JP2004299949A - Composting method by burying fishery residue in soil - Google Patents

Composting method by burying fishery residue in soil Download PDF

Info

Publication number
JP2004299949A
JP2004299949A JP2003093461A JP2003093461A JP2004299949A JP 2004299949 A JP2004299949 A JP 2004299949A JP 2003093461 A JP2003093461 A JP 2003093461A JP 2003093461 A JP2003093461 A JP 2003093461A JP 2004299949 A JP2004299949 A JP 2004299949A
Authority
JP
Japan
Prior art keywords
soil
lactic acid
composting
fermentation
residue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003093461A
Other languages
Japanese (ja)
Inventor
Tetsuo Senzaki
先崎哲夫
Masao Kawabe
川辺雅生
Nobuhito Nakaide
中出信比人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANKYO SOKEN KK
Original Assignee
KANKYO SOKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANKYO SOKEN KK filed Critical KANKYO SOKEN KK
Priority to JP2003093461A priority Critical patent/JP2004299949A/en
Publication of JP2004299949A publication Critical patent/JP2004299949A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Fertilizers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composting method which is little in generation of noxious odor and harmful insects during composting of a fishery residue, and capable of composting in a relatively short time, and low in construction and operation costs. <P>SOLUTION: In this method, a lactic acid bacterium is added to the fishery residue which is then put into a previously laid soil, then soil is further laid on to keep anaerobic fermentation by lactic acid bacterium and to prevent noxious odor from the fishery residue by the fermentation metabolic material of the lactic acid bacterium, organic materials are decomposed and their volume is decreased and at the same time generation of harmful insects is prevented by aerobic fermentation after turnover, and the composting is carried out in a short time. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】本発明は、水産系残渣の堆肥化に関する物である。
【0002】
【従来の技術】水産系残渣の処理の中でも、有機質の廃棄物である水産加工残渣は、再利用方法が少なく野積みや不法投棄により地下水汚染や害虫・悪臭の発生を起こし周辺の環境を悪化させている。これら水産系残渣の再利用方法の一つとして堆肥化がある。比較的処理コストが安価であり、また流通単価も安く大量に流通し使用されている。
【0003】現在行われている堆肥化技術は、水分調整材と混合し周期的に撹拌することで空気に触れさせ好気性細菌を活性化させ製造する方法が多い。また、強制的に空気を送り堆肥化する技術もあるが、コンプレッサーや送風機を使用するためコストが高くなる。また、堆肥盤からの汚水流失や強烈な悪臭とハエやウジの発生が常に伴うため、堆肥化作業は非常につらく、そのまま放置される場合もあり、地下水汚染や周辺環境の悪化を引き起こす場合もある。
【0004】水分調整材としては木質系の水分調整材が使用されることが多いが、これらはC/N比が高いため、炭素を十分に分解させないまま堆肥として使用した場合、土壌中で窒素飢餓が生じ土壌障害を起こす。土壌中の微生物は常に飢餓状態であるため、植物遺体やセルロース系の有機物が投入されると窒素を消費してセルロースを分解し、グルコースを産生し爆発的に増殖する。堆肥の多くは2年〜3年程度放置した後、土壌に投入するため、C/N比はある程度低くなっている。しかし、数年分の堆肥を保管する場所及び堆肥盤を作る余裕がないためにほとんどが野積みになるケースが多い。
【0005】
【発明が解決しようとする課題】解決しようとする課題としては、水産系残渣の堆肥化工程中の悪臭の発生や害虫の発生が少ないこと、比較的短期間で堆肥化すること、建設及び運転コストが低い等の点が挙げられる。
【0006】
【課題を解決するための手段】本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、本発明を完成するに至った。即ち、本発明によると、水産系残渣に乳酸菌を添加した後、予め敷き詰めた土壌中に投入する。さらに覆土することで乳酸菌による嫌気発酵状態を維持し、その後切返しにより好気発酵することで悪臭の発生や害虫の発生を防ぎ、早期に堆肥化することが可能となることを特徴とする。
【0007】水産系残渣に添加する乳酸菌の種類は菌種を問わないが、好ましくは乳酸発酵に慣用のもの、例えば、ラクトバチルス属ブルガリスク、ラクトバチルス属アシドフィルス、エンタロコッカス属フェークリス、ラクトバチルス属ヨグルティ、ラクトバチルス属デルブルエキ、ストレプトコッカス属ラクチス、ロイコモストク属メセンテロイデス、ラクトバチルス属ペントアセティクス、リゾプス属オリザエなどが用いられる。添加形態は粉末状、あるいは水溶液に希釈したもの、乳酸菌の発酵溶液、好ましくは水分調整材を兼ねて米ぬかと混合した状態で水産系残渣に添加する。
【0008】乳酸菌を添加することで水産系残渣が土壌中で乳酸発酵し、悪臭の発生や害虫の発生を抑制すると同時に一部減容化され、さらに切返し等により好気状態にすることで、土壌中の微生物の働きにより速やかに分解、減容化される。
【0009】ホタテ貝・イカ・タコ等の内臓には有害な重金属であるカドミウム等が含まれているが、堆肥化によってこれら重金属は土壌中に徐々に蓄積される。繰り返し堆肥化を行った土壌は既存の土壌洗浄法により、重金属を除去し再び堆肥化のための土壌として利用することができる。
【0010】
【発明の実施の形態】本発明は水産系残渣と乳酸菌を、土壌を敷き詰めた組立型コンクリート堆肥盤に投入することにより実施される。
【0011】
【実施例】コンクリート製堆肥盤を設置し土壌約5立方メートルを敷き詰める。タコ及びホタテ内臓約2.4立方メートルと乳酸菌と米ぬかの混合物約100kgを混合し、製作する堆肥1回分の容量の穴を掘り、この水産系残渣と乳酸菌及び米ぬかの混合物を投入する。その上部を約20cmの厚さで覆土する。次に土を締め固め、上部をシートで覆い雨水の浸入を防ぎ放置する。
【0012】これにより、土壌中では乳酸菌による嫌気発酵が行われ、悪臭の発生やハエやウジなどの発生が抑制される。また、乳酸発酵により、水産系残渣は一部分解される。この嫌気発酵中の土壌中の温度は15〜20程度である。
【0013】2〜4週間程度の嫌気発酵の後、好気発酵を促すために、この堆肥化土壌の切返しを行う。この操作により、空気が送入され、土壌中の温度は急激に上昇し、約50〜60℃程度の中温発酵状態となる。
【0014】しばらく放置し、土壌温度の低下が見られたら再び切返しを行い、土壌全体の好気発酵を促進させた。この操作を数回繰り返すことで、水産系残渣は徐々に減容化される。含まれていた余剰水分は発酵時の熱により徐々に蒸発していくため、底に余剰な水分が溜まることはない。
【0015】この切返しの際も乳酸菌を添加した効果により、悪臭の発生やハエやウジが発生することはなかった。
【0016】残渣投入から6ヶ月後、堆肥中の温度は10度前後を示し、C/N比を測定したところ、約18であった。
【0017】堆肥の容積は水産系残渣投入直後は約7.6立方メートルであったが、最終的に約5.8立方メートルにまで減少した。
【0018】堆肥化を行った土壌中のカドミウムについて溶出試験を行ったところ、0.01mg/L以下を示した。また、土壌中のカドミウム含有量を測定したところ、約1.9mg/kgを示した。堆肥化前の土壌中のカドミウム含有量は約0.3mg/kgであった。
【0019】この堆肥化した土壌5立方メートルを用いて、再びタコ及びホタテ内臓約2.4立方メートルと乳酸菌と米ぬかの混合物約100kgを上記と同様の手順により埋設し、嫌気発酵を行い放置。切返しを行ったところ、土壌中の温度は急激に上昇し、約50〜60℃程度の中温発酵状態となった。
【0020】残渣投入から6ヶ月後、堆肥中の温度は4度前後を示し、C/N比を測定したところ、約20であった。
【0021】堆肥の容積は水産系残渣投入直後は約7.6立方メートルであったが、最終的に約5.9立方メートルにまで減少した。
【0022】この2回連続して堆肥化を行った土壌中のカドミウムについて溶出試験を行ったところ、0.01mg/L以下を示した。また、土壌中のカドミウム含有量を測定したところ、約3.4mg/kgを示した。
【0023】この土壌を使用して、同様の方法によりさらに2回の堆肥化を実施したところ、C/N比は約23を示し、堆肥の容積は約6.0立方メートルであった。カドミウムの溶出量は0.01mg/L以下であった。また、その含有量は6.6mg/kgであった。
【0024】このように水産系残渣と乳酸菌を土壌中に投入し減容化を行い堆肥化した土壌に、更に繰り返し水産系残渣を投入し減容化を行うことが可能である。
【0025】重金属が蓄積された場合には、既存の土壌洗浄方法により、例えば酸による洗浄の後にアルカリによる中和処理を実施すること等で、土壌中に蓄積された重金属の大部分を分離することができる。また、油分についてもアルカリ洗浄等により分離することができる。
【発明の効果】以上説明したように本発明の水産系残渣の土壌埋設型堆肥化方法は埋設時に乳酸菌を添加することで悪臭の発生や害虫の発生を防ぎ、短期間で水産系残渣の減容化を可能にするものである。これによって同じ土壌を用いて繰り返し減容化が可能になり、運転コストの低減と処理量の増加を図ることができる。
[0001]
The present invention relates to composting of marine residues.
[0002]
2. Description of the Related Art Among the processing of marine residues, marine processing residues, which are organic wastes, have few reuse methods, and cause undesired dumping or illegal dumping of groundwater to cause pollution, pests and odors, thereby deteriorating the surrounding environment. ing. Composting is one of the methods of recycling these marine residues. They are relatively inexpensive in processing cost, low in distribution unit price, and used in large quantities.
[0003] Many of the composting techniques currently in use are produced by mixing with a water conditioner and stirring periodically to expose the air to activate aerobic bacteria. There is also a technique of forcibly sending air and composting, but using a compressor or a blower increases the cost. In addition, composting is extremely difficult and sometimes left as it is because the wastewater from the compost sewage, the strong odor, and the generation of flies and maggots are always accompanied, and there are cases where groundwater pollution and the deterioration of the surrounding environment are caused. is there.
[0004] As a water conditioning material, wood-based water conditioning materials are often used. However, since these materials have a high C / N ratio, when they are used as compost without sufficiently decomposing carbon, nitrogen in the soil is reduced. Hunger causes soil damage. Microorganisms in the soil are constantly starved, so when plant remains or cellulosic organic matter are introduced, they consume nitrogen to decompose cellulose, produce glucose and explode. Most of the compost is left for about 2 to 3 years and then put into the soil, so the C / N ratio is somewhat low. However, there are many cases where most of them are piled up because there is no place to store several years of compost and there is no room to make a compost.
[0005]
The problem to be solved is that the generation of odors and pests during the composting process of marine residues is low, composting in a relatively short time, construction and operation. Points such as low cost.
[0006]
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have completed the present invention. That is, according to the present invention, lactic acid bacteria are added to the marine residue, and then the lactic acid bacterium is poured into previously laid soil. Furthermore, the anaerobic fermentation state by the lactic acid bacteria is maintained by covering the soil, and then the aerobic fermentation is performed by turning back to prevent the generation of offensive odors and pests, thereby enabling early composting.
[0007] The type of lactic acid bacteria to be added to the marine residue is not limited, and is preferably a type commonly used for lactic acid fermentation. Genus Yogurti, Lactobacillus delbrueki, Streptococcus lactis, Leucomostoc Mesenteroides, Lactobacillus pentoacetics, Rhizopus oryzae and the like are used. The form of addition is powdery or diluted with an aqueous solution, or a fermentation solution of lactic acid bacteria, preferably mixed with rice bran as a water regulator, and added to the marine residue.
By adding lactic acid bacteria, marine residues are fermented in lactic acid in the soil, and the generation of odors and pests is suppressed, and at the same time, the volume is partially reduced. It is quickly decomposed and reduced in volume by the action of microorganisms in the soil.
The internal organs of scallop, squid, octopus and the like contain harmful heavy metals such as cadmium, and these heavy metals are gradually accumulated in soil by composting. The soil that has been repeatedly composted can be reused as soil for composting again by removing heavy metals by the existing soil washing method.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is practiced by introducing marine residues and lactic acid bacteria into an assembling concrete composter covered with soil.
[0011]
[Example] A concrete composter is installed and spreads about 5 cubic meters of soil. About 2.4 cubic meters of octopus and scallop viscera are mixed with about 100 kg of a mixture of lactic acid bacteria and rice bran, and a hole of a capacity of one compost to be produced is dug, and the mixture of the fishery residue, lactic acid bacteria and rice bran is put. The top is covered with a thickness of about 20 cm. Next, the soil is compacted and the top is covered with a sheet to prevent rainwater infiltration and left.
[0012] Thus, anaerobic fermentation by lactic acid bacteria is performed in the soil, and the generation of offensive odor and the generation of flies and maggots are suppressed. In addition, the marine residues are partially decomposed by lactic acid fermentation. The temperature in the soil during this anaerobic fermentation is about 15 to 20.
After anaerobic fermentation for about 2 to 4 weeks, the composted soil is turned back in order to promote aerobic fermentation. By this operation, air is fed in, the temperature in the soil rises sharply, and the medium fermentation state becomes about 50 to 60 ° C.
After leaving for a while, when the soil temperature was lowered, the soil was turned back again to promote aerobic fermentation of the whole soil. By repeating this operation several times, the volume of marine residues is gradually reduced. The excess water contained gradually evaporates due to heat during fermentation, so that excess water does not accumulate at the bottom.
[0015] Even at the time of the switching, no odor or fly or maggot was generated due to the effect of adding the lactic acid bacteria.
Six months after the introduction of the residue, the temperature in the compost was around 10 degrees, and the C / N ratio was measured to be about 18.
The volume of the compost was about 7.6 cubic meters immediately after the introduction of the marine residues, but finally decreased to about 5.8 cubic meters.
An elution test was conducted on cadmium in the composted soil, and the result was 0.01 mg / L or less. In addition, the cadmium content in the soil was measured and was found to be about 1.9 mg / kg. The cadmium content in the soil before composting was about 0.3 mg / kg.
Using 5 cubic meters of this composted soil, about 2.4 cubic meters of octopus and scallop viscera and about 100 kg of a mixture of lactic acid bacteria and rice bran are buried again in the same manner as described above, and subjected to anaerobic fermentation and left. When the cutback was performed, the temperature in the soil rapidly increased, and the medium temperature fermentation state of about 50 to 60 ° C. was established.
Six months after the introduction of the residue, the temperature in the compost was around 4 degrees, and the C / N ratio was about 20 when measured.
The volume of the compost was about 7.6 cubic meters immediately after the introduction of the marine residues, but finally decreased to about 5.9 cubic meters.
An elution test was performed on cadmium in the soil that had been composted twice consecutively, and the result was 0.01 mg / L or less. In addition, the cadmium content in the soil was measured and found to be about 3.4 mg / kg.
When this soil was used for composting twice more by the same method, the C / N ratio was about 23 and the volume of the compost was about 6.0 cubic meters. The elution amount of cadmium was 0.01 mg / L or less. Further, the content was 6.6 mg / kg.
As described above, it is possible to reduce the volume by repeatedly adding the marine residues to the composted soil by adding the marine residues and lactic acid bacteria to the soil to reduce the volume.
When heavy metals are accumulated, most of the heavy metals accumulated in the soil are separated by an existing soil washing method, for example, by neutralizing with an alkali after washing with an acid. be able to. Also, the oil can be separated by alkali washing or the like.
As described above, the method of the present invention for burying marine residues in a soil buried type compost prevents odors and pests from being generated by adding lactic acid bacteria at the time of burial, and reduces marine residues in a short period of time. It is possible to consolidate. This makes it possible to repeatedly reduce the volume using the same soil, thereby reducing operating costs and increasing throughput.

Claims (2)

組立型コンクリート堆肥盤に土を盛り締め固めた後、穴を掘り水産系残渣を投入し、乳酸菌を添加する。混合した後、覆土し空気を遮断し嫌気発酵を行い、さらに土壌と混合させた後切返しにより好気発酵させることで悪臭を発生させることなく、これら水産系残渣の減容化を可能にする方法。After the soil is compacted on the assembling concrete composter, a hole is dug and marine residues are added, and lactic acid bacteria are added. After mixing, the soil is covered, the air is cut off, anaerobic fermentation is performed, and after mixing with the soil, aerobic fermentation is performed by turning it over, thereby reducing the volume of these marine residues without generating a bad smell. . 堆肥化の際に乳酸菌を添加することで、これら水産系残渣の土壌中の微生物による分解に加えて、乳酸発酵による各種酵素や乳酸の生成が加わることで、悪臭を押さえた減容化が可能となり、土壌を繰り返し使用し堆肥化を行うことが可能となる方法。By adding lactic acid bacteria during composting, in addition to the decomposition of these marine residues by microorganisms in the soil, the production of various enzymes and lactic acid by lactic acid fermentation can be added to reduce the volume while suppressing malodor. A method that makes it possible to compost using soil repeatedly.
JP2003093461A 2003-03-31 2003-03-31 Composting method by burying fishery residue in soil Pending JP2004299949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003093461A JP2004299949A (en) 2003-03-31 2003-03-31 Composting method by burying fishery residue in soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003093461A JP2004299949A (en) 2003-03-31 2003-03-31 Composting method by burying fishery residue in soil

Publications (1)

Publication Number Publication Date
JP2004299949A true JP2004299949A (en) 2004-10-28

Family

ID=33406253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003093461A Pending JP2004299949A (en) 2003-03-31 2003-03-31 Composting method by burying fishery residue in soil

Country Status (1)

Country Link
JP (1) JP2004299949A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256076A (en) * 2010-06-09 2011-12-22 忠幸 ▲吉▼田 Fertilizer utilizing underground resource and method of producing fertilizer
CN104761311A (en) * 2015-03-16 2015-07-08 广东海洋大学 Micro-ecologic organic fertilizer fermented from viscera of fish and shellfish and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256076A (en) * 2010-06-09 2011-12-22 忠幸 ▲吉▼田 Fertilizer utilizing underground resource and method of producing fertilizer
CN104761311A (en) * 2015-03-16 2015-07-08 广东海洋大学 Micro-ecologic organic fertilizer fermented from viscera of fish and shellfish and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2001354487A (en) Full-ripe organic fertilizer, method for manufacturing the same and apparatus for manufacturing the same
WO2018014756A1 (en) Rapid fermentation method for kitchen waste
KR101184406B1 (en) Preparation method of organic matter fertilizer using food waste
CN101618977A (en) High-temperature aerobic fermentation process for sludge with low energy consumption and no pollution
Ahmad et al. Potential of compost for sustainable crop production and soil health
Hoyos et al. Aerobic thermophilic composting of waste sludge from gelatin-grenetine industry
Chadar et al. Composting as an eco-friendly method to recycle organic waste
JP2004299949A (en) Composting method by burying fishery residue in soil
Stelmachowski et al. In-vessel composting for utilizing of municipal sewage-sludge
JP4490529B2 (en) Recycling method of shellfish to soil calcium supplement for agriculture
JP2008036593A (en) Method for treating sewage sludge
JP5893670B2 (en) Method for producing dried sludge and treatment method thereof
JP4035104B2 (en) Raw garbage processing substrate and method for manufacturing the same
JP2003221288A (en) Production method of compost from organic material
KR100322670B1 (en) Biochip used symbiosis culture microorganism and soilization method of food waste using the same
JP2001106586A (en) Method for preparing organic fertilizer consisting of poultry manure and shochu lee as main raw material
CN112456745B (en) Method for drying domestic sludge by aerobic microorganisms and application thereof
JP2000325993A (en) Garbage treatment method and equipment
Rastogi et al. Composting an emerging technology for solid waste management in India
JP2007045706A (en) Apparatus for producing compost
JP3913524B2 (en) Compost manufacturing method
JP2006110529A (en) Degradation material for foodstuff refuse and sludge
JPH10114589A (en) Production of fertilizer from sea food waste
JP2005145769A (en) Method for composting organic waste with high nitrogen content
CN112520965A (en) Method for aerobic drying treatment of papermaking sludge by using recyclable bacterial bed and application of method