JP2004303854A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2004303854A
JP2004303854A JP2003093241A JP2003093241A JP2004303854A JP 2004303854 A JP2004303854 A JP 2004303854A JP 2003093241 A JP2003093241 A JP 2003093241A JP 2003093241 A JP2003093241 A JP 2003093241A JP 2004303854 A JP2004303854 A JP 2004303854A
Authority
JP
Japan
Prior art keywords
electrode
semiconductor device
wiring member
heat
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003093241A
Other languages
Japanese (ja)
Other versions
JP4019993B2 (en
Inventor
Kenji Yagi
賢次 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003093241A priority Critical patent/JP4019993B2/en
Publication of JP2004303854A publication Critical patent/JP2004303854A/en
Application granted granted Critical
Publication of JP4019993B2 publication Critical patent/JP4019993B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin-molded semiconductor device with a heat sink which is assembled easily into an external apparatus and which has an improved yield. <P>SOLUTION: The semiconductor device 1 has a semiconductor switching element 10 in which a first electrode and an electrode for a control are exposed to one main surface side and a second electrode to the other main surface side, a pair of heat dissipating members 2 and 3 arranged in a shape that the element 10 is held and connected electrically and thermally to the first electrode and the second electrode respectively, and a molding resin section 4 filled between a pair of the members 2 and 3. The device 1 has a flexible wiring member 5 which is provided for the input of a control signal and led out to the outside and in which a surface is insulated and worked, and the member 5 is conducted and bonded with the electrode for the control or a terminal for a conductive member connected to the electrode for the control for solving the above-mentioned problem. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、半導体スイッチング素子の両主面にそれぞれ電気的かつ熱的に接続された一対の放熱部材を備えてなり、当該両主面から放熱を行う半導体装置に関する。
【0002】
【従来の技術】
半導体スイッチング素子の両主面から放熱を行う半導体装置には、例えば、一対の放熱部材(ヒートシンク)を、素子を挟む形で配置し、放熱部材間を樹脂でモールドしたものがある(下記特許文献1参照)。このような半導体装置は、代表的な半導体スイッチング素子(半導体パワー素子ともいう)であるIGBT(Insulated Gate Bipolar Transistor)を例にすると、素子の2つの主面にそれぞれ露出するエミッタ電極及びコレクタ電極に、それぞれヒートシンクを直接、またはスペーサを介してそれぞれハンダ接続する。この場合のヒートシンクは、大電流経路としての機能も有する。一方、素子のゲート電極(制御用電極)と、モールド樹脂部の外部に延出する制御信号用リードとは、ボンディングワイヤにより導通接続される。そして、このような素子パッケージを複数組付けることにより、インバータ回路モジュールが作製され、モータ駆動等の用途に供される。
【0003】
【特許文献1】
特開2001−156225号公報
【0004】
【発明が解決しようとする課題】
ところで、上記制御信号用リードは金属リードにて構成されており、またその端部はモールド樹脂部内にてボンディングワイヤにより接続されている。半導体装置は外部機器に組付けられるわけであるが、そのような金属リードの場合、外部に延出している部位を折曲げ加工し、ベンド形状にしてから外部機器に組付け(接続)しなければならず、またそのような形状のリードを人間の手により外部機器に組付けるのは困難であった。
【0005】
また、ボンディングワイヤは、ワイヤ長が長くなるほど、樹脂モールド時に、隣接するボンディングワイヤ同士が接触したり、断線が生じたりする可能性が高くなる。素子の微細化と高電流密度化による発熱量の増大によってヒートシンクの大面積化が求められる今日においては、ワイヤ長が増大することが考えられるため、そのような接触や断線の問題は看過できなくなる。また、リードの一部がモールド樹脂部内に封入されているとしても、上記のような折曲げ加工や組付け時にリードに負荷が加わるため、それに接続されたボンディングワイヤにも負荷の一部が伝わり、断線が生じることも考えられる。このような要因により接続信頼性が悪化し、また製品の歩留まりが低下してしまうため、従来のようなボンディングワイヤによる接続構造をそのまま適用することには難がある。
【0006】
従って、本発明の課題は、外部機器への組付けが容易で、且つ、歩留まりの向上した放熱部材付きの樹脂モールド半導体装置を提供することにある。
【0007】
【課題を解決するための手段及び作用・発明の効果】
上記課題を解決するため、本発明の半導体装置では、
一方の主面側に第一電極及び制御用電極、他方の主面側に第二電極が露出した半導体スイッチング素子と、前記半導体スイッチング素子を挟む形で配置され、前記第一電極と前記第二電極とにそれぞれ電気的かつ熱的に接続される一対の放熱部材と、前記一対の放熱部材の間を充填するモールド樹脂部と、を備える半導体装置であって、
制御信号の入力に供され、且つ、外部に引き出される、表面が絶縁加工された可撓性の配線部材を有するとともに、
当該配線部材は、前記制御用電極、もしくは該制御用電極に接続された通電部材の端子に導通接着されてなることを特徴とする。
【0008】
上記本発明の半導体装置によると、上記のような制御信号用リードに代わり、表面が絶縁加工された可撓性の配線部材が配されている。また、配線部材は制御用電極、もしくは制御用電極に接続された通電部材の端子に導通接着されており、配線部材の接続にボンディングワイヤを使用していない構成となっている。また配線部材が可撓性であるため、内部の接続部に余計な負荷を与えることなく、外部機器への組付けを容易に行うことができる。さらに、配線部材は、電極又は端子に直接接着されているため、ボンディングワイヤによる接続の場合よりも接続信頼性を確保できる。
【0009】
また、金属リードにボンディングワイヤが付された構成では、金属リードやボンディングワイヤと、放熱部材との間に短絡が生じる惧れがある。そのため、図6の従来の半導体装置1´の例に示されるように、金属リード105の先端は放熱部材2、3の端部付近に配されることになり、中心付近に素子10が配された場合、接続距離、すなわちボンディングワイヤ107のワイヤ長を長くせざるを得ない。このことは、放熱部材2、3の大面積化が求められる今日においては致命的である。しかし、上記本発明では、配線部材は表面が絶縁加工されているため、放熱部材との接触を気にする必要がなく、放熱部材間に配線部材を引くことができる。したがって、電極もしくは端子の位置が放熱部材間の中心付近であっても、配線部材を放熱部材間の中心付近まで引き、直接接着することが可能となる。これにより、放熱部材の大面積化にも対応できる。
【0010】
また、本発明の半導体装置では、第一電極に接続される放熱部材は、該第一電極に接続するための凸部が一体形成された構成することができる。半導体スイッチング素子において、第一電極側の主面には、第一電極に加えて制御用電極も露出している。そのため、第一電極に接続される放熱部材は、第一電極側の主面全体を覆うような形態とすることができず、第一電極側の主面のうち、露出する第一電極にのみに接続されるような形態でなければならない。したがって、従来の半導体装置では、図6に示すように、素子10と放熱部材3との間に、素子10の第一電極にのみ接触する形状のスペーサ103を挿入しているが、この場合、スペーサ103と放熱部材3との間の接合界面において、熱引きが良好に行われない問題が生じることがある。そこで、上記本発明のごとく、放熱部材に、第一電極に接続するための凸部を一体形成する(つまり、放熱部材3とスペーサ103とを一体形成する)ことで、そのような問題を解消することができる。また、一体形成することにより、部品点数を削減できるうえに、従来行われていた放熱部材3とスペーサ103との接合処理(例えば、ハンダリフロー処理)も削減できるので、コスト面においても改善される。
【0011】
また、本発明の半導体装置では、放熱部材は、配線部材を絶縁接着して固定するための絶縁接着部を有し、配線部材は当該絶縁接着部に絶縁接着された構成とすることができる。配線部材は、上述のように表面が絶縁加工されているので、放熱部材との接触を気にする必要がない。そこで、放熱部材に、配線部材を何の支障もなく絶縁接着することができる。これにより、配線部材は固定され、電極もしくは端子に導通接着された部位に余計な負荷が加わることを防ぐことができる。
【0012】
一般に半導体装置では、半導体スイッチング素子の動作制御を行う制御回路を構成して、インテリジェントパワーモジュール(IPM)とすることができる。従来、そのような制御回路は半導体装置の外部に構成され、リード(制御信号用リード)を通じて制御用電極に制御信号を送っている。しかし、その場合、半導体スイッチング素子と、制御回路とが離れているため、制御信号の伝達を担う経路(配線長)が長く構成される。そのため、該経路がノイズの影響を受け易く、半導体スイッチング素子が誤動作を起こしてしまう場合がある。そこで、本発明の半導体装置では、半導体スイッチング素子の動作制御を行う制御回路部を、モールド樹脂部内に封入し、且つ、制御用電極から外部へと引き出される接続経路のいずれかの位置に介挿されるよう構成して、インテリジェントパワーモジュールとする。これにより、制御信号の伝達を担う経路が短縮され、ノイズによる素子の誤動作を低減することができる。なお、このような構成にすることで、放熱部材の大面積化に伴う、放熱部材間に生じるスペースを有効に活用することができる。
【0013】
また、従来のように制御回路が外部に構成される場合には、半導体装置において、素子の制御用電極に接続されたリードが剥き出しであるため、製造時や組付け時等において、ハンドリングを行う人間が静電気を帯電していると、制御用電極に電圧が印加されてしまい、素子の劣化や破壊が生じてしまう場合がある。しかし、本発明の半導体装置の構成では、外部に引き出された配線部材は、制御回路部を介して素子の制御用電極に接続されているため、制御用電極が制御回路にて保護され、静電気が直接印加されることがなくなる。この結果、素子の劣化や破壊を防止することができ、歩留まり低下の防止に繋がる。
【0014】
以下に、制御回路部がモールド樹脂部内に封入され、且つ、制御用電極から外部へと引き出される接続経路のいずれかの位置に介挿されている半導体装置の態様について説明する。まず一つ目の形態では、配線部材は制御回路部を有し、且つ、当該配線部材が制御用電極に導通接着された構成とすることができる。配線部材に制御回路部が形成されることにより、通電部材等を介さず、配線部材を制御用電極に直接導通接着することができる。具体的には、配線部材が可撓性配線基板として構成され、該可撓性配線基板に電子部品が実装されることにより制御回路部をなす。
【0015】
二つ目の態様としては、通電部材は、第二電極に接続される放熱板に絶縁接着されてなるとともに、制御回路部を有し、且つ、配線部材が当該通電部材の端子に導通接着された構成とすることができる。これは、制御用電極と配線部材との間に制御回路部を有する通電部材が形成された構成であり、通電部材の一方の端子は制御用電極に、もう一方の端子は配線部材に接続される。具体的には、通電部材は配線基板部を備え、該配線基板部に電子部品が実装されることにより制御回路部をなす。
【0016】
【発明の実施の形態】
(第1の実施形態)
図1に示すのは、本発明の半導体装置の第1実施形態であるパワーモジュール1の断面模式図である。パワーモジュール1は、半導体スイッチング素子10(以下、単に半導体チップともいう)、一対の放熱部材2、3、モールド樹脂部4、配線部材5が一体化したものである。このようなパワーモジュール1は、例えばブラシレスモータ用の三相インバータ回路の一部を構成する。半導体チップ10の種類は、例えばIGBTやパワーMOSFETとすることができる。モータなどの誘導負荷に接続されるIGBTには、通常、フリーホイールダイオードが逆並列に接続されるが、図1中には表していない。
【0017】
図5の拡大断面図に示すように、薄板状の半導体チップ10は、一方の主面側に上記第一電極であるエミッタ電極10e(またはソース電極)及び制御用電極であるゲート電極10gが露出し、他方の主面側に上記第二電極であるコレクタ電極10c(またはドレイン電極)が露出するように設計されている。ゲート電極10g、エミッタ電極10e及びコレクタ電極10cには、Ni−Auめっきなど、半田との濡れ性向上のための表面処理が施されている。エミッタ電極10e及びゲート電極10gが露出形成されている主面側において、ゲート電極10g及びエミッタ電極10eの非露出領域は、ポリイミド樹脂等などの絶縁保護膜10aに被覆されている。他方、反対側の主面では、全面にコレクタ電極10cが露出している。
【0018】
そして、半導体チップ10において、コレクタ電極10cにはコレクタ側放熱部材2が、エミッタ電極10eにはエミッタ側放熱部材3が、例えばハンダからなる接合部材6により、それぞれ電気的かつ熱的に接続されている。各放熱部材2、3は、扁平状または板状の形態を有し、接合部材6を介して半導体チップ10に接続される受熱面22、33、外部に露出した放熱面21、31を有する。これらの面はそれぞれ略平面であり、互いに略平行となっている。また、各放熱部材2、3には、モールド樹脂部4の外側に延出する大電流用のリード端子がそれぞれ形成されている(図示せず)。なお、各放熱部材2、3は、熱伝導性および電気伝導性の観点から、たとえばCu、W、Mo、Alのグループから選択される1種の金属材料、もしくはそれらの金属材料を主体とする合金により構成されることが好ましい。
【0019】
また、半導体チップ10の周側面を被覆するとともに、放熱部材2、3により形成される隙間を充填するようにモールド樹脂部4が設けられている。モールド樹脂部4は、たとえばエポキシ樹脂により構成される。
【0020】
さらに、パワーモジュール1は、半導体チップ10のゲート電極10gに制御信号(チャネル切り換え信号)を供給するための配線部材5を有する。そして、以下のような接続形態とすることでボンディングワイヤによる接続を排している。配線部材5は、表面が絶縁加工された可撓性の部材によって構成されており、詳しくは、例えばポリイミドシート内にCuまたはCu合金からなる配線パターンが形成されたもの(一般にフレキシブルリードと呼ばれる)を好適に用いることができる。このように配線部材5が可撓性であることから、外部機器(図示せず)への接続が容易となる。外部機器への接続は、図示しないが例えば、外部機器側にはピンを設けておき、配線部材5の外部に引き出された側の端部には該ピンと嵌合するソケットを設けておくことで、容易に接続できる。
【0021】
また、配線部材5は、表面が絶縁加工されているので放熱部材2、3との接触を気にする必要がなく、放熱部材2、3の間に配することができる。したがって、配線部材2、3の中央付近に位置する半導体チップ10の付近まで配線部材5を引き、ゲート電極10gに配線部材5を直接導通接着することが可能となる。導通接着に関しては、配線部材5の内部配線を剥き出しにした部位と、ゲート電極10gと、を例えば銀ロウからなる導通接合材7を介して接着することで実現できる。これにより、ボンディングワイヤによる接続の場合よりも良好な接続信頼性を得ることができる。
【0022】
次に、エミッタ電極10eに接続された放熱部材3は、エミッタ電極10eに接続するための凸部35が一体形成されている。上述のように、半導体チップ10において、エミッタ電極10eを有する主面には、エミッタ電極10eに加えてゲート電極10gも露出している。したがって、コレクタ電極10cのように主面全域を放熱部材2が覆うような形態で接続することができない。このため、放熱部材3には、受熱面33がエミッタ電極10eの露出面に含まれるような形状となるように凸部35が一体形成される。なお、受熱面がエミッタ電極10eの露出面に含まれるような形状のスペーサ103(図6参照)を配して、エミッタ電極10eと放熱部材2とを接続してもよい。
【0023】
次に、エミッタ電極10eに接続された放熱部材3は、配線部材5を絶縁接着して固定するための絶縁接着部36を有する。そして、配線部材5は絶縁接着部36に、例えばシリコーン樹脂からなる絶縁接着材8を介して絶縁接着されている。本実施形態では、絶縁接着を行う位置がゲート電極10gに近く、絶縁接着部36は凸部35から張り出した形態となっているが、これに限られることはなく、個別に形成して絶縁接着を行っても良いし、またはコレクタ電極10cに接続された放熱部材2に設けて絶縁接着してもよい。
【0024】
以上のようなパワーモジュール1は、以下のような製造工程によって得られる。▲1▼放熱部材2と半導体チップ10とを、受熱面22とコレクタ電極10c側の主面とが対向するよう接合部材(ハンダ)6により固定する。▲2▼放熱部材3の絶縁接着部36に配線部材5を絶縁接着材(シリコーン樹脂)8により絶縁接着、もしくは半導体チップ10のゲート電極10gに配線部材5を導通接着材(銀ロウ)7により導通接着する。▲3▼半導体チップ10と放熱部材3とを、エミッタ電極10eと凸部35の受熱面33とが対向するよう接合部材(ハンダ)6により固定する。▲4▼配線部材5を接着(▲2▼において配線部材5が、放熱部材3側に絶縁接着された場合には半導体チップ10のゲート電極10gに導通接着材7により導通接着、また、半導体チップ10側に導通接着された場合には放熱部材3の絶縁接着部36に絶縁接着材8により絶縁接着)する。▲5▼例えばエポキシ樹脂を放熱部材2、3の間に充填することでモールド樹脂部を形成する。以上によりパワーモジュール1が完成する。
【0025】
(第2の実施形態)
図2に示すのは、本発明の半導体装置の第2実施形態であるインテリジェントパワーモジュール(以下、IPMとする)1の断面模式図である。以下、主として図1と異なるところを述べ、同一部分は図2中に同一符号を付して説明を簡略化する。図2に示すように、IPM1では、モールド樹脂部4内に半導体チップ1の動作制御をおこなうための制御回路部9が封入されている。配線部材5は、例えばポリイミドシート内にCuまたはCu合金からなる配線パターンが形成された可撓性(フレキシブル)配線基板にて構成され、そして当該基板上において制御回路部9が実現されている。詳しくは、可撓性配線基板(配線部材)5の実装面に、電子部品(ゲートドライブIC等の能動素子)91や、チップ抵抗、チップコンデンサ等の受動素子(配線部材5内に組込まれる場合もあるのでここでは図示しない)が実装されることにより、所定の回路が実現し、制御回路部9をなしている。以上のようにして、制御回路部9が、モールド樹脂部4内に封入され、且つ、ゲート電極10gから外部へと引き出される接続経路の途中に介挿された構造が得られる。なお、制御回路部9は例えば、公知のIGBTのゲート駆動回路や、IGBTの過電流、過熱を検出して保護の為の動作をする回路として構成される。また、本実施形態では、制御回路部9は、配線部材5の放熱部材2、3間の領域内に形成されているが、図3のように放熱部材2、3間の領域外で、且つ、モールド樹脂部4内に納まるように形成することもできる。
【0026】
(第3の実施形態)
図4に示すのは、本発明の半導体装置の第3実施形態であるインテリジェントパワーモジュール(IPM)1の断面模式図である。以下、主として図1と異なるところを述べ、同一部分は図4中に同一符号を付して説明を簡略化する。図4に示すように、本実施形態のIPM1でも、上記の第2実施形態と同様に、モールド樹脂部4内に半導体チップ1の動作制御をおこなうための制御回路部9が封入されている。詳しくは、放熱部材2の放熱面21とは逆側の面(受熱面)22の半導体チップ10が接合されていない領域に、例えばシリコーン樹脂(接着剤)からなる絶縁層108を介して、配線基板部92が固定(絶縁接着)されており、該配線基板部92に電子部品91が実装されることにより制御回路部9をなす。なお、制御回路部9は、上記の第2実施形態の場合と同様の回路構成とされている。そして、配線基板部92の片方の端子は、半導体チップ10のゲート電極10gにボンディングワイヤ107により接続されており、もう片方の端子には配線部材5が導通接着材(銀ロウ)7を介して導通接着されている。ここでのボンディングワイヤ107は、互いに近接して各々固定された半導体チップ10と配線基板部92とを接続するものであるので、上記のような問題は生じない。以上のようにして、制御回路部9が、モールド樹脂部4内に封入され、且つ、ゲート電極10gから外部へと引き出される接続経路の途中に介挿された構造が得られる。なお、ここでは、制御回路部9とは上記通電部材を兼ねるものとする。
【図面の簡単な説明】
【図1】第1実施形態の半導体装置(パワーモジュール)の断面構造を表す模式図
【図2】第2実施形態の半導体装置(インテリジェントパワーモジュール)の断面構造を表す模式図
【図3】図2の第2実施形態の変形例を表す図
【図4】第3実施形態の半導体装置(インテリジェントパワーモジュール)の断面構造を表す模式図
【図5】半導体スイッチング素子10の断面構造を表す模式図
【図6】従来の半導体装置の断面構造を表す模式図
【符号の説明】
1 半導体装置
2 放熱部材(コレクタ電極10c側)
3 放熱部材(エミッタ電極10e側)
35 凸部
36 絶縁接着部
4 モールド樹脂部
5 配線部材
6 接合部材
7 導通接着材
8 絶縁接着材
9 制御回路部
91 電子部品
10 半導体スイッチング素子(半導体チップ)
10c コレクタ電極
10e エミッタ電極
10g ゲート電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device including a pair of heat radiating members electrically and thermally connected to both main surfaces of a semiconductor switching element, and radiating heat from both main surfaces.
[0002]
[Prior art]
As a semiconductor device that radiates heat from both main surfaces of a semiconductor switching element, for example, there is a semiconductor device in which a pair of heat radiating members (heat sinks) are arranged so as to sandwich the element, and the space between the heat radiating members is molded with a resin (see the following patent document). 1). In the case of an IGBT (Insulated Gate Bipolar Transistor), which is a typical semiconductor switching element (also referred to as a semiconductor power element), such a semiconductor device has an emitter electrode and a collector electrode which are respectively exposed on two main surfaces of the element. And soldering the heat sinks directly or via spacers. In this case, the heat sink also has a function as a large current path. On the other hand, the gate electrode (control electrode) of the element and the control signal lead extending outside the mold resin portion are electrically connected by a bonding wire. Then, an inverter circuit module is manufactured by assembling a plurality of such element packages, and is used for applications such as motor driving.
[0003]
[Patent Document 1]
JP 2001-156225 A
[Problems to be solved by the invention]
Incidentally, the control signal lead is formed of a metal lead, and its end is connected by a bonding wire in the mold resin portion. A semiconductor device is assembled to an external device. In the case of such a metal lead, a portion extending to the outside must be bent to bend a shape and then assembled (connected) to the external device. In addition, it is difficult to assemble a lead having such a shape into an external device by a human hand.
[0005]
Further, as the wire length of the bonding wire becomes longer, the possibility that adjacent bonding wires come into contact with each other or breakage increases during resin molding. In today's demand for larger heat sinks due to increased heat generation due to miniaturization of elements and higher current density, the problem of such contact and disconnection cannot be overlooked because the wire length can be increased. . Even if a part of the lead is encapsulated in the mold resin part, a load is applied to the lead during the bending and assembly as described above, and a part of the load is transmitted to the bonding wire connected to it. In addition, disconnection may occur. Due to such factors, the connection reliability is degraded and the product yield is reduced. Therefore, it is difficult to directly apply the conventional connection structure using bonding wires.
[0006]
Therefore, an object of the present invention is to provide a resin-molded semiconductor device with a heat-dissipating member that can be easily attached to an external device and has improved yield.
[0007]
Means for Solving the Problems and Functions / Effects of the Invention
In order to solve the above problems, in the semiconductor device of the present invention,
A first electrode and a control electrode on one main surface side, a semiconductor switching element having a second electrode exposed on the other main surface side, and arranged so as to sandwich the semiconductor switching element, and the first electrode and the second A semiconductor device comprising: a pair of heat-dissipating members electrically and thermally connected to electrodes, respectively; and a mold resin portion filling a space between the pair of heat-dissipating members,
A flexible wiring member whose surface is insulated is provided for input of a control signal, and is drawn out.
The wiring member is characterized by being conductively bonded to the control electrode or to a terminal of a current-carrying member connected to the control electrode.
[0008]
According to the semiconductor device of the present invention, a flexible wiring member whose surface is insulated is provided instead of the control signal lead as described above. Further, the wiring member is electrically conductively bonded to the control electrode or the terminal of the current-carrying member connected to the control electrode, so that the wiring member is connected without using a bonding wire. In addition, since the wiring member is flexible, it can be easily assembled to an external device without applying an unnecessary load to the internal connection portion. Furthermore, since the wiring member is directly adhered to the electrode or the terminal, connection reliability can be ensured more than in the case of connection using a bonding wire.
[0009]
Further, in a configuration in which a bonding wire is attached to a metal lead, a short circuit may occur between the metal lead or the bonding wire and the heat radiating member. Therefore, as shown in the example of the conventional semiconductor device 1 'in FIG. 6, the tip of the metal lead 105 is arranged near the end of the heat radiating members 2 and 3, and the element 10 is arranged near the center. In this case, the connection distance, that is, the wire length of the bonding wire 107 must be increased. This is fatal in the present day when it is required to increase the area of the heat radiating members 2 and 3. However, in the present invention, since the surface of the wiring member is insulated, there is no need to worry about contact with the heat radiating member, and the wiring member can be drawn between the heat radiating members. Therefore, even if the position of the electrode or the terminal is near the center between the heat radiating members, the wiring member can be pulled to near the center between the heat radiating members and can be directly bonded. Thereby, it is possible to cope with an increase in the area of the heat radiation member.
[0010]
Further, in the semiconductor device of the present invention, the heat radiating member connected to the first electrode may be configured such that a convex portion for connecting to the first electrode is integrally formed. In the semiconductor switching element, in addition to the first electrode, a control electrode is also exposed on the main surface on the first electrode side. Therefore, the heat dissipating member connected to the first electrode cannot be configured to cover the entire main surface on the first electrode side, and only on the exposed first electrode of the main surface on the first electrode side. Must be connected to Therefore, in the conventional semiconductor device, as shown in FIG. 6, the spacer 103 having a shape that is in contact with only the first electrode of the element 10 is inserted between the element 10 and the heat radiation member 3. At the joint interface between the spacer 103 and the heat dissipating member 3, there may be a problem that the heat is not drawn well. Therefore, such a problem is solved by integrally forming the protrusion for connecting to the first electrode on the heat radiating member (that is, integrally forming the heat radiating member 3 and the spacer 103) as in the present invention. can do. In addition, by integrally forming, the number of components can be reduced, and the bonding process (for example, a solder reflow process) between the heat radiating member 3 and the spacer 103, which has been conventionally performed, can be reduced, so that the cost can be improved. .
[0011]
Further, in the semiconductor device of the present invention, the heat dissipating member may have an insulating bonding portion for insulatingly bonding the wiring member and fixing the wiring member, and the wiring member may be configured to be insulated and bonded to the insulating bonding portion. Since the surface of the wiring member is insulated as described above, there is no need to worry about contact with the heat radiating member. Therefore, the wiring member can be insulated and bonded to the heat radiating member without any trouble. Thereby, the wiring member is fixed, and it is possible to prevent an unnecessary load from being applied to the portion conductively bonded to the electrode or the terminal.
[0012]
Generally, in a semiconductor device, a control circuit for controlling the operation of a semiconductor switching element can be configured to be an intelligent power module (IPM). Conventionally, such a control circuit is configured outside the semiconductor device and sends a control signal to a control electrode through a lead (a control signal lead). However, in this case, since the semiconductor switching element is separated from the control circuit, a path (wiring length) for transmitting the control signal is configured to be long. Therefore, the path is easily affected by noise, and the semiconductor switching element may malfunction. Therefore, in the semiconductor device of the present invention, the control circuit section for controlling the operation of the semiconductor switching element is sealed in the mold resin section and inserted into any position of the connection path drawn out from the control electrode to the outside. And an intelligent power module. Accordingly, the path for transmitting the control signal is shortened, and malfunction of the element due to noise can be reduced. With such a configuration, a space generated between the heat radiating members due to an increase in the area of the heat radiating members can be effectively used.
[0013]
In the case where the control circuit is externally configured as in the related art, since the leads connected to the control electrodes of the elements are exposed in the semiconductor device, handling is performed during manufacturing or assembly. When a person is charged with static electricity, a voltage is applied to the control electrode, which may cause deterioration or destruction of the element. However, in the configuration of the semiconductor device of the present invention, since the wiring member drawn out is connected to the control electrode of the element via the control circuit unit, the control electrode is protected by the control circuit, and the static electricity is reduced. Is not applied directly. As a result, deterioration and destruction of the element can be prevented, which leads to prevention of reduction in yield.
[0014]
Hereinafter, an embodiment of the semiconductor device in which the control circuit portion is sealed in the mold resin portion and is inserted at any position of the connection path led out from the control electrode to the outside will be described. First, in the first mode, the wiring member may have a control circuit portion, and the wiring member may be conductively bonded to the control electrode. By forming the control circuit portion on the wiring member, the wiring member can be directly and conductively bonded to the control electrode without the interposition of a conducting member or the like. Specifically, the wiring member is configured as a flexible wiring board, and electronic components are mounted on the flexible wiring board to form a control circuit unit.
[0015]
As a second mode, the current-carrying member is insulated and bonded to a heat sink connected to the second electrode, has a control circuit portion, and the wiring member is conductively bonded to a terminal of the current-carrying member. Configuration. This is a configuration in which a current-carrying member having a control circuit portion is formed between the control electrode and the wiring member, and one terminal of the current-carrying member is connected to the control electrode, and the other terminal is connected to the wiring member. You. Specifically, the current-carrying member includes a wiring board section, and the electronic component is mounted on the wiring board section to form a control circuit section.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
FIG. 1 is a schematic cross-sectional view of a power module 1 according to a first embodiment of the semiconductor device of the present invention. The power module 1 includes a semiconductor switching element 10 (hereinafter, also simply referred to as a semiconductor chip), a pair of heat radiating members 2 and 3, a mold resin part 4, and a wiring member 5 integrated. Such a power module 1 constitutes a part of a three-phase inverter circuit for a brushless motor, for example. The type of the semiconductor chip 10 can be, for example, an IGBT or a power MOSFET. An IGBT connected to an inductive load such as a motor is generally connected with a freewheel diode in anti-parallel, but is not shown in FIG.
[0017]
As shown in the enlarged cross-sectional view of FIG. 5, in the thin semiconductor chip 10, the emitter electrode 10e (or source electrode) as the first electrode and the gate electrode 10g as the control electrode are exposed on one main surface side. The second main electrode is designed such that the collector electrode 10c (or the drain electrode) is exposed on the other main surface side. The gate electrode 10g, the emitter electrode 10e, and the collector electrode 10c are subjected to a surface treatment such as Ni-Au plating for improving wettability with solder. On the main surface side where the emitter electrode 10e and the gate electrode 10g are exposed, the non-exposed regions of the gate electrode 10g and the emitter electrode 10e are covered with an insulating protective film 10a such as a polyimide resin. On the other hand, on the opposite main surface, the collector electrode 10c is entirely exposed.
[0018]
In the semiconductor chip 10, the collector-side heat radiating member 2 is connected to the collector electrode 10c, and the emitter-side heat radiating member 3 is connected to the emitter electrode 10e by a bonding member 6 made of, for example, solder. I have. Each of the heat radiating members 2 and 3 has a flat or plate shape, and has heat receiving surfaces 22 and 33 connected to the semiconductor chip 10 via the bonding member 6 and heat radiating surfaces 21 and 31 exposed to the outside. Each of these surfaces is substantially flat and substantially parallel to each other. In addition, a lead terminal for a large current extending outside the mold resin portion 4 is formed on each of the heat radiation members 2 and 3 (not shown). The heat dissipating members 2 and 3 are mainly composed of, for example, one kind of metal material selected from the group of Cu, W, Mo, and Al from the viewpoint of heat conductivity and electric conductivity, or a metal material thereof. It is preferable to be composed of an alloy.
[0019]
In addition, a mold resin portion 4 is provided so as to cover the peripheral side surface of the semiconductor chip 10 and fill a gap formed by the heat radiation members 2 and 3. The mold resin part 4 is made of, for example, an epoxy resin.
[0020]
Further, the power module 1 has a wiring member 5 for supplying a control signal (channel switching signal) to the gate electrode 10g of the semiconductor chip 10. The connection by the bonding wire is eliminated by adopting the following connection form. The wiring member 5 is formed of a flexible member whose surface is insulated. More specifically, for example, a wiring sheet made of Cu or a Cu alloy formed in a polyimide sheet (generally called a flexible lead) Can be suitably used. Since the wiring member 5 is flexible, connection to an external device (not shown) is facilitated. For connection to the external device, not shown, for example, a pin is provided on the external device side, and a socket that fits the pin is provided at an end of the wiring member 5 on the side pulled out. Easy to connect.
[0021]
Also, since the surface of the wiring member 5 is insulated, there is no need to worry about contact with the heat radiating members 2 and 3, and the wiring member 5 can be disposed between the heat radiating members 2 and 3. Therefore, the wiring member 5 can be pulled to the vicinity of the semiconductor chip 10 located near the center of the wiring members 2 and 3, and the wiring member 5 can be directly conductively bonded to the gate electrode 10g. The conductive bonding can be realized by bonding a portion of the wiring member 5 where the internal wiring is exposed and the gate electrode 10g via a conductive bonding material 7 made of, for example, silver solder. Thereby, better connection reliability can be obtained than in the case of connection using a bonding wire.
[0022]
Next, the heat radiation member 3 connected to the emitter electrode 10e is integrally formed with a convex portion 35 for connecting to the emitter electrode 10e. As described above, in the semiconductor chip 10, on the main surface having the emitter electrode 10e, the gate electrode 10g is also exposed in addition to the emitter electrode 10e. Therefore, the connection cannot be made in such a manner that the heat radiating member 2 covers the entire main surface like the collector electrode 10c. Therefore, the heat radiating member 3 is integrally formed with the convex portion 35 so that the heat receiving surface 33 has a shape included in the exposed surface of the emitter electrode 10e. Note that a spacer 103 (see FIG. 6) whose heat receiving surface is included in the exposed surface of the emitter electrode 10e may be arranged to connect the emitter electrode 10e and the heat radiation member 2.
[0023]
Next, the heat radiating member 3 connected to the emitter electrode 10e has an insulating bonding portion 36 for insulatingly bonding the wiring member 5 to fix it. The wiring member 5 is insulated and bonded to the insulating bonding portion 36 via an insulating bonding material 8 made of, for example, a silicone resin. In the present embodiment, the position where the insulating bonding is performed is close to the gate electrode 10g, and the insulating bonding portion 36 protrudes from the convex portion 35. However, the present invention is not limited to this. May be performed, or may be provided on the heat dissipating member 2 connected to the collector electrode 10c and insulated and bonded.
[0024]
The power module 1 as described above is obtained by the following manufacturing process. (1) The heat radiating member 2 and the semiconductor chip 10 are fixed by the joining member (solder) 6 such that the heat receiving surface 22 and the main surface on the collector electrode 10c side face each other. (2) The wiring member 5 is insulated and bonded to the insulating bonding portion 36 of the heat radiation member 3 with an insulating bonding material (silicone resin) 8, or the wiring member 5 is bonded to the gate electrode 10g of the semiconductor chip 10 with a conductive bonding material (silver solder) 7. Conductive bonding. (3) The semiconductor chip 10 and the heat radiating member 3 are fixed by the joining member (solder) 6 so that the emitter electrode 10e and the heat receiving surface 33 of the convex portion 35 face each other. {Circle around (4)} bonding the wiring member 5 (in the case where the wiring member 5 is insulated and bonded to the heat radiating member 3 side in {circle over (2)}), the wiring member 5 is conductively bonded to the gate electrode 10g of the semiconductor chip 10 by the conductive bonding material 7; When the conductive bonding is performed on the 10 side, the insulating bonding portion 36 of the heat radiating member 3 is insulated and bonded by the insulating bonding material 8). {Circle around (5)} A mold resin portion is formed by filling an epoxy resin between the heat radiation members 2 and 3, for example. Thus, the power module 1 is completed.
[0025]
(Second embodiment)
FIG. 2 is a schematic cross-sectional view of an intelligent power module (hereinafter, referred to as IPM) 1 according to a second embodiment of the semiconductor device of the present invention. Hereinafter, the points that are different from FIG. 1 will be mainly described, and the same portions will be denoted by the same reference numerals in FIG. 2 to simplify the description. As shown in FIG. 2, in the IPM 1, a control circuit section 9 for controlling the operation of the semiconductor chip 1 is sealed in the mold resin section 4. The wiring member 5 is configured by a flexible (flexible) wiring substrate in which a wiring pattern made of Cu or Cu alloy is formed in a polyimide sheet, for example, and the control circuit unit 9 is realized on the substrate. More specifically, an electronic component (active element such as a gate drive IC) 91 and a passive element such as a chip resistor and a chip capacitor (when incorporated in the wiring member 5) are mounted on the mounting surface of the flexible wiring substrate (wiring member) 5. (Not shown here), a predetermined circuit is realized, and the control circuit unit 9 is formed. As described above, a structure is obtained in which the control circuit section 9 is sealed in the mold resin section 4 and inserted in the middle of the connection path drawn from the gate electrode 10g to the outside. The control circuit unit 9 is configured as, for example, a known IGBT gate drive circuit, or a circuit that detects overcurrent and overheating of the IGBT and performs an operation for protection. Further, in the present embodiment, the control circuit unit 9 is formed in the region between the heat radiating members 2 and 3 of the wiring member 5, but outside the region between the heat radiating members 2 and 3 as shown in FIG. Alternatively, it can be formed so as to fit in the mold resin portion 4.
[0026]
(Third embodiment)
FIG. 4 is a schematic sectional view of an intelligent power module (IPM) 1 according to a third embodiment of the semiconductor device of the present invention. Hereinafter, the points that are different from FIG. 1 are mainly described, and the same portions are denoted by the same reference numerals in FIG. 4 to simplify the description. As shown in FIG. 4, in the IPM 1 of the present embodiment, similarly to the above-described second embodiment, a control circuit section 9 for controlling the operation of the semiconductor chip 1 is sealed in the mold resin section 4. More specifically, wiring is performed on a surface (heat receiving surface) 22 of the heat radiating member 2 opposite to the heat radiating surface 21 where the semiconductor chip 10 is not bonded via an insulating layer 108 made of, for example, a silicone resin (adhesive). The board part 92 is fixed (insulated and adhered), and the electronic component 91 is mounted on the wiring board part 92 to form the control circuit part 9. The control circuit section 9 has the same circuit configuration as that of the second embodiment. One terminal of the wiring board portion 92 is connected to the gate electrode 10 g of the semiconductor chip 10 by a bonding wire 107, and the other terminal is connected to the wiring member 5 via a conductive adhesive (silver solder) 7. Conductive bonding. Since the bonding wires 107 here connect the semiconductor chip 10 and the wiring board 92 which are fixed to each other in close proximity to each other, the above-described problem does not occur. As described above, a structure is obtained in which the control circuit section 9 is sealed in the mold resin section 4 and inserted in the middle of the connection path drawn from the gate electrode 10g to the outside. Here, it is assumed that the control circuit unit 9 also serves as the above-mentioned conducting member.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating a cross-sectional structure of a semiconductor device (power module) according to a first embodiment. FIG. 2 is a schematic diagram illustrating a cross-sectional structure of a semiconductor device (intelligent power module) according to a second embodiment. FIG. 4 is a schematic view illustrating a cross-sectional structure of a semiconductor device (intelligent power module) according to a third embodiment. FIG. 5 is a schematic view illustrating a cross-sectional structure of a semiconductor switching element. FIG. 6 is a schematic diagram showing a cross-sectional structure of a conventional semiconductor device.
1 semiconductor device 2 heat dissipation member (collector electrode 10c side)
3. Heat dissipation member (emitter electrode 10e side)
35 Convex part 36 Insulating adhesive part 4 Mold resin part 5 Wiring member 6 Joining member 7 Conductive adhesive 8 Insulating adhesive 9 Control circuit 91 Electronic component 10 Semiconductor switching element (semiconductor chip)
10c Collector electrode 10e Emitter electrode 10g Gate electrode

Claims (8)

一方の主面側に第一電極及び制御用電極、他方の主面側に第二電極が露出した半導体スイッチング素子と、前記半導体スイッチング素子を挟む形で配置され、前記第一電極と前記第二電極とにそれぞれ電気的かつ熱的に接続される一対の放熱部材と、前記一対の放熱部材の間を充填するモールド樹脂部と、を備える半導体装置であって、
制御信号の入力に供され、且つ、外部に引き出される、表面が絶縁加工された可撓性の配線部材を有するとともに、
当該配線部材は、前記制御用電極、もしくは該制御用電極に接続された通電部材の端子に導通接着されてなることを特徴とする半導体装置。
A first electrode and a control electrode on one main surface side, a semiconductor switching element having a second electrode exposed on the other main surface side, and arranged so as to sandwich the semiconductor switching element, and the first electrode and the second A semiconductor device comprising: a pair of heat-dissipating members electrically and thermally connected to electrodes, respectively; and a mold resin portion filling a space between the pair of heat-dissipating members,
A flexible wiring member whose surface is insulated is provided for input of a control signal, and is drawn out.
The semiconductor device, wherein the wiring member is conductively bonded to the control electrode or a terminal of a current-carrying member connected to the control electrode.
前記第一電極に接続される前記放熱部材は、該第一電極に接続するための凸部が一体形成されてなることを特徴とする請求項1に記載の半導体装置。2. The semiconductor device according to claim 1, wherein the heat radiation member connected to the first electrode is formed integrally with a protrusion for connecting to the first electrode. 3. 前記放熱部材は、前記配線部材を絶縁接着して固定するための絶縁接着部を有し、前記配線部材は当該絶縁接着部に絶縁接着されてなることを特徴とする請求項1または2に記載の半導体装置。The said heat dissipation member has an insulating bonding part for fixing the said wiring member by insulating bonding, The said wiring member is insulated and bonded to the said insulating bonding part, The Claims 1 or 2 characterized by the above-mentioned. Semiconductor device. 前記半導体スイッチング素子の動作制御を行う制御回路部が、前記モールド樹脂部内に封入され、且つ、前記制御用電極から外部へと引き出される接続経路のいずれかの位置に介挿されていることを特徴とする請求項1ないし3のいずれか1項に記載の半導体装置。A control circuit section for controlling the operation of the semiconductor switching element is sealed in the mold resin section, and is inserted at any position of a connection path drawn from the control electrode to the outside. 4. The semiconductor device according to claim 1, wherein: 前記配線部材は前記制御回路部を有し、且つ、当該配線部材が前記制御用電極に導通接着されてなることを特徴とする請求項4に記載の半導体装置。5. The semiconductor device according to claim 4, wherein the wiring member includes the control circuit unit, and the wiring member is conductively bonded to the control electrode. 6. 前記配線部材は可撓性配線基板として構成され、該可撓性配線基板に電子部品が実装されることにより前記制御回路部をなすことを特徴とする請求項5に記載の半導体装置。6. The semiconductor device according to claim 5, wherein the wiring member is configured as a flexible wiring board, and the control circuit section is formed by mounting an electronic component on the flexible wiring board. 前記通電部材は、前記第二電極に接続される前記放熱板に絶縁接着されてなるとともに、前記制御回路部を有し、且つ、前記配線部材が当該通電部材の端子に導通接着されてなることを特徴とする請求項4に記載の半導体装置。The current-carrying member is insulated and adhered to the heat sink connected to the second electrode, has the control circuit section, and the wiring member is conductively adhered to a terminal of the current-carrying member. The semiconductor device according to claim 4, wherein: 前記通電部材は配線基板部を備え、該配線基板部に電子部品が実装されることにより前記制御回路部をなすことを特徴とする請求項7に記載の半導体装置。The semiconductor device according to claim 7, wherein the current-carrying member includes a wiring board, and the control circuit is formed by mounting an electronic component on the wiring board.
JP2003093241A 2003-03-31 2003-03-31 Semiconductor device Expired - Fee Related JP4019993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003093241A JP4019993B2 (en) 2003-03-31 2003-03-31 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003093241A JP4019993B2 (en) 2003-03-31 2003-03-31 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2004303854A true JP2004303854A (en) 2004-10-28
JP4019993B2 JP4019993B2 (en) 2007-12-12

Family

ID=33406088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003093241A Expired - Fee Related JP4019993B2 (en) 2003-03-31 2003-03-31 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4019993B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222121A (en) * 2005-02-08 2006-08-24 Renesas Technology Corp Method of manufacturing semiconductor device
WO2007041902A1 (en) * 2005-10-12 2007-04-19 Xuelin Li A heat conducting and dissipating structure for white light led package
JP2009253131A (en) * 2008-04-09 2009-10-29 Denso Corp Manufacturing method of semiconductor device
JP2011023654A (en) * 2009-07-17 2011-02-03 Toyota Motor Corp Power module
JP2012175070A (en) * 2011-02-24 2012-09-10 Panasonic Corp Semiconductor package
WO2013038749A1 (en) * 2011-09-15 2013-03-21 住友電気工業株式会社 Electrode terminal with wiring sheet, wiring structure body, semiconductor device, and method of manufacturing said semiconductor device
WO2014038587A1 (en) * 2012-09-07 2014-03-13 日立オートモティブシステムズ株式会社 Semiconductor device and production method for same
JPWO2016171122A1 (en) * 2015-04-21 2017-05-18 三菱電機株式会社 Semiconductor device and manufacturing method thereof
CN110364499A (en) * 2018-03-26 2019-10-22 英飞凌科技奥地利有限公司 More encapsulation top sides are cooling
CN111406316A (en) * 2017-10-26 2020-07-10 新电元工业株式会社 Electronic component

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222121A (en) * 2005-02-08 2006-08-24 Renesas Technology Corp Method of manufacturing semiconductor device
JP4547279B2 (en) * 2005-02-08 2010-09-22 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
WO2007041902A1 (en) * 2005-10-12 2007-04-19 Xuelin Li A heat conducting and dissipating structure for white light led package
JP2009253131A (en) * 2008-04-09 2009-10-29 Denso Corp Manufacturing method of semiconductor device
JP2011023654A (en) * 2009-07-17 2011-02-03 Toyota Motor Corp Power module
JP2012175070A (en) * 2011-02-24 2012-09-10 Panasonic Corp Semiconductor package
WO2013038749A1 (en) * 2011-09-15 2013-03-21 住友電気工業株式会社 Electrode terminal with wiring sheet, wiring structure body, semiconductor device, and method of manufacturing said semiconductor device
CN104603937A (en) * 2012-09-07 2015-05-06 日立汽车***株式会社 Semiconductor device and production method for same
WO2014038587A1 (en) * 2012-09-07 2014-03-13 日立オートモティブシステムズ株式会社 Semiconductor device and production method for same
JPWO2014038587A1 (en) * 2012-09-07 2016-08-12 日立オートモティブシステムズ株式会社 Semiconductor device and manufacturing method thereof
US9530722B2 (en) 2012-09-07 2016-12-27 Hitachi Automotive Systems, Ltd. Semiconductor device and production method for same
JPWO2016171122A1 (en) * 2015-04-21 2017-05-18 三菱電機株式会社 Semiconductor device and manufacturing method thereof
CN111406316A (en) * 2017-10-26 2020-07-10 新电元工业株式会社 Electronic component
CN111406316B (en) * 2017-10-26 2023-08-01 新电元工业株式会社 Electronic component
CN110364499A (en) * 2018-03-26 2019-10-22 英飞凌科技奥地利有限公司 More encapsulation top sides are cooling
CN110364499B (en) * 2018-03-26 2023-07-28 英飞凌科技奥地利有限公司 Multi-package topside cooling

Also Published As

Publication number Publication date
JP4019993B2 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
JP3516789B2 (en) Semiconductor power module
JP3910383B2 (en) Power module and inverter
JP3879688B2 (en) Semiconductor device
KR100342589B1 (en) Semiconductor power modules and methods for manufacturing the same
US7884455B2 (en) Semiconductor device
US10204849B2 (en) Semiconductor device
US20120267682A1 (en) Semiconductor device
JP5017332B2 (en) Inverter
JP4262453B2 (en) Power semiconductor device
JP2008118067A (en) Power module and motor-integrated controlling device
JPH09260550A (en) Semiconductor device
CN110914975B (en) Power semiconductor module
JP4019993B2 (en) Semiconductor device
JP7266508B2 (en) semiconductor equipment
US20130270706A1 (en) Semiconductor device
JP2004071977A (en) Semiconductor device
JP4403166B2 (en) Power module and power converter
JP2004221381A (en) Semiconductor device
JP2009130055A (en) Semiconductor device
CN112397472A (en) Semiconductor device with a plurality of semiconductor chips
JP2004048084A (en) Semiconductor power module
CN218975436U (en) Semiconductor device and electronic apparatus
KR20190085587A (en) High thermal conductivity semiconductor package
JP4349728B2 (en) Semiconductor device
JP3753132B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees