JP2004301661A - 半導体集積回路 - Google Patents

半導体集積回路 Download PDF

Info

Publication number
JP2004301661A
JP2004301661A JP2003094843A JP2003094843A JP2004301661A JP 2004301661 A JP2004301661 A JP 2004301661A JP 2003094843 A JP2003094843 A JP 2003094843A JP 2003094843 A JP2003094843 A JP 2003094843A JP 2004301661 A JP2004301661 A JP 2004301661A
Authority
JP
Japan
Prior art keywords
scan
flip
circuit
clock signal
clock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003094843A
Other languages
English (en)
Inventor
Toshikazu Date
寿和 伊達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003094843A priority Critical patent/JP2004301661A/ja
Priority to US10/807,446 priority patent/US20040250185A1/en
Publication of JP2004301661A publication Critical patent/JP2004301661A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3185Reconfiguring for testing, e.g. LSSD, partitioning
    • G01R31/318533Reconfiguring for testing, e.g. LSSD, partitioning using scanning techniques, e.g. LSSD, Boundary Scan, JTAG
    • G01R31/318536Scan chain arrangements, e.g. connections, test bus, analog signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3185Reconfiguring for testing, e.g. LSSD, partitioning
    • G01R31/318533Reconfiguring for testing, e.g. LSSD, partitioning using scanning techniques, e.g. LSSD, Boundary Scan, JTAG
    • G01R31/318544Scanning methods, algorithms and patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3185Reconfiguring for testing, e.g. LSSD, partitioning
    • G01R31/318533Reconfiguring for testing, e.g. LSSD, partitioning using scanning techniques, e.g. LSSD, Boundary Scan, JTAG
    • G01R31/318572Input/Output interfaces

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

【課題】スキャン診断回路におけるホールド違反の発生を回避する。
【解決手段】クロック信号が伝達される方向と反対の方向にスキャンデータが流れるようにスキャンチェーン(26,27)を接続することにより、スキャンテストデータに対してクロック信号の遷移速度を速くし、さらに、折り返し部(300)の抵抗をクロック信号伝達経路における抵抗よりも大きくすることで折り返し部でのデータ伝達を遅延させてホールド違反の発生を回避する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、半導体集積回路、さらにはそれに含まれるスキャン診断回路の改良技術に関する。
【0002】
【従来の技術】
半導体集積回路に含まれる組み合わせ回路の故障を検出する方法としてスキャンテストが知られている(例えば特許文献1参照)。このスキャンテストを可能とするには、組み合わせ回路とともにスキャンチェーン回路(「スキャンパス回路」とも称される)を予め組み込んでおく必要がある。スキャンチェーン回路は、スキャン入力端子、スキャン出力端子、及びクロック入力端子を有する複数のスキャンフリップフロップ回路が結合されて成る。スキャンフリップフロップ回路のスキャン出力端子は、それに隣接するスキャンフリップフロップ回路のスキャン入力端子に結合されることによって多数のスキャンフリップフロップ回路がチェーン状に結合される。そのような結合により、スキャンテストのためのデータは、クロック信号に同期してスキャンフリップフロップ回路からそれに結合されたスキャンフリップフロップ回路へと順次シフトされる。
【0003】
スキャンチェーン回路は基本的にはシフトレジスタ構成であるため、動作クロックの遷移速度がスキャンテストデータの遷移速度より遅くなると、データのホールドタイミングが不適切となる。この現象はホールド違反と称される。ホールド違反は、タイミング解析結果に基づいて部分的にディレイバッファ等の遅延素子を追加し遅延量を調整することにより解決することが知られている。スキャンチェーン回路の面積増大を回避するために、追加する遅延素子の数は少ない方が好ましいが、スキャンチェーン回路の配線が最適化されない場合には、多くの遅延素子を追加しなければならず、そうするとスキャンチェーン回路の面積はますます増大する。また、半導体集積回路においてデータパスのような高密度実装が行われている部位では、ディレイバッファ等の遅延素子の挿入するスペースを確保するもの困難とされる。スキャンフリップフロップ回路内にディレイバッファ等の遅延素子を予め組み込んでおくことも考えられるが、そうするとスキャンフリップフロップ回路の面積が大きくなるから、スキャンチェーン回路の面積増大を伴うことに変わりはない。
【0004】
特許文献1では、スキャンパス回路(スキャンチェーン回路)を組み込むことによるLSIのチップ面積の増大を最小限に抑えるため、スキャンパス回路を伝搬するスキャンテストデータの搬送方向に対して逆の方向からクロック信号を供給する位置にクロックドライバを配置するようにしている。そのような配置によれば、スキャンテストデータに対してクロック信号の遷移速度を速くできることから、ディレイバッファ等の遅延素子の挿入を必要としないため、その分、チップ面積の増大を抑えることができる。
【0005】
【特許文献1】
特開2002−76123号公報(第26段落)
【0006】
【発明が解決しようとする課題】
しかしながら、特許文献1記載技術においては、スキャンチェーン回路が多段に構成される場合や、スキャンフリップフロップ回路が分散配置される場合については考慮されていない。このため、スキャンチェーン回路が多段に構成される場合やスキャンフリップフロップ回路が分散配置される場合のように、スキャンチェーン回路が複雑に構成される場合にはホールド違反を生ずるおそれがある。
【0007】
本発明の目的は、スキャン診断回路におけるホールド違反を回避するための技術を提供することにある。
【0008】
本発明の前記並びにその他の目的と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。
【0009】
【課題を解決するための手段】
本願において開示される発明のうち代表的なものの概要を簡単に説明すれば下記の通りである。
【0010】
すなわち、組み合わせ回路と、上記組み合わせ回路のスキャンテストを可能とするスキャン診断回路とを含んで半導体集積回路が構成されるとき、上記スキャン診断回路は、クロック信号に同期動作可能な複数のスキャンフリップフロップ回路が結合された第1スキャンチェーン部と、上記第1スキャンチェーン部の後段に配置され、クロック信号に同期動作可能な複数のスキャンフリップフロップ回路が結合された第2スキャンチェーン部と、上記第1スキャンチェーン部を伝搬するスキャンテストデータの伝搬方向とは逆の方向からクロック信号を供給可能な第1クロックバッファと、上記第2スキャンチェーン部を伝搬するスキャンテストデータの伝搬方向とは逆の方向からクロック信号を供給可能な第2クロックバッファと、上記第1スキャンチェーン部内の上記第1クロックバッファに最も近い位置に配置されたスキャンフリップフロップ回路から出力されたスキャンテストデータを上記第2スキャンチェーン部内の上記第2クロックバッファから最も遠い位置に配置されたスキャンフリップフロップ回路に伝達するための折り返し部とを含んで成る。
【0011】
上記の手段によれば、上記第1クロックバッファは、上記第1スキャンチェーン部を伝搬するスキャンテストデータの伝搬方向とは逆の方向からクロック信号を供給し、上記第2バッファは、上記第2スキャンチェーン部を伝搬するスキャンテストデータの伝搬方向とは逆の方向からクロック信号を供給する。これにより、上記第1スキャンチェーン部及び上記第2スキャンチェーン部においては、スキャンテストデータに対してクロック信号の遷移速度を速くできることから、そこでのホールド違反の発生を回避することができる。このとき、上記第1スキャンチェーン部内の上記第1クロックバッファに最も近い位置に配置されたスキャンフリップフロップ回路から出力されたスキャンテストデータを、上記第2スキャンチェーン部内の上記第2クロックバッファから最も遠い位置に配置されたスキャンフリップフロップ回路に伝達するための折り返し部が設けられることで、上記第1スキャンチェーン部の後段に上記第2スキャンチェーン部が配置されているように、複数のスキャンチェーン部が多段結合された場合においても、各スキャンチェーン部間でクロック信号の伝達方向を揃えることができる。そして、上記折り返し部においては、上記第1スキャンチェーン部内の上記第1クロックバッファに最も近い位置に配置されたスキャンフリップフロップ回路から出力されたスキャンテストデータを、上記第2スキャンチェーン部内の上記第2クロックバッファから最も遠い位置に配置されたスキャンフリップフロップ回路に伝達可能に設けられているため、スキャンテストデータとクロック信号の伝搬方向が同じになり、ここでホールド違反を生ずることが考えられる。しかしながら、上記第1スキャンチェーン部や上記第2スキャンチェーン部のビット幅が大きいほど、上記折り返し部による信号伝達経路は長くなり、そこでの配線抵抗値が大きくなり、そこでのホールド違反を生じにくくなる。すなわち、スキャンテストデータとクロック信号の伝搬方向が同じ場合においてホールド違反を回避するには、互いに結合された二つのスキャンフリップフロップ回路間の遅延時間を、当該二つのスキャンフリップフロップ回路のクロックスキュー差とスキャンフリップフロップ回路のホールド時間との和よりも大きくすればよいから、上記のように上記折り返し部による信号伝達経路が長くなり、そこでの配線抵抗値が大きくなれば、そこで十分な遅延時間を確保することができ、上記折り返し部でのホールド違反をも回避することができる。
【0012】
上記折り返し部における配線抵抗を大きくするため、上記クロック信号の伝搬ラインよりも細い配線層で形成すると良い。また、多層化された配線層を有し、配線層によって単位長さ当たりの抵抗値が異なるとき、上記折り返し部は、上記クロック信号の伝搬ラインが形成された配線より上記抵抗値が高い配線を使用して形成すると良い。
【0013】
上記折り返し部における配線抵抗によって十分な遅延時間を確保することができない場合には、上記折り返し部のスキャンテストデータ伝搬経路上に確保された遅延素子挿入可能領域に、上記遅延素子を挿入することによってホールド違反の発生を回避することができる。上記遅延素子挿入可能領域は、データパス以外の部位に予め確保しておき、遅延素子の挿入の必要性が生じた場合に、上記領域を利用して遅延素子を形成するようにすれば、遅延素子の挿入は容易となる。
【0014】
さらに、上記第1クロックバッファの出力信号を遅延可能なスキャンテスト用クロックバッファと、上記スキャンチェーン回路によるスキャンテスト時に、上記上記第1クロックバッファからの出力信号に代えて上記スキャンテスト用クロックバッファの出力信号を上記第1スキャンチェーン部に伝達可能なセレクタを設けることができる。
【0015】
そして、クロックバッファと、上記クロックバッファからクロック信号を供給可能なエリアにおいて分散配置された複数のスキャンフリップフロップとを含む場合には、上記クロックバッファから上記スキャンフリップフロップ回路までのクロック信号の遅延時間の大きいスキャンフリップフロップ回路から順にスキャンチェーン接続を行うことで、スキャンテストデータに対してクロック信号の遷移速度を速くできることから、ホールド違反の発生を回避することができる。
【0016】
【発明の実施の形態】
図1には、本発明にかかる半導体集積回路の主要部が示される。この半導体集積回路は、所定の論理演算機能を有する組み合わせ回路100と、この組み合わせ回路100の故障を検出可能なスキャン診断回路200とを含み、公知の半導体集積回路製造技術により、単結晶シリコン基板などの一つの半導体基板に形成される。
【0017】
上記スキャン診断回路200は、特に制限されないが、JTAG回路(Joint Test Action Group、合同試験実施グループ基準にもとづく回路)21、PLL(フェーズ・ロックド・ループ)分周器22、クロック選択回路23、クロックバッファ24,25、スキャンチェーン部26,27を含む。
【0018】
JTAG回路21は、JTAG規格により定義された5個のピンを含み、上記組み合わせ回路100のスキャンテストを制御する。上記5個のピンは、テストクロック入力ピンTCK(test clock input) 、テストモードセレクト入力ピンTMS(test mode select input) 、テストデータ入力ピンTDI(test data input )、テストデータ出力ピンTDO(test data output)、及びテストリセットアクティブローTRST(test reset input,active low)とされる。JTAG回路21は、入力された各種信号に基づいてスキャンテスト制御のための各種信号を生成する。この信号には、テストクロック信号、テストデータ、及びスキャンモード信号が含まれる。テストクロック信号は後段に配置されたクロック選択回路23に伝達される。クロック選択回路23は、JTAG回路21から伝達されたテストクロック信号とPLL分周回路22で生成されたクロック信号とを選択的に後段のクロックバッファ24,25に伝達する。
【0019】
スキャンチェーン部26は、組み合わせ回路100の入力端子側に配置され、特に制限されないが、4個のスキャンフリップフロップ回路261〜264が結合されて成る。
【0020】
スキャンチェーン部27は、組み合わせ回路100の出力端子側に配置され、特に制限されないが、4個のスキャンフリップフロップ回路271〜274が結合されて成る。
【0021】
上記スキャンフリップフロップ回路261〜264,271〜274は、それぞれデータ入力端子d、スキャン入力端子sid、スキャンモード端子se、クロック入力端子ck、スキャン出力端子sod、及びデータ出力端子qを有する。
【0022】
スキャンチェーン部26において、スキャンフリップフロップ回路261のスキャン入力端子sidにはJTAG回路21からテストデータが伝達され、クロック入力端子ckにはクロックバッファ24を介してクロック信号が伝達される。スキャンモード端子seにはJTAG回路21からスキャンモード信号が伝達され、データ入力端子dには図示されない前段回路から4ビットデータが伝達される。データ出力端子qは組み合わせ回路100の入力端子に結合される。テストデータのスキャンイン・スキャンアウトを可能とするため、スキャンフリップフロップ回路261のスキャン出力端子sodはスキャンフリップフロップ回路262のスキャン入力端子sidに結合され、スキャンフリップフロップ回路262のスキャン出力端子sodはスキャンフリップフロップ回路263のスキャン入力端子sidに結合され、スキャンフリップフロップ回路263のスキャン出力端子sodはスキャンフリップフロップ回路264のスキャン入力端子sidに結合される。スキャンフリップフロップ回路264のスキャン出力端子sodはスキャンチェーン部27におけるスキャンフリップフロップ回271のスキャン入力端子sidに結合される。このスキャンフリップフロップ回路264のスキャン出力端子sodからスキャンチェーン部27におけるスキャンフリップフロップ回271のスキャン入力端子に至る信号伝達経路は折り返し部300とされる。
【0023】
スキャンチェーン部27において、スキャンフリップフロップ回路271のスキャン入力端子sidにはスキャンフリップフロップ回路264のスキャン出力端子から出力されたテストデータが伝達され、クロック入力端子ckにはクロックバッファ25を介してクロック信号が伝達される。スキャンモード端子seにはJTAG回路21からスキャンモード信号が伝達され、データ入力端子dには組み合わせ論理回路100から4ビットデータが伝達される。データ出力端子qは図示されない後段回路に結合される。テストデータのスキャンイン・スキャンアウトを可能とするため、スキャンフリップフロップ回路271のスキャン出力端子sodはスキャンフリップフロップ回路272のスキャン入力端子sidに結合され、スキャンフリップフロップ回路272のスキャン出力端子sodはスキャンフリップフロップ回路273のスキャン入力端子sidに結合され、スキャンフリップフロップ回路273のスキャン出力端子sodはスキャンフリップフロップ回路274のスキャン入力端子sidに結合される。スキャンフリップフロップ回路274のスキャン出力端子sodはJTAG回路21に結合され、テスト結果(テストデータ)の回収が可能とされる。
【0024】
図2には上記スキャンフリップフロップ回路261の構成例が示される。
【0025】
スキャンフリップフロップ回路261は、エッジトリガタイプとされ、図2に示されるように、セレクタ11、フリップフロップ回路12、及び出力バッファ13を含んで成る。セレクタ11は、スキャンモード端子seに伝達されたスキャンモード信号に応じて、データ入力端子dから入力されたデータと、スキャン入力端子sidから入力されたテストデータとを選択的に後段のフリップフロップ回路12に伝達する。尚、他のスキャンフリップフロップ回路262〜264,271〜274は上記スキャンフリップフロップ回路261と同一構成とされるため、それらの詳細な説明を省略する。
【0026】
上記の構成において、スキャンフリップフロップ回路261〜264,271〜274のスキャンモード端子seに伝達されたスキャンモード信号がローレベル状態にされると、通常動作モードとされ、スキャンフリップフロップ回路261〜264,271〜274においては、図3に示されるように、データ入力端子dから入力されたデータが通常クロック信号(PLL分周回路22で生成されたクロック信号)の波形立ち上がりエッジに同期して保持され、データ出力端子qから出力される。これにより、組み合わせ回路100の前段回路(図示せず)からの出力データがスキャンチェーン部26を介して組み合わせ回路100に伝達され、また、組み合わせ回路100の出力データがスキャンチェーン部27を介して後段回路(図示せず)に伝達される。
【0027】
また、スキャンモード信号がハイレベル状態にされると、スキャンシフト動作モードとされ、スキャンフリップフロップ回路261〜264,271〜274においては、図4に示されるように、スキャン入力端子sidからのテストデータが選択的にフリップフロップ回路12のデータ入力端子dに伝達される。このデータ入力端子dに伝達されたデータは、クロック入力端子ckに伝達されたクロック信号の波形立ち上がりエッジに同期して保持され、バッファ13を介してスキャン出力端子sodから出力される。
【0028】
上記組み合わせ回路100のスキャンテストは次のように行うことができる。
【0029】
JTAG回路21からスキャンチェーン部26にテストデータを供給し、組み合わせ回路100への入力データとして任意の値をスキャンチェーン部26に設定する。設定されたデータが組み合わせ回路100に入力され、このとき、組み合わせ回路100から出力されたデータが、データスキャンチェーン部27におけるスキャンフリップフロップ回路271〜274に取り込まれる。スキャンフリップフロップ回路271〜274に取り込まれたデータは、スキャンシフト動作によりJTAG回路21に回収される。
【0030】
図1に示されるデータパス構造のように、半導体集積回路の自動配置配線前にクロック信号の伝搬順序が分かっている場合には、自動配置配線で生ずるクロックスキューを考慮してスキャンチェーンの接続順序が決定される。すなわち、クロック信号が伝達される方向と反対の方向にスキャンデータが流れるようにスキャンチェーンが接続される。例えば、図1に示されるスキャンチェーン部26において、クロック信号はクロックバッファ24を介してスキャンフリップフロップ回路264,263,262,261の順に伝搬されるのに対して、スキャンデータはスキャンフリップフロップ回路261,262,263,264の順に伝搬される。同様に図1に示されるスキャンチェーン部27において、クロック信号はクロックバッファ25を介してスキャンフリップフロップ回路274,273,272,271の順に伝搬されるのに対して、スキャンデータはスキャンフリップフロップ回路271,272,273,274の順に伝搬される。このようにクロック信号が伝達される方向と反対の方向にスキャンデータが流れるようにスキャンチェーンが接続されることにより、スキャンテストデータに対してクロック信号の遷移速度を速くできることからホールド違反を回避することができる。
【0031】
スキャンデータはスキャンフリップフロップ回路271〜274のデータ出力端子qから出力される4ビットデータ相互の位相が極端にずれてしまうのを防止するため、クロック選択回路23から出力されたクロック信号をクロックバッファ24,25で分割することにより、スキャンチェーン部26,27に対して同一方向からクロック信号を伝搬するようにしている。そのようなクロック信号の伝搬を可能とするため、スキャンチェーン部26,27は折り返し部300によって結合される。しかし、そのようにすると、折り返し部300においては、クロックバッファ25から出力されるクロック信号の伝達経路と同一方向にデータが伝搬される経路を含むため、それに起因してホールド違反を生ずるおそれがある。つまり、折り返し部300は、上記スキャンチェーン部26内の上記クロックバッファ24に最も近い位置に配置されたスキャンフリップフロップ回路264から出力されたスキャンテストデータを、上記スキャンチェーン部27内の上記クロックバッファ25から最も遠い位置に配置されたスキャンフリップフロップ回路271に伝達可能に設けられているため、スキャンテストデータとクロック信号の伝搬方向が同じになり、ここでホールド違反を生ずることが考えられる。しかしながら、上記スキャンチェーン部26,27のビット幅が大きいほど、上記折り返し部による信号伝達経路は長くなり、そこでの配線抵抗値が大きくなるため、そこでのホールド違反を生じにくくなる。すなわち、スキャンテストデータとクロック信号の伝搬方向が同じ場合においてホールド違反を回避するには、互いに結合された二つのスキャンフリップフロップ回路間の遅延時間を、当該二つのスキャンフリップフロップ回路のクロックスキュー差とスキャンフリップフロップ回路のホールド時間との和よりも大きくすればよいから、上記のように折り返し部300による信号伝達経路が長くなり、そこでの配線抵抗値が大きくなれば、そこで十分な遅延時間を確保することができ、上記折り返し部でのホールド違反をも回避することができる。そこで本例においては、折り返し部300の配線抵抗を意識的に大きくするようにしている。例えば配線層の材料が同じ場合には、配線層が細いほど抵抗が大きくなるため、折り返し部300の配線層には、クロック信号伝達経路の配線層よりも細いものが用いられる。そのようにすれば、折り返し部300における配線抵抗を大きくすることができ、そこで十分な遅延時間を確保し易くなるため、スキャンチェーン部26,27が多段に配置されて折り返し部300を有しているにもかかわらず、そこでのホールド違反の発生を回避することができる。
【0032】
上記の例によれば、以下の作用効果を得ることができる。
【0033】
(1)スキャンチェーン部26においては、クロック信号はクロックバッファ24を介してスキャンフリップフロップ回路264,263,262,261の順に伝搬されるのに対して、スキャンデータはスキャンフリップフロップ回路261,262,263,264の順に伝搬され、スキャンチェーン部27においては、クロック信号はクロックバッファ25を介してスキャンフリップフロップ回路274,273,272,271の順に伝搬されるのに対して、スキャンデータはスキャンフリップフロップ回路271,272,273,274の順に伝搬される。このようにクロック信号が伝達される方向と反対の方向にスキャンデータが流れるようにスキャンチェーンが接続されることにより、スキャンテストデータに対してクロック信号の遷移速度を速くできることからホールド違反を回避することができる。
【0034】
(2)折り返し部300においては、スキャンテストデータとクロック信号の伝搬方向が同じになり、ここでホールド違反を生ずることが考えられるが、スキャンチェーン部26,27のビット幅が大きいほど、上記折り返し部による信号伝達経路が長くなり、そこでの配線抵抗値が大きくなるため、そこで十分な遅延時間を確保することができ、上記折り返し部でのホールド違反をも回避することができる。
【0035】
(3)配線層の材料が同じ場合には、配線層が細いほど抵抗が大きくなるため、折り返し部300の配線層には、クロック信号伝達経路の配線層よりも細いものを用いることで、折り返し部300の配線抵抗を大きくすることができ、そこで十分な遅延時間を確保することによって、上記折り返し部でのホールド違反を回避することができる。
【0036】
次に、別の構成例について説明する。
【0037】
図5には組み合わせ回路とスキャンチェーン部の別の構成例が示される。
【0038】
図5に示されるように、組み合わせ回路100が2入力アンドゲート1001,1002,1003,1004によって形成される場合のように、組み合わせ回路100の入力端子と出力端子との数が異なる場合には、それに対応して、スキャン診断回路におけるスキャンチェーンが構成される。例えば図5に示される構成では、2入力アンドゲート1001,1002,1003,1004における一方の入力端子に対応するスキャンチェーン部28と、2入力アンドゲート1001,1002,1003,1004における他方の入力端子に対応するスキャンチェーン部29と、2入力アンドゲート1001,1002,1003,1004の出力端子に対応するスキャンチェーン部31とが配置される。スキャンチェーン部28は4個のスキャンフリップフロップ回路281〜284を含んで成り、スキャンチェーン部29は4個のスキャンフリップフロップ回路291〜294を含んで成り、スキャンチェーン部31は4個のスキャンフリップフロップ回路311〜314を含んで成る。スキャンフリップフロップ回路281〜284,291〜294,311〜314は、何れも図2に示されるのと同一構成とされ、図3及び図4に示されるように各動作モードに応じて有効パスが形成される。また、図1におけるクロック選択回路23から伝達されたクロック信号を取り込むクロックバッファと、その出力をスキャンチェーン部28,29,31に分配するためのクロックバッファ32,33,34が設けられる。尚、図5においてはスキャンチェーン部28,29及び31におけるスキャン論理が省略されている。特に制限されないが、スキャンチェーン部28、19、31の夫々は、仮想線280,290,310上に一列に配置される。このように配置することにより面積を低減することが出来る。
【0039】
図6には、図5に示される構成において、スキャンチェーン部28,29及び31におけるスキャン論理を加えた構成例が示される。
【0040】
図6に示されるスキャン論理は基本的には図1に示されるのと同様とされる。例えば、スキャンチェーン部28において、スキャンフリップフロップ回路281のスキャン入力端子sidには図1におけるJTAG回路21からテストデータが伝達され、クロック入力端子ckにはクロックバッファ32を介してクロック信号が伝達される。スキャンモード端子seには図1に示されるJTAG回路21からスキャンモード信号が伝達され、データ入力端子dには図示されない前段回路から4ビットデータが伝達される。データ出力端子qからの出力データは組み合わせ回路100におけるアンドゲート1001の一方の入力端子に伝達される。テストデータのスキャンイン・スキャンアウトを可能とするため、スキャンフリップフロップ回路281のスキャン出力端子sodはスキャンフリップフロップ回路282のスキャン入力端子sidに結合され、スキャンフリップフロップ回路282のスキャン出力端子sodはスキャンフリップフロップ回路283のスキャン入力端子sidに結合され、スキャンフリップフロップ回路283のスキャン出力端子sodはスキャンフリップフロップ回路284のスキャン入力端子sidに結合される。スキャンフリップフロップ回路284のスキャン出力端子sodはスキャンチェーン部29におけるスキャンフリップフロップ回291のスキャン入力端子に結合される。スキャンフリップフロップ回路284のスキャン出力端子sodからスキャンチェーン部29におけるスキャンフリップフロップ回291のスキャン入力端子に至る信号伝達経路は折り返し部400とされる。
【0041】
スキャンチェーン部29において、スキャンフリップフロップ回路291のスキャン入力端子sidには上記スキャンチェーン部28におけるスキャンフリップフロップ回路284からテストデータが伝達され、クロック入力端子ckにはクロックバッファ33を介してクロック信号が伝達される。スキャンモード端子seには図1に示されるJTAG回路21からスキャンモード信号が伝達され、データ入力端子dには図示されない前段回路から4ビットデータが伝達される。データ出力端子qからの出力データは組み合わせ回路100におけるアンドゲート1001の他方の入力端子に伝達される。テストデータのスキャンイン・スキャンアウトを可能とするため、スキャンフリップフロップ回路291のスキャン出力端子sodはスキャンフリップフロップ回路292のスキャン入力端子sidに結合され、スキャンフリップフロップ回路292のスキャン出力端子sodはスキャンフリップフロップ回路293のスキャン入力端子sidに結合され、スキャンフリップフロップ回路293のスキャン出力端子sodはスキャンフリップフロップ回路294のスキャン入力端子sidに結合される。スキャンフリップフロップ回路294のスキャン出力端子sodはスキャンチェーン部31におけるスキャンフリップフロップ回311のスキャン入力端子sidに結合される。スキャンフリップフロップ回路294のスキャン出力端子sodからスキャンチェーン部31におけるスキャンフリップフロップ回311のスキャン入力端子sidに至る信号伝達経路は折り返し部500とされる。
【0042】
スキャンチェーン部31において、スキャンフリップフロップ回路311のスキャン入力端子sidには上記スキャンチェーン部29におけるスキャンフリップフロップ回路294からテストデータが伝達され、クロック入力端子ckにはクロックバッファ34を介してクロック信号が伝達される。スキャンモード端子seには図1に示されるJTAG回路21からスキャンモード信号が伝達され、データ入力端子dには組み合わせ回路100から4ビットデータが伝達される。データ出力端子qからの出力データは、図示されない後段回路で伝達される。テストデータのスキャンイン・スキャンアウトを可能とするため、スキャンフリップフロップ回路311のスキャン出力端子sodはスキャンフリップフロップ回路312のスキャン入力端子sidに結合され、スキャンフリップフロップ回路312のスキャン出力端子sodはスキャンフリップフロップ回路313のスキャン入力端子sidに結合され、スキャンフリップフロップ回路313のスキャン出力端子sodはスキャンフリップフロップ回路314のスキャン入力端子sidに結合される。スキャンフリップフロップ回路314のスキャン出力端子sodはスキャンチェーン出力として図1に示されJTAG回路21に伝達される。尚、クロックバッファ32,33,34の夫々は、クロック信号を供給するスキャンチェーン部の最終的にデータを出力するフリップフロップ回路に近い位置に配置される。
【0043】
図7には、図6に示される回路部分のレイアウト例が示される。また、図8には、スキャンフリップフロップ回路1個分の端子レイアウト例が拡大して示される。
【0044】
配線層は、特に制限されないが、メタル第1層、メタル第2層、及びメタル第3層から成る3層構造とされる。配線層によって単位長さ当たりの抵抗値が異なるとき、抵抗値が大きな配線層を利用して上記折り返し部400,500が形成され、それよりも抵抗値が小さな配線層を利用して、クロックバッファ32,33,34から出力されるクロック信号の伝達経路が形成される。図7に示されるレイアウト例では、メタル第1層が他の配線層に比べて最も抵抗値が大きいため、このメタル第1層を利用して上記折り返し部400,500が形成され、それよりも抵抗値が小さなメタル第3層を利用してクロックバッファ32,33,34から出力されるクロック信号の伝達経路が形成される。尚、電源配線は、主として図示しない更に上層の配線層を使用し、セルへの最終的な電源供給は、メタル第1層を使用する。このように折り返し部400,500の配線抵抗を大きくすることで、折り返し部400,500において十分な遅延時間を得ることができ、それによってホールド違反の発生を回避することができる。
【0045】
また、上記のように折り返し部400,500の抵抗を、クロック信号伝達経路における抵抗よりも大きくすることで、折り返し部400,500でのデータ伝達を遅延させただけではホールド違反を十分に回避することができない場合には、図9に示されるように、折り返し部400,500の途中に、信号遅延を可能とするディレイバッファ36,37などの遅延素子を設けることができる。このようにディレイバッファ36,37などの遅延素子を設け、折り返し部400,500において十分なデータ遅延を得ることによってホールド違反を回避することができる。半導体集積回路においてデータパスのような高密度実装が行われている部位では、ディレイバッファ等の遅延素子の挿入するスペースを確保するもは困難とされるが、折り返し部400,500におけるディレイバッファ36,37等の遅延素子を挿入する領域をデータパス以外の部位に予め確保しておき、ディレイバッファ等の遅延素子の挿入の必要性が生じた場合に、上記領域を利用してディレイバッファ36,37等の遅延素子を形成するようにすれば、ディレイバッファ36,37等の遅延素子を必要に応じて容易に挿入することができる。
【0046】
また、図10に示されるように、クロックバッファ32の出力信号が伝達されるクロックバッファ39と、上記クロックバッファ32,39の出力信号を選択的にスキャンフリップフロップ回路291〜294に伝達するためのセレクタ38とを設けることができる。スキャン診断が行われる場合には、セレクタ38によってクロックバッファ39の出力信号が選択される。これにより、スキャンチェーン部29に供給されるクロック信号は、スキャンチェーン部31に供給されるクロック信号よりも遅延されることから、スキャンフリップフロップ回路294とスキャンフリップフロップ回路311との間においては、クロック信号の到着の遅いスキャンフリップフロップ回路に対して、クロック信号の到着の早いスキャンフリップフロップ回路を接続しているのと等価になり、折り返し部500に起因するホールド違反を回避することができる。
【0047】
上記の例ではスキャンフリップフロップ回路が規則的に配列されている場合について説明したが、このスキャンフリップフロップ回路が分散配置される場合においてもホールド違反を回避することができる。例えば図11に示されるように、所定のクロックバッファ40によってクロックが供給されるサービスエリアを指定し、このサービスエリア内に分散配置されるスキャンフリップフロップ回路▲1▼〜▲8▼までのクロック信号の遅延時間を計算し、この遅延時間の大きなスキャンフリップフロップ回路から順にスキャンチェーンを接続する。Scan inはテストデータ入力を意味し、Scan outはテストデータの出力を意味する。スキャンフリップフロップ回路は、▲1▼〜▲8▼の順にスキャンチェーンの接続が行われる。このような接続によれば、スキャンフリップフロップ回路▲1▼〜▲8▼が分散配置されているにもかかわらず、スキャンテストデータの搬送方向に対して逆の方向からクロック信号を供給する位置にクロックドライバが配置されることから、スキャンテストデータに対してクロック信号の遷移速度を速くでき、ホールド違反を回避することができる。尚、レイアウトの途中で、期待する接続順を守ることが困難な場合には、ディレイバッファを挿入してホールド対策を行うことができる。
【0048】
以上本発明者によってなされた発明を具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
【0049】
例えば、組み合わせ回路は2入力アンドゲート以外とすることができる。
【0050】
以上の説明では主として本発明者によってなされた発明をその背景となった利用分野であるJTAG規格によるスキャン診断を行う場合について説明したが、本発明はそれに限定されるものではなく、各種スキャン診断に利用することができる。
【0051】
本発明は、少なくともスキャンテストを行うことを条件に適用することができる。
【0052】
【発明の効果】
本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記の通りである。
【0053】
すなわち、本願発明を適用することにより半導体集積回路のテストを容易に行うことができる。
【図面の簡単な説明】
【図1】本発明にかかる半導体集積回路における主要部の構成例回路図である。
【図2】上記半導体集積回路に含まれるスキャンフリップフロップ回路の構成例回路図である。
【図3】上記スキャンフリップフロップ回路の通常動作時における有効パスの説明図である。
【図4】上記スキャンフリップフロップ回路のスキャンシフト動作時における有効パスの説明図である。
【図5】上記半導体集積回路に含まれる組み合わせ回路の具体的な構成を示す回路図である。
【図6】図5に示される回路構成においてスキャン論理が追加された回路図である。
【図7】図6に示される回路構成を採用した場合のチップレイアウト説明図である。
【図8】上記フリップフロップ回路のセルレイアウトの説明図である。
【図9】上記半導体集積回路に含まれるスキャン診断回路の別の構成例を示す回路図である。
【図10】上記半導体集積回路に含まれるスキャン診断回路の別の別の構成例を示す回路図である。
【図11】上記半導体集積回路に含まれるスキャン診断回路の別の別の構成例を示す回路図である。
【符号の説明】
21 JTAG回路
22 PLL分周回路
23 クロック選択回路
24,25,32,33,34,35,39,40 クロックバッファ
26,27,28,29,31 スキャンチェーン回路
36,37 ディレイバッファ
38 セレクタ
100 組み合わせ回路
200 スキャン診断回路
300,400,500 折り返し部
280,290,310 フリップフロップ回路が配置される位置を示す仮想線

Claims (12)

  1. 組み合わせ回路と、上記組み合わせ回路のスキャンテストを可能とするスキャン診断回路とを含む半導体集積回路であって、
    上記スキャン診断回路は、クロック信号に同期動作可能な複数のスキャンフリップフロップ回路が結合された第1スキャンチェーン部と、
    上記第1スキャンチェーン部の後段に配置され、クロック信号に同期動作可能な複数のスキャンフリップフロップ回路が結合された第2スキャンチェーン部と、
    上記第1スキャンチェーン部を伝搬するスキャンテストデータの伝搬方向とは逆の方向からクロック信号を供給可能な第1クロックバッファと、
    上記第2スキャンチェーン部を伝搬するスキャンテストデータの伝搬方向とは逆の方向からクロック信号を供給可能な第2クロックバッファと、
    上記第1スキャンチェーン部内の上記第1クロックバッファに最も近い位置に配置されたスキャンフリップフロップ回路から出力されたスキャンテストデータを、上記第2スキャンチェーン部内の上記第2クロックバッファから最も遠い位置に配置されたスキャンフリップフロップ回路に伝達するための折り返し部と、を含んで成ることを特徴とする半導体集積回路。
  2. 上記折り返し部は、上記クロック信号の伝搬ラインよりも細い配線層で形成された請求項1記載の半導体集積回路。
  3. 多層化された配線層を有し、配線層によって単位長さ当たりの抵抗値が異なるとき、上記折り返し部は、上記クロック信号の伝搬ラインが形成された配線より上記抵抗値が高い配線を使用して形成される請求項1記載の半導体集積回路。
  4. 上記折り返し部におけるスキャンテストデータ伝搬経路上には遅延素子の挿入可能領域が確保され、この領域に上記遅延素子が挿入されて成る請求項1乃至3の何れか1項記載の半導体集積回路。
  5. 上記第1クロックバッファの出力信号を遅延可能なスキャンテスト用クロックバッファと、上記スキャンチェーン回路によるスキャンテスト時に、上記上記第1クロックバッファからの出力信号に代えて上記スキャンテスト用クロックバッファの出力信号を上記第1スキャンチェーン部に伝達可能なセレクタとを含む請求項1乃至4の何れか1項記載の半導体集積回路。
  6. 回路のスキャンテストを可能とするスキャン診断回路を含む半導体集積回路であって、
    上記スキャン診断回路は、クロックバッファと、上記クロックバッファからクロック信号を供給可能なエリアにおいて分散配置された複数のスキャンフリップフロップとを含み、上記クロックバッファから上記スキャンフリップフロップ回路までのクロック信号の遅延時間の大きいスキャンフリップフロップ回路から順にスキャンチェーン接続が行われて成ることを特徴とする半導体集積回路。
  7. 組み合わせ回路と、上記組み合わせ回路のスキャンテストを可能とするスキャン診断回路とを含む半導体集積回路であって、
    上記スキャン診断回路は、
    第1クロック信号線が接続される複数の第1フリップフロップ回路と、
    第2クロック信号線が接続される複数の第2フリップフロップ回路と、
    上記第1クロック信号線に接続される第1クロックバッファと、
    上記第2クロック信号線に接続される供給する第2クロックバッファとを有し、
    上記第1クロックバッファは、上記第1クロック信号線に第1クロック信号を供給し、
    上記第2クロックバッファは、上記第2クロック信号に第2クロック信号を供給し、
    上記複数の第1フリップフロップ回路は、第1方向に延在する第1仮想線上に設けられるとともに、上記スキャンテスト時に上記複数の第1フリップフロップ回路の一端から他の一端にデータが転送され、
    上記複数の第2フリップフロップ回路は、上記第1仮想線に平行である第2仮想線上に設けられるとともに、上記スキャンテスト時に上記複数の第2フリップフロップ回路の一端から他の一端にデータが転送され、
    上記複数の第1フリップフロップ回路の他の一端から出力されるデータは、上記複数の第2フリップフロップ回路の一端に入力され、
    上記第1クロックバッファは、上記第1クロックバッファと上記複数の第1フリップフロップの他の一端との間の距離が上記第1クロックバッファと上記複数の第1フリップフロップ回路の一端との間の距離より短くなるように配置され、
    上記第2クロックバッファは、上記第2クロックバッファと上記複数の第2フリップフロップの他の一端との間の距離が上記第2クロックバッファと上記複数の第2フリップフロップ回路の一端との間の距離より短くなるように配置されることを特徴とする半導体集積回路。
  8. 上記半導体集積回路は、上記第1クロックバッファと上記第2クロックバッファに共通にクロック信号を供給する第3クロックバッファを更に有することを特徴とする請求項7記載の半導体集積回路。
  9. 上記複数の第1フリップフロップ回路の他の一端と上記複数の第2フリップフロップ回路の一端とを接続する配線の抵抗値は、上記第1クロック信号線及び上記第2クロック信号線の抵抗値より大きいことを特徴とする請求項7記載の半導体集積回路。
  10. 上記複数の第1フリップフロップ回路の他の一端と上記複数の第2フリップフロップ回路の一端とを接続する配線は、上記第1クロック信号線及び上記第2クロック信号線より細いことを特徴とする請求項9記載の半導体集積回路。
  11. 上記組み合わせ論理回路は、上記複数の第1フリップフロップ回路と上記複数の第2フリップフロップ回路との間に設けられることを特徴とする請求項7記載の半導体集積回路。
  12. 上記半導体集積回路は、上記第2クロックバッファに接続される第4クロックバッファと、上記複数の第2フリップフロップ回路に上記第2クロックバッファから直接上記第2クロック信号を供給する経路と上記複数の第2フリップフロップ回路に上記第2及び第4クロックバッファを介して上記第2クロック信号を供給する経路とを選択するセレクタとを更に有することを特徴とする請求項7記載の半導体集積回路。
JP2003094843A 2003-03-31 2003-03-31 半導体集積回路 Withdrawn JP2004301661A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003094843A JP2004301661A (ja) 2003-03-31 2003-03-31 半導体集積回路
US10/807,446 US20040250185A1 (en) 2003-03-31 2004-03-24 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003094843A JP2004301661A (ja) 2003-03-31 2003-03-31 半導体集積回路

Publications (1)

Publication Number Publication Date
JP2004301661A true JP2004301661A (ja) 2004-10-28

Family

ID=33407324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003094843A Withdrawn JP2004301661A (ja) 2003-03-31 2003-03-31 半導体集積回路

Country Status (2)

Country Link
US (1) US20040250185A1 (ja)
JP (1) JP2004301661A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7737557B2 (en) 2005-10-04 2010-06-15 Panasonic Corporation Semiconductor apparatus
JP2019049517A (ja) * 2017-09-12 2019-03-28 株式会社東芝 集積回路、スキャンシフト制御方法、および回路設計方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6968488B2 (en) 2002-03-01 2005-11-22 Broadcom Corporation System and method for testing a circuit
JP4478533B2 (ja) * 2004-08-24 2010-06-09 Okiセミコンダクタ株式会社 半導体集積回路
JP2007040921A (ja) * 2005-08-05 2007-02-15 Matsushita Electric Ind Co Ltd スキャンチェーンにおける故障位置特定方法
US20070208979A1 (en) * 2006-01-13 2007-09-06 Taiwan Semiconductor Manufacturing Co., Ltd. Split clock scan flip-flop
US7451369B1 (en) * 2006-08-03 2008-11-11 Xilinx, Inc. Scalable columnar boundary scan architecture for integrated circuits
WO2013084364A1 (ja) * 2011-12-09 2013-06-13 富士通株式会社 スキャン回路及び半導体集積回路
US8819508B2 (en) * 2012-10-05 2014-08-26 Lsi Corporation Scan test circuitry configured to prevent violation of multiplexer select signal constraints during scan testing
KR102066661B1 (ko) 2013-09-02 2020-01-15 삼성전자 주식회사 스캔-체인으로 연결된 플립-플롭들의 값들을 jtag 인터페이스를 이용하여 재구성할 수 있는 집적 회로, 이의 동작 방법, 및 상기 집적 회로를 포함하는 장치들
KR102222643B1 (ko) 2014-07-07 2021-03-04 삼성전자주식회사 스캔 체인 회로 및 이를 포함하는 집적 회로
US9805155B2 (en) * 2015-03-31 2017-10-31 Mediatek Inc. Circuit layouts, methods and apparatus for arranging integrated circuits
US10838449B2 (en) * 2018-07-05 2020-11-17 International Business Machines Corporation Automatic detection of clock grid misalignments and automatic realignment
US10698439B1 (en) * 2019-01-31 2020-06-30 Qualcomm Incorporated Efficient clock forwarding scheme
JP2020165780A (ja) * 2019-03-29 2020-10-08 ローム株式会社 半導体集積回路
JP2021038982A (ja) * 2019-09-02 2021-03-11 株式会社東芝 半導体装置
US11947891B2 (en) * 2021-08-20 2024-04-02 International Business Machines Corporation Balancing cycle stealing with early mode violations

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304987B1 (en) * 1995-06-07 2001-10-16 Texas Instruments Incorporated Integrated test circuit
US5323400A (en) * 1991-09-09 1994-06-21 Northern Telecom Limited Scan cell for weighted random pattern generation and method for its operation
US5391517A (en) * 1993-09-13 1995-02-21 Motorola Inc. Process for forming copper interconnect structure
JP3277098B2 (ja) * 1994-07-26 2002-04-22 株式会社東芝 半導体装置の製造方法
US5828579A (en) * 1996-08-28 1998-10-27 Synopsys, Inc. Scan segment processing within hierarchical scan architecture for design for test applications
JPH10189729A (ja) * 1996-12-26 1998-07-21 Toshiba Corp 半導体装置の製造方法
US6199182B1 (en) * 1997-03-27 2001-03-06 Texas Instruments Incorporated Probeless testing of pad buffers on wafer
US6162584A (en) * 1998-05-07 2000-12-19 Taiwan Semiconductor Manufacturing Company Method of fabricating polysilicon structures with different resistance values for gate electrodes, resistors and capacitor plates in an integrated circuit
US6822975B1 (en) * 2000-09-08 2004-11-23 Lucent Technologies Circuitry for mixed-rate optical communication networks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7737557B2 (en) 2005-10-04 2010-06-15 Panasonic Corporation Semiconductor apparatus
JP2019049517A (ja) * 2017-09-12 2019-03-28 株式会社東芝 集積回路、スキャンシフト制御方法、および回路設計方法

Also Published As

Publication number Publication date
US20040250185A1 (en) 2004-12-09

Similar Documents

Publication Publication Date Title
JP2004301661A (ja) 半導体集積回路
US10649029B2 (en) TCKC/TMSC counter, gating circuitry for selection, deselection, technology specific outputs
US5717700A (en) Method for creating a high speed scan-interconnected set of flip-flop elements in an integrated circuit to enable faster scan-based testing
JP4428489B2 (ja) 集積回路装置及びそのテスト方法
US6389566B1 (en) Edge-triggered scan flip-flop and one-pass scan synthesis methodology
US5617426A (en) Clocking mechanism for delay, short path and stuck-at testing
US6145105A (en) Method and apparatus for scan testing digital circuits
JPH07167921A (ja) バウンダリスキャンセル装置とバウンダリスキャンテスト方法
US7299392B2 (en) Semiconductor integrated circuit device and method of design of semiconductor integrated circuit device
JPH0721772B2 (ja) データ処理装置内の複数の組合せ論理素子を診断する装置
US20110175638A1 (en) Semiconductor integrated circuit and core test circuit
EP1637894B1 (en) Boundary scan chain routing
JP2002131390A5 (ja)
US6060924A (en) Semiconductor integrated circuit which contains scan circuits of different types
US7600167B2 (en) Flip-flop, shift register, and scan test circuit
Hasib et al. Exploiting built-in delay lines for applying launch-on-capture at-speed testing on self-timed circuits
US7051302B2 (en) Method for reducing pin overhead in non-scan design for testability
JP2989586B2 (ja) 半導体集積回路及びその設計方法並びに半導体集積回路の設計プログラムを記録した記録媒体
JP2000046919A (ja) 集積回路およびテスト方法
JP4416469B2 (ja) 半導体集積回路およびその設計方法
JP2009175154A (ja) 半導体集積回路およびその設計方法
Lewis et al. Test strategies for 3D die stacked integrated circuits
US20050005212A1 (en) Electronic component with output buffer control
Efthymiou et al. Adding testability to an asynchronous interconnect for GALS SoC
Xiang et al. Handling the pin overhead problem of DFTs for high-quality and at-speed tests

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070402