施形態では、水素貯蔵材料の粉砕に際して、内筒22と外筒23との間に相対的な回転移動を生じさせて粉砕媒体である粉砕用ボール38を流動させ、その際に生じる高いエネルギーで水素貯蔵材料を粉砕することができ、水素貯蔵能力の高い水素貯蔵体を得ることができる。しかも粉砕機構上、遊星ボールミルのような粉砕量の制約がなく、量産に十分対応可能である。   In this embodiment, when the hydrogen storage material is pulverized, a relative rotational movement is caused between the inner cylinder 22 and the outer cylinder 23 to cause the pulverizing balls 38 as the pulverization medium to flow, and the high energy generated at that time. Can crush the hydrogen storage material, and a hydrogen storage body having a high hydrogen storage capacity can be obtained. In addition, due to the pulverizing mechanism, there is no restriction on the amount of pulverization unlike a planetary ball mill, and it is possible to cope with mass production.

本実施形態の装置においても、水素貯蔵材料導入口35および水素貯蔵体排出口36に、それぞれ環状粉砕室24内の水素ガス圧と同等の水素圧に維持可能な図示しない水素貯蔵材料導入機構および水素貯蔵体排出機構を取り付けることにより、水素貯蔵材料を連続的に環状粉砕室24内に導入し、かつ粉砕後の水素貯蔵体を連続的に環状粉砕室24から排出するようにすることができる。   Also in the apparatus of the present embodiment, a hydrogen storage material introduction mechanism (not shown) capable of maintaining a hydrogen pressure equal to the hydrogen gas pressure in the annular grinding chamber 24 at the hydrogen storage material introduction port 35 and the hydrogen storage body discharge port 36, respectively. By attaching the hydrogen storage material discharge mechanism, the hydrogen storage material can be continuously introduced into the annular grinding chamber 24, and the hydrogen storage material after grinding can be continuously discharged from the annular grinding chamber 24. .

また、水素分子を水素原子へ解離させる機能を有する金属成分を、水素貯蔵材料の機械的粉砕の途中に添加する場合には、基本的に第1の実施形態と同様に行うことができる。   When a metal component having a function of dissociating hydrogen molecules into hydrogen atoms is added during the mechanical pulverization of the hydrogen storage material, it can be performed basically in the same manner as in the first embodiment.

なお、図2の装置では、内筒22のみを回転させるようにしたが、外筒23のみを回転させるようにしてもよい。また、内筒22および外筒23の両方を反対方向に回転させるようにしてもよい。この場合には、攪拌力が増大するのでより高エネルギーで水素貯蔵材料を粉砕することができる。   In the apparatus of FIG. 2, only the inner cylinder 22 is rotated, but only the outer cylinder 23 may be rotated. Further, both the inner cylinder 22 and the outer cylinder 23 may be rotated in opposite directions. In this case, the stirring power is increased, so that the hydrogen storage material can be pulverized with higher energy.

[第3の実施形態]
図4は、本発明の第3の実施形態に係る水素貯蔵体の製造装置を一部切り欠いて示す斜視図である。この水素貯蔵体の製造装置はアトライタータイプのものであり、円筒状の粉砕容器41を有し、その長手方向を鉛直にして配置されている。粉砕容器41は、図示しない駆動機構により矢印の方向に回転可能に構成されており、その両方の開放端を塞ぐ一対の端面部材42が固定的に設けられている。粉砕容器41の周囲には水冷ジャケット43が設けられており、この水冷ジャケット43には冷却水導入口44と冷却水排出口45とが設けられている。
[Third Embodiment]
FIG. 4 is a perspective view showing a partially cutaway apparatus for manufacturing a hydrogen storage body according to a third embodiment of the present invention. This hydrogen storage device manufacturing apparatus is of the attritor type, has a cylindrical crushing container 41, and is disposed with its longitudinal direction being vertical. The crushing container 41 is configured to be rotatable in a direction indicated by an arrow by a drive mechanism (not shown), and a pair of end surface members 42 for closing both open ends thereof are fixedly provided. A water cooling jacket 43 is provided around the crushing container 41, and the water cooling jacket 43 is provided with a cooling water inlet 44 and a cooling water outlet 45.

粉砕容器41の中央には、粉砕容器41の長手方向に沿って回転軸46が挿入されており、回転軸46にはそれに直交するように上から順に3つのインペラ47a,47b,47cが設けられている。これらインペラ47a,47b,47cは、隣接するもの同士が直交するように配置されている。回転軸46は図示しない駆動機構により矢印で示す粉砕容器41とは反対方向に回転するようになっており、それにともなってインペラ47a,47b,47cも回転する。なお、符号48はガスシールであり、49はベアリングである。   In the center of the crushing container 41, a rotating shaft 46 is inserted along the longitudinal direction of the crushing container 41. The rotating shaft 46 is provided with three impellers 47a, 47b, 47c from the top so as to be orthogonal to the rotating shaft 46. ing. These impellers 47a, 47b, 47c are arranged so that adjacent ones are orthogonal to each other. The rotating shaft 46 is rotated by a driving mechanism (not shown) in a direction opposite to the crushing container 41 indicated by an arrow, and accordingly, the impellers 47a, 47b, and 47c also rotate. Reference numeral 48 denotes a gas seal, and reference numeral 49 denotes a bearing.

上側の端面部材42には、粉砕容器41内に水素ガスを導入する水素ガス導入口50および水素貯蔵材料を導入する水素貯蔵材料導入口51が設けられている。また、下側の端面部材42には、粉砕容器41から水素貯蔵材料を粉砕して得られた水素貯蔵体を排出する水素貯蔵体排出口52が設けられている。   The upper end member 42 is provided with a hydrogen gas inlet 50 for introducing hydrogen gas into the pulverizing container 41 and a hydrogen storage material inlet 51 for introducing a hydrogen storage material. Further, the lower end member 42 is provided with a hydrogen storage body outlet 52 for discharging a hydrogen storage body obtained by grinding the hydrogen storage material from the grinding container 41.

このように構成される水素貯蔵体の製造装置においては、まず、図示するように粉砕媒体である粉砕用ボール53を粉砕容器41内に充填し、次いで、水素ガス導入口50から粉砕容器41内に水素ガスを導入し、粉砕容器41内を所定の圧力に維持する。この状態で図示しない開閉機構を開にして水素貯蔵材料導入口51から粉砕容器1内に所定量の水素貯蔵材料を導入する。   In the manufacturing apparatus of the hydrogen storage body configured as described above, first, as shown in the drawing, a grinding ball 53 serving as a grinding medium is filled in the grinding container 41, and then the hydrogen gas inlet 50 is used to fill the grinding container 41. Gas is introduced into the vessel 41 to maintain the inside of the crushing vessel 41 at a predetermined pressure. In this state, the opening / closing mechanism (not shown) is opened to introduce a predetermined amount of the hydrogen storage material into the crushing container 1 from the hydrogen storage material introduction port 51.

この状態で開閉機構を閉にして水素貯蔵材料の粉砕を開始する。粉砕に際しては図示しない駆動機構により、粉砕容器41を矢印方向に回転させるとともに、回転軸46を介してインペラ47a,47b,47cを粉砕容器41と反対方向に回転させる。この際に水冷ジャケット43に冷却水を流し粉砕容器41を冷却する。   In this state, the opening / closing mechanism is closed to start pulverization of the hydrogen storage material. At the time of crushing, the crushing container 41 is rotated in the direction of the arrow by a drive mechanism (not shown), and the impellers 47 a, 47 b, 47 c are rotated via the rotating shaft 46 in the direction opposite to the crushing container 41. At this time, cooling water is flowed through the water cooling jacket 43 to cool the crushing container 41.

このように粉砕容器41およびインペラ47a,47b,47cを回転させることにより、粉砕用ボール53が流動し、その際の粉砕用ボール53のエネルギーにより水素貯蔵材料が機械的に粉砕される。   By rotating the pulverizing container 41 and the impellers 47a, 47b, 47c in this way, the pulverizing balls 53 flow, and the energy of the pulverizing balls 53 at that time mechanically pulverizes the hydrogen storage material.

この場合に、粉砕容器41内は所定圧力の水素ガス雰囲気となっており、水素貯蔵材料が水素ガス雰囲気下でこのように機械的粉砕により微細化する過程で、微細化された水素貯蔵材料に水素が侵入し、微細化された水素貯蔵材料の表面および結晶粒子間に水素が貯蔵される。このようにして所定の粉砕が終了した後、得られた水素貯蔵体は水素貯蔵体排出口52から排出される。   In this case, the inside of the pulverizing container 41 is in a hydrogen gas atmosphere at a predetermined pressure, and in the process in which the hydrogen storage material is pulverized by the mechanical pulverization under the hydrogen gas atmosphere, the pulverized hydrogen storage material is removed. Hydrogen enters and hydrogen is stored between the surface of the micronized hydrogen storage material and the crystal grains. After the predetermined pulverization is completed in this way, the obtained hydrogen storage is discharged from the hydrogen storage outlet 52.

本実施形態では、水素貯蔵材料の粉砕に際して、粉砕容器41とインペラ47a,47b,47cとを回転させて粉砕媒体である粉砕用ボール53を流動させ、その際に生じる高いエネルギーで水素貯蔵材料を粉砕することができ、水素貯蔵能力の高い水素貯蔵体を得ることができる。しかも粉砕機構上、遊星ボールミルのような粉砕量の制約がなく、量産に十分対応可能である。   In the present embodiment, when pulverizing the hydrogen storage material, the pulverizing container 41 is rotated and the impellers 47a, 47b, 47c are rotated to flow the pulverizing balls 53, which are pulverizing media, and the hydrogen storage material is generated with high energy generated at that time. It can be pulverized, and a hydrogen storage body having a high hydrogen storage capacity can be obtained. In addition, due to the pulverizing mechanism, there is no restriction on the amount of pulverization unlike a planetary ball mill, and it is possible to cope with mass production.

本実施形態の装置においても、水素貯蔵材料導入口51および水素貯蔵体排出口52に、それぞれ環状粉砕室24内の水素ガス圧と同等の水素圧に維持可能な図示しない水素貯蔵材料導入機構および水素貯蔵体排出機構を取り付けることにより、水素貯蔵材料を連続的に粉砕容器41内に導入し、かつ粉砕後の水素貯蔵体を連続的に粉砕容器41から排出するようにすることができる。   Also in the apparatus of the present embodiment, a hydrogen storage material introduction mechanism (not shown) capable of maintaining a hydrogen pressure equivalent to the hydrogen gas pressure in the annular crushing chamber 24 at the hydrogen storage material introduction port 51 and the hydrogen storage body discharge port 52, respectively. By attaching the hydrogen storage material discharging mechanism, the hydrogen storage material can be continuously introduced into the pulverizing container 41, and the pulverized hydrogen storage material can be continuously discharged from the pulverizing container 41.

また、水素分子を水素原子へ解離させる機能を有する金属成分を、水素貯蔵材料の機械的粉砕の途中に添加する場合には、基本的に第1の実施形態と同様に行うことができる。   When a metal component having a function of dissociating hydrogen molecules into hydrogen atoms is added during the mechanical pulverization of the hydrogen storage material, it can be performed basically in the same manner as in the first embodiment.

[第4の実施形態]
図5は、本発明の第4の実施形態に係る水素貯蔵体の製造装置の概略断面図である。この製造装置は、水素貯蔵材料を粉砕し、粉砕された水素貯蔵材を外部に排出するための排出口61aがその側壁下部に形成された有底円筒状の粉砕容器61と、粉砕容器61を収容し、内部を所定のガス雰囲気に保持することができるハウジング62を有している。
[Fourth embodiment]
FIG. 5 is a schematic sectional view of a hydrogen storage device manufacturing apparatus according to a fourth embodiment of the present invention. This manufacturing apparatus comprises a cylindrical grinding container 61 having a bottomed cylindrical shape, in which a discharge port 61a for crushing a hydrogen storage material and discharging the crushed hydrogen storage material to the outside is formed at a lower portion of a side wall thereof. It has a housing 62 that can be accommodated and the inside can be maintained in a predetermined gas atmosphere.

このハウジング62は、下部容器62aと蓋体62bから構成されており、下部容器62aは、製造装置のフレーム等(図示せず)に固定され、蓋体62bは図示しない昇降機構により昇降自在となっている。蓋体62bを下部容器62aに所定の力で押し当てることにより、下部容器62aと蓋体62bとは、例えば、図示しない銅シールリングを介して、気密にシールされるようになっている。なお、例えば、クランプ等を用いて、下部容器62aと蓋体62bとを外部から締め付けることによって、これらの接触面を気密シールしてもよい。   The housing 62 includes a lower container 62a and a lid 62b. The lower container 62a is fixed to a frame or the like (not shown) of the manufacturing apparatus, and the lid 62b can be moved up and down by a lifting mechanism (not shown). ing. By pressing the lid 62b against the lower container 62a with a predetermined force, the lower container 62a and the lid 62b are hermetically sealed via, for example, a copper seal ring (not shown). Note that, for example, the lower container 62a and the lid 62b may be externally tightened with a clamp or the like to hermetically seal these contact surfaces.

下部容器62aと蓋体62bはそれぞれ冷却水を内部循環することができるジャケット構造となっている。蓋体62bには、その内部に水素ガスを導入する水素ガス導入口63aと、ハウジング62内を水素ガス雰囲気に保持したまま粉砕容器61内に水素貯蔵材料を導入する水素貯蔵材料導入口63bが設けられている。下部容器62aには、粉砕容器61から排出口61aを通って排出された水素貯蔵材料の一部を外部に排出する水素貯蔵材料排出口63cと、粉砕容器61から排出口61aを通って排出された水素貯蔵材料の一部を粉砕容器61内に戻す循環用ブレード63dが設けられている。   The lower container 62a and the lid 62b each have a jacket structure capable of internally circulating cooling water. The lid 62b has a hydrogen gas inlet 63a for introducing a hydrogen gas therein, and a hydrogen storage material inlet 63b for introducing a hydrogen storage material into the pulverizing container 61 while the inside of the housing 62 is kept in a hydrogen gas atmosphere. Is provided. In the lower container 62a, a hydrogen storage material outlet 63c for discharging a part of the hydrogen storage material discharged from the crushing container 61 through the outlet 61a to the outside, and a hydrogen storage material discharged from the crushing container 61 through the outlet 61a. A circulation blade 63d is provided for returning a part of the hydrogen storage material into the grinding container 61.

粉砕容器61内には、円柱曲面を有し(後に示す図6参照)、保持部材64に保持された2個のインナーピース65が、その円柱曲面と粉砕容器61の側壁内面との間に所定の間隙ができるように、配置されている。インナーピース65の数は2個に限定されず、1個であってもよいし、3個以上設けてもよい。この保持部材64は蓋体62bに取り付けられており、蓋体62bと共に昇降する。   The crushing container 61 has a cylindrical curved surface (see FIG. 6 described later), and two inner pieces 65 held by a holding member 64 are provided between the cylindrical curved surface and the inner surface of the side wall of the crushing container 61. Are arranged so as to form a gap. The number of the inner pieces 65 is not limited to two, and may be one or three or more. The holding member 64 is attached to the lid 62b, and moves up and down together with the lid 62b.

下部容器62aの底面を貫通して気密に配置された枢軸66を介して、粉砕容器61はモータ67に連結されている。モータ67を駆動することによって、粉砕容器61とインナーピース65との間の間隙幅が実質的に変わらないように、粉砕容器61を回転させることができる。なお、保持部材64を蓋体62bに固定するのではなく、蓋体62bを貫通させて回転自在な構造としてもよく、その場合には、粉砕容器61は回転自在でも回転不可でもよい。   The pulverizing container 61 is connected to a motor 67 via a pivot 66 which is arranged airtight through the bottom surface of the lower container 62a. By driving the motor 67, the grinding container 61 can be rotated so that the width of the gap between the grinding container 61 and the inner piece 65 does not substantially change. Note that, instead of fixing the holding member 64 to the lid 62b, the holding member 64 may be configured to penetrate the lid 62b to be rotatable. In this case, the crushing container 61 may be rotatable or non-rotatable.

このように構成される製造装置では、まず水素ガス導入口63aから水素ガスをハウジング62内に導入し、ハウジング62内を水素ガスで置換し、好ましくは、ハウジング62内を所定の陽圧に保持する。そして、モータ67を所定の回転数で回転させ、好ましくは回転数が一定となった後に、所定量の水素貯蔵材料を水素貯蔵材料導入口63bを通して、粉砕容器61内に投入する。   In the manufacturing apparatus configured as described above, first, hydrogen gas is introduced into the housing 62 from the hydrogen gas inlet 63a, and the inside of the housing 62 is replaced with hydrogen gas. Preferably, the inside of the housing 62 is maintained at a predetermined positive pressure. I do. Then, the motor 67 is rotated at a predetermined number of revolutions, and preferably, after the number of revolutions becomes constant, a predetermined amount of hydrogen storage material is charged into the pulverizing container 61 through the hydrogen storage material introduction port 63b.

図6は粉砕容器61に投入された水素貯蔵材料の粉砕形態を粉砕容器61を上から見た状態で、模式的に示す説明図である。ハウジング62内に投入された水素貯蔵材料は、粉砕容器61の回転によって生ずる気流や粉砕容器の底壁に当たることによって粉砕容器61の側壁側へ移動し、粉砕容器61の側壁とインナーピース65との間に挟み込まれる。このとき、水素貯蔵材料に圧縮力およびせん断力が作用して、水素貯蔵材料は機械的に微粉砕される。この圧縮力と剪断力の大きさは、粉砕容器61の回転数を変えることや、一度に投入する水素貯蔵材料の量を変えること等によって変化させることができる。このようなインナーピース型の水素貯蔵体の製造装置では、粉砕容器61を回転させることによって生じる高いエネルギーで、水素貯蔵材料を粉砕することができるため、水素貯蔵能力の高い水素貯蔵体を得ることができる。   FIG. 6 is an explanatory diagram schematically showing a pulverization mode of the hydrogen storage material charged into the pulverization container 61 when the pulverization container 61 is viewed from above. The hydrogen storage material charged into the housing 62 moves toward the side wall of the crushing container 61 by colliding with the airflow generated by the rotation of the crushing container 61 or the bottom wall of the crushing container, and forms a gap between the side wall of the crushing container 61 and the inner piece 65. It is sandwiched between. At this time, a compressive force and a shear force act on the hydrogen storage material, and the hydrogen storage material is mechanically pulverized. The magnitudes of the compressive force and the shearing force can be changed by changing the number of revolutions of the crushing container 61, changing the amount of the hydrogen storage material to be charged at one time, or the like. In such an inner-piece type hydrogen storage device manufacturing apparatus, the hydrogen storage material can be pulverized with high energy generated by rotating the pulverization container 61, so that a hydrogen storage device having a high hydrogen storage capacity can be obtained. Can be.

粉砕容器61の側壁下部には排出口61aが設けられているために、微粉砕された水素貯蔵材料(水素貯蔵体を含む)は、徐々にこの排出口61aから粉砕容器61外に排出される。こうして粉砕容器61から排出された水素貯蔵材料は、ハウジング62に設けられた循環用ブレード63dとハウジング62内に生じている気流との相互作用によって舞い上げられて粉砕容器61に戻されてさらに粉砕処理されるか、または水素貯蔵材料排出口63cを通してハウジング62の外部に排出され、図示しない回収容器等に捕集される。なお、粉砕容器61の側壁内面に水素貯蔵材料が固着しやすい場合には、このような固着材料を掻き取る部材を配置してもよい。   Since the outlet 61a is provided at the lower part of the side wall of the crushing container 61, the finely pulverized hydrogen storage material (including the hydrogen storage body) is gradually discharged from the outlet 61a to the outside of the crushing container 61. . The hydrogen storage material discharged from the crushing container 61 in this way is sowed up by the interaction between the circulation blade 63d provided in the housing 62 and the airflow generated in the housing 62, returned to the crushing container 61, and further crushed. It is processed or discharged to the outside of the housing 62 through the hydrogen storage material discharge port 63c, and collected in a collection container (not shown) or the like. When the hydrogen storage material is likely to be fixed to the inner surface of the side wall of the crushing container 61, a member that scrapes such a fixed material may be provided.

水素貯蔵材料排出口63cから水素貯蔵体が排出されなくなったら、再び、所定量の水素貯蔵材料を、水素貯蔵材料導入口63bを通して、粉砕容器61内に投入し、以下、上述した処理を繰り返すことができる。   When the hydrogen storage material is no longer discharged from the hydrogen storage material discharge port 63c, a predetermined amount of the hydrogen storage material is again charged into the grinding container 61 through the hydrogen storage material introduction port 63b, and the above-described processing is repeated. Can be.

水素貯蔵材料の粉砕容器61への投入は、上述のようにバッチ処理的に行ってもよいが、これに限定されるものではなく、この製造装置においても、水素貯蔵材料導入口63bおよび水素貯蔵体排出口63cに、それぞれハウジング62内の水素ガス圧と同等の水素圧に維持可能な図示しない水素貯蔵材料導入機構および水素貯蔵体排出機構を取り付けて、粉砕容器61内に常に一定量の水素貯蔵材料が存在するように、水素貯蔵材料を連続的に粉砕容器61内に導入し、かつ粉砕後の水素貯蔵体を連続的にハウジング62から排出させてもよい。   The charging of the hydrogen storage material into the crushing vessel 61 may be performed in a batch process as described above, but is not limited thereto. In this manufacturing apparatus, the hydrogen storage material inlet 63b and the hydrogen storage A hydrogen storage material introduction mechanism (not shown) and a hydrogen storage body discharge mechanism (not shown) capable of maintaining a hydrogen pressure equivalent to the hydrogen gas pressure in the housing 62 are attached to the body discharge port 63 c, and a constant amount of hydrogen The hydrogen storage material may be continuously introduced into the grinding container 61 so that the storage material is present, and the ground hydrogen storage body may be continuously discharged from the housing 62.

このように、第4の実施形態の製造装置もまた、その粉砕機構上、遊星ボールミルのような粉砕量の制約がなく、量産に十分に対応することができる。なお、水素分子を水素原子へ解離させる機能を有する金属成分を、水素貯蔵材料の機械的粉砕の途中に添加する場合には、基本的に第1の実施形態と同様に行うことができる。   As described above, the manufacturing apparatus according to the fourth embodiment also has a pulverizing mechanism and is not limited by the amount of pulverization unlike a planetary ball mill, and can sufficiently cope with mass production. When a metal component having a function of dissociating hydrogen molecules into hydrogen atoms is added during the mechanical pulverization of the hydrogen storage material, it can be performed basically in the same manner as in the first embodiment.

[第5の実施形態]
図7は、本発明の第5の実施形態に係る水素貯蔵体の製造装置の概略断面図である。この製造装置は、水素を含む所定の処理ガスを高圧噴射するジェットノズル72と、その内部にジェットノズル72から噴射された高圧の処理ガスが導入され、この処理ガスの気流によって水素貯蔵材料を粉砕する粉砕容器71とを有している。処理ガスは水素ガス単体であることが好ましいが、水素ガスと不活性ガス(窒素やアルゴン等)の混合ガスでもよい。このような混合ガスを用いる場合には、水素ガスと水素貯蔵材料とが接触しやすくなるように、水素分圧の高いガスを用いることが好ましい。
[Fifth Embodiment]
FIG. 7 is a schematic sectional view of an apparatus for manufacturing a hydrogen storage body according to a fifth embodiment of the present invention. In this manufacturing apparatus, a jet nozzle 72 for injecting a predetermined processing gas containing hydrogen at a high pressure, and a high-pressure processing gas injected from the jet nozzle 72 are introduced into the inside thereof, and the hydrogen storage material is pulverized by the gas flow of the processing gas. And a crushing container 71. The processing gas is preferably a single hydrogen gas, but may be a mixed gas of a hydrogen gas and an inert gas (such as nitrogen or argon). When such a mixed gas is used, it is preferable to use a gas having a high hydrogen partial pressure so that the hydrogen gas and the hydrogen storage material are easily brought into contact with each other.

粉砕容器71は、略楕円環状の本体部71aと、水素貯蔵材料を投入するための枝部71bとを有している。この枝部71bには粉砕容器71内のガス雰囲気を維持したまま粉砕容器71内に水素貯蔵材料を導入可能な水素貯蔵材料導入口73と、水素貯蔵材料導入口73から枝部71内に投入された水素貯蔵材料を本体部71aへ送り込むための処理ガスノズル75が設けられている。また、粉砕容器71の本体部71aには、粉砕処理された水素貯蔵材料(つまり水素貯蔵体)を排出する水素貯蔵材料排出部口74と、衝突板76が設けられている。   The pulverizing container 71 has a substantially elliptical annular main body 71a and a branch 71b for charging a hydrogen storage material. A hydrogen storage material inlet 73 capable of introducing a hydrogen storage material into the pulverization container 71 while maintaining the gas atmosphere in the pulverization container 71, and a branch 71 through the hydrogen storage material introduction port 73. A processing gas nozzle 75 is provided for sending the hydrogen storage material into the main body 71a. The main body 71a of the pulverizing container 71 is provided with a hydrogen storage material discharge port 74 for discharging the pulverized hydrogen storage material (that is, the hydrogen storage body) and a collision plate 76.

このように構成される気流粉砕型の製造装置では、ジェットノズル72から粉砕容器71内に処理ガスを導入して、粉砕容器71内を水素ガスを含む雰囲気とした後に、処理ガスノズル75から粉砕容器71内に一定量の処理ガスを導入しながら、水素貯蔵材料導入口73から水素貯蔵材料を粉砕容器71の枝部71bに導入する。これにより水素貯蔵材料は粉砕容器71の本体部71aに送られ、ジェットノズル72から噴射された高圧処理ガスの気流に乗って、本体部71a内を循環する。このとき、処理ガスの気流に乗った水素貯蔵材料は、水素貯蔵材料どうしの衝突もしくは磨砕、本体部71aの容器壁部や衝突板76との衝突、高圧処理ガスの気流から与えられるせん断力等によって、機械的に粉砕される。こうして所定の粒径にまで粉砕されて製造された水素貯蔵体は、水素貯蔵材料排出口74から排出される。   In the air-flow crushing type manufacturing apparatus configured as described above, the processing gas is introduced into the crushing container 71 from the jet nozzle 72 to make the inside of the crushing container 71 an atmosphere containing hydrogen gas, and then the processing gas nozzle 75 The hydrogen storage material is introduced into the branch 71 b of the pulverizing container 71 from the hydrogen storage material introduction port 73 while introducing a certain amount of the processing gas into the inside 71. Thereby, the hydrogen storage material is sent to the main body 71a of the crushing container 71, and circulates in the main body 71a on the gas flow of the high-pressure processing gas injected from the jet nozzle 72. At this time, the hydrogen storage material riding on the processing gas flow collides or grinds the hydrogen storage materials, collides with the container wall of the main body 71a or the collision plate 76, and the shear force given by the high-pressure processing gas flow. Etc. mechanically crushed. The hydrogen storage body thus manufactured by being pulverized to a predetermined particle size is discharged from the hydrogen storage material discharge port 74.

このような気流粉砕型の水素貯蔵体の製造装置では、粉砕容器71内を流れる高圧処理ガスによって水素貯蔵材料を流動させるために、水素貯蔵材料に大きなエネルギーを与えることができ、水素貯蔵材料を高エネルギーで粉砕することができるため、水素貯蔵能力の高い水素貯蔵体を得ることができる。   In such a gas-crushing type hydrogen storage device manufacturing apparatus, a large amount of energy can be given to the hydrogen storage material because the hydrogen storage material is caused to flow by the high-pressure processing gas flowing in the pulverization container 71. Since the pulverization can be performed with high energy, a hydrogen storage body having a high hydrogen storage capacity can be obtained.

水素貯蔵材料の粉砕容器71への投入は、上述のようにバッチ処理的に行ってもよいが、これに限定されるものではなく、この製造装置においても、水素貯蔵材料導入口73および水素貯蔵体排出口74に、それぞれ粉砕容器71内の処理ガス圧と同等のガス圧に維持可能な図示しない水素貯蔵材料導入機構および水素貯蔵体排出機構を取り付けて、粉砕容器71内に常に一定量の水素貯蔵材料が存在するように、水素貯蔵材料を連続的に粉砕容器71内に導入し、かつ粉砕後の水素貯蔵体を連続的に粉砕容器71から排出させてもよい。   The charging of the hydrogen storage material into the pulverizing container 71 may be performed in a batch process as described above, but is not limited to this. In this manufacturing apparatus, the hydrogen storage material introduction port 73 and the hydrogen storage A hydrogen storage material introduction mechanism and a hydrogen storage body discharge mechanism (not shown) capable of maintaining a gas pressure equivalent to the processing gas pressure in the crushing vessel 71 are attached to the body discharge port 74 so that a constant amount of The hydrogen storage material may be continuously introduced into the pulverizing container 71 and the pulverized hydrogen storage material may be continuously discharged from the pulverizing container 71 so that the hydrogen storage material is present.

このように、第5の実施形態の製造装置もまた、その粉砕機構上、遊星ボールミルのような粉砕量の制約がなく、量産に十分に対応することができる。なお、水素分子を水素原子へ解離させる機能を有する金属成分を、水素貯蔵材料の機械的粉砕の途中に添加する場合には、基本的に第1の実施形態と同様に行うことができる。   As described above, the manufacturing apparatus of the fifth embodiment also has a pulverizing mechanism and is not limited by the amount of pulverization unlike a planetary ball mill, and can sufficiently cope with mass production. When a metal component having a function of dissociating hydrogen molecules into hydrogen atoms is added during the mechanical pulverization of the hydrogen storage material, it can be performed basically in the same manner as in the first embodiment.

以上に説明した本発明の実施形態の製造装置により粉砕可能な水素貯蔵材料としては、グラファイトやカーボンナノチューブ等の炭素質材料や、金属水素化物と金属アミドの混合物、金属水素化物と炭素質材料との混合物等が挙げられる。   Examples of the hydrogen storage material that can be pulverized by the manufacturing apparatus of the embodiment of the present invention described above include carbonaceous materials such as graphite and carbon nanotubes, a mixture of a metal hydride and a metal amide, and a metal hydride and a carbonaceous material. And the like.

以下、本発明の実施例について比較例と対比しつつ説明する。
ここでは、水素貯蔵材料として、グラファイトを用いた結果(実施例1〜4および比較例1)と、水素化リチウムと金属アミドの混合物を用いた結果(実施例5〜9および比較例2)について説明する。
Hereinafter, examples of the present invention will be described in comparison with comparative examples.
Here, the results using graphite as a hydrogen storage material (Examples 1 to 4 and Comparative Example 1) and the results using a mixture of lithium hydride and metal amide (Examples 5 to 9 and Comparative Example 2) explain.

(I)水素貯蔵材料としてグラファイトを用いた結果
(実施例1)
実施例1では、水素貯蔵体の製造装置として、基本的に図1に示したような高速遠心ローラーミルタイプのものを用いた。ただし、粉砕ローラのみならず、粉砕容器も回転するものを用いた。粉砕容器の内容積は5L、内壁およびローターはジルコニア製とした。容器とローターは同回転もしくは逆回転が可能で、本実施例では逆回転で用いた。粉砕容器の回転速度は250r.p.m、粉砕ロールの回転速度は2000r.p.m、グラファイト粉末の投入量は50gとした。
(I) Result of using graphite as hydrogen storage material (Example 1)
In Example 1, a high-speed centrifugal roller mill type as shown in FIG. 1 was basically used as a hydrogen storage device manufacturing apparatus. However, not only the pulverizing roller but also a pulverizing container that rotates were used. The inner volume of the grinding container was 5 L, and the inner wall and the rotor were made of zirconia. The container and the rotor can be rotated in the same or opposite directions, and in this embodiment, they are used in the opposite direction. The rotation speed of the crushing container is 250 r. p. m, the rotation speed of the grinding roll is 2000 rpm. p. m, the amount of the graphite powder charged was 50 g.

(実施例2)
実施例2では、水素貯蔵体の製造装置として、基本的に図2に示したような内外筒回転型ミルタイプのものを用いた。ただし、内筒のみならず外筒も回転するものを用いた。内筒および外筒は水平に設置され、回転軸を共有し、内筒の外径はφ152mm、外筒の内径はφ254mmとし、内筒と外筒との間の環状粉砕室の長さを510mmとした。環状粉砕室に見かけ充填率80%でジルコニア製粉砕ボール(直径10mm)を充填した。内筒外表面や外筒内表面に板状の複数の攪拌翼を配置した。内筒と外筒の回転方向は逆向きとし、各々の回転速度を120r.p.m付近とし、グラファイト粉末の投入量を530gとした。
(Example 2)
In the second embodiment, an inner and outer cylinder rotary mill type as shown in FIG. 2 was basically used as a hydrogen storage body manufacturing apparatus. However, the thing which rotates not only the inner cylinder but also the outer cylinder was used. The inner cylinder and the outer cylinder are installed horizontally, share a rotation axis, the outer diameter of the inner cylinder is φ152 mm, the inner diameter of the outer cylinder is φ254 mm, and the length of the annular crushing chamber between the inner cylinder and the outer cylinder is 510 mm. And The annular grinding chamber was filled with zirconia grinding balls (diameter 10 mm) at an apparent filling rate of 80%. A plurality of plate-like stirring blades were arranged on the outer surface of the inner cylinder and the inner surface of the outer cylinder. The rotation directions of the inner cylinder and the outer cylinder are opposite to each other, and the rotation speed of each is 120 r. p. m, and the input amount of the graphite powder was 530 g.

(実施例3)
実施例3では、水素貯蔵体の製造装置として、基本的に図4に示したようなアトライタータイプのものを用いた。粉砕容器の容量は5.4L、粉砕ボールとして直径5mmのジルコニア製のものを用いた。インペラと粉砕容器の回転方向は逆向きとし、インペラ回転数を250r.p.m、粉砕容器を60r.p.mで回転させた。また、グラファイト粉末の投入量を500gとした。
(Example 3)
In Example 3, an attritor-type apparatus as shown in FIG. 4 was basically used as a hydrogen storage device manufacturing apparatus. The capacity of the crushing container was 5.4 L, and a crushing ball made of zirconia having a diameter of 5 mm was used. The rotation directions of the impeller and the pulverizing container are reversed, and the rotation speed of the impeller is 250 r. p. m, the crushing container is 60 r. p. m. Further, the input amount of the graphite powder was 500 g.

(実施例4)
実施例4では、水素貯蔵体の製造装置として、基本的に図5に示したようなインナーピース型のミルを用いた。粉砕容器の容積は10L、インナーピースはジルコニア製のものを2個配置した。ハウジング内を1MPaの水素ガス雰囲気に保持しながら、
粉砕容器の回転数を1500r.p.mとして、グラファイト粉末の投入量を500gとした。
(Example 4)
In Example 4, an inner piece type mill as shown in FIG. 5 was basically used as a hydrogen storage device manufacturing apparatus. The volume of the crushing container was 10 L, and two inner pieces made of zirconia were arranged. While maintaining the inside of the housing in a hydrogen gas atmosphere of 1 MPa,
The rotation speed of the pulverizing container is set at 1500 r. p. As m, the input amount of the graphite powder was 500 g.

(比較例1)
比較例1では、グラファイト粉末2gを内容積250mLのジルコニア製ミル容器に入れ、ミル容器内を真空排気した後、水素ガスを1.0MPa導入した。機械的粉砕は、遊星型ボールミル装置(Fritsch社製P5)を用いて、20℃の室温で、公転数250r.p.mで所定の時間ミリングを行った。なお、粉砕ボールには容器とほぼ同等の組成および硬度を有するジルコニア製ボール(φ10mm)を60個使用した。このミル容器としては、水素ガス導入用や真空排気用のコネクションバルブと水素分子を水素原子へ解離させる機能を有した金属もしくはそれらの合金の添加するための試料導入バルブが備え付けられたものを用いた。
(Comparative Example 1)
In Comparative Example 1, 2 g of the graphite powder was placed in a 250 mL zirconia mill container, the inside of the mill container was evacuated, and then hydrogen gas was introduced at 1.0 MPa. The mechanical pulverization was carried out using a planetary ball mill (Fritsch P5) at a room temperature of 20 ° C. and a revolution number of 250 rpm. p. Milling was performed for a predetermined time at m. The crushed balls used were 60 zirconia balls (φ10 mm) having the same composition and hardness as the container. This mill vessel is equipped with a connection valve for introducing hydrogen gas or vacuum evacuation and a sample introduction valve for adding a metal or an alloy thereof that has the function of dissociating hydrogen molecules into hydrogen atoms. Was.

(実施例1〜4および比較例1に共通の項目)
(1)試料および機械的粉砕の前後処理
グラファイト粉末(キシダ化学社製人造グラファイト、平均粒径36μm)を上記各粉砕容器に入れ、粉砕容器内(実施例4の場合はハウジング内)を真空排気した後、水素ガスを導入し容器内圧力を1.0MPaとした。各製造装置を用いて、20℃の室温で、所定の時間ミリングを行いグラファイト粉末を機械的粉砕した。なお、水素ガスとしては、「G1 7N」を用いた。
(Items common to Examples 1 to 4 and Comparative Example 1)
(1) Pre-processing and post-processing of sample and mechanical pulverization A graphite powder (manufactured by Kishida Chemical Co., Ltd., artificial graphite, average particle size: 36 μm) is placed in each of the above pulverization containers, and the inside of the pulverization container (in the case of Example 4 the housing) is evacuated. After that, hydrogen gas was introduced to adjust the pressure in the container to 1.0 MPa. Milling was performed for a predetermined time at a room temperature of 20 ° C. using each of the manufacturing apparatuses to mechanically pulverize the graphite powder. "G17N" was used as the hydrogen gas.

(2)試料の取り出し
ミリング後の試料は、水素貯蔵体の各製造装置の排出部に取り付けられているバルブ付の容器中に水素雰囲気のまま移し替えた後、この容器を真空排気し、高純度アルゴンを導入した。なお、アルゴンガスとしては、「α2 6N」を用いた。
(2) Extraction of sample The sample after milling was transferred under a hydrogen atmosphere into a container equipped with a valve attached to the discharge unit of each hydrogen storage device manufacturing apparatus, and then the container was evacuated to a high pressure. Purity argon was introduced. Note that “α26N” was used as the argon gas.

(3)水素放出量の測定
真空排気した加熱容器中のグラファイトを電気炉で室温〜900℃まで昇温速度10℃/分で加熱し、グラファイトから放出されたガスを20℃に冷却し、ガス圧を圧力計で測定するとともにガスボンベに採取した。この放出ガスは配管を通じてガスクロマトグラフに(島津製作所製、GC9A、TCD検出器、カラム:Molecular Sieve5A)導入し、水素量を測定した。水素貯蔵量としては、この水素量を加熱前のグラファイト量で除した値とした。
(3) Measurement of the amount of released hydrogen The graphite in the evacuated heating vessel was heated in an electric furnace from room temperature to 900 ° C at a heating rate of 10 ° C / min, and the gas released from the graphite was cooled to 20 ° C. The pressure was measured with a pressure gauge and collected in a gas cylinder. The released gas was introduced into a gas chromatograph (manufactured by Shimadzu Corporation, GC9A, TCD detector, column: Molecular Sieve 5A) through a pipe, and the amount of hydrogen was measured. The amount of hydrogen stored was a value obtained by dividing the amount of hydrogen by the amount of graphite before heating.

(4)平均粒子径の測定
ミリング前後の試料の平均粒子径は、エタノール中で分散し、HORIBA社製LA−920により測定を行った。
(4) Measurement of average particle diameter The average particle diameter of the sample before and after milling was measured by dispersing in ethanol and using LA-920 manufactured by HORIBA.

(実験結果)
各製造装置のミリング時間と得られた水素貯蔵体の平均粒子径との関係を図8に示す。また、図9に図8の拡大図を示す。これらに示すように、比較例1の遊星ボールミルでは、ミリング時間30時間以降でメカノケミカル現象の平均粒子径の増加(凝集)が認められる。一方、実施例1であるローラーミル、実施例2である内外筒回転型ミル、実施例3であるアトライターおよび実施例4のインナーピース型ミルにおいては、圧縮力や剪断力による効果のため、比較例1の遊星型ボールミルより短時間の10時間以降で平均粒子径の増加が認められた。
(Experimental result)
FIG. 8 shows the relationship between the milling time of each production apparatus and the average particle diameter of the obtained hydrogen storage material. FIG. 9 is an enlarged view of FIG. As shown in these figures, in the planetary ball mill of Comparative Example 1, an increase in the average particle size (agglomeration) due to the mechanochemical phenomenon is observed after the milling time of 30 hours. On the other hand, in the roller mill of the first embodiment, the inner and outer cylinder rotary mill of the second embodiment, the attritor of the third embodiment, and the inner piece mill of the fourth embodiment, due to the effects of the compressive force and the shear force, An increase in the average particle diameter was observed after 10 hours, which was shorter than that of the planetary ball mill of Comparative Example 1.

得られた水素貯蔵体の水素ガス放出量を求めた結果を図10に示す。この図に示すように、比較例1の遊星型ボールミルより平均粒子径の増加時間が短かった実施例1〜4のローラーミル、内外筒回転型ミル、アトライターおよびインナーピース型ミルにおいては、遊星型ボールミルよりも水素貯蔵量が大きくなり、高い水素貯蔵量が得られることが確認された。また、遊星型ボールミルでは、スケールアップが困難で工業化できないが、これらの装置においては、工業化が可能であり、水素貯蔵財の大量生産が可能となることが認められた。   FIG. 10 shows the result of obtaining the amount of hydrogen gas released from the obtained hydrogen storage body. As shown in this figure, in the roller mills, the inner and outer cylinder rotary mills, the attritor, and the inner piece mill of Examples 1 to 4, in which the average particle diameter increase time was shorter than that of the planetary ball mill of Comparative Example 1, It was confirmed that the hydrogen storage amount was larger than that of the die ball mill, and a high hydrogen storage amount was obtained. In addition, although scale-up is difficult in a planetary ball mill and industrialization is not possible, it has been recognized that these apparatuses can be industrialized and mass production of hydrogen storage goods becomes possible.

(II)水素貯蔵材料として水素化リチウムとリチウムアミドの混合物を用いた結果(実施例5〜9および比較例2)
(原料調製と水素吸蔵処理(粉砕処理))
高純度アルゴンガス雰囲気のグローブボックス中で、出発原料たるリチウムアミド(LiNH;純度95%,シグマ・アルドリッチ社製)と水素化リチウム(LiH;純度95%,シグマ・アルドリッチ社製)がモル比で1:1となるように、かつ、触媒機能物質たる塩化クロム(CrCl;シグマ・アルドリッチ社製)とLi全量が原子比で0.05:1となるように、全量で100gを秤量した。この原料を密閉できる原料容器中に移し、空気に暴露しないように、内部が高純度アルゴンガス雰囲気に保持された各水素貯蔵体の製造装置(実施例5;ローラーミル、実施例6;内外筒回転型ミル、実施例7;アトライター、実施例8;インナーピース型ミル、実施例9;気流粉砕型ミル、比較例2;遊星型ボールミル)に投入した。各装置について、処理時間を変えて所定時間の粉砕混合を行った後に、得られた水素貯蔵体を真空雰囲気としてある試料容器に空気に暴露しないように移し替えた。
(II) Result of using a mixture of lithium hydride and lithium amide as a hydrogen storage material (Examples 5 to 9 and Comparative Example 2)
(Raw material preparation and hydrogen storage treatment (crushing treatment))
In a glove box in a high-purity argon gas atmosphere, the starting materials lithium amide (LiNH 2 ; purity 95%, manufactured by Sigma-Aldrich) and lithium hydride (LiH; purity 95%, manufactured by Sigma-Aldrich) are molar ratios. 100 g of chromium chloride (CrCl 3 ; manufactured by Sigma-Aldrich) and Li were 0.05: 1 in atomic ratio in terms of atomic ratio. . This raw material was transferred to a sealable raw material container, and the inside of each hydrogen storage body was kept in a high-purity argon gas atmosphere so as not to be exposed to air (Example 5; roller mill, Example 6; inner and outer cylinders). (Rotary mill, Example 7; Attritor, Example 8; Inner piece type mill, Example 9; Air crush type mill, Comparative example 2: Planetary ball mill). After performing pulverization and mixing for a predetermined time for each apparatus while changing the processing time, the obtained hydrogen storage medium was transferred to a certain sample container in a vacuum atmosphere so as not to be exposed to air.

(水素放出量の測定)
真空排気した反応容器中の水素貯蔵体を電気炉で室温から250℃まで昇温速度10℃/分で加熱し、250℃で90分間保持した。250℃保持中は、放出ガス圧が20kPa以下となるようにバッファ容器を用いてガス圧を調整するとともに、250℃での保持開始から所定時間経過時に放出ガスをガスボンベに採取した。こうして採取したガスを20℃に冷却して放出ガス圧を圧力計で測定するとともに、採取したガスを配管を通じてガスクロマトグラフ(島津製作所製、GC9A、TCD検出器、カラム:Molecular Sieve 5A)に導入し、水素量を測定した。測定された水素量を加熱前の水素貯蔵体の質量で除した値を水素貯蔵率とした。
(Measurement of hydrogen release)
The evacuated hydrogen storage in the reaction vessel was heated in an electric furnace from room temperature to 250 ° C. at a rate of 10 ° C./min, and kept at 250 ° C. for 90 minutes. During the 250 ° C. holding, the gas pressure was adjusted using a buffer container so that the released gas pressure was 20 kPa or less, and the released gas was collected in a gas cylinder when a predetermined time had elapsed from the start of the 250 ° C. holding. The gas thus collected was cooled to 20 ° C., and the released gas pressure was measured with a pressure gauge. The collected gas was introduced into a gas chromatograph (GC9A, TCD detector, column: Molecular Sieve 5A, manufactured by Shimadzu Corporation) through a pipe. And the amount of hydrogen was measured. The value obtained by dividing the measured amount of hydrogen by the mass of the hydrogen storage body before heating was defined as the hydrogen storage rate.

(実験結果)
図11は水素貯蔵体の250℃での保持時間と水素貯蔵率との関係を示すグラフである。図11において、水素貯蔵率は累積値で示されている。また、水素貯蔵体からは250℃に達するまでに水素ガスが放出されるが、その量は250℃での保持開始から放出される水素ガス量と比べると極めて少ないために、図11の水素貯蔵率に積算していない。図11から、実施例5〜9のローラーミル、内外筒回転型ミル、アトライター、インナーピース型ミル、気流粉砕型ミルのような量産可能な製造装置を用いて製造した水素貯蔵体は、量産が困難な比較例2の遊星型ボールミルを用いて製造した水素貯蔵体と同等またはそれ以上の水素貯蔵率を有することが確認された。
(Experimental result)
FIG. 11 is a graph showing the relationship between the retention time of the hydrogen storage at 250 ° C. and the hydrogen storage rate. In FIG. 11, the hydrogen storage rate is shown as a cumulative value. Further, hydrogen gas is released from the hydrogen storage until the temperature reaches 250 ° C., but the amount is extremely small compared to the amount of hydrogen gas released from the start of holding at 250 ° C. Not integrated into rates. From FIG. 11, the hydrogen storage bodies manufactured using the mass-producible manufacturing apparatuses such as the roller mills, the inner and outer cylinder rotary mills, the attritors, the inner piece mills, and the airflow mills of Examples 5 to 9 are mass-produced. It was confirmed that it had a hydrogen storage rate equal to or higher than that of a hydrogen storage body manufactured using the planetary ball mill of Comparative Example 2, which was difficult to perform.

本発明によって得られた水素貯蔵体は、燃料電池自動車用の水素貯蔵体や水素ガスの貯蔵および輸送用媒体、水素ガスの分離精製用として好適である。   The hydrogen storage body obtained by the present invention is suitable as a hydrogen storage body for a fuel cell vehicle, a medium for storing and transporting hydrogen gas, and for separating and purifying hydrogen gas.

本発明の第1の実施形態に係る水素貯蔵体の製造装置を示す水平断面図および垂直断面図。FIG. 2 is a horizontal sectional view and a vertical sectional view showing the hydrogen storage device manufacturing apparatus according to the first embodiment of the present invention. 本発明の第2の実施形態に係る水素貯蔵体の製造装置を示す断面図。Sectional drawing which shows the manufacturing apparatus of the hydrogen storage body which concerns on 2nd Embodiment of this invention. 図2の装置による粉砕動作を模式的に示す図。The figure which shows typically the grinding | pulverization operation | movement by the apparatus of FIG. 本発明の第3の実施形態に係る水素貯蔵体の製造装置を一部切り欠いて示す斜視図。The perspective view which cuts out and shows some manufacturing devices of the hydrogen storage concerning a 3rd embodiment of the present invention. 本発明の第4の実施形態に係る水素貯蔵体の製造装置の概略断面図。The schematic sectional drawing of the manufacturing apparatus of the hydrogen storage body which concerns on 4th Embodiment of this invention. 図5の製造装置における概略の粉砕形態を示す説明図。FIG. 6 is an explanatory view showing a schematic pulverization mode in the manufacturing apparatus of FIG. 本発明の第5の実施形態に係る水素貯蔵体の製造装置の概略断面図。The schematic sectional drawing of the manufacturing apparatus of the hydrogen storage body which concerns on 5th Embodiment of this invention. 実施例1〜4および比較例1におけるミリング時間と水素貯蔵体の平均粒径との関係を示す図。The figure which shows the relationship between the milling time in Examples 1-4 and Comparative Example 1, and the average particle diameter of a hydrogen storage body. 図8のミリング時間と水素貯蔵体の平均粒径との関係の拡大図。FIG. 9 is an enlarged view of the relationship between the milling time and the average particle diameter of the hydrogen storage in FIG. 8. 実施例1〜4および比較例1におけるミリング時間と水素貯蔵量との関係を示す図。The figure which shows the relationship between the milling time and hydrogen storage amount in Examples 1-4 and Comparative Example 1. 実施例5〜9および比較例2の250℃保持時間と水素貯蔵量(累積値)との関係を示す図。The figure which shows the relationship between 250 degreeC holding time and hydrogen storage amount (accumulated value) of Examples 5-9 and Comparative Example 2.

符号の説明Explanation of reference numerals

1,21,41,61,71;粉砕容器
5;粉砕ローラ
5a;回転軸
6;ベアリングアッセンブリー
7;回転軸
8,34,50,63a;水素ガス導入口
9,35,51,63b,73;水素貯蔵材料導入口
10,36,52,63c,74;水素貯蔵体排出口
22;内筒
23;外筒
27,28;攪拌翼
29;回転軸
38,53;粉砕用ボール
42;端面部材
46;回転軸
47a,47b,47c;インペラ
65;インナーピース
72;ジェットノズル
76;衝突板
Crushing container 5; Crushing roller 5a; Rotating shaft 6; Bearing assembly 7; Rotating shaft 8, 34, 50, 63a; Hydrogen gas inlets 9, 35, 51, 63b, 73; Hydrogen storage material inlet 10, 36, 52, 63c, 74; hydrogen storage outlet 22; inner cylinder 23; outer cylinder 27, 28; stirring blade 29; rotating shaft 38, 53; crushing ball 42; Rotating shafts 47a, 47b, 47c; impeller 65; inner piece 72; jet nozzle 76;

Claims (19)

その中で水素貯蔵材料を粉砕する円筒状の粉砕容器と、
前記粉砕容器内を水素雰囲気に保つことが可能なように前記粉砕容器内に水素ガスを導入する水素ガス導入部と、
前記粉砕容器内の水素ガス雰囲気を維持したまま前記粉砕容器内に水素貯蔵材料を導入可能な水素貯蔵材料導入部と、
前記粉砕容器内の水素貯蔵材料を排出する水素貯蔵材料排出部と、
回転軸を前記粉砕容器の長手方向に一致させるとともに前記粉砕容器の内壁に沿って配置された複数の粉砕ローラと、
前記粉砕容器と前記複数の粉砕ローラとの間の相対的な回転移動および前記複数の粉砕ローラの自転を生じさせる駆動機構と、
を具備し、
前記粉砕容器内を水素雰囲気にして水素貯蔵材料を前記粉砕容器内に導入し、前記粉砕容器の内壁と前記粉砕ローラとの間の圧縮力およびせん断力によって水素貯蔵材料を機械的粉砕して水素貯蔵体とすることを特徴とする水素貯蔵体の製造装置。
A cylindrical grinding container for grinding the hydrogen storage material therein,
A hydrogen gas introduction unit that introduces hydrogen gas into the grinding container so that the inside of the grinding container can be maintained in a hydrogen atmosphere,
A hydrogen storage material introduction unit capable of introducing a hydrogen storage material into the grinding container while maintaining the hydrogen gas atmosphere in the grinding container,
A hydrogen storage material discharge unit that discharges the hydrogen storage material in the grinding container,
A plurality of crushing rollers arranged along the inner wall of the crushing container with the rotation axis aligned with the longitudinal direction of the crushing container,
A drive mechanism for causing relative rotation between the crushing container and the plurality of crushing rollers and rotation of the plurality of crushing rollers,
With
The inside of the pulverizing container is set to a hydrogen atmosphere, a hydrogen storage material is introduced into the pulverizing container, and the hydrogen storage material is mechanically pulverized by a compressive force and a shearing force between an inner wall of the pulverizing container and the pulverizing roller. An apparatus for producing a hydrogen storage, wherein the apparatus is a storage.
同軸的に設けられた内筒と外筒とを有し、これら内筒と外筒との間に環状粉砕室が形成される粉砕容器と、
前記環状粉砕室内を水素雰囲気に保つことが可能なように前記環状粉砕室内に水素ガスを導入する水素ガス導入部と、
前記環状粉砕室内の水素ガス雰囲気を維持したまま前記環状粉砕室内に水素貯蔵材料を導入可能な水素貯蔵材料導入部と、
前記環状粉砕室内の水素貯蔵材料を排出する水素貯蔵材料排出部と、
前記内筒と前記外筒との間に相対的な回転移動を生じさせる駆動機構と、
を具備し、
前記環状粉砕室内を水素雰囲気にして、水素貯蔵材料および粉砕媒体を前記環状粉砕室内に導入し、前記内筒と外筒との間の相対的な回転移動を生じさせて水素貯蔵材料を機械的粉砕して水素貯蔵体とすることを特徴とする水素貯蔵体の製造装置。
A grinding container having an inner cylinder and an outer cylinder provided coaxially, and a circular grinding chamber formed between the inner cylinder and the outer cylinder,
A hydrogen gas introduction unit that introduces hydrogen gas into the annular grinding chamber so that the annular grinding chamber can be maintained in a hydrogen atmosphere;
A hydrogen storage material introduction unit capable of introducing a hydrogen storage material into the annular grinding chamber while maintaining the hydrogen gas atmosphere in the annular grinding chamber,
A hydrogen storage material discharge unit that discharges the hydrogen storage material in the annular grinding chamber,
A drive mechanism that causes relative rotational movement between the inner cylinder and the outer cylinder,
With
The annular grinding chamber is set to a hydrogen atmosphere, a hydrogen storage material and a grinding medium are introduced into the annular grinding chamber, and a relative rotational movement between the inner cylinder and the outer cylinder is caused to mechanically convert the hydrogen storage material. An apparatus for producing a hydrogen storage, wherein the apparatus is pulverized into a hydrogen storage.
その中で水素貯蔵材料を粉砕する回転可能な円筒状の粉砕容器と、
前記粉砕容器内を水素雰囲気に保つことが可能なように前記粉砕容器内に水素ガスを導入する水素ガス導入部と、
前記粉砕容器内の水素ガス雰囲気を維持したまま前記粉砕容器内に水素貯蔵材料を導入可能な水素貯蔵材料導入部と、
前記粉砕容器内の水素貯蔵材料を排出する水素貯蔵材料排出部と、
回転軸を前記容器の長手方向に一致させて前記粉砕容器の中に設けられたインペラと、
前記粉砕容器と前記インペラとを互いに反対方向に回転させる駆動機構と、
を具備し、
前記粉砕容器内を水素雰囲気にして、水素貯蔵材料および粉砕媒体を前記粉砕容器内に充填させ、前記粉砕容器と前記インペラとを互いに反対方向に回転させることにより、水素貯蔵材料を機械的粉砕して水素貯蔵体とすることを特徴とする水素貯蔵体の製造装置。
A rotatable cylindrical grinding vessel for grinding the hydrogen storage material therein,
A hydrogen gas introduction unit that introduces hydrogen gas into the grinding container so that the inside of the grinding container can be maintained in a hydrogen atmosphere,
A hydrogen storage material introduction unit capable of introducing a hydrogen storage material into the grinding container while maintaining the hydrogen gas atmosphere in the grinding container,
A hydrogen storage material discharge unit that discharges the hydrogen storage material in the grinding container,
An impeller provided in the pulverizing container with the rotation axis coinciding with the longitudinal direction of the container,
A drive mechanism for rotating the crushing container and the impeller in directions opposite to each other,
With
Making the inside of the pulverizing container a hydrogen atmosphere, filling the hydrogen storage material and the pulverizing medium into the pulverizing container, and rotating the pulverizing container and the impeller in opposite directions to mechanically pulverize the hydrogen storage material. An apparatus for producing a hydrogen storage, wherein the apparatus is a hydrogen storage.
前記水素ガス導入部には前記粉砕容器内に連続的に水素を導入する機構が設けられ、前記水素貯蔵材料導入部には前記粉砕容器内に連続的に水素貯蔵材料を導入する機構が設けられ、前記水素貯蔵材料排出部には前記粉砕容器から連続的に水素貯蔵材料を排出する機構が設けられていることを特徴とする請求項1から請求項3のいずれか1項に記載の水素貯蔵体の製造装置。   The hydrogen gas introduction unit is provided with a mechanism for continuously introducing hydrogen into the grinding container, and the hydrogen storage material introduction unit is provided with a mechanism for continuously introducing a hydrogen storage material into the grinding container. The hydrogen storage according to any one of claims 1 to 3, wherein the hydrogen storage material discharge unit is provided with a mechanism for continuously discharging the hydrogen storage material from the grinding container. Body manufacturing equipment. その中で水素貯蔵材料を粉砕し、粉砕された水素貯蔵材を外部に排出するための水素貯蔵材料排出口を側壁下部に有する有底円筒状の粉砕容器と、
前記粉砕容器を収容し、内部を所定のガス雰囲気に保持することができるハウジングと、
円柱曲面を有し、その曲面と前記粉砕容器の側壁内面との間に所定の間隙ができるように配置された1または複数のインナーピースと、
前記インナーピースを保持する保持部材と、
前記粉砕容器と前記インナーピースとの間の間隙幅が実質的に変わらないように前記粉砕容器および/または前記保持部材を回転させる容器回転機構と、
を具備し、
前記ハウジングは、その内部に水素ガスを導入するガス導入部と、その内部を水素ガス雰囲気に保持したまま前記粉砕容器内に水素貯蔵材料を導入する水素貯蔵材料導入部と、前記粉砕容器から前記水素貯蔵材料排出口を通って排出された水素貯蔵材料の一部をその内部からその外部に排出する水素貯蔵材料排出部と、前記粉砕容器から前記水素貯蔵材料排出口を通って排出された水素貯蔵材料の一部を前記粉砕容器内に戻す水素貯蔵材循環部と、を有し、
前記ハウジング内を水素雰囲気にして水素貯蔵材料を前記粉砕容器内に導入し、前記粉砕容器の側壁と前記インナーピースとの間の圧縮力およびせん断力によって水素貯蔵材料を機械的粉砕して水素貯蔵体とすることを特徴とする水素貯蔵体の製造装置。
A hydrogen storage material is pulverized therein, and a bottomed cylindrical pulverization container having a hydrogen storage material discharge port at the lower side wall for discharging the pulverized hydrogen storage material to the outside,
A housing that houses the crushing container and can maintain the inside in a predetermined gas atmosphere,
One or more inner pieces having a cylindrical curved surface and arranged so as to have a predetermined gap between the curved surface and the inner surface of the side wall of the crushing container,
A holding member for holding the inner piece,
A container rotating mechanism for rotating the pulverizing container and / or the holding member so that a gap width between the pulverizing container and the inner piece does not substantially change;
With
The housing includes a gas introduction unit that introduces hydrogen gas therein, a hydrogen storage material introduction unit that introduces a hydrogen storage material into the pulverization container while maintaining the inside of the housing in a hydrogen gas atmosphere, A hydrogen storage material discharge part for discharging a part of the hydrogen storage material discharged through the hydrogen storage material discharge port from the inside to the outside, and hydrogen discharged from the grinding container through the hydrogen storage material discharge port A hydrogen storage material circulation unit that returns a part of the storage material into the grinding container,
The inside of the housing is set to a hydrogen atmosphere, a hydrogen storage material is introduced into the pulverization container, and the hydrogen storage material is mechanically pulverized by a compressive force and a shear force between a side wall of the pulverization container and the inner piece to store hydrogen. An apparatus for producing a hydrogen storage body, comprising:
前記水素ガス導入部には前記ハウジング内に連続的に水素を導入する機構が設けられ、前記水素貯蔵材料導入部には前記ハウジング内に収容された粉砕容器内に連続的に水素貯蔵材料を導入する機構が設けられ、前記水素貯蔵材料排出部には前記ハウジングから連続的に水素貯蔵材料を排出する機構が設けられていることを特徴とする請求項5に記載の水素貯蔵体の製造装置。   The hydrogen gas introduction unit is provided with a mechanism for continuously introducing hydrogen into the housing, and the hydrogen storage material introduction unit is configured to continuously introduce a hydrogen storage material into a grinding container housed in the housing. The apparatus for producing a hydrogen storage body according to claim 5, wherein a mechanism is provided for continuously discharging the hydrogen storage material from the housing at the hydrogen storage material discharge portion. 水素を含む所定の処理ガスを高圧噴射するジェットノズルと、
その内部に前記ジェットノズルから噴射された高圧処理ガスが導入され、前記高圧処理ガスの気流によって水素貯蔵材料を粉砕する所定形状の粉砕容器と、
前記粉砕容器内のガス雰囲気を維持したまま前記粉砕容器内に水素貯蔵材料を導入可能な水素貯蔵材料導入部と、
前記粉砕容器内の水素貯蔵材料を排出する水素貯蔵材料排出部と、
を具備し、
前記粉砕容器内を水素ガスを含む雰囲気にして水素貯蔵材料を前記粉砕容器内に導入し、前記ジェットノズルから噴射された高圧処理ガスの気流に乗った水素貯蔵材料どうしの衝突もしくは磨砕または前記高圧処理ガスの気流から与えられるせん断力によって、水素貯蔵材料を機械的粉砕して水素貯蔵体とすることを特徴とする水素貯蔵体の製造装置。
A jet nozzle for injecting a predetermined processing gas containing hydrogen at a high pressure,
A high-pressure processing gas injected from the jet nozzle is introduced into the inside thereof, and a pulverizing container having a predetermined shape for pulverizing the hydrogen storage material by an air current of the high-pressure processing gas,
A hydrogen storage material introduction unit capable of introducing a hydrogen storage material into the grinding container while maintaining the gas atmosphere in the grinding container,
A hydrogen storage material discharge unit that discharges the hydrogen storage material in the grinding container,
With
Introducing a hydrogen storage material into the pulverizing container by setting the inside of the pulverizing container to an atmosphere containing hydrogen gas, and colliding or grinding the hydrogen storage materials riding on the gas flow of the high-pressure processing gas injected from the jet nozzle or An apparatus for producing a hydrogen storage material, wherein a hydrogen storage material is mechanically pulverized into a hydrogen storage material by a shear force given by an air flow of a high-pressure processing gas.
前記水素貯蔵材料導入部には前記粉砕容器内に連続的に水素貯蔵材料を導入する機構が設けられ、前記水素貯蔵材料排出部には前記粉砕容器から連続的に所定の粒径に微粉砕された水素貯蔵材料を選択して排出する機構が設けられていることを特徴とする請求項7に記載の水素貯蔵体の製造装置。   The hydrogen storage material introduction unit is provided with a mechanism for continuously introducing a hydrogen storage material into the grinding container, and the hydrogen storage material discharge unit is continuously pulverized to a predetermined particle size from the grinding container. The apparatus according to claim 7, further comprising a mechanism for selectively discharging the hydrogen storage material. 前記粉砕容器内で水素貯蔵材料を粉砕している際に、前記粉砕容器内のガス雰囲気を維持したまま、前記粉砕容器内に水素分子を水素原子へ解離させる機能を有する金属成分を導入する金属成分導入機構をさらに具備することを特徴とする請求項1から請求項8のいずれか1項に記載の水素貯蔵体の製造装置。   A metal for introducing a metal component having a function of dissociating hydrogen molecules into hydrogen atoms in the grinding container while maintaining the gas atmosphere in the grinding container while the hydrogen storage material is being ground in the grinding container. The hydrogen storage device manufacturing apparatus according to any one of claims 1 to 8, further comprising a component introduction mechanism. 円筒状の粉砕容器内を水素雰囲気にしつつ、前記粉砕容器内に水素貯蔵材料を導入し、前記粉砕容器と前記粉砕容器の内壁に沿って設けられた複数の粉砕ローラとの間の相対的な回転移動および前記複数の粉砕ローラの自転により前記粉砕容器の内壁と前記粉砕ローラとの間に生じる圧縮力およびせん断力によって、水素貯蔵材料を機械的粉砕して水素貯蔵体とすることを特徴とする水素貯蔵体の製造方法。   A hydrogen storage material is introduced into the crushing container while the inside of the cylindrical crushing container is in a hydrogen atmosphere, and a relative pressure between the crushing container and a plurality of crushing rollers provided along the inner wall of the crushing container is increased. The hydrogen storage material is mechanically pulverized into a hydrogen storage body by a compressive force and a shearing force generated between the inner wall of the pulverizing container and the pulverizing roller due to rotational movement and rotation of the plurality of pulverizing rollers. Method for producing a hydrogen storage material. 同軸的に設けられた内筒と外筒とを有する粉砕容器の前記内筒と外筒との間に形成された環状粉砕室内を水素雰囲気にしつつ、前記環状粉砕室内に粉砕媒体および水素貯蔵材料を導入し、前記内筒と外筒との間の相対的な回転移動を生じさせて水素貯蔵材料を機械的粉砕して水素貯蔵体とすることを特徴とする水素貯蔵体の製造方法。   A pulverizing medium and a hydrogen storage material are provided in the annular grinding chamber while the annular grinding chamber formed between the inner cylinder and the outer cylinder of the grinding container having the inner cylinder and the outer cylinder provided coaxially has a hydrogen atmosphere. And producing a hydrogen storage material by mechanically pulverizing the hydrogen storage material by causing relative rotation between the inner cylinder and the outer cylinder. 円筒状の粉砕容器内を水素雰囲気にしつつ、前記粉砕容器内に粉砕媒体および水素貯蔵材料を充填させ、前記粉砕容器内と前記粉砕容器内に設けられたインペラとを互いに反対方向に回転させることにより水素貯蔵材料を機械的粉砕して水素貯蔵体とすることを特徴とする水素貯蔵体の製造方法。   Filling the grinding container with a grinding medium and a hydrogen storage material while setting the inside of the cylindrical grinding container to a hydrogen atmosphere, and rotating the impeller provided in the grinding container and the impeller provided in the grinding container in directions opposite to each other. A method for producing a hydrogen storage material, comprising mechanically pulverizing a hydrogen storage material into a hydrogen storage material. 有底円筒状の粉砕容器内を水素雰囲気にしつつ、水素貯蔵材料を前記粉砕容器内に導入し、前記粉砕容器内に設けられた円柱曲面を有するインナーピースの該円柱曲面と前記粉砕容器の側壁との間隙幅が実質的に変化しないように前記インナーピースを回動させるかまたは前記粉砕容器を回転させることにより前記インナーピースと前記粉砕容器の側壁との間に生ずる圧縮力およびせん断力によって、水素貯蔵材料を機械的粉砕して水素貯蔵体とすることを特徴とする水素貯蔵体の製造方法。   A hydrogen storage material is introduced into the pulverizing container while the inside of the pulverizing container having the bottom is in a hydrogen atmosphere, and the cylindrical curved surface of the inner piece having a cylindrical curved surface provided in the pulverizing container and a side wall of the pulverizing container are provided. By rotating the inner piece or rotating the crushing container so that the gap width between the inner piece and the crushing container does not substantially change, by a compressive force and a shear force generated between the inner piece and the side wall of the crushing container, A method for producing a hydrogen storage material, comprising mechanically pulverizing a hydrogen storage material into a hydrogen storage material. 前記粉砕容器内に水素ガスおよび水素貯蔵材料を連続的に導入して水素貯蔵材料を粉砕し、それによって形成された水素貯蔵体を連続的に前記粉砕容器から排出することを特徴とする請求項10から請求項13のいずれか1項に記載の水素貯蔵体の製造方法。   The hydrogen storage material is pulverized by continuously introducing hydrogen gas and a hydrogen storage material into the pulverization container, and a hydrogen storage body formed thereby is continuously discharged from the pulverization container. The method for producing a hydrogen storage according to any one of claims 10 to 13. 前記粉砕容器内で水素貯蔵材料を粉砕している途中で、前記粉砕容器内の水素雰囲気を維持したまま、前記粉砕容器内に水素分子を水素原子へ解離させる機能を有する金属成分を導入することを特徴とする請求項10から請求項14のいずれか1項に記載の水素貯蔵体の製造方法。   In the course of crushing the hydrogen storage material in the crushing container, introducing a metal component having a function of dissociating hydrogen molecules into hydrogen atoms in the crushing container while maintaining the hydrogen atmosphere in the crushing container. The method for producing a hydrogen storage body according to any one of claims 10 to 14, wherein: 粉砕容器に水素を含む所定の処理ガスを高圧噴射しつつ、前記粉砕容器内に生ずる前記処理ガスの気流に乗るように水素貯蔵材料を前記粉砕容器に導入することにより、前記気流に乗った水素貯蔵材料どうしの衝突もしくは磨砕または前記気流から与えられるせん断力によって、水素貯蔵材料を機械的粉砕して水素貯蔵体とすることを特徴とする水素貯蔵体の製造方法。   By injecting a predetermined processing gas containing hydrogen into the pulverizing container at a high pressure and introducing a hydrogen storage material into the pulverizing container so as to ride on the gas flow of the processing gas generated in the pulverizing container, A method for producing a hydrogen storage material, comprising mechanically pulverizing a hydrogen storage material into a hydrogen storage material by collision or grinding of the storage materials or shearing force given by the gas stream. 前記粉砕容器内に水素貯蔵材料を連続的に導入して水素貯蔵材料を粉砕し、それによって形成された水素貯蔵体を、前記処理ガスの気流を利用して前記粉砕容器から連続的に排出することを特徴とする請求項16に記載の水素貯蔵体の製造方法。   The hydrogen storage material is continuously introduced into the pulverizing container to pulverize the hydrogen storage material, and the formed hydrogen storage body is continuously discharged from the pulverizing container using the gas flow of the processing gas. The method for producing a hydrogen storage body according to claim 16, wherein: 前記粉砕容器内で水素貯蔵材料を粉砕している途中で、前記粉砕容器内の処理ガス雰囲気を維持したまま、前記粉砕容器内に水素分子を水素原子へ解離させる機能を有する金属成分を導入することを特徴とする請求項16または請求項17に記載の水素貯蔵体の製造方法。   During the pulverization of the hydrogen storage material in the pulverization container, a metal component having a function of dissociating hydrogen molecules into hydrogen atoms is introduced into the pulverization container while maintaining the processing gas atmosphere in the pulverization container. The method for producing a hydrogen storage body according to claim 16, wherein: 請求項10から請求項18のいずれかに記載の製造方法により得られた水素貯蔵体。   A hydrogen storage material obtained by the production method according to claim 10.
JP2004036967A 2003-03-26 2004-02-13 Hydrogen storage body manufacturing apparatus, hydrogen storage body manufacturing method, and hydrogen storage body Expired - Fee Related JP4754174B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004036967A JP4754174B2 (en) 2003-03-26 2004-02-13 Hydrogen storage body manufacturing apparatus, hydrogen storage body manufacturing method, and hydrogen storage body
PCT/JP2004/009538 WO2005014165A1 (en) 2003-08-11 2004-07-05 Material for storing hydrogen and method and apparatus for production thereof
US11/351,244 US7537748B2 (en) 2003-08-11 2006-02-09 Hydrogen storage matter and manufacturing method and apparatus for the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003086300 2003-03-26
JP2003086300 2003-03-26
JP2004036967A JP4754174B2 (en) 2003-03-26 2004-02-13 Hydrogen storage body manufacturing apparatus, hydrogen storage body manufacturing method, and hydrogen storage body

Publications (2)

Publication Number Publication Date
JP2004306016A true JP2004306016A (en) 2004-11-04
JP4754174B2 JP4754174B2 (en) 2011-08-24

Family

ID=33478330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004036967A Expired - Fee Related JP4754174B2 (en) 2003-03-26 2004-02-13 Hydrogen storage body manufacturing apparatus, hydrogen storage body manufacturing method, and hydrogen storage body

Country Status (1)

Country Link
JP (1) JP4754174B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279418A (en) * 2004-03-29 2005-10-13 Taiheiyo Cement Corp Apparatus and process for producing hydrogen storage material, and hydrogen storage material
JP2005306724A (en) * 2004-03-24 2005-11-04 Taiheiyo Cement Corp Material for hydrogen storage, production method for the same, and method for storing hydrogen
JP2007008738A (en) * 2005-06-28 2007-01-18 Toyota Central Res & Dev Lab Inc Composite of hydrides, hydrogen storing material, and manufacturing method thereof
CN106964420A (en) * 2017-04-21 2017-07-21 四川纳诺科技有限公司 A kind of efficient nano material lapping device of cylinder type

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287255A (en) * 1985-10-12 1987-04-21 カ−ル−ハインツ・ホフマン Annular gap type crusher
JPS63143949A (en) * 1986-12-09 1988-06-16 アイエヌジ商事株式会社 Crushing surface member used for crusher
JPH05175022A (en) * 1991-12-20 1993-07-13 Tdk Corp Manufacture of magnet and bonded magnet
JPH07176414A (en) * 1993-11-02 1995-07-14 Tdk Corp Manufacture of permanent magnet
JPH08213005A (en) * 1995-02-03 1996-08-20 Toyota Autom Loom Works Ltd Manufacture of hydrogen storage alloy electrode
JPH1050307A (en) * 1996-07-31 1998-02-20 Sanyo Electric Co Ltd Manufacture of nickel electrode for alkaline storage battery
WO1998013158A1 (en) * 1996-09-26 1998-04-02 Toyota Jidosha Kabushiki Kaisha Hydrogen absorbing alloy powder and method of producing hydrogen absorbing alloy powder
JPH11197536A (en) * 1998-01-12 1999-07-27 Nagahito Matsuda Composite rotary working device
JP2001302224A (en) * 2000-04-21 2001-10-31 Japan Science & Technology Corp Hydrogen storage material and method for producing the same
JP2002167609A (en) * 2000-11-27 2002-06-11 Toyota Industries Corp Method for producing hydrogen storage alloy

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287255A (en) * 1985-10-12 1987-04-21 カ−ル−ハインツ・ホフマン Annular gap type crusher
JPS63143949A (en) * 1986-12-09 1988-06-16 アイエヌジ商事株式会社 Crushing surface member used for crusher
JPH05175022A (en) * 1991-12-20 1993-07-13 Tdk Corp Manufacture of magnet and bonded magnet
JPH07176414A (en) * 1993-11-02 1995-07-14 Tdk Corp Manufacture of permanent magnet
JPH08213005A (en) * 1995-02-03 1996-08-20 Toyota Autom Loom Works Ltd Manufacture of hydrogen storage alloy electrode
JPH1050307A (en) * 1996-07-31 1998-02-20 Sanyo Electric Co Ltd Manufacture of nickel electrode for alkaline storage battery
WO1998013158A1 (en) * 1996-09-26 1998-04-02 Toyota Jidosha Kabushiki Kaisha Hydrogen absorbing alloy powder and method of producing hydrogen absorbing alloy powder
JPH11197536A (en) * 1998-01-12 1999-07-27 Nagahito Matsuda Composite rotary working device
JP2001302224A (en) * 2000-04-21 2001-10-31 Japan Science & Technology Corp Hydrogen storage material and method for producing the same
JP2002167609A (en) * 2000-11-27 2002-06-11 Toyota Industries Corp Method for producing hydrogen storage alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306724A (en) * 2004-03-24 2005-11-04 Taiheiyo Cement Corp Material for hydrogen storage, production method for the same, and method for storing hydrogen
JP2005279418A (en) * 2004-03-29 2005-10-13 Taiheiyo Cement Corp Apparatus and process for producing hydrogen storage material, and hydrogen storage material
JP4703126B2 (en) * 2004-03-29 2011-06-15 太平洋セメント株式会社 Hydrogen storage material manufacturing apparatus and hydrogen storage material manufacturing method
JP2007008738A (en) * 2005-06-28 2007-01-18 Toyota Central Res & Dev Lab Inc Composite of hydrides, hydrogen storing material, and manufacturing method thereof
CN106964420A (en) * 2017-04-21 2017-07-21 四川纳诺科技有限公司 A kind of efficient nano material lapping device of cylinder type

Also Published As

Publication number Publication date
JP4754174B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
US7537748B2 (en) Hydrogen storage matter and manufacturing method and apparatus for the same
US6461766B1 (en) Hydrogen storage powder and process for preparing the same
Varin et al. Nanomaterials for solid state hydrogen storage
JP5529884B2 (en) Method for producing fine powder and fine powder produced by the same method
El-Eskandarany Recent developments in the fabrication, characterization and implementation of MgH 2-based solid-hydrogen materials in the Kuwait Institute for Scientific Research
CN105409040A (en) Composite particles of silicon phase-containing substance and graphite, and method for producing same
Liu et al. Remarkable enhancement and electronic mechanism for hydrogen storage kinetics of Mg nano-composite by a multi-valence Co-based catalyst
JP2004306016A (en) Apparatus and method for manufacturing hydrogen storage body, and hydrogen storage body
Yuan et al. Preparation and hydrogen storage property of Mg-based hydrogen storage composite embedded by polymethyl methacrylate
WO2005014165A1 (en) Material for storing hydrogen and method and apparatus for production thereof
US6016981A (en) Apparatus for producing hydrogen adsorption alloy
US20120040825A9 (en) Hydrogen Storage Material and Method for Producing the Same
Pentimalli et al. AB5/ABS composite material for hydrogen storage
JP3486682B1 (en) High speed powder reactor
TWI408099B (en) Solid hydrogen fuel and methods for manufacturing and using the same
CN207204216U (en) A kind of strong nano-level grinder of thermal diffusivity
JP2004232073A (en) Method of producing hydrogen storage alloy, and hydrogen storage alloy obtained by the production method
JP4497471B2 (en) Ball mill apparatus and method for producing hydrogen storage alloy powder using the apparatus
EP2904123A1 (en) Heat treatment device for material in powder form and corresponding heat treatment method
JP4703126B2 (en) Hydrogen storage material manufacturing apparatus and hydrogen storage material manufacturing method
CN106941155A (en) A kind of rare earth hydride carbon nano-composite material and its preparation method and application
JP2005095869A (en) Hydrogen storing material and its production method
JP2001334157A (en) Pulverizing method for powder by low-temperature vibration mill
Demko et al. Mechanical homogenization of antimony, iron oxide, and carbon black composites for use in lithium ion batteries
CN114772591B (en) Method and equipment for low-temperature nanocrystallization of soft material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061003

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees