JP2004291031A - Laser cutting method and apparatus - Google Patents

Laser cutting method and apparatus Download PDF

Info

Publication number
JP2004291031A
JP2004291031A JP2003087450A JP2003087450A JP2004291031A JP 2004291031 A JP2004291031 A JP 2004291031A JP 2003087450 A JP2003087450 A JP 2003087450A JP 2003087450 A JP2003087450 A JP 2003087450A JP 2004291031 A JP2004291031 A JP 2004291031A
Authority
JP
Japan
Prior art keywords
laser
ring
fiber
laser beam
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003087450A
Other languages
Japanese (ja)
Other versions
JP4505190B2 (en
Inventor
Hirofumi Imai
浩文 今井
Motoi Kido
基 城戸
Tatsuhiko Sakai
辰彦 坂井
Atsushi Sugibashi
敦史 杉橋
Hideyuki Hamamura
秀行 濱村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003087450A priority Critical patent/JP4505190B2/en
Publication of JP2004291031A publication Critical patent/JP2004291031A/en
Application granted granted Critical
Publication of JP4505190B2 publication Critical patent/JP4505190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser cutting method and a laser cutting apparatus in which alignment adjustment in laser cutting is dispensed with, laser intensity distribution of sharp rise is realized, and the sectional quality is excellent. <P>SOLUTION: In the laser cutting method for cutting a work such as a steel plate by irradiating laser beams, the work is irradiated with a plurality of condensing laser beams so that the intensity distribution synthesized at a laser irradiation part of the plurality of laser beams forms a ring-shape. The plurality of laser beams are outputted from optical fiber, respectively, and the optical fiber branches one fiber laser into a plurality of fiber laser. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鋼板の切断などに用いられるレーザ切断技術に関する。
【0002】
【従来の技術】
従来、薄鋼板など比較的薄手の被加工物に対するレーザ切断は高速切断ができ、また、寸法精度も良好であるなどの点で優れた方法とされている。近年、レーザ装置の高出力化に伴い、適用板厚の拡大が図られ、厚鋼板のレーザ切断も普及しつつある。しかし、厚鋼板ではしばしば切断面の品質が劣化する問題が生じることがあり生産性の向上を阻害する要因となっている。すなわち、厚鋼板の切断においては、数kWレベルのレーザ出力が必要となるが、レーザ出力の増大に伴いほぼガウス分布をしたレーザビーム強度分布の裾野成分も増大することから、実際に切れ落ちる部分である切断カーフ部の周辺部の加熱が強まり、温度上昇するため酸素雰囲気下にある素材が自己発火して断面がえぐれる現象が生じ易くなるのである。こうした切断不良は表面スケールの剥離部などで生じ易いことがわかっているが、厚板では鋼板表面のスケール密着性やスケール厚みの均一性が薄板に比べて劣るため、切断不良頻度が増大する結果となっているのが現状である。そこで、鋼材側の対策として表面スケール密着性の良い鋼板などが提案されている(例えば、特許文献1など参照)。一方、レーザ切断装置側からの対策としては、レーザビーム強度分布として基本ガウスモードより裾野の分布が少ない高次横モード(例えばTEM01*モード(ドーナツ形状)など)の適用やパルス運転などが提案されている(例えば、非特許文献1など参照)。
【0003】
【特許文献1】
特開平8−3692号公報
【非特許文献1】
溶接学会誌第66巻第7号28頁
【0004】
【発明が解決しようとする課題】
上述したレーザ光の横モード制御技術ではCOレーザがベースとなっている。COレーザは、従来のレーザ切断装置にて一般的に用いられているものであるが、発振器構成が2枚の対向する共振器ミラー間にレーザ媒質を配した発振器構成となっていることから、経時的にはどうしても2枚の共振器ミラーの機械的な相対変位が避けられず、レーザビーム強度分布が非対称となって切断性能の切断方向依存性などの問題を生じていた。このため定期的な共振器アライメント調整が必要となり、装置の稼働を休止することを余儀なくされていた。この調整作業は1〜2日の工程を要し、稼働率が重視されるレーザ切断機においては重大な能率低下と言わざるを得ない。
【0005】
本発明は、上記の従来技術の問題点に鑑みてなされたものであり、レーザ切断においてアライメント調整を廃するとともにシャープな立ち上がりのレーザ強度分布を実現し、断面品質に優れたレーザ切断方法及び装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は上記課題を解決するものであり、その要旨とするところは以下の通りである。
(1) 鋼板などの被加工物に対しレーザビームを照射して切断するレーザ切断方法において、前記被加工物に照射する集光レーザビームを複数とし、該複数のレーザビームのレーザ照射部位における合成された強度分布がリング状になるようにして切断するレーザ切断方法であって、前記複数のレーザビームをそれぞれ光ファイバから出力し、前記光ファイバが1本のファイバレーザを複数本に分岐した光ファイバであることを特徴とするレーザ切断方法。
(2) 前記複数のレーザビームのそれぞれを等間隔に配置し、レーザ照射部位における合成された強度分布がリング状になるようにして切断することを特徴とする(1)に記載のレーザ切断方法。
(3) 前記レーザビームがファイバレーザのレーザビームであることを特徴とする(1)または(2)に記載のレーザ切断方法。
(4) 鋼板などの被加工物に対しレーザビームを照射して切断するレーザ切断装置において、複数のレーザビームを出力するファイバレーザの少なくとも1台と、前記ファイバレーザの端部をリング状に配置した貫通孔にそれぞれ挿入し、反挿入側からリング状のレーザビームを出力するリングビーム発生器と、前記リング状のレーザビームを集光する光学素子と、前記リングビーム発生器と光学素子とを保持する筒状のトーチと、前記筒状のトーチに結合され、集光したレーザビームを出力し、同時に集光したレーザビームと同軸方向にアシストガスを流すノズルと、から成ることを特徴とするレーザ切断装置。
(5) 鋼板などの被加工物に対しレーザビームを照射して切断するレーザ切断装置において、複数のレーザビームを出力するファイバレーザの少なくとも1台と、前記ファイバレーザの端部と前記複数のレーザビームに対応する光ファイバを接続および切離し可能にするファイバコネクタと、前記ファイバコネクタに接続した光ファイバの端部をリング状に配置した貫通孔にそれぞれ挿入し、反挿入側からリング状のレーザビームを出力するリングビーム発生器と、前記リング状のレーザビームを集光する光学素子と、前記リングビーム発生器と光学素子とを保持する筒状のトーチと、前記筒状のトーチに結合され、集光したレーザビームを出力し、同時に集光したレーザビームと同軸方向にアシストガスを流すノズルと、から成ることを特徴とするレーザ切断装置。
(6) 前記リングビーム発生器の貫通孔が互いに等間隔に配置されリング状を成すようにしたことを特徴とする(4)または(5)に記載のレーザ切断装置。
【0007】
【発明の実施の形態】
本発明の本旨とするところをより詳らかとするため、以下、添付の図面に基づき説明を行う。
図2は、本発明によるレーザ切断方法の概念を説明する図であり、被切断鋼板上に集光されたレーザビームを模式的に示している。複数のレーザビームをリング状に配設することが本発明の特徴である。これは切断面品質に関して方向性のないレーザ切断に必要な集光レーザ強度分布の対称性を発現するためである。図2は8個のレーザビームを円周上に等間隔に配した場合を示す。なお、図2にて示した概念は複数のYAGレーザなどのビーム合成によっても実現できるが、以下では特にファイバレーザを用いる場合について述べる。
【0008】
図1は本発明によるレーザ切断装置の構成例を示す図である。リング状ビーム発生器1は8本の光ファイバ2の端部を正8角形に配列させる円筒状のホルダーに固定したものである。また、ホルダーは切断トーチ3に対して取り外し可能に固定している。光ファイバ2はコネクタ5にて分岐後の光ファイバ6と接続される。
【0009】
次に分岐装置22について説明する。1台のファイバレーザを8本に分岐した。出力1kW、コア径150μmのファイバレーザを光源とし、図7に示すようなファイバカプラ23によってほぼ同じコア径にて8分岐した。出力端でのパワー密度はそれぞれ5.7MW/cmとなる。鋼の溶融には十分な値である。なお、分岐の方法としては図7のように逐次等分配で2分岐することにこだわる必要はなく、結果的に等分配になるようにすればよい。
【0010】
リング状ビーム発生器1内では直径675μmの円に内接する正8角形の各頂点を中心として配列した。この場合ビーム直径と対角線長さの比は1対4.5となる。この程度の緊密さでビームを配列すれば、被切断材の熱伝導特性から見て実質的に連続的なリング状光源とみなすことができる。図3にこのときの位置関係を示す。以下1対1結像にてリング状に集光した。トータルの伝送効率は90%である。それぞれの集光スポットにおけるパワー密度は5.1MW/cmとなる。トータルの照射パワーは0.9kWとなる。トータルのパワーは直径600μmの円内に存在するので全体の平均パワー密度は0.3MW/cmとなる。したがって、単純に単一ビームを中実状況で集光した場合に比べ局部的には1桁以上高いパワー密度を達成できることから、切断性能を向上できることが本発明の利点である。
【0011】
なお、光ファイバの分岐方法としては図4に示すような多面ルーフトップミラー18による空間的分割と個別のファイバ結合としても良い。図4は概念として6分割の場合を示し、そのうち半分を図示している。さらに、図5のように部分反射ミラー20によって分割しても良い。例えば、4本に分岐する場合、第1の部分反射ミラーの反射率は75%、第2の部分反射ミラーの反射率は33.3%、第3の部分反射ミラーの反射率は50%、そして最後に全反射ミラーを配置すればよい。もちろん、ビームの伝播線上に集光レンズを配置して最後の全反射ミラー21を省略することも可能である。
【0012】
光ファイバ2に伝送されたレーザ光はリング状ビーム発生器1から出た後、集光レンズ7にて被切断鋼板4上に1対1結像される。切断トーチ3の先端にノズル8が接続されており、レーザ光と同軸でアシストガスの酸素ガスを噴出する。出口口径は2.5mmとした。
【0013】
以上のような構成のレーザ切断機にて鋼のレーザ切断を行ったところ、方向性のない切断が可能であった。本装置によれば、ビームのパターンはリング状ビーム発生器にて固定されており可動部が存在しないのでアライメント調整の必要がない。また、個々のビームは150μmに絞られており強度分布の立ち上がりが鋭いため切断不良が発生しにくい。また、個々のビームは集光性が良いのでビームを全体としての焦点深度も大きくなり、より厚手の材料に対する適用性が向上した。さらに、故障の際の復元もファイバコネクタ、リング状ビーム発生器等切り離し可能なので先端部だけの交換が可能となり迅速である。
【0014】
なお、以上の説明ではリング状ビームの集光方法として1対1結像を示したが、結像倍率を変更して良い。また、集光光学系としてはリング状ビーム発生器の後で一旦コリメートしてから一括して集光してもよい。さらに、ファイバレーザは一部を連続波、他をパルスのように組み合わせても良い。波長も1.06μmに限るものではなく単一の波長でなくても良い。さらにまた、ファイバレーザとリング状ビーム発生器とを連絡する光ファイバは、通常の受動素子型のファイバでも良いしファイバレーザと同一のものでも良い。本発明のリング状ビーム発生器に配列するファイバは、1重ではなく2重以上としても良い。最終的にリングの中心に位置するファイバがあっても良い。また、単独のファイバレーザと分岐型ファイバレーザの組み合わせとしても何ら差し支えない。
【0015】
また、図6に示すようにリング状ビーム発生器1内部にて一部の光ファイバ2の先端部分の配列高さを他と異なる配置とすれば、焦点深度の長い集光ビームを形成することができ、厚手の被切断材のレーザ切断に好適である。図6は概念の説明のため7本の光ファイバを用いる場合を示している。
【0016】
【発明の効果】
本発明により、レーザ切断においてアライメント調整を廃するとともにシャープな立ち上がりのレーザ強度分布を実現し、断面品質に優れたレーザ切断方法とその装置を提供することができる。
【図面の簡単な説明】
【図1】本発明によるレーザ切断装置の構成例を示す断面的鳥瞰図。
【図2】本発明のビーム集光パターン例を説明する図。
【図3】本発明の別のビーム集光パターン例を説明する図。
【図4】本発明のビーム分岐例を説明する概念図。
【図5】本発明の別のビーム分岐例を説明する概念図。
【図6】一部の光ファイバの配列高さを他と異なるように配列した本発明によるレーザ切断装置の構成例を示す断面的鳥瞰図。
【図7】ファイバカプラによる分岐例を示す図。
【符号の説明】
1 リング状ビーム発生器
2 光ファイバ
3 切断トーチ
4 被切断鋼板
5 ファイバコネクタ
6 光ファイバ
7 集光レンズ
8 ノズル
9 ビーム群
10 カーフ
11 ドロス
12 光ファイバコア
13 光ファイバクラッド
14 集光レンズ
15 コリメートレンズ
16 ファイバレーザ出射端
17 反射ミラー
18 多面ルーフトップミラー
19 レーザ光
20 部分反射ミラー
21 全反射ミラー
22 分岐装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laser cutting technique used for cutting steel sheets.
[0002]
[Prior art]
Conventionally, laser cutting of a relatively thin workpiece such as a thin steel plate is considered to be an excellent method in that it can perform high-speed cutting and has good dimensional accuracy. In recent years, with the increase in the output of laser devices, the applied plate thickness has been increased, and laser cutting of thick steel plates is becoming widespread. However, in the case of thick steel plates, there is often a problem that the quality of the cut surface deteriorates, which is a factor that hinders the improvement of productivity. That is, when cutting a thick steel plate, a laser output of several kW level is required, but as the laser output increases, the tail component of the laser beam intensity distribution having a substantially Gaussian distribution also increases. As the heating around the cutting kerf is increased and the temperature rises, the material in the oxygen atmosphere is ignited and the cross section is easily eroded. Although it is known that such cutting defects are likely to occur at the surface scale peeling part etc., the thick plate has poorer scale adhesion and scale thickness uniformity than the thin plate, resulting in an increase in the frequency of cutting defects. This is the current situation. Therefore, a steel plate with good surface scale adhesion has been proposed as a countermeasure on the steel material side (see, for example, Patent Document 1). On the other hand, as countermeasures from the laser cutting device side, the application of higher-order transverse modes (for example, TEM 01 * mode (doughnut shape), etc.) with a lower distribution of the laser beam intensity distribution than the basic Gaussian mode and pulse operation are proposed. (See, for example, Non-Patent Document 1).
[0003]
[Patent Document 1]
JP-A-8-3692 [Non-Patent Document 1]
Journal of the Japan Welding Society, Vol. 66, No. 7, page 28 [0004]
[Problems to be solved by the invention]
The laser beam transverse mode control technique described above is based on a CO 2 laser. The CO 2 laser is generally used in a conventional laser cutting apparatus, but the oscillator configuration is an oscillator configuration in which a laser medium is arranged between two opposing resonator mirrors. The mechanical relative displacement of the two resonator mirrors is unavoidable over time, and the laser beam intensity distribution becomes asymmetrical, resulting in problems such as the dependency of cutting performance on the cutting direction. For this reason, periodic resonator alignment adjustment is required, and the operation of the apparatus has to be suspended. This adjustment work requires a process of 1 to 2 days, and it must be said that the efficiency is seriously lowered in a laser cutting machine in which the operation rate is important.
[0005]
The present invention has been made in view of the above-mentioned problems of the prior art, eliminates alignment adjustment in laser cutting, realizes a sharp rising laser intensity distribution, and has excellent cross-sectional quality. The purpose is to provide.
[0006]
[Means for Solving the Problems]
The present invention solves the above-mentioned problems, and the gist thereof is as follows.
(1) In a laser cutting method in which a workpiece such as a steel plate is irradiated with a laser beam and cut, a plurality of focused laser beams are irradiated to the workpiece, and the plurality of laser beams are combined at a laser irradiation site. A laser cutting method in which the intensity distribution is cut in a ring shape, wherein the plurality of laser beams are each output from an optical fiber, and the optical fiber splits one fiber laser into a plurality of light beams. A laser cutting method characterized by being a fiber.
(2) The laser cutting method according to (1), characterized in that each of the plurality of laser beams is arranged at equal intervals, and cutting is performed such that the combined intensity distribution at the laser irradiation site is in a ring shape. .
(3) The laser cutting method according to (1) or (2), wherein the laser beam is a laser beam of a fiber laser.
(4) In a laser cutting apparatus for irradiating a workpiece such as a steel plate with a laser beam to cut, at least one fiber laser that outputs a plurality of laser beams and the end of the fiber laser are arranged in a ring shape A ring beam generator for outputting a ring-shaped laser beam from the opposite insertion side, an optical element for condensing the ring-shaped laser beam, and the ring beam generator and the optical element. A cylindrical torch to be held, and a nozzle coupled to the cylindrical torch for outputting a focused laser beam and simultaneously flowing an assist gas in a coaxial direction with the focused laser beam. Laser cutting device.
(5) In a laser cutting apparatus that irradiates and cuts a workpiece such as a steel plate with a laser beam, at least one fiber laser that outputs a plurality of laser beams, an end of the fiber laser, and the plurality of lasers A fiber connector that enables connection and disconnection of an optical fiber corresponding to the beam, and an end portion of the optical fiber connected to the fiber connector are inserted into a ring-shaped through hole, respectively, and a ring-shaped laser beam is inserted from the opposite insertion side. A ring beam generator for outputting a ring, an optical element for condensing the ring-shaped laser beam, a cylindrical torch for holding the ring beam generator and the optical element, and the cylindrical torch, And a nozzle that outputs a focused laser beam and flows an assist gas in the same direction as the focused laser beam. Laser cutting device.
(6) The laser cutting device according to (4) or (5), wherein the through holes of the ring beam generator are arranged at equal intervals to form a ring shape.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In order to make the gist of the present invention more detailed, the following description will be given with reference to the accompanying drawings.
FIG. 2 is a diagram for explaining the concept of the laser cutting method according to the present invention, and schematically shows a laser beam focused on a steel plate to be cut. It is a feature of the present invention that a plurality of laser beams are arranged in a ring shape. This is in order to express the symmetry of the focused laser intensity distribution necessary for laser cutting with no directivity with respect to the cut surface quality. FIG. 2 shows a case where eight laser beams are arranged at equal intervals on the circumference. Note that the concept shown in FIG. 2 can be realized by beam synthesis of a plurality of YAG lasers or the like, but the case where a fiber laser is used will be described below.
[0008]
FIG. 1 is a diagram showing a configuration example of a laser cutting device according to the present invention. The ring beam generator 1 is fixed to a cylindrical holder in which ends of eight optical fibers 2 are arranged in a regular octagon. The holder is detachably fixed to the cutting torch 3. The optical fiber 2 is connected to the branched optical fiber 6 by a connector 5.
[0009]
Next, the branch device 22 will be described. One fiber laser was branched into eight. A fiber laser having an output of 1 kW and a core diameter of 150 μm was used as a light source, and was branched into eight branches with substantially the same core diameter by a fiber coupler 23 as shown in FIG. The power density at the output end is 5.7 MW / cm 2 , respectively. This is sufficient for melting steel. As a branching method, it is not necessary to be particular about bifurcating by sequential equal distribution as shown in FIG. 7, and it is only necessary to achieve equal distribution as a result.
[0010]
In the ring-shaped beam generator 1, the regular octagonal apexes inscribed in a circle having a diameter of 675 μm are arranged around the center. In this case, the ratio of the beam diameter to the diagonal length is 1: 4.5. If the beams are arranged with such closeness, it can be regarded as a substantially continuous ring-shaped light source in view of the heat conduction characteristics of the material to be cut. FIG. 3 shows the positional relationship at this time. Thereafter, the light was condensed in a ring shape by one-to-one imaging. The total transmission efficiency is 90%. The power density at each focused spot is 5.1 MW / cm 2 . The total irradiation power is 0.9 kW. Since the total power is present in a circle having a diameter of 600 μm, the total average power density is 0.3 MW / cm 2 . Therefore, it is an advantage of the present invention that the cutting performance can be improved because a power density that is higher by one digit or more can be achieved locally as compared with a case where a single beam is simply collected in a solid state.
[0011]
The optical fiber branching method may be spatial division by a multi-face rooftop mirror 18 and individual fiber coupling as shown in FIG. FIG. 4 shows the case of 6 divisions as a concept, of which half are shown. Further, it may be divided by the partial reflection mirror 20 as shown in FIG. For example, when branching into four, the reflectance of the first partial reflection mirror is 75%, the reflectance of the second partial reflection mirror is 33.3%, the reflectance of the third partial reflection mirror is 50%, Finally, a total reflection mirror may be disposed. Of course, it is also possible to dispose the last total reflection mirror 21 by arranging a condensing lens on the beam propagation line.
[0012]
After the laser beam transmitted to the optical fiber 2 exits from the ring-shaped beam generator 1, the laser beam is focused on the steel plate 4 to be cut by the condenser lens 7. A nozzle 8 is connected to the tip of the cutting torch 3 and ejects assist gas oxygen gas coaxially with the laser beam. The outlet diameter was 2.5 mm.
[0013]
When laser cutting of steel was performed with the laser cutting machine configured as described above, cutting without directionality was possible. According to this apparatus, the beam pattern is fixed by the ring-shaped beam generator, and there is no movable part, so there is no need for alignment adjustment. In addition, each beam is narrowed to 150 μm and the rise of the intensity distribution is sharp, so that cutting failure is unlikely to occur. In addition, since each beam has a good light collecting property, the depth of focus of the beam as a whole is increased, and the applicability to thicker materials is improved. Furthermore, the restoration at the time of failure is quick because the fiber connector, ring beam generator, etc. can be separated, so that only the tip can be replaced.
[0014]
In the above description, the one-to-one imaging is shown as the ring beam condensing method, but the imaging magnification may be changed. Further, as the condensing optical system, the light may be condensed in a lump after once collimating after the ring-shaped beam generator. Further, a part of the fiber laser may be combined as a continuous wave and the other as a pulse. The wavelength is not limited to 1.06 μm and may not be a single wavelength. Furthermore, the optical fiber connecting the fiber laser and the ring beam generator may be a normal passive element type fiber or the same as the fiber laser. The fibers arranged in the ring beam generator of the present invention may be double or more instead of single. There may be a fiber finally located in the center of the ring. Moreover, there is no problem even if it is a combination of a single fiber laser and a branched fiber laser.
[0015]
Further, as shown in FIG. 6, if the arrangement height of the tip portions of some of the optical fibers 2 is different from the arrangement inside the ring-shaped beam generator 1, a condensed beam having a long focal depth can be formed. It is suitable for laser cutting of thick workpieces. FIG. 6 shows a case where seven optical fibers are used for explaining the concept.
[0016]
【The invention's effect】
According to the present invention, alignment adjustment can be eliminated in laser cutting, and a laser intensity distribution with a sharp rise can be realized, and a laser cutting method and apparatus excellent in cross-sectional quality can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional bird's-eye view showing a configuration example of a laser cutting device according to the present invention.
FIG. 2 is a diagram for explaining an example of a beam focusing pattern according to the present invention.
FIG. 3 is a diagram for explaining another example of a beam focusing pattern according to the present invention.
FIG. 4 is a conceptual diagram illustrating an example of beam branching according to the present invention.
FIG. 5 is a conceptual diagram illustrating another example of beam branching according to the present invention.
FIG. 6 is a cross-sectional bird's-eye view showing a configuration example of a laser cutting device according to the present invention in which the arrangement height of some optical fibers is arranged differently from the others.
FIG. 7 is a diagram showing an example of branching by a fiber coupler.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ring-shaped beam generator 2 Optical fiber 3 Cutting torch 4 Cut steel plate 5 Fiber connector 6 Optical fiber 7 Condensing lens 8 Nozzle 9 Beam group 10 Calf 11 Dross 12 Optical fiber core 13 Optical fiber clad 14 Condensing lens 15 Collimating lens 16 Fiber laser emitting end 17 Reflecting mirror 18 Multi-faceted roof top mirror 19 Laser light 20 Partial reflection mirror 21 Total reflection mirror 22 Branching device

Claims (6)

鋼板などの被加工物に対しレーザビームを照射して切断するレーザ切断方法において、前記被加工物に照射する集光レーザビームを複数とし、該複数のレーザビームのレーザ照射部位における合成された強度分布がリング状になるようにして切断するレーザ切断方法であって、前記複数のレーザビームをそれぞれ光ファイバから出力し、前記光ファイバが1本のファイバレーザを複数本に分岐した光ファイバであることを特徴とするレーザ切断方法。In a laser cutting method in which a workpiece such as a steel plate is irradiated with a laser beam for cutting, a plurality of focused laser beams are irradiated to the workpiece, and the combined intensity of the plurality of laser beams at a laser irradiation site A laser cutting method in which a distribution is cut in a ring shape, wherein each of the plurality of laser beams is output from an optical fiber, and the optical fiber is an optical fiber branched into a plurality of fiber lasers. And a laser cutting method. 前記複数のレーザビームのそれぞれを等間隔に配置し、レーザ照射部位における合成された強度分布がリング状になるようにして切断することを特徴とする請求項1に記載のレーザ切断方法。2. The laser cutting method according to claim 1, wherein each of the plurality of laser beams is arranged at equal intervals, and cutting is performed such that a combined intensity distribution at a laser irradiation site is in a ring shape. 前記レーザビームがファイバレーザのレーザビームであることを特徴とする請求項1または請求項2に記載のレーザ切断方法。The laser cutting method according to claim 1, wherein the laser beam is a fiber laser beam. 鋼板などの被加工物に対しレーザビームを照射して切断するレーザ切断装置において、複数のレーザビームを出力するファイバレーザの少なくとも1台と、前記ファイバレーザの端部をリング状に配置した貫通孔にそれぞれ挿入し、反挿入側からリング状のレーザビームを出力するリングビーム発生器と、前記リング状のレーザビームを集光する光学素子と、前記リングビーム発生器と光学素子とを保持する筒状のトーチと、前記筒状のトーチに結合され、集光したレーザビームを出力し、同時に集光したレーザビームと同軸方向にアシストガスを流すノズルと、から成ることを特徴とするレーザ切断装置。In a laser cutting apparatus for irradiating and cutting a workpiece such as a steel plate by a laser beam, a through hole in which at least one fiber laser that outputs a plurality of laser beams and an end portion of the fiber laser are arranged in a ring shape A ring beam generator for outputting a ring-shaped laser beam from the non-insertion side, an optical element for condensing the ring-shaped laser beam, and a cylinder for holding the ring beam generator and the optical element A laser cutting apparatus comprising: a cylindrical torch; and a nozzle coupled to the cylindrical torch for outputting a focused laser beam and simultaneously flowing an assist gas in a coaxial direction with the focused laser beam . 鋼板などの被加工物に対しレーザビームを照射して切断するレーザ切断装置において、複数のレーザビームを出力するファイバレーザの少なくとも1台と、前記ファイバレーザの端部と前記複数のレーザビームに対応する光ファイバを接続および切離し可能にするファイバコネクタと、前記ファイバコネクタに接続した光ファイバの端部をリング状に配置した貫通孔にそれぞれ挿入し、反挿入側からリング状のレーザビームを出力するリングビーム発生器と、前記リング状のレーザビームを集光する光学素子と、前記リングビーム発生器と光学素子とを保持する筒状のトーチと、前記筒状のトーチに結合され、集光したレーザビームを出力し、同時に集光したレーザビームと同軸方向にアシストガスを流すノズルと、から成ることを特徴とするレーザ切断装置。In a laser cutting device that cuts a workpiece such as a steel plate by irradiating a laser beam, it corresponds to at least one fiber laser that outputs a plurality of laser beams, the end of the fiber laser, and the plurality of laser beams A fiber connector that enables connection and disconnection of the optical fiber to be connected and an end of the optical fiber connected to the fiber connector are respectively inserted into the through holes arranged in a ring shape, and a ring-shaped laser beam is output from the non-insertion side A ring beam generator, an optical element for condensing the ring-shaped laser beam, a cylindrical torch for holding the ring beam generator and the optical element, and the cylindrical torch are combined and condensed And a nozzle that outputs a laser beam and simultaneously collects the focused laser beam and an assist gas in a coaxial direction. Laser cutting device. 前記リングビーム発生器の貫通孔が互いに等間隔に配置されリング状を成すようにしたことを特徴とする請求項4または請求項5に記載のレーザ切断装置。6. The laser cutting device according to claim 4, wherein the through holes of the ring beam generator are arranged at equal intervals to form a ring shape.
JP2003087450A 2003-03-27 2003-03-27 Laser cutting device Expired - Fee Related JP4505190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003087450A JP4505190B2 (en) 2003-03-27 2003-03-27 Laser cutting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003087450A JP4505190B2 (en) 2003-03-27 2003-03-27 Laser cutting device

Publications (2)

Publication Number Publication Date
JP2004291031A true JP2004291031A (en) 2004-10-21
JP4505190B2 JP4505190B2 (en) 2010-07-21

Family

ID=33401830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003087450A Expired - Fee Related JP4505190B2 (en) 2003-03-27 2003-03-27 Laser cutting device

Country Status (1)

Country Link
JP (1) JP4505190B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007190560A (en) * 2006-01-17 2007-08-02 Miyachi Technos Corp Laser beam machining apparatus
WO2008055067A2 (en) * 2006-10-27 2008-05-08 Evergreen Solar, Inc. Method and apparatus for forming a silicon wafer
JP2010194558A (en) * 2009-02-23 2010-09-09 Koike Sanso Kogyo Co Ltd Laser cutting method and laser cutting device used for the same
JP2011121107A (en) * 2009-12-14 2011-06-23 Koike Sanso Kogyo Co Ltd Laser cutting device
JP2011167723A (en) * 2010-02-18 2011-09-01 Shibaura Mechatronics Corp Laser irradiation apparatus and laser irradiation method
JP2011167722A (en) * 2010-02-18 2011-09-01 Shibaura Mechatronics Corp Apparatus and method for laser beam machining
FR2961731A1 (en) * 2010-06-28 2011-12-30 Air Liquide Cutting a piece by laser beam, comprises generating a laser beam producing a Gaussian type current distribution using fiber laser source or disk, modifying the beam generated by the laser source, and cutting the piece using the laser beam
US20120012570A1 (en) * 2005-11-25 2012-01-19 L'Air Liquide Welding France (La Soudure Autogéne Française Method for Cutting C-Mn Steel with a Fiber Laser
CN102500922A (en) * 2011-11-15 2012-06-20 华南师范大学 Method for light alloy welding and multi-pass system
US9415465B2 (en) 2011-10-20 2016-08-16 Nippon Steel and Sumitomo Metal Corporation Laser processing apparatus and laser processing method
WO2017170890A1 (en) * 2016-03-31 2017-10-05 株式会社村谷機械製作所 Laser machining device and laser machining method
KR20180015619A (en) * 2015-06-09 2018-02-13 코렐라스 오와이 Laser processing apparatus and method, and optical parts therefor
CN107971630A (en) * 2016-10-21 2018-05-01 深圳市硕德激光技术有限公司 A kind of method and laser-processing system for producing the hot spot with special light distribution
US9987709B2 (en) 2005-11-25 2018-06-05 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method for cutting stainless steel with a fiber laser
WO2018217292A1 (en) * 2017-05-26 2018-11-29 Nlight, Inc. Method and system for cutting a material using a laser
US10434600B2 (en) 2015-11-23 2019-10-08 Nlight, Inc. Fine-scale temporal control for laser material processing
US10520671B2 (en) 2015-07-08 2019-12-31 Nlight, Inc. Fiber with depressed central index for increased beam parameter product
US10535973B2 (en) 2015-01-26 2020-01-14 Nlight, Inc. High-power, single-mode fiber sources
US10656330B2 (en) 2016-09-29 2020-05-19 Nlight, Inc. Use of variable beam parameters to control solidification of a material
US10663742B2 (en) 2016-09-29 2020-05-26 Nlight, Inc. Method and system for cutting a material using a laser having adjustable beam characteristics
US10673197B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-based optical modulator
US10673198B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-coupled laser with time varying beam characteristics
US10673199B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-based saturable absorber
US10730785B2 (en) 2016-09-29 2020-08-04 Nlight, Inc. Optical fiber bending mechanisms
US10971884B2 (en) 2015-03-26 2021-04-06 Nlight, Inc. Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss
US10971885B2 (en) 2014-06-02 2021-04-06 Nlight, Inc. Scalable high power fiber laser
US11179807B2 (en) 2015-11-23 2021-11-23 Nlight, Inc. Fine-scale temporal control for laser material processing
CN113950388A (en) * 2019-07-03 2022-01-18 德瑞柯特金属3D有限公司 Multimode laser device for metal fabrication applications
CN114401812A (en) * 2019-09-18 2022-04-26 百超激光有限公司 Machining device for laser machining a workpiece, method for laser machining a workpiece

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120012570A1 (en) * 2005-11-25 2012-01-19 L'Air Liquide Welding France (La Soudure Autogéne Française Method for Cutting C-Mn Steel with a Fiber Laser
US9987709B2 (en) 2005-11-25 2018-06-05 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method for cutting stainless steel with a fiber laser
US8710400B2 (en) 2005-11-25 2014-04-29 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for cutting C—Mn steel with a fiber laser
JP2007190560A (en) * 2006-01-17 2007-08-02 Miyachi Technos Corp Laser beam machining apparatus
WO2008055067A2 (en) * 2006-10-27 2008-05-08 Evergreen Solar, Inc. Method and apparatus for forming a silicon wafer
WO2008055067A3 (en) * 2006-10-27 2009-06-11 Evergreen Solar Inc Method and apparatus for forming a silicon wafer
JP2010194558A (en) * 2009-02-23 2010-09-09 Koike Sanso Kogyo Co Ltd Laser cutting method and laser cutting device used for the same
EP2399703A1 (en) * 2009-02-23 2011-12-28 Koike Sanso Kogyo Co., Ltd. Laser cutting method and laser cutting equipment
EP2399703A4 (en) * 2009-02-23 2014-02-19 Koike Sanso Kogyo Kk Laser cutting method and laser cutting equipment
CN102325627A (en) * 2009-02-23 2012-01-18 小池酸素工业株式会社 Laser cutting method and laser cutting equipment
JP2011121107A (en) * 2009-12-14 2011-06-23 Koike Sanso Kogyo Co Ltd Laser cutting device
JP2011167722A (en) * 2010-02-18 2011-09-01 Shibaura Mechatronics Corp Apparatus and method for laser beam machining
JP2011167723A (en) * 2010-02-18 2011-09-01 Shibaura Mechatronics Corp Laser irradiation apparatus and laser irradiation method
FR2961731A1 (en) * 2010-06-28 2011-12-30 Air Liquide Cutting a piece by laser beam, comprises generating a laser beam producing a Gaussian type current distribution using fiber laser source or disk, modifying the beam generated by the laser source, and cutting the piece using the laser beam
US9415465B2 (en) 2011-10-20 2016-08-16 Nippon Steel and Sumitomo Metal Corporation Laser processing apparatus and laser processing method
CN102500922A (en) * 2011-11-15 2012-06-20 华南师范大学 Method for light alloy welding and multi-pass system
US10971885B2 (en) 2014-06-02 2021-04-06 Nlight, Inc. Scalable high power fiber laser
US10916908B2 (en) 2015-01-26 2021-02-09 Nlight, Inc. High-power, single-mode fiber sources
US10535973B2 (en) 2015-01-26 2020-01-14 Nlight, Inc. High-power, single-mode fiber sources
US10971884B2 (en) 2015-03-26 2021-04-06 Nlight, Inc. Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss
KR102364889B1 (en) 2015-06-09 2022-02-18 코렐라스 오와이 Laser processing apparatus and method and optical components therefor
KR20180015619A (en) * 2015-06-09 2018-02-13 코렐라스 오와이 Laser processing apparatus and method, and optical parts therefor
US10520671B2 (en) 2015-07-08 2019-12-31 Nlight, Inc. Fiber with depressed central index for increased beam parameter product
US10434600B2 (en) 2015-11-23 2019-10-08 Nlight, Inc. Fine-scale temporal control for laser material processing
US11331756B2 (en) 2015-11-23 2022-05-17 Nlight, Inc. Fine-scale temporal control for laser material processing
US11794282B2 (en) 2015-11-23 2023-10-24 Nlight, Inc. Fine-scale temporal control for laser material processing
US11179807B2 (en) 2015-11-23 2021-11-23 Nlight, Inc. Fine-scale temporal control for laser material processing
CN108778610B (en) * 2016-03-31 2020-08-07 株式会社村谷机械制作所 Laser processing apparatus and laser processing method
CN108778610A (en) * 2016-03-31 2018-11-09 株式会社村谷机械制作所 Laser processing device and laser processing
WO2017170890A1 (en) * 2016-03-31 2017-10-05 株式会社村谷機械製作所 Laser machining device and laser machining method
US11865637B2 (en) 2016-03-31 2024-01-09 Muratani Machine Inc. Laser machining apparatus and laser machining method
US10656330B2 (en) 2016-09-29 2020-05-19 Nlight, Inc. Use of variable beam parameters to control solidification of a material
US10730785B2 (en) 2016-09-29 2020-08-04 Nlight, Inc. Optical fiber bending mechanisms
US10673199B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-based saturable absorber
US10673198B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-coupled laser with time varying beam characteristics
US10673197B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-based optical modulator
US10663767B2 (en) 2016-09-29 2020-05-26 Nlight, Inc. Adjustable beam characteristics
US10663742B2 (en) 2016-09-29 2020-05-26 Nlight, Inc. Method and system for cutting a material using a laser having adjustable beam characteristics
CN107971630A (en) * 2016-10-21 2018-05-01 深圳市硕德激光技术有限公司 A kind of method and laser-processing system for producing the hot spot with special light distribution
WO2018217292A1 (en) * 2017-05-26 2018-11-29 Nlight, Inc. Method and system for cutting a material using a laser
CN113950388A (en) * 2019-07-03 2022-01-18 德瑞柯特金属3D有限公司 Multimode laser device for metal fabrication applications
CN113950388B (en) * 2019-07-03 2024-04-19 德瑞柯特金属3D有限公司 Multimode laser device for metal fabrication applications
CN114401812A (en) * 2019-09-18 2022-04-26 百超激光有限公司 Machining device for laser machining a workpiece, method for laser machining a workpiece
CN114401812B (en) * 2019-09-18 2024-04-23 百超激光有限公司 Processing device for laser processing a workpiece, method for laser processing a workpiece

Also Published As

Publication number Publication date
JP4505190B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP4505190B2 (en) Laser cutting device
JP6935484B2 (en) Welding method and welding equipment
JP5267755B1 (en) Laser processing apparatus and laser processing method
US7519252B2 (en) Laser annealing apparatus
EP0929376B2 (en) A method of processing a material by means of a laser beam
JP4092080B2 (en) Method for producing a printing plate having a fine structure for relief printing or flexographic printing
JP5639046B2 (en) Laser processing apparatus and laser processing method
CN102149508A (en) Laser cutting method and equipment, with means for modifying the laser beam quality factor by a diffractive optical component
EP1532718B1 (en) A method and a laser device for producing high optical power density
JP3978066B2 (en) Laser processing equipment
JP2018524174A (en) Laser processing apparatus and method, and optical parts thereof
JP2021514841A (en) Laser processing equipment and method
JP4690967B2 (en) Laser processing equipment with increased processing depth
JP2013180295A (en) Machining apparatus and machining method
JPWO2019189927A1 (en) Welding method and welding equipment
CN114269508A (en) Method for flame cutting by means of a laser beam
CN112368104A (en) Welding method and welding device
JP3892711B2 (en) Laser cutting device
JP6043773B2 (en) Sheet metal processing method using direct diode laser light and direct diode laser processing apparatus for executing the same
JPWO2019176953A1 (en) Fiber optic bundle with beam stacking mechanism
JPH04322892A (en) Laser beam machine and laser beam machining method
JP7328456B2 (en) Metal foil laser cutting method
KR102581115B1 (en) Lase processing head for stripping of enamel wire
Ishide et al. The latest YAG laser welding system–Development of hybrid yag laser welding technology
JP2016153143A (en) Processing method for sheet metal with direct diode laser beam and direct laser processing apparatus for executing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081015

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

R151 Written notification of patent or utility model registration

Ref document number: 4505190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees