JP2004292315A - Tak1 inhibitor - Google Patents

Tak1 inhibitor Download PDF

Info

Publication number
JP2004292315A
JP2004292315A JP2000379995A JP2000379995A JP2004292315A JP 2004292315 A JP2004292315 A JP 2004292315A JP 2000379995 A JP2000379995 A JP 2000379995A JP 2000379995 A JP2000379995 A JP 2000379995A JP 2004292315 A JP2004292315 A JP 2004292315A
Authority
JP
Japan
Prior art keywords
tak1
activation
cells
kinase
inhibitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000379995A
Other languages
Japanese (ja)
Inventor
Masayuki Tsuchiya
政幸 土屋
Toshihiko Otomo
俊彦 大友
Koichiro Ono
浩一郎 小野
Masahiko Matsumoto
雅彦 松本
Tatsuya Ito
達也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Pharmaceutical Co Ltd
Original Assignee
Chugai Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Pharmaceutical Co Ltd filed Critical Chugai Pharmaceutical Co Ltd
Priority to JP2000379995A priority Critical patent/JP2004292315A/en
Priority to PCT/JP2001/010927 priority patent/WO2002048135A1/en
Priority to AU2002222627A priority patent/AU2002222627A1/en
Publication of JP2004292315A publication Critical patent/JP2004292315A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D313/00Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom

Abstract

<P>PROBLEM TO BE SOLVED: To provide a TAK1 inhibitor or an inhibitor of TAK1 activation. <P>SOLUTION: The TAK1 inhibitor or the inhibitor of the TAK1 activation comprises zearalenones having hydroxy groups in both the 8- and 9-positions. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、TAK1阻害剤、およびTAK1活性化阻害剤に関する。
【0002】
【従来の技術】
細胞内のシグナル伝達に関与する一連の系として、マイトジェン−活性化プロテインキナーゼ(Mitogen−Activated Protein Kinase; MAPK)系が知られている。MAPK系は受容体のシグナルを種々の作用に転換する保存された真核細胞性シグナル伝達系である。MAPK系は3種類のプロテインキナーゼ、すなわちMAPKKK(Mitogen−Activated Protein Kinase Kinase Kinase)、MAPKK(Mitogen−Activated Protein Kinase Kinase)、MAPK(Mitogen−Activated Protein Kinase )を含む。MAPKはMAPKKによるリン酸化で活性化される。MAPKKはMAPKKKによるリン酸化で活性化される(Trends Biochem. Sci. (1993) 18, 128;Trends Biochem. Sci. (1993) 19, 236;Trends Biochem. Sci. (1993) 19, 470;Cell (1995) 80, 179)。
【0003】
細胞内のシグナル伝達系において機能するMAPKKKファミリーの一つであるTAK1(TGF−β−Activated Kinase 1)はYamaguchi, K.らにより同定された蛋白質であり(Science (1995)270, 2008)、TGF−βのシグナル伝達に関与しTGF−βにより活性化されることが明らかになっている。また、TAK1に結合し、TAK1を活性化するTGF−βのシグナル伝達系に関与する蛋白質であるTAB1(TAK1 Binding Protein 1)がShibuya, H.らにより同定された(Science (1996) 272, 1179−1182)。TAB1はTAK1に結合してTAK1のキナーゼ活性を活性化し、MAPKKであるMKK4やMKK3/6の活性化を通じ、c−Jun N−terminal kinase(JNK)やp38 MAPKの活性化を誘導し、TGF−β等のシグナルを伝達する(J. Biol. Chem., (1996) 271, 13675−13679;J. Biol. Chem., (1997) 272, 8141−8144)。さらに、活性化TAK1の発現により心肥大、さらには心不全を誘導することが明らかとなった(Nature Med., (2000) 6, 556−563)。
また最近になり、TAK1がインターロイキン−1(IL−1)と腫瘍壊死因子(TNF)の刺激等の各種ストレスによっても活性化されることが明らかになり(J. Biol. Chem. (1997) 272, 8141−8144;J. Biol. Chem., (1999) 274, 10641−10648)、TAK1はIL−1のシグナル伝達系においてMAPKカスケードを介したJNKの活性化、ならびにnuclear factor−κB (NF−κB)−inducing kinase (NIK)、IκB kinases (IKK)の活性化を通じたNF−κBの活性化に関与することが明らかになった(Nature (1999) 398, 252−256;Mol. Cell, (2000) 5, 649−658)。さらに、LPS刺激によりTAK1が活性化され、NF−κBの活性化を誘導し、LPSのシグナル伝達への関与が明らかになった(FEBS Lett., (2000) 467, 160−164)。
TGF−βは多くの細胞機能を制御する多機能因子であり、その一つとしてTGF−βは様々な傷害に伴う組織の修復および再生を司る( New Engl. J. Med., (1994) 331, 1286−1292)。しかしながら、慢性化した傷害においてはTGF−βの異常産生により、組織の修復、再生のバランスが崩れ病的な線維化を生ずることがある。TGF−βは細胞外マトリックス蛋白質の産生を亢進させ、細胞外マトリックス分解酵素の合成の阻害、ならびに細胞外マトリックス分解酵素の阻害因子を誘導する事により、種々の臓器、例えば肝臓、腎臓等の線維症の主要な原因因子として作用することが明らかになっている(New Engl. J. Med., (1994) 331, 1286−1292)。また、その他の作用としては、細胞増殖阻害活性(Cell (1990) 63, 245−247)、単球遊走活性(Proc. Natl. Acad. Sci. USA, (1987) 84, 5788−5792)、生理活性物質誘導活性(Proc. Natl. Acad. Sci. USA, (1987) 84, 5788−5792)、βアミロイド蛋白質沈着作用(Nature, (1997) 389, 603−606)が知られている。肝線維症、肺線維症、糸球体腎炎、糖尿病性腎症、腎硬化症、血管再狭窄、ケロイド症、強皮症、眼科手術後の瘢痕化、増殖性網膜症、自己免疫疾患およびアルツハイマー症などの疾病とTGF−βの異常産生の関連が報告されている。
IL−1やTNF等の炎症性サイトカインは、異物の侵入による炎症などの生体防御因子として重要な役割を果たしているが、この反応が過剰に発現すると、逆に様々な病態を引き起こす事が知られている。IL−1は免疫及び炎症反応において重要なメディエーターであると考えられ、様々な細胞に働いて、それぞれの細胞機能を亢進する。その結果、 T、Bリンパ球の分化及び増殖、IL−2やコロニー刺激因子、IL−6、IL−8、TNF等の炎症性サイトカインの産生、発熱・睡眠・食欲低下・低血圧の誘導、脳下垂体からのホルモン分泌亢進、コラゲナーゼの産生亢進による関節軟骨の破壊、プロスタグランジン産生亢進による痛覚閾値の低下をそれぞれ誘導し、さらにランゲルハンス島のβ細胞の破壊、骨髄性白血病細胞の増殖、関節炎、腸炎等の炎症への関与、動脈硬化プラークの形成など多彩な生理反応への関与が明らかになっている。また、IL−1の過剰産生が原因と考えられている疾病として慢性関節リウマチ、骨粗鬆症、敗血症、炎症性腸疾患、インスリン依存性糖尿病、動脈硬化症、乾癬、喘息、アルコール性肝炎等が知られている( TIPS, (1988) 9, 171−177;New Engl. J. Med., (1993) 328, 106−113; Blood, (1996) 87, 2095−2147)。
また、TNFαは生体内に侵入した異物抗原との接触により活性化されたマクロファージ等の細胞より放出され、マクロファージの走化性、貪食能を亢進させるばかりでなく、Tリンパ球のHLA抗原の発現を増強し、またIL−2受容体の発現の増加を通じてT細胞の機能を賦活化、さらに好中球の走化性の亢進、活性化を誘導し、異物の除去に働く。また、炎症局所の線維芽細胞に対しては増殖促進に働き、その組織修復を行っている。さらに、TNFαはこれらの細胞より種々のサイトカインの発現を亢進させ、IL−1と同様にサイトカインネットワークの形成に関与している。しかし、これらの反応が過剰に発現すると増悪因子として働くことがあり、TNFαの過剰産生が知られている疾患として、敗血症、慢性関節性リウマチ、炎症性腸疾患、潰瘍性大腸炎、クローン病、SLE、川崎病等が報告されている(日本臨床、(1999) 57、Suppl:794−797)。
従って、TAK1キナーゼ活性もしくはTAK1の活性化を抑制する物質が見出されれば、TAK1がシグナル伝達に関与する事が知られているTGF−β、IL−1、LPS、TNF等が原因因子として知られている各種疾病、並びに心肥大、心不全の治療および予防薬の開発につながると考えられる。しかしながら、現在までにTAK1キナーゼ阻害剤、もしくはTAK1活性化阻害剤は知られていない。
ところで、ゼアラレノン類は、これまでに種々の化合物が報告されており、また、種々の作用、例えば、サイトカイン、特にIL−1の産生抑制(特開平8−40893号公報、欧州第606044A号公報など)、チロシンキナーゼ阻害(WO96/13259号公報)、MEK1キナーゼ阻害に基づくT細胞の活性化及び活性化に伴う増殖阻害(Biochemistry, 37; 9579−9585, 1998)、JNK/p38活性化の阻害(Biochem. Biophys. Res. Commun., 257;19−23, 1999)、MEK阻害(J. Antibiotics, 52;1086−1094, 1999)、LPS刺激後のサイトカイン(IL−1、IL−6、TNF−α)産生阻害(Int. J. Imunopharmacol., 21;799−814, 1999)、 LPS、IFN−γ刺激後のサイトカイン(IL−1β、TNF−α)産生抑制(Cytokine, 8;751−761, 1996)など、についても報告されている。
しかし、これまで、ゼアラレノン類がTAK1あるいはTAK1活性化を阻害する作用を有することは知られていない。また、8位および9位のいずれにも水酸基を有するゼアラレノン類が特に優れた該作用を有することも全く知られていない。
【0004】
【発明が解決しようとする課題】
本発明の目的は、TAK1阻害剤、あるいは、TAK1活性化阻害剤を提供することである。
【0005】
【課題を解決するための手段】
本発明者らは、上記課題を解決するため鋭意研究を重ねた結果、ある種のゼアラレノン類が優れたTAK1キナーゼ阻害活性を持ち、また、TAK1の活性化を介したTGF−βやIL−1等のシグナル伝達を阻害することを見出し、この知見に基づき本発明を完成した。
【0006】
すなわち、本発明は、8位および9位のいずれにも水酸基を有するゼアラレノン類を有効成分とする、TAK1阻害剤またはTAK1活性化阻害剤を提供する。
【0007】
【発明の実施の形態】
本発明において、8位および9位のいずれにも水酸基を有するゼアラレノン類には、ゼアラレノン(Zearalenone:下記式(A))またはゼアラレノール(Zearalenol:下記式(B))
【0008】
【化3】

Figure 2004292315
【0009】
から誘導される化合物であって、その8位および9位のいずれにも水酸基(−OH)を有する化合物が含まれる。これら化合物には、光学異性体、幾何異性体が存在し得るがそれらのいずれも、およびそれら任意の割合の混合物も本発明に含まれる。
【0010】
8位および9位のいずれにも水酸基を有するゼアラレノン類としては、具体的には、例えば、以下に示されるような化合物が含まれる:
【0011】
【化4】
Figure 2004292315
【0012】
【化5】
Figure 2004292315
【0013】
これら化合物(1)〜(13)は、自体公知の化合物であり、文献(例えば、Int. J. Imunopharmacol., 21:799−814, 1999;J. Org. Chem., 43: 2339−2343, 1978;Chem. Pharm. Bull. 41:373−375, 1993;J. Antibiotics, 52:1077−1085, 1999;Biochem. Biophys. Res. Commun., 257:19−23, 1999;Cytokine, 8:751−761, 1996;Pharmacol. Commun., 7:301−308, 1996;日本特許公開平8−40893号公報;欧州特許公開第606044A号公報;Biochemistry, 37: 9579−9585, 1998など)に記載の方法により調製することができる。
【0014】
8位および9位のいずれにも水酸基を有するゼアラレノン類としては、化合物(1)〜(13)が好ましく、化合物(1)〜(3)がさらに好ましく、化合物(1)が特に好ましい。
【0015】
本発明において、TAK1阻害とは、TAK1のキナーゼ活性を阻害することを意味する。TAK1の阻害活性は、例えば、後述の実施例2に記載された方法により測定することができる。
【0016】
TAK1活性化阻害とは、TAK1を介した細胞内シグナル伝達を阻害することを意味する。TAK1阻害活性化阻害作用は、例えば、後述の実施例3に記載された方法により測定することができる。
【0017】
疾病の原因としてTAK1の活性化が関与する疾病には、TAK1の活性化を介した細胞内のシグナル伝達系に関与するTGF−β、IL−1、LPS、TNF等を原因因子とする各種疾病、並びに、心肥大、心不全などが含まれる。
【0018】
本発明のTAK1キナーゼ阻害剤またはTAK1活性化阻害剤の投与経路、投与量は、患者の体型、年齢、体調、疾患の種類や度合い、発症後の経過時間等により、適宜選択することができるが、非経口投与の場合には、一般に0.02μg〜2mg/体重kg/日の用量で、経口投与の場合には、一般に5μg〜500mg/体重kg/日の用量で効果が期待できる。
【0019】
本発明のTAK1阻害剤またはTAK1活性化阻害剤は、1種もしくはそれ以上の薬学的に許容し得る希釈剤、湿潤剤、乳化剤、分散剤、補助剤、防腐剤、緩衝剤、結合剤、安定剤などを含む薬学的組成物として、目的とする投与経路に応じ、適当な任意の形態にして投与することができる。
【0020】
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
【0021】
【実施例】
TAK1 キナーゼ阻害活性の評価
(実施例1)化合物(1)〜(3)のTAK1キナーゼ阻害活性の検討
TAK1キナーゼ活性はTAK1の自己リン酸化、ならびにTAB1のリン酸化を測定することで評価した。すなわち、TAK1及びTAB1遺伝子を含有した組み換えバキュロウイルスベクター(WO99/21010号公報)をそれぞれ昆虫細胞Sf−9に共感染させ、3日間培養した。培養後、細胞をPBSで洗浄し、3.0 x 10細胞/mLとなるように抽出液(20 mM HEPES, pH 7.4、150 mM NaCl、12.5 mM β−gycerophosphate、1.5 mM MgCl、2 mM EGTA、10 mM NaF、2 mM DTT、1 mM NaVO、1 mM PMSF、20μMAprotinin、0.5% Triton X−100)に懸濁し細胞抽出液を調製した。細胞抽出液10μLに抗TAK1抗体M−17(SantaCruz社製)100 ng、及びProteinG−Sepharose(Amersham Pharmacia社製)1 μLを加え、4℃でインキュベートした後、免疫沈降物を洗浄液(20 mM HEPES, pH 7.4、500 mM NaCl、10 mM MgCl)で3回洗浄、続いてキナーゼ溶液(10 mM HEPES, pH 7.4、1 mM DTT、5 mM MgCl)で2回洗浄し、TAK1/TAB1精製物を調製した。TAK1/TAB1精製物をキナーゼ溶液に再懸濁し、Multiscreenプレート(Millipore社製)の各穴に25μLずつ加えた後、DMSOに溶解した試験化合物を1μLずつ加え、室温にて30分間インキュベートした。続いて、1ウエル当たり0.1μCiとなるように[γ−33P]−ATP(Amersham Pharmacia社製)を加えた溶液(100 mM MOPS, pH 7.2、10 mM MgCl、2μM ATP)を25μLずつ加え、37℃にて30分間インキュベートしキナーゼ反応を行った。反応停止液(50% TCA含有PBS)を50μLずつ加え、さらに4℃にて10分間インキュベートし、キナーゼ反応を停止した。フリーの33P−ATPを除去するために、0.05% Tween−20を含有するPBSで5回洗浄し、50μLずつのSupermix(Wallac社製)を加え、さらに室温にて30分間清置した後TAK1及びTAB1に取り込まれた33P−ATP量をmicro−betaにより測定することでTAK1キナーゼ活性を測定した。その結果、化合物(1)〜(3)は表1に示すようにTAK1キナーゼ活性を抑制し、特に化合物(1)はIC50値として8.1 nMのTAK1キナーゼ阻害活性を示した。しかしながら、化合物(1)〜(3)の8位および9位に対応する位置に水酸基を有しない化合物であるRadicicol
【0022】
【化6】
Figure 2004292315
【0023】
、ゼアラレノン(式(A))、ゼアラレノール(式(B))
【0024】
【化7】
Figure 2004292315
【0025】
はTAK1キナーゼ阻害活性はほぼ認められなかった。
【0026】
【表1】
Figure 2004292315
【0027】
(実施例2)TAK1を介したシグナル伝達阻害作用の検討
TAK1の活性化によりMAPKカスケードならびにNF−κBの活性化が誘導されることが知られている。そこで、TAK1キナーゼ活性の阻害によりTAK1を介したシグナル伝達への影響をレポーターアッセイを用い検討した。
【0028】
初めに、TGF−β応答性エレメントの下流にルシフェラーゼの遺伝子を組み込んだp3TP−Lux(Cell, 71, 1003−1014, 1992)を用い、化合物(1)の影響を検討した。ヒトfibrosarcoma細胞株HT−1080細胞1 x 10個を播種し終夜培養した後、2μgのp3TP−Luxと10μLのFuGENE遺伝子導入試薬(Roche社製)の混合物を細胞に添加し、さらに8時間培養し遺伝子を導入した。遺伝子を導入した細胞をトリプシンにより剥がした後、1ウエル当たり1 x 10個となるように96穴マイクロプレート(Falcon社製)に播種し、さらに終夜培養した。DMEM培地で1回洗浄した後、0.2%ウシ胎児血清を含むDMEM培地で希釈した化合物(1)を50μLずつ添加した。37℃で1時間インキュベートした後、終濃度で10 ng/mLとなるようにTGF−β(Promega社製)を50μLずつ加え、さらに24時間培養した。ルシフェラーゼ活性はSteady Glo Luciferase Assay Kit(Promega社製)を用いて測定した。
【0029】
また、NF−κBの活性化の測定には応答性エレメントの下流にルシフェラーゼの遺伝子を組み込んだNFkB−Luc(Genes Dev., 7, 1354−1363, 1993)を用い、IL−1刺激、又はTAK1/TAB1強制発現によりTAK1の活性化を誘導し行った。すなわち、ヒト胎児腎細胞株293細胞にIL−1受容体を強制発現させた293−IL1R細胞( Mol. Cell, 5, 649−658, 2000)を1 x 10個を播種し終夜培養した後、2μgのNFkB−Lucと10μLのFuGENE遺伝子導入試薬(Roche社製)の混合物を細胞に添加し、さらに8時間培養し遺伝子を導入した。遺伝子を導入した細胞をトリプシンにより剥がした後、1ウエル当たり1 x 10個となるように96穴マイクロプレート(Coaning Coaster社製)に播種し、さらに終夜培養した。DMEM培地で1回洗浄した後、0.2%ウシ胎児血清を含むDMEM培地で希釈した化合物(1)を50μLずつ添加した。37℃で1時間インキュベートした後、終濃度で10 ng/mLとなるようにIL−1α(PEPRO TECH社製)を50μLずつ加え、さらに24時間培養した。ルシフェラーゼ活性はSteady Glo Luciferase Assay Kit(Promega社製)を用いて測定した。TAK1/TAB1強制発現によるNFkBの活性化に関しては、NFkB−Lucの遺伝子導入と共に、TAK1、TAB1発現ベクターpTAK1−HAならびにpCOS−FTAB1をそれぞれ250 ngずつを同時に加え、上記と同様に遺伝子を導入した。遺伝子を導入した細胞は上記と同様に96穴マイクロプレート(Coaning Coaster社製)に播種し、終夜培養した後、 DMEM培地で1回洗浄し、0.2%ウシ胎児血清を含むDMEM培地で希釈した化合物(1)を50μLずつ添加した。37℃で24時間培養した後、ルシフェラーゼ活性を測定した。
【0030】
結果を図1に示す。図1において、縦軸は、阻害活性(%)を示す。横軸は、化合物(1)濃度(M)を示す。黒塗り四角は、p3TP−LuxアッセイにおけるTGF−βシグナル伝達経の阻害活性を示す。黒塗り三角はNFkB−LucアッセイにおけるIL−1シグナル伝達系の阻害活性を示す。白抜き三角はNFkB−LucアッセイにおけるTAK1/TAB1強制発現によるシグナル伝達系の阻害活性を示す。
【0031】
図1に示すように、化合物(1)は容量依存的にTGF−β、IL−1α、ならびにTAK1/TAB1強制発現によるルシフェラーゼの発現を抑制した。この結果はTAK1キナーゼ活性の阻害により下流へのシグナル伝達を阻害できることを示唆する。
【0032】
【発明の効果】
本発明の化合物は、はTAK1阻害作用を有するので、TAK1の活性化を介した各種シグナル伝達系を阻害し、疾病の原因としてTAK1の活性化が関与する各種疾病、例えば、TGF−β、IL−1、LPS、TNF−α等が原因因子として知られる各種疾病の治療および予防する薬剤として有用であることが期待される。
【図面の簡単な説明】
【図1】化合物(1)のTAK1を介したシグナル伝達阻害作用を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to TAK1 inhibitors and TAK1 activation inhibitors.
[0002]
[Prior art]
As a series of systems involved in intracellular signal transduction, a mitogen-activated protein kinase (MAPK) system is known. The MAPK system is a conserved eukaryotic signaling system that converts receptor signals into various actions. The MAPK system includes three types of protein kinases, namely, MAPKKK (Mitogen-Activated Protein Kinase Kinase), MAPKK (Mitogen-Activated Protein Kinase Kinase), and MAPK (Mitogen-Kate-Migrate). MAPK is activated by phosphorylation by MAPKK. MAPKK is activated by phosphorylation by MAPKKK (Trends Biochem. Sci. (1993) 18, 128; Trends Biochem. Sci. (1993) 19, 236; Trends Biochem. Sci. (1993); 1995) 80, 179).
[0003]
TAK1 (TGF-β-Activated Kinase 1), which is one of the MAPKKK family that functions in the intracellular signal transduction system, is disclosed in Yamaguchi, K. et al. (Science (1995) 270, 2008) and has been shown to be involved in TGF-β signal transduction and activated by TGF-β. Also, TAB1 (TAK1 Binding Protein 1), which is a protein involved in the TGF-β signal transduction system that binds to TAK1 and activates TAK1, is disclosed in Shibuya, H .; (Science (1996) 272, 1179-1182). TAB1 binds to TAK1 to activate the kinase activity of TAK1, induces activation of c-Jun N-terminal kinase (JNK) and p38 MAPK through activation of MAPKK MKK4 and MKK3 / 6, and TGF- Transmits signals such as β (J. Biol. Chem., (1996) 271, 13675-13679; J. Biol. Chem., (1997) 272, 8141-8144). Furthermore, it was revealed that the expression of activated TAK1 induces cardiac hypertrophy and further heart failure (Nature Med., (2000) 6, 556-563).
Recently, it has been revealed that TAK1 is also activated by various stresses such as stimulation of interleukin-1 (IL-1) and tumor necrosis factor (TNF) (J. Biol. Chem. (1997)). 272, 8141-8144; J. Biol. Chem., (1999) 274, 10641-10648), TAK1 activates JNK through the MAPK cascade in the IL-1 signal transduction system, as well as nuclear factor-κB (NF -ΚB) -inducing kinase (NIK), was found to be involved in the activation of NF-κB through the activation of IκB kinases (IKK) (Nature (1999) 398, 252-256; Mol. Cell, (2000) 5, 649-658 ). Further, LPS stimulation activated TAK1, induced NF-κB activation, and revealed that LPS is involved in signal transduction (FEBS Lett., (2000) 467, 160-164).
TGF-β is a multifunctional factor that controls many cell functions, and as one of them, TGF-β is responsible for tissue repair and regeneration associated with various injuries (New Engl. J. Med., (1994) 331). , 1286-1292). However, in the case of chronic injury, abnormal production of TGF-β may disrupt the balance between tissue repair and regeneration, resulting in pathological fibrosis. TGF-β enhances the production of extracellular matrix proteins, inhibits the synthesis of extracellular matrix-degrading enzymes, and induces inhibitors of extracellular matrix-degrading enzymes to produce various organs such as liver and kidney fibers. It has been shown to act as a major causative factor of the disease (New Engl. J. Med., (1994) 331, 1286-1292). Other effects include cell growth inhibitory activity (Cell (1990) 63, 245-247), monocyte migration activity (Proc. Natl. Acad. Sci. USA, (1987) 84, 5788-5792), physiology Active substance-inducing activity (Proc. Natl. Acad. Sci. USA, (1987) 84, 5788-5792) and β-amyloid protein depositing action (Nature, (1997) 389, 603-606) are known. Liver fibrosis, pulmonary fibrosis, glomerulonephritis, diabetic nephropathy, renal sclerosis, vascular restenosis, keloidosis, scleroderma, scarring after ophthalmic surgery, proliferative retinopathy, autoimmune disease and Alzheimer's disease And the abnormal production of TGF-β have been reported.
Inflammatory cytokines such as IL-1 and TNF play an important role as biological defense factors such as inflammation due to invasion of foreign substances. However, when this reaction is excessively expressed, various pathological conditions are known to be caused. ing. IL-1 is thought to be an important mediator in the immune and inflammatory responses, and acts on various cells to enhance their respective cell functions. As a result, differentiation and proliferation of T and B lymphocytes, production of inflammatory cytokines such as IL-2 and colony stimulating factors, IL-6, IL-8 and TNF, induction of fever, sleep, loss of appetite, and hypotension; Increased hormone secretion from the pituitary gland, destruction of articular cartilage due to increased production of collagenase, induction of a decrease in pain threshold due to increased prostaglandin production, and further destruction of β cells in the islets of Langerhans, proliferation of myeloid leukemia cells, Involvement in various inflammations such as arthritis and enteritis, and various physiological reactions such as formation of atherosclerotic plaque have been clarified. In addition, diseases considered to be caused by overproduction of IL-1 include rheumatoid arthritis, osteoporosis, sepsis, inflammatory bowel disease, insulin-dependent diabetes, arteriosclerosis, psoriasis, asthma, alcoholic hepatitis, and the like. (TIPS, (1988) 9, 171-177; New Engl. J. Med., (1993) 328, 106-113; Blood, (1996) 87, 2095-2147).
In addition, TNFα is released from cells such as macrophages activated by contact with foreign antigens that have invaded the living body, and not only enhances chemotaxis and phagocytic activity of macrophages, but also expresses HLA antigens on T lymphocytes. Enhances the function of T cells through increasing the expression of the IL-2 receptor, and further enhances the chemotaxis and activation of neutrophils to remove foreign substances. In addition, it promotes proliferation of fibroblasts in inflamed areas and repairs the tissue. Furthermore, TNFα enhances the expression of various cytokines in these cells, and is involved in the formation of a cytokine network like IL-1. However, when these reactions are overexpressed, they may act as exacerbating factors, and as diseases in which overproduction of TNFα is known, sepsis, rheumatoid arthritis, inflammatory bowel disease, ulcerative colitis, Crohn's disease, SLE, Kawasaki disease, etc. have been reported (Japanese clinical practice, (1999) 57, Suppl: 794-797).
Therefore, if a substance that inhibits TAK1 kinase activity or TAK1 activation is found, TGF-β, IL-1, LPS, TNF, etc., for which TAK1 is known to be involved in signal transduction, are known as causative factors. It is thought to lead to the development of drugs for treating and preventing various diseases as well as cardiac hypertrophy and heart failure. However, no TAK1 kinase inhibitor or TAK1 activation inhibitor has been known to date.
By the way, various compounds have been reported as zearalenones, and various actions, for example, suppression of production of cytokines, particularly IL-1 (JP-A-8-40893, European Patent No. 606044A, etc.) ), Tyrosine kinase inhibition (WO96 / 13259), activation of T cells based on MEK1 kinase inhibition and growth inhibition accompanying activation (Biochemistry, 37; 9579-9585, 1998), inhibition of JNK / p38 activation ( Commun., 257; 19-23, 1999), MEK inhibition (J. Antibiotics, 52; 1086-1094, 1999), cytokines after LPS stimulation (IL-1, IL-6, TNF-). α) Production inhibition (Int. J. Im) nopharmacol., 21; 799-814, 1999), LPS, suppression of cytokine (IL-1β, TNF-α) production after IFN-γ stimulation (Cytokine, 8; 751-761, 1996), and the like. I have.
However, it has not been known that zearalenones have an effect of inhibiting TAK1 or TAK1 activation. Further, it is not known at all that zearalenones having a hydroxyl group at both the 8-position and the 9-position have the particularly excellent action.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a TAK1 inhibitor or a TAK1 activation inhibitor.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve the above-mentioned problems. As a result, certain zearalenones have excellent TAK1 kinase inhibitory activity, and TGF-β and IL-1 through activation of TAK1. And the like, and found that the present invention inhibits signal transmission, and completed the present invention based on this finding.
[0006]
That is, the present invention provides a TAK1 inhibitor or a TAK1 activation inhibitor comprising a zearalenone having a hydroxyl group at each of the 8th and 9th positions as an active ingredient.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, zearalenones having a hydroxyl group at each of the 8-position and 9-position include zearalenone (Zearalone: the following formula (A)) or zearalenol (Zearalenol: the following formula (B))
[0008]
Embedded image
Figure 2004292315
[0009]
And a compound having a hydroxyl group (-OH) at each of the 8-position and the 9-position. These compounds may exist in the form of optical isomers and geometric isomers, both of which are included in the present invention, and mixtures thereof in any ratio.
[0010]
Specific examples of zearalenones having a hydroxyl group at each of the 8-position and the 9-position include compounds as shown below:
[0011]
Embedded image
Figure 2004292315
[0012]
Embedded image
Figure 2004292315
[0013]
These compounds (1) to (13) are compounds known per se and described in the literature (for example, Int. J. Immunopharmacol., 21: 799-814, 1999; J. Org. Chem., 43: 2339-2343). Chem. Pharm. Bull. 41: 373-375, 1993; J. Antibiotics, 52: 1077-1085, 1999; Biochem. Biophys. Res. Commun., 257: 19-23, 1999; Cytokine, 1978; Pharmacol. Commun., 7: 301-308, 1996; Japanese Patent Publication No. 8-40893; European Patent Publication No. 606044A; Biochemistry, 37: 9579-. 9585, 1998).
[0014]
As the zearalenones having a hydroxyl group at both the 8-position and the 9-position, compounds (1) to (13) are preferable, compounds (1) to (3) are more preferable, and compound (1) is particularly preferable.
[0015]
In the present invention, TAK1 inhibition means inhibiting the kinase activity of TAK1. TAK1 inhibitory activity can be measured, for example, by the method described in Example 2 below.
[0016]
TAK1 activation inhibition refers to inhibiting TAK1-mediated intracellular signal transduction. The TAK1 inhibitory activation inhibitory action can be measured, for example, by the method described in Example 3 described later.
[0017]
Various diseases in which TAK1 activation is involved as a cause of the disease include TGF-β, IL-1, LPS, TNF, and the like, which are involved in an intracellular signal transduction system through TAK1 activation. And cardiac hypertrophy, heart failure and the like.
[0018]
The administration route and dosage of the TAK1 kinase inhibitor or TAK1 activation inhibitor of the present invention can be appropriately selected depending on the patient's body type, age, physical condition, type and degree of disease, elapsed time after onset, and the like. In the case of parenteral administration, an effect can generally be expected at a dose of 0.02 μg to 2 mg / kg of body weight / day, and for oral administration, an effect of generally 5 μg to 500 mg / kg of body weight / day.
[0019]
The TAK1 inhibitor or TAK1 activation inhibitor of the present invention may comprise one or more pharmaceutically acceptable diluents, wetting agents, emulsifiers, dispersants, adjuvants, preservatives, buffers, binders, stabilizers. It can be administered as a pharmaceutical composition containing an agent or the like in any appropriate form depending on the intended administration route.
[0020]
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0021]
【Example】
Evaluation of TAK1 Kinase Inhibitory Activity (Example 1) Examination of TAK1 Kinase Inhibitory Activity of Compounds (1) to (3) TAK1 kinase activity was evaluated by measuring TAK1 autophosphorylation and TAB1 phosphorylation. That is, the insect cells Sf-9 were each co-infected with a recombinant baculovirus vector containing the TAK1 and TAB1 genes (WO99 / 21010) and cultured for 3 days. After the culture, the cells were washed with PBS, and the extract was adjusted to 3.0 × 10 7 cells / mL (20 mM HEPES, pH 7.4, 150 mM NaCl, 12.5 mM β-glycerophosphate, 1.5 mM). The cells were suspended in mM MgCl 2 , 2 mM EGTA, 10 mM NaF, 2 mM DTT, 1 mM Na 3 VO 4 , 1 mM PMSF, 20 μMA Protinin, 0.5% Triton X-100) to prepare a cell extract. To 10 μL of the cell extract, 100 ng of anti-TAK1 antibody M-17 (manufactured by Santa Cruz) and 1 μL of Protein G-Sepharose (manufactured by Amersham Pharmacia) were added, and the mixture was incubated at 4 ° C., and the immunoprecipitate was washed with 20 mM HEPES , PH 7.4, 500 mM NaCl, 10 mM MgCl 2 ), followed by two washes with a kinase solution (10 mM HEPES, pH 7.4, 1 mM DTT, 5 mM MgCl 2 ) and TAK1 / TAB1 purified product was prepared. The purified TAK1 / TAB1 was resuspended in a kinase solution, added to each well of a Multiscreen plate (manufactured by Millipore) in an amount of 25 μL, and then 1 μL of a test compound dissolved in DMSO was added, followed by incubation at room temperature for 30 minutes. Subsequently, 1 so that per well 0.1μCi [γ- 33 P] -ATP ( Amersham Pharmacia Co. Ltd.) was added a solution (100 mM MOPS, pH 7.2,10 mM MgCl 2, 2μM ATP) to 25 μL each was added and incubated at 37 ° C. for 30 minutes to perform a kinase reaction. A reaction stop solution (PBS containing 50% TCA) was added in 50 μL portions, and the mixture was further incubated at 4 ° C. for 10 minutes to stop the kinase reaction. To remove free 33 P-ATP, the plate was washed five times with PBS containing 0.05% Tween-20, 50 μL of Supermix (manufactured by Wallac) was added, and the plate was further incubated at room temperature for 30 minutes. Thereafter, TAK1 kinase activity was measured by measuring the amount of 33 P-ATP incorporated into TAK1 and TAB1 by micro-beta. As a result, Compounds (1) to (3) suppressed TAK1 kinase activity as shown in Table 1, and particularly, Compound (1) showed a TAK1 kinase inhibitory activity of 8.1 nM as an IC 50 value. However, Radidicol which is a compound having no hydroxyl group at the position corresponding to the 8-position and 9-position of the compounds (1) to (3)
[0022]
Embedded image
Figure 2004292315
[0023]
, Zearalenone (formula (A)), zearalenol (formula (B))
[0024]
Embedded image
Figure 2004292315
[0025]
Showed almost no TAK1 kinase inhibitory activity.
[0026]
[Table 1]
Figure 2004292315
[0027]
(Example 2) Investigation of TAK1-mediated signal transduction inhibitory action It is known that activation of TAK1 induces activation of the MAPK cascade and NF-κB. Therefore, the effect of TAK1 kinase activity on TAK1-mediated signal transduction was examined using a reporter assay.
[0028]
First, the effect of compound (1) was examined using p3TP-Lux (Cell, 71, 1003-1014, 1992) having a luciferase gene incorporated downstream of the TGF-β responsive element. After inoculating 1 × 10 6 human fibrosarcoma cell line HT-1080 cells and culturing overnight, a mixture of 2 μg of p3TP-Lux and 10 μL of FuGENE gene transfer reagent (Roche) was added to the cells, and the cells were further cultured for 8 hours. The gene was introduced. The cells into which the gene was introduced were detached with trypsin, and then seeded on a 96-well microplate (Falcon) at 1 × 10 4 cells per well, and further cultured overnight. After washing once with the DMEM medium, 50 μL of the compound (1) diluted with the DMEM medium containing 0.2% fetal bovine serum was added. After incubating at 37 ° C. for 1 hour, 50 μL of TGF-β (Promega) was added thereto at a final concentration of 10 ng / mL, and the cells were further cultured for 24 hours. Luciferase activity was measured using Steady Glo Luciferase Assay Kit (Promega).
[0029]
For the measurement of NF-κB activation, NFkB-Luc (Genes Dev., 7, 1354-1363, 1993) having a luciferase gene incorporated downstream of the responsive element was used to stimulate IL-1 or TAK1. / TAB1 forced expression induced TAK1 activation. That is, 1 × 10 6 293-IL1R cells (Mol. Cell, 5, 649-658, 2000) in which IL-1 receptor was forcibly expressed in human fetal kidney cell line 293 cells were seeded and cultured overnight. A mixture of 2 μg of NFkB-Luc and 10 μL of FuGENE gene transfer reagent (Roche) was added to the cells, and the cells were further cultured for 8 hours to introduce the gene. After the cells into which the gene was introduced were detached with trypsin, the cells were seeded on a 96-well microplate (manufactured by Coating Coaster) at 1 × 10 4 cells per well, and further cultured overnight. After washing once with the DMEM medium, 50 μL of the compound (1) diluted with the DMEM medium containing 0.2% fetal bovine serum was added. After incubation at 37 ° C. for 1 hour, 50 μL of IL-1α (manufactured by PEPRO TECH) was added thereto at a final concentration of 10 ng / mL, and the cells were further cultured for 24 hours. Luciferase activity was measured using Steady Glo Luciferase Assay Kit (Promega). Regarding the activation of NFkB by forced expression of TAK1 / TAB1, along with the introduction of the NFkB-Luc gene, 250 ng each of TAK1, TAB1 expression vector pTAK1-HA and pCOS-FTAB1 was simultaneously added, and the gene was introduced in the same manner as described above. . The cells into which the gene has been introduced are seeded in a 96-well microplate (manufactured by Coating Coaster) in the same manner as described above, cultured overnight, washed once with DMEM medium, and diluted with DMEM medium containing 0.2% fetal bovine serum. Compound (1) was added in an amount of 50 μL each. After culturing at 37 ° C. for 24 hours, luciferase activity was measured.
[0030]
The results are shown in FIG. In FIG. 1, the vertical axis indicates the inhibitory activity (%). The horizontal axis indicates the concentration (M) of the compound (1). The filled squares indicate the inhibitory activity of TGF-β signaling transduction in the p3TP-Lux assay. Closed triangles indicate the inhibitory activity of the IL-1 signaling system in the NFkB-Luc assay. Open triangles indicate the inhibitory activity of the signal transduction system due to forced expression of TAK1 / TAB1 in the NFkB-Luc assay.
[0031]
As shown in FIG. 1, compound (1) suppressed the expression of TGF-β, IL-1α, and luciferase due to forced expression of TAK1 / TAB1 in a dose-dependent manner. This result suggests that inhibition of TAK1 kinase activity can inhibit downstream signal transduction.
[0032]
【The invention's effect】
Since the compound of the present invention has a TAK1 inhibitory action, it inhibits various signal transduction systems through activation of TAK1, and various diseases in which TAK1 activation is involved as a cause of diseases, for example, TGF-β, IL -1, LPS, TNF-α, etc. are expected to be useful as agents for treating and preventing various diseases known as causative factors.
[Brief description of the drawings]
FIG. 1 is a graph showing the inhibitory effect of compound (1) on signal transmission via TAK1.

Claims (3)

8位及び9位のいずれにも水酸基を有するゼアラレノン類を有効成分とする、TAK1阻害剤またはTAK1活性化阻害剤。A TAK1 inhibitor or a TAK1 activation inhibitor comprising, as an active ingredient, a zearalenone having a hydroxyl group at each of the 8-position and the 9-position. 8位および9位のいずれにも水酸基を有するゼアラレノン類が、下記の化合物(1)〜(13)
Figure 2004292315
Figure 2004292315
から選択される、請求項1に記載の阻害剤。
Zearalenones having a hydroxyl group at each of the 8- and 9-positions are represented by the following compounds (1) to (13)
Figure 2004292315
Figure 2004292315
The inhibitor according to claim 1, which is selected from:
化合物が、化合物(1)、(2)または(3)である、請求項2に記載の阻害剤。The inhibitor according to claim 2, wherein the compound is the compound (1), (2) or (3).
JP2000379995A 2000-12-14 2000-12-14 Tak1 inhibitor Pending JP2004292315A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000379995A JP2004292315A (en) 2000-12-14 2000-12-14 Tak1 inhibitor
PCT/JP2001/010927 WO2002048135A1 (en) 2000-12-14 2001-12-13 Tak1 inhibitors
AU2002222627A AU2002222627A1 (en) 2000-12-14 2001-12-13 Tak1 inhibitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000379995A JP2004292315A (en) 2000-12-14 2000-12-14 Tak1 inhibitor

Publications (1)

Publication Number Publication Date
JP2004292315A true JP2004292315A (en) 2004-10-21

Family

ID=18848260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000379995A Pending JP2004292315A (en) 2000-12-14 2000-12-14 Tak1 inhibitor

Country Status (3)

Country Link
JP (1) JP2004292315A (en)
AU (1) AU2002222627A1 (en)
WO (1) WO2002048135A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005519954A (en) * 2002-03-08 2005-07-07 エーザイ株式会社 Macrocyclic compounds useful as pharmaceuticals
WO2008018517A1 (en) * 2006-08-09 2008-02-14 Zeria Pharmaceutical Co., Ltd. Therapeutic and/or preventive agent for disease accompanied by cell overgrowth, and polynucleotide useful as the active ingredient
WO2008149244A2 (en) * 2007-06-05 2008-12-11 Nicolas Winssinger Compositions and methods comprising analogues of radicicol a
US7915306B2 (en) 2002-03-08 2011-03-29 Eisai Co., Ltd. Macrocyclic compounds useful as pharmaceuticals
US8609640B2 (en) 2007-07-25 2013-12-17 Eisai, Inc. Multikinase inhibitors for use in the treatment of cancer

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002359316A1 (en) * 2001-10-31 2003-05-12 Millennium Pharmaceuticals, Inc. Methods and compositions for the diagnosis and treatment of hematological disorders using 16319
GB0306071D0 (en) * 2003-03-17 2003-04-23 Novartis Ag Organic compounds
WO2004093878A1 (en) 2003-04-16 2004-11-04 Alcon, Inc. Use of fused pyridazine derivatives for treating dry eye disorders
US20060079494A1 (en) * 2004-09-27 2006-04-13 Santi Daniel V Specific kinase inhibitors
US7601852B2 (en) 2006-05-11 2009-10-13 Kosan Biosciences Incorporated Macrocyclic kinase inhibitors
WO2008021213A1 (en) 2006-08-11 2008-02-21 Nicolas Winssinger Macrocyclic compounds useful as inhibitors of kinases and hsp90
CN101889005B (en) 2007-12-07 2015-06-03 卫材R&D管理株式会社 Intermediates in the synthesis of zearalenone macrolide analogs
ES2610156T3 (en) 2008-02-21 2017-04-26 Oncosynergy, Inc. Compounds of macrocyclic prodrugs useful as therapeutic
WO2011036299A1 (en) * 2009-09-28 2011-03-31 Universite De Strasbourg Irreversible inhibitors useful for the treatment of kinase-related pathologies
US10206900B2 (en) 2013-10-07 2019-02-19 Mor Research Applications Ltd. Treatments for fibrotic diseases
IL247063B (en) * 2013-10-07 2022-09-01 Mor Research Applic Ltd Treatments for proliferative vitreoretinopathy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9225396D0 (en) * 1992-12-04 1993-01-27 Sandoz Ltd Improvements in or relating to organic compounds

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193183A (en) * 2002-03-08 2012-10-11 Eisai R & D Management Co Ltd Macrocyclic compound useful as pharmaceutical
JP2008297317A (en) * 2002-03-08 2008-12-11 Eisai R & D Management Co Ltd Macrocyclic compound useful as pharmaceutical
JP2005519954A (en) * 2002-03-08 2005-07-07 エーザイ株式会社 Macrocyclic compounds useful as pharmaceuticals
US8329742B2 (en) 2002-03-08 2012-12-11 Eisai Co., Ltd. Macrocyclic compounds useful as pharmaceuticals
US7799827B2 (en) 2002-03-08 2010-09-21 Eisai Co., Ltd. Macrocyclic compounds useful as pharmaceuticals
US7915306B2 (en) 2002-03-08 2011-03-29 Eisai Co., Ltd. Macrocyclic compounds useful as pharmaceuticals
WO2008018517A1 (en) * 2006-08-09 2008-02-14 Zeria Pharmaceutical Co., Ltd. Therapeutic and/or preventive agent for disease accompanied by cell overgrowth, and polynucleotide useful as the active ingredient
WO2008149244A2 (en) * 2007-06-05 2008-12-11 Nicolas Winssinger Compositions and methods comprising analogues of radicicol a
WO2008149244A3 (en) * 2007-06-05 2009-03-12 Nicolas Winssinger Compositions and methods comprising analogues of radicicol a
US8513440B2 (en) 2007-06-05 2013-08-20 Universite De Strasbourg Compositions and methods comprising analogues of radicicol A
US8609640B2 (en) 2007-07-25 2013-12-17 Eisai, Inc. Multikinase inhibitors for use in the treatment of cancer
US8937056B2 (en) 2007-07-25 2015-01-20 Eisai R&D Management Co., Ltd. Multikinase inhibitors for use in the treatment of cancer
US11160783B2 (en) 2007-07-25 2021-11-02 Eisai R&D Management Co., Ltd. Multikinase inhibitors for use in the treatment of cancer

Also Published As

Publication number Publication date
AU2002222627A1 (en) 2002-06-24
WO2002048135A1 (en) 2002-06-20

Similar Documents

Publication Publication Date Title
JP2004292315A (en) Tak1 inhibitor
Broholm et al. Exercise induces expression of leukaemia inhibitory factor in human skeletal muscle
Jeon et al. Gold compound auranofin inhibits IκB kinase (IKK) by modifying Cys-179 of IKKβ subunit
Kern et al. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase.
Langdon et al. Murine oncostatin M stimulates mouse synovial fibroblasts in vitro and induces inflammation and destruction in mouse joints in vivo
JP5491474B2 (en) JAK / STAT pathway inhibitors and uses thereof
Chandrasekar et al. β-Adrenergic stimulation induces interleukin-18 expression via β2-AR, PI3K, Akt, IKK, and NF-κB
Lemström et al. Cytomegalovirus infection-enhanced allograft arteriosclerosis is prevented by DHPG prophylaxis in the rat.
US20090074676A1 (en) Inhibition of p38 MAPK For Treatment Of Obesity
OA11755A (en) The use of 4-H-1-benzopyran-4-one derivatives as inhibitors of smooth muscle cell proliferation.
WO2000021509A2 (en) Methods of treatment
US4956381A (en) Treating tissue calcium depletion or degenerative processes in bone or cartilage
Prinz et al. β-adrenergic receptor stimulation selectively inhibits IL-12p40 release in microglia
Fosgerau et al. Interleukin-6 autoantibodies are involved in the pathogenesis of a subset of type 2 diabetes
Jones et al. TGF-βbgr; 1 stimulates the release of pre-formed bFGF from renal proximal tubular cells
US20060058296A1 (en) Treatment of osteolytic lesions associated with multiple myeloma by inhibition of p38 map kinase
US7858577B2 (en) Use of the long pentraxin PTX3 for the treatment of diseases caused by an altered activation of the growth factor FGF-2
AU2002222513A1 (en) Use of the long pentraxin PTX3 for the treatment of diseases caused by an altered activation of the growth factor FGF-2
Dunstan Osteoprotegerin and osteoprotegerin ligand mediate the local regulation of bone resorption
KR20050086698A (en) Method of treatment of myocardial infarction
Lee et al. CT20126, a novel immunosuppressant, prevents collagen-induced arthritis through the down-regulation of inflammatory gene expression by inhibiting NF-κB activation
WO1994020125A1 (en) Treatment of motor neuron diseases with fibroblast growth factor-5 (fgf-5)
Mitchell et al. Protein kinase regulation of tumor necrosis factor alpha stimulated collagenase and stromelysin message levels in chondrocytes
JP2003238410A (en) Insulin resistance elimination agent
EP0704219B1 (en) Use of osteoblastic proliferative factor