JP2001062304A - Production of hydrodesulfurization catalyst of light oil and hydrogenation treatment method of light oil - Google Patents

Production of hydrodesulfurization catalyst of light oil and hydrogenation treatment method of light oil

Info

Publication number
JP2001062304A
JP2001062304A JP24443099A JP24443099A JP2001062304A JP 2001062304 A JP2001062304 A JP 2001062304A JP 24443099 A JP24443099 A JP 24443099A JP 24443099 A JP24443099 A JP 24443099A JP 2001062304 A JP2001062304 A JP 2001062304A
Authority
JP
Japan
Prior art keywords
catalyst
alumina
mass
zeolite
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24443099A
Other languages
Japanese (ja)
Inventor
Takashi Fujikawa
貴志 藤川
Hiroshi Mizuguchi
博史 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Cosmo Research Institute
Original Assignee
Cosmo Oil Co Ltd
Cosmo Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Cosmo Research Institute filed Critical Cosmo Oil Co Ltd
Priority to JP24443099A priority Critical patent/JP2001062304A/en
Publication of JP2001062304A publication Critical patent/JP2001062304A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a hydrodesulfurization catalyst used in hydrogenating a light oil fraction to perform the deep desulfurization of a sulfur component and a hydrogenation treatment method of the light oil fraction using this catalyst. SOLUTION: A catalyst is produced by a first process for supporting at least one of cobalt and nickel on a composite oxide carrier consisting of 80-99.5 mass % of alumina or alumina-containing matter and 0.5-20 mass % of zeolite and a second process for supporting at least one of cobalt and nickel, molybdenium and phosphorus on the carrier. The amt. of at least one of cobalt and nickel to be supported on the carrier in the first process is set to 0.1-2 mass % in terms of oxide, the total amt. of at least one of cobalt and nickel is set to 3-6 mass % with respect to the catalyst in terms of oxide, the amt. of molybdenum is set to 12-22 wt. % with respect to the catalyst in terms of oxide and the amt. of phosphorus is set to 0.8-5 mass % with respect to the catalyst in terms of oxide. This catalyst is brought into contact with a light oil fraction under such a condition that hydrogen partial pressure is 3-8 MPa at 300-420 deg.C and a liquid spatial velocity is 0.3-5 hr-1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、軽油留分を水素化
処理して硫黄分を深度脱硫する際に使用する水素化脱硫
触媒の製造方法と、この触媒を使用して軽油留分を水素
化処理する方法とに関する。
The present invention relates to a method for producing a hydrodesulfurization catalyst for use in hydrotreating a gas oil fraction to deep desulfurize sulfur, and to use the catalyst to convert the gas oil fraction to hydrogen. And a method of performing a chemical conversion treatment.

【0002】[0002]

【技術背景】近年、大気環境改善のために、軽油の品質
規制値が世界的に厳しくなる傾向にあり、既に、北欧諸
国の一部では、軽油の品質規制を硫黄分50ppm以
下、芳香族分5%以下とする強化が始まっており、この
ような規制強化は、今後、更に厳しくなるものと予想さ
れる。我が国においても、近い将来、軽油について、硫
黄分の規制強化が見込まれている。
2. Description of the Related Art In recent years, the quality regulations of light oil have tended to be stricter worldwide in order to improve the atmospheric environment. In some Nordic countries, the quality regulations of light oil have already been reduced to 50 ppm or less for sulfur and less for aromatics. Strengthening to 5% or less has begun, and it is expected that such tightening of regulations will become even more severe in the future. In Japan, it is anticipated that regulations on sulfur content in diesel fuel will be strengthened in the near future.

【0003】軽油中の硫黄分は、排ガス対策として期待
されている酸化触媒、窒素酸化物(NOx)還元触媒、
ディーゼル排気微粒子除去フィルタ等の後処理装置の耐
久性に悪影響を及ぼす懸念があるため、規制強化の第一
対象とされている。
[0003] The sulfur content in light oil is reduced by oxidation catalyst, nitrogen oxide (NOx) reduction catalyst,
Due to concerns that it may adversely affect the durability of post-processing equipment such as diesel particulate filters, it has been the subject of stricter regulations.

【0004】以上のような理由から、軽油については、
更なる低硫黄化への要請があり、従来の深度脱硫技術の
より一層の改善が求められている。軽油の深度脱硫技術
では、4,6−ジメチルジベンゾチオフェン(4,6−
DMDBT)のような難脱硫性硫黄化合物をいかに効率
よく除去するかが課題となっている。これらの物質が脱
硫され難いのは、アルキル置換基の位置が硫黄原子の近
傍にあるため、触媒の活性点と接触する際に、該アルキ
ル置換基による立体障害が起こるためと考えられてい
る。従って、超深度脱硫領域で効率的に脱硫反応を行わ
せるには、脱硫活性点への立体障害を有するこれらの物
質の脱硫反応を効率的に進行させるような触媒を開発す
ることが重要な課題となる。
[0004] For the above reasons, light oil is
There is a demand for further reduction in sulfur, and further improvement of conventional deep desulfurization technology is required. In gas oil deep desulfurization technology, 4,6-dimethyldibenzothiophene (4,6-
The problem is how to efficiently remove hard-to-desulfurize sulfur compounds such as DMDBT). It is considered that these substances are difficult to be desulfurized because the alkyl substituent is located near the sulfur atom, and steric hindrance by the alkyl substituent occurs when the substance comes into contact with the active site of the catalyst. Therefore, in order to efficiently perform the desulfurization reaction in the ultra-deep desulfurization region, it is important to develop a catalyst that efficiently promotes the desulfurization reaction of these substances having steric hindrance to the desulfurization active site. Becomes

【0005】従来、水素化脱硫触媒を製造する一般的な
方法としては、周期律表第6B族金属、第8族金属(以
下、活性金属)の塩の水溶液を担体に含浸させた後、乾
燥・焼成する「含浸法」、アルミナやアルミナゲルを分
散させた水溶液中に活性金属塩の水溶液を加えて金属化
合物を沈澱させる「共沈法」、アルミナやアルミナゲル
と活性金属塩水溶液との混合ペーストを加熱混練し水分
除去を行う「混練法」がある(「触媒調製化学」,尾崎
萃編,講談社サイエンティック,250〜252頁参
照)。
Conventionally, as a general method for producing a hydrodesulfurization catalyst, a carrier is impregnated with an aqueous solution of a salt of a Group 6B metal or a Group 8 metal (hereinafter, referred to as an active metal) of a periodic table, and then dried.・ "Impregnation method" for firing, "coprecipitation method" for adding an aqueous solution of active metal salt to an aqueous solution in which alumina or alumina gel is dispersed, and precipitating metal compounds, mixing of alumina or alumina gel with aqueous solution of active metal salt There is a "kneading method" in which the paste is heated and kneaded to remove moisture ("Catalyst Preparation Chemistry", edited by Suzaki Ozaki, Kodansha Scientific, pp. 250-252).

【0006】これらの担体として最もよく用いられてい
るのはアルミナである。また、アルミナほどではない
が、シリカ,チタニア,ボリア等をアルミナと組み合わ
せたアルミナ−シリカ、アルミナ−チタニア,アルミナ
−ボリア等も担体に使用され、更にはアルミナとゼオラ
イトとを組み合わせたアルミナ−ゼオライト等も担体と
して使用される場合がある。
[0006] Alumina is most frequently used as these carriers. Alumina-silica, alumina-titania, alumina-boria, etc., in which silica, titania, boria, etc. are combined with alumina, although not as much as alumina, are also used as carriers. May also be used as a carrier.

【0007】前述のアルミナ−ゼオライト担体に水素化
活性成分を担持させる方法で製造する触媒は、比較的高
分子量の反応物質をアルミナ部分で反応させ、比較的低
分子量の反応物質をゼオライトの部分で反応させること
により、触媒全体の脱硫活性の向上を図ったものであ
る。しかし、アルミナ−ゼオライト担体に水素化活性金
属成分を担持させると、該活性金属成分とアルミナとの
優れた反応性に起因して、該活性金属成分の殆どがアル
ミナ部分に担持される。その結果、担体全体からする
と、アルミナのみを単独で担体とする場合に比して担持
する水素化活性金属成分量が制限される。
The catalyst produced by the above-described method of supporting a hydrogenation active component on an alumina-zeolite carrier is such that a relatively high molecular weight reactant is reacted in an alumina portion, and a relatively low molecular weight reactant is converted in a zeolite portion. The reaction is intended to improve the desulfurization activity of the entire catalyst. However, when the hydrogenated active metal component is supported on the alumina-zeolite carrier, most of the active metal component is supported on the alumina portion due to the excellent reactivity between the active metal component and alumina. As a result, the amount of the hydrogenation-active metal component to be supported is limited as compared with the case where only alumina is used alone as the carrier in the whole carrier.

【0008】そこで、本出願人は、先に、ゼオライトの
特徴である酸性質を有効に利用し、かつ触媒全体として
より多くの水素化活性金属成分を含有し得る触媒を得る
ことのできる製造方法として、第1工程で、Co、Ni
の少なくとも一方をイオン交換したゼオライトと、アル
ミナ又はアルミナ含有物とを混合し、第2工程で、この
Co、Ni担持ゼオライト−アルミナ複合酸化物担体
に、Co、Niの少なくとも一方と周期律表第6B族金
属を担持させる方法を提案している(特公平8−323
08号)。
Therefore, the applicant of the present invention has previously disclosed a production method capable of effectively utilizing the acid property which is a characteristic of zeolite, and obtaining a catalyst capable of containing more hydrogenation-active metal components as a whole catalyst. In the first step, Co, Ni
And zeolite obtained by ion-exchanging at least one of the above and alumina or an alumina-containing material, and in the second step, the Co, Ni-supported zeolite-alumina composite oxide carrier contains at least one of Co and Ni and the periodic table. A method for supporting a 6B group metal has been proposed (Japanese Patent Publication No. 8-323).
08).

【0009】[0009]

【発明の目的】本発明は、この先提案方法によるより
も、水素化脱硫活性点を大幅に増やすことができ、その
結果、脱硫活性を高めることができる、軽油の水素化処
理触媒を製造する方法を提供することを第1の目的とす
る。また、本発明は、この触媒を用いた軽油の水素化処
理方法を提供することを第2の目的とする。
An object of the present invention is to provide a method for producing a gas oil hydrotreating catalyst capable of greatly increasing the hydrodesulfurization active sites and consequently enhancing the desulfurization activity as compared with the previously proposed method. The first object is to provide A second object of the present invention is to provide a method for hydrotreating light oil using the catalyst.

【0010】[0010]

【発明の概要】本発明者等は、上記目的を達成するため
に検討を重ねたところ、予め、水素化活性金属成分のう
ち、周期律表第8族金属のニッケル、コバルトの少なく
とも一方をゼオライト−アルミナの複合酸化物担体に担
持しておき、これにコバルト、ニッケルの少なくとも一
方と、モリブデンと、リンとを担持させる方法で製造さ
れる触媒が、軽油の水素化脱硫に極めて有効であること
を見出した。
SUMMARY OF THE INVENTION The present inventors have conducted various studies to achieve the above object, and found that at least one of nickel and cobalt which belong to Group 8 of the periodic table among the hydrogenation-active metal components has been converted into a zeolite. -A catalyst produced by a method in which at least one of cobalt and nickel, molybdenum and phosphorus is supported on an alumina composite oxide carrier, and which is extremely effective for hydrodesulfurization of gas oil; Was found.

【0011】本発明は、この知見に基づくもので、アル
ミナ又はアルミナ含有物80〜99.5質量%と、ゼオ
ライト0.5〜20質量%とを有する複合酸化物担体
に、コバルト、ニッケルの少なくとも一方を担持させる
第1工程と、コバルト、ニッケルの少なくとも一方とモ
リブデンとリンとを担持させる第2工程とからなり、第
1工程で担持させるコバルト、ニッケルの少なくとも一
方の量を酸化物換算で担体に対し0.1〜2質量%と
し、コバルト、ニッケルの少なくとも一方の全量を酸化
物換算で触媒に対し3〜6質量%とし、モリブデン量を
酸化物換算で触媒に対し12〜22質量%とし、リン量
を酸化物換算で触媒に対し0.8〜5質量%とすること
を特徴とする軽油の水素化脱硫触媒の製造方法を要旨と
する。
The present invention has been made based on this finding. The composite oxide carrier containing 80 to 99.5% by mass of alumina or alumina-containing material and 0.5 to 20% by mass of zeolite contains at least cobalt and nickel. A first step of supporting one of them, and a second step of supporting at least one of cobalt and nickel, and molybdenum and phosphorus, wherein the amount of at least one of cobalt and nickel to be supported in the first step is determined in terms of oxides. 0.1 to 2% by mass, the total amount of at least one of cobalt and nickel is 3 to 6% by mass in terms of oxide, and the amount of molybdenum is 12 to 22% by mass in terms of oxide. A method for producing a gas oil hydrodesulfurization catalyst, characterized in that the phosphorus content is 0.8 to 5% by mass relative to the catalyst in terms of oxide.

【0012】本発明における複合酸化物担体の一方の構
成成分であるゼオライトは、天然のものでも合成された
ものでもよく、その例としてフォージャサイトX型ゼオ
ライト、フォージャサイトY型ゼオライト(以下、「Y
ゼオライト」という)、チャパサイト型ゼオライト、モ
ルデナイト型ゼオライト、ゼオライトベータ、MCM系
ゼオライト(MCM−41,MCM−22,MCM−4
8等)、ZSM系ゼオライト(ZSM−4,ZSM−
5,ZSM−8,ZSM−11,ZSM−12,ZSM
−20,ZSM−21,ZSM−23,ZSM−34,
ZSM−35,ZSM−38,ZSM−43等があ
る)、鉄シリケート、ボロシリケート、ガロシリケー
ト、SSZ−33、UTD−1、CIT−5、VPI−
5、TS−1、TS−2、OU−1等が挙げられ、中で
もYゼオライト、安定化Yゼオライト、ゼオライトベー
タ、ZSM−5等が好ましい。特に、好ましくはプロト
ン型のゼオライトである。
The zeolite as one of the constituent components of the composite oxide carrier in the present invention may be a natural or synthetic zeolite. Examples thereof include faujasite X-type zeolite and faujasite Y-type zeolite (hereinafter, referred to as “faujasite Y-type zeolite”). "Y
Zeolite), chapasite type zeolite, mordenite type zeolite, zeolite beta, MCM zeolite (MCM-41, MCM-22, MCM-4)
8), ZSM zeolite (ZSM-4, ZSM-
5, ZSM-8, ZSM-11, ZSM-12, ZSM
-20, ZSM-21, ZSM-23, ZSM-34,
ZSM-35, ZSM-38, ZSM-43, etc.), iron silicate, borosilicate, gallosilicate, SSZ-33, UTD-1, CIT-5, VPI-
5, TS-1, TS-2, and OU-1, among which Y zeolite, stabilized Y zeolite, zeolite beta, ZSM-5 and the like are preferable. Particularly preferred is a proton type zeolite.

【0013】ゼオライト中のケイ素元素対アルミニウム
元素の原子数比Si/Alは、約1以上のものが好まし
い。ゼオライト中のナトリウムのようなアルカリ金属イ
オンは、含有量が多いと触媒活性を低下させてしまうの
で、通常はゼオライトに対し約0.5質量%以下にする
ことが好ましい。
The ratio of the number of silicon atoms to the number of aluminum atoms in the zeolite, Si / Al, is preferably about 1 or more. Usually, the content of alkali metal ions such as sodium in zeolite is preferably about 0.5% by mass or less with respect to the zeolite, since a large content decreases the catalytic activity.

【0014】上記のYゼオライト、安定化Yゼオライト
は、公知のものを用いることができる。Yゼオライト
は、天然のフォージャサイトと基本的には同一の結晶構
造を有し、酸化物として表わすと、化1の組成式のよう
に表現し得る。
Known Y zeolites and stabilized Y zeolites can be used. Y zeolite has basically the same crystal structure as natural faujasite, and when expressed as an oxide, can be expressed as a chemical formula of Chemical Formula 1.

【0015】[0015]

【化1】0.7〜1.1R2/mO・Al・3〜
5SiO・7〜9HO (式中、RはNa,K,その他のアルカリ金属イオン又
はアルカリ土類金属イオンであり、mはその原子価であ
る。)
[Formula 1] 0.7~1.1R 2 / m O · Al 2 O 3 · 3~
5SiO 2 · 7~9H 2 O (wherein, R is Na, K, and other alkali metal ions or alkaline earth metal ion, m is its valence.)

【0016】安定化Yゼオライトは、例えば、米国特許
第3,293,192号、同第3,402,996号に
記載されているものを好ましく使用できる。安定化Yゼ
オライトは、高温での水蒸気処理を数回行うことによ
り、結晶度の劣化に対し著しい耐性を示す。安定化Yゼ
オライトは、R2/mOの含量が約4質量%以下、好ま
しくは約1質量%以下で、単位格子寸法が約24.5Å
のものが適している。安定化Yゼオライトは、Si/A
lの原子比が約3〜7あるいはそれ以上のYゼオライト
を意味する。
As the stabilized Y zeolite, for example, those described in US Pat. Nos. 3,293,192 and 3,402,996 can be preferably used. Stabilized Y zeolite exhibits remarkable resistance to degradation of crystallinity by performing steam treatment at high temperature several times. The stabilized Y zeolite has a content of R 2 / m O of about 4% by weight or less, preferably about 1% by weight or less, and a unit cell size of about 24.5%.
Are suitable. The stabilized Y zeolite is Si / A
1 means a Y zeolite having an atomic ratio of about 3 to 7 or more.

【0017】ZSM−5は、米国特許第3,894,1
06号、同第3,894,107号、同第3,928,
483号、英国特許第1,402,981号、特公昭5
5−67522号に記載された合成法により得られるも
のが好ましく使用される。
ZSM-5 is disclosed in US Pat. No. 3,894,1.
No. 06, No. 3,894,107, No. 3,928,
No. 483, British Patent No. 1,402,981, Japanese Patent Publication No. 5
Those obtained by the synthesis method described in 5-67522 are preferably used.

【0018】本発明における複合酸化物担体の他方の構
成成分であるアルミナは、γ−アルミナ、χ−アルミ
ナ、η−アルミナのいずれか1種又はこれらの混合体が
好適である。また、アルミナ含有物は、アルミナの他に
担体物質を配合することにより得られる組成物で、例え
ば、シリカ,マグネシア,酸化カルシウム,ジルコニ
ア,チタニア,ボリア等の1種又は2種以上をアルミナ
に配合することができる。
The alumina as the other component of the composite oxide carrier in the present invention is preferably any one of γ-alumina, χ-alumina, and η-alumina, or a mixture thereof. The alumina-containing material is a composition obtained by mixing a carrier material in addition to alumina. For example, one or more of silica, magnesia, calcium oxide, zirconia, titania, and boria are mixed with alumina. can do.

【0019】上記複合酸化物担体は、アルミナ又はアル
ミナ含有物のゲルと、ゼオライトとを混合させて調製す
る。このアルミナゲルは、例えば、硫酸アルミニウム,
硝酸アルミニウム等のアルミニウム塩をアンモニウムの
ような塩基で中和し、あるいはアルミン酸ナトリウムの
ようなアルミン酸塩を酸性アルミニウム塩又は酸で中和
し、生成したゲルを洗浄し、加熱熟成して調製すること
ができる。アルミナゲルの調製法の具体的な一態様は、
次の通りである。酸性アルミニウム水溶液(好ましくは
その濃度が約0.3〜2モルの範囲)及びアルミン酸ア
ルカリ溶液に、水酸化アルカリ溶液等を添加し、pH約
6.0〜11.0、好ましくは約8.0〜10.5の範
囲でヒドロゲル又はヒドロゾルを生成させるか、あるい
はアンモニア水、硝酸又は酢酸を適宜添加し、pHを調
整しながら、この懸濁液を約50〜90℃に加熱して少
なくとも2時間保持する。次いで、沈澱をロ別し、酢酸
アンモニウム及び水で洗浄して不純物イオンを除去す
る。
The composite oxide carrier is prepared by mixing a gel of alumina or an alumina-containing material with zeolite. This alumina gel is, for example, aluminum sulfate,
Neutralize an aluminum salt such as aluminum nitrate with a base such as ammonium, or neutralize an aluminate such as sodium aluminate with an acidic aluminum salt or acid, wash the resulting gel and prepare it by heat aging. can do. One specific embodiment of the method for preparing the alumina gel,
It is as follows. An alkali hydroxide solution or the like is added to an aqueous acidic aluminum solution (preferably having a concentration of about 0.3 to 2 mol) and an alkali aluminate solution, and the pH is about 6.0 to 11.0, preferably about 8. The suspension is heated to about 50-90 ° C. to form a hydrogel or hydrosol in the range of 0-10.5, or to the pH of about 50-90 ° C. while appropriately adding aqueous ammonia, nitric acid or acetic acid to adjust the pH. Hold for hours. Next, the precipitate is filtered off and washed with ammonium acetate and water to remove impurity ions.

【0020】次に、H型ゼオライトを、例えば上記のよ
うにして調製したアルミナゲル又はアルミナ含有物ゲル
と混合する。このときの混合割合は、アルミナ又はアル
ミナ含有物が80〜99.5質量%で、ゼオライトが
0.5〜20質量%である。ゼオライト部が少なすぎ、
アルミナ部が多すぎると、充分な効果が得られず、逆に
ゼオライト部が多すぎ、アルミナ部が少なすぎると、過
分解によりコーキングが生起し、コークが堆積して、脱
硫活性点を消失させる。混合は、物理的な方法で行い、
得られた混合ゲルを水分調整し、その後押し出し成型機
により成型後、乾燥し、約400〜700℃で、約1〜
5時間焼成してゼオライト−アルミナ複合酸化物担体を
得る。
Next, the H-type zeolite is mixed with, for example, the alumina gel or alumina-containing gel prepared as described above. At this time, the mixing ratio of alumina or alumina-containing material is 80 to 99.5% by mass, and that of zeolite is 0.5 to 20% by mass. The zeolite part is too small,
If the alumina portion is too large, a sufficient effect cannot be obtained.On the other hand, if the zeolite portion is too large and the alumina portion is too small, coking occurs due to over-decomposition, coke is deposited, and the desulfurization active point is lost. . Mixing is done in a physical way,
The water content of the obtained mixed gel was adjusted, then molded by an extrusion molding machine, and then dried.
Calcination for 5 hours gives a zeolite-alumina composite oxide support.

【0021】本発明の第1工程は、上記のようにして得
られるゼオライトとアルミナ又はアルミナ含有物との復
合酸化物(以下、ゼオライト−アルミナ複合酸化物と記
す)担体に、Co、Niの少なくとも一方の特定量を担
持させる工程である。この担持方法は、次のような通常
の方法により行うことができる。担持に使用できるC
o,Ni化合物は、硝酸塩,硫酸塩,塩化物,酢酸塩等
であり、これらの化合物を水、酸等の溶媒に溶解した溶
液を、ゼオライト−アルミナ担体に含浸し担持させる含
浸法により担持する。Co、Niの少なくとも一方の担
持量は、酸化物換算で担体に対し0.1〜2質量%であ
る。少なすぎると、より以上の水素化活性を望めず、多
すぎると過分解が生起したり、ゼオライト−アルミナ担
体の表面積を低下させることとなり、好ましくない。
In the first step of the present invention, a deoxidized oxide (hereinafter referred to as zeolite-alumina composite oxide) carrier of zeolite and alumina or an alumina-containing material obtained as described above is loaded with at least Co and Ni. This is a step of carrying one specific amount. This loading method can be performed by the following ordinary method. C that can be used for carrying
The o and Ni compounds are nitrates, sulfates, chlorides, acetates, and the like. A solution obtained by dissolving these compounds in a solvent such as water or an acid is impregnated on a zeolite-alumina carrier and supported by an impregnation method. . The supported amount of at least one of Co and Ni is 0.1 to 2% by mass relative to the carrier in terms of oxide. If the amount is too small, more hydrogenation activity cannot be expected. If the amount is too large, over-decomposition occurs or the surface area of the zeolite-alumina carrier is decreased, which is not preferable.

【0022】Co、Niの少なくとも一方を担持したゼ
オライト−アルミナ担体の比表面積、細孔容積、及び平
均細孔直径は、特に制限されないが、軽油に対する水素
化脱硫活性の高い触媒にするためには、比表面積(BE
T法)が200〜400m/g、好ましくは300〜
350m/g、細孔容積(水銀圧入法)が0.5〜
0.8ml/g、好ましくは0.55〜0.7ml/
g、平均細孔径が55〜90Å、好ましくは60〜80
Åが適している。
The specific surface area, the pore volume, and the average pore diameter of the zeolite-alumina carrier supporting at least one of Co and Ni are not particularly limited. , Specific surface area (BE
T method) is from 200 to 400 m 2 / g, preferably from 300 to 400 m 2 / g.
350 m 2 / g, pore volume (mercury intrusion method) 0.5 to
0.8 ml / g, preferably 0.55 to 0.7 ml /
g, average pore size is 55 to 90 °, preferably 60 to 80 °
Å is suitable.

【0023】比表面積が200m/g未満では、活性
金属の分散性が悪くなるため、低脱硫活性の触媒とな
り、400m/gより大きいと、細孔直径が極端に小
さくなるため、触媒の細孔直径も小さくなる。触媒の細
孔直径が小さいと、硫黄化合物の触媒細孔内への拡散が
不十分となり、脱硫活性が低下する。
If the specific surface area is less than 200 m 2 / g, the dispersibility of the active metal becomes poor, resulting in a catalyst with low desulfurization activity. If the specific surface area is more than 400 m 2 / g, the pore diameter becomes extremely small. The pore diameter also decreases. When the pore diameter of the catalyst is small, the diffusion of the sulfur compound into the pores of the catalyst becomes insufficient, and the desulfurization activity decreases.

【0024】細孔容積が0.5ml/g未満では、通常
の含浸法で触媒を調製する場合、細孔容積内に入り込む
溶媒が少量となる。溶媒が少量であると、活性金属化合
物の溶解性が悪くなり、金属の分散性が低下し、低活性
の触媒となる。活性金属化合物の溶解性を上げるために
は、硝酸等の酸を多量に加える方法があるが、余り加え
すぎると担体の低表面積化が起こり、脱硫性能低下の主
原因となる。細孔容積が0.8ml/gより大きいと、
比表面積が極端に小さくなって、活性金属の分散性が悪
くなり、脱硫活性の低い触媒となる。
When the pore volume is less than 0.5 ml / g, when a catalyst is prepared by a usual impregnation method, a small amount of solvent enters the pore volume. When the amount of the solvent is small, the solubility of the active metal compound is deteriorated, the dispersibility of the metal is reduced, and the catalyst has low activity. In order to increase the solubility of the active metal compound, there is a method of adding a large amount of an acid such as nitric acid. However, if it is added too much, the surface area of the carrier is reduced, which is a main cause of a decrease in desulfurization performance. If the pore volume is greater than 0.8 ml / g,
The specific surface area becomes extremely small, the dispersibility of the active metal becomes poor, and the catalyst has a low desulfurization activity.

【0025】細孔直径が55Å未満では、活性金属を担
持した触媒の細孔直径も小さくなる。触媒の細孔直径が
小さいと、硫黄化合物の触媒細孔内への拡散が不十分と
なり、脱硫活性が低下する。細孔直径が90Åより大き
いと、比表面積が小さくなる。比表面積が小さいと、活
性金属の分散性が悪くなり、脱硫活性の低い触媒とな
る。
When the pore diameter is less than 55 °, the pore diameter of the catalyst supporting the active metal also becomes small. When the pore diameter of the catalyst is small, the diffusion of the sulfur compound into the pores of the catalyst becomes insufficient, and the desulfurization activity decreases. When the pore diameter is larger than 90 °, the specific surface area becomes smaller. When the specific surface area is small, the dispersibility of the active metal becomes poor, and the catalyst has a low desulfurization activity.

【0026】本発明の第2工程は、上記の第1工程で得
られるCo、Niの少なくとも一方を担持したゼオライ
ト−アルミナ担体に、Co、Niの少なくとも一方の残
量とMo及びPの特定量とを担持させる工程である。こ
れらの水素化脱硫活性成分の担持方法は、下記するよう
な通常の方法により行うことができる。Co、Ni、M
o、P成分のうち、Co,Ni化合物としては、炭酸
塩,酢酸塩,硝酸塩,硫酸塩,塩化物が挙げられ、好ま
しくは炭酸塩、酢酸塩、より好ましくは炭酸塩である。
Mo化合物としては、三酸化モリブデン、モリブドリン
酸、モリブデン酸アンモニウム、モリブデン酸等が挙げ
られ、好ましくはモリブドリン酸、三酸化モリブデンで
ある。Pは、上記の活性成分の化合物として、モリブド
リン酸等のPを含む化合物を使用する場合には、これら
の化合物に由来するものであってもよいし、P化合物以
外の化合物を使用する場合や、P化合物に由来するPの
みでは不足する場合には、この化合物と共に他のP源を
使用する。他のP源としては、種々のリン酸が挙げら
れ、具体的には、オルトリン酸、メタリン酸、ピロリン
酸、三リン酸、四リン酸、ポリリン酸等が挙げられ、特
にオルトリン酸が好ましい。
In the second step of the present invention, the zeolite-alumina carrier supporting at least one of Co and Ni obtained in the first step is used to carry out the remaining amounts of at least one of Co and Ni and the specific amounts of Mo and P. Is a step of supporting The method for supporting these hydrodesulfurization active components can be carried out by an ordinary method as described below. Co, Ni, M
Of the o and P components, examples of the Co and Ni compounds include carbonates, acetates, nitrates, sulfates, and chlorides, and are preferably carbonates, acetates, and more preferably carbonates.
Examples of the Mo compound include molybdenum trioxide, molybdophosphoric acid, ammonium molybdate, molybdic acid, and the like. Molybdolinic acid and molybdenum trioxide are preferable. P may be derived from these compounds when a compound containing P such as molybdophosphoric acid is used as the compound of the active ingredient, or when a compound other than the P compound is used, If only P derived from a P compound is insufficient, another P source is used together with this compound. Examples of other P sources include various phosphoric acids, and specific examples include orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, and polyphosphoric acid. Orthophosphoric acid is particularly preferable.

【0027】これらの活性成分のうち、Co、Niの少
なくとも一方の全量(第1工程での担持量と第2工程で
の担持量との合量)は、酸化物換算で、触媒に対し、3
〜8質量%、好ましくは3.5〜7質量%とする。C
o、Niの少なくとも一方が3質量%未満では、Co、
Niに帰属する活性点が十分に得られず、8質量%を超
えると、Co、Ni化合物の凝集によって活性金属の分
散性が悪くなるばかりか、不活性な前駆体であるCo
、NiO種(触媒硫化後や水素化処理中はCo
、Ni種として存在する)や、担体の格子内に
取り込まれたCoスピネル、Niスピネル種を生成する
ため、触媒活性の向上がみられない上、逆に触媒活性が
低下する。
Of these active components, the total amount of at least one of Co and Ni (the total amount of the supported amount in the first step and the supported amount in the second step) is calculated as oxide to catalyst. 3
To 8% by mass, preferably 3.5 to 7% by mass. C
If at least one of o and Ni is less than 3% by mass, Co,
If the active site attributed to Ni is not sufficiently obtained and exceeds 8% by mass, not only the dispersibility of the active metal is deteriorated due to the aggregation of the Co and Ni compounds, but also the inactive precursor Co 3
O 4 , NiO species (Co 9 S after catalytic sulphidation and during hydrogenation)
8 , Ni 3 S 2 species), Co spinel and Ni spinel species incorporated in the lattice of the carrier, so that the catalytic activity is not improved and the catalytic activity is reduced.

【0028】Moの含有量は、酸化物換算で、触媒に対
し、12〜22質量%、好ましくは18〜21質量%と
する。Moが12質量%未満では、Moに起因する効果
を発現させるには不十分であり、22質量%を超える
と、Moの凝集によって活性金属の分散性が悪くなるば
かりか、効率的に分散する活性金属含有量の限度を超え
たり、触媒表面積が大幅に低下する等により、触媒活性
の向上がみられない。
The content of Mo is 12 to 22% by mass, preferably 18 to 21% by mass in terms of oxide, based on the catalyst. If the Mo content is less than 12% by mass, it is not sufficient to exhibit the effect caused by Mo. If the Mo content exceeds 22% by mass, the dispersibility of the active metal is deteriorated due to the aggregation of Mo, and the active metal is efficiently dispersed. There is no improvement in catalytic activity because the active metal content exceeds the limit or the catalyst surface area is significantly reduced.

【0029】Pの含有量は、酸化物換算で、触媒に対
し、0.8〜5質量%、好ましくは1〜4質量%とす
る。Pは、触媒の酸性質を向上させる作用をなす。触媒
が好適な酸性質の値を示す場合には、活性成分の分散性
が向上し、担体上の酸点の量が最適値を示して、硫黄化
合物の吸着を促進し、硫黄化合物の水素化脱硫活性を向
上させる。なお、Pが多すぎると、触媒の表面積や細孔
容積の減少が起こり、脱硫活性が低下する。Pが0.8
質量%未満では、P成分を含有させる技術的意義が発現
せず、軽油留分中の硫黄分を効率的に除去することがで
きず、5質量%を超えても、この効果は飽和し、不経済
となる。
The content of P is 0.8 to 5% by mass, preferably 1 to 4% by mass, based on the oxide. P acts to improve the acidity of the catalyst. When the catalyst exhibits a suitable acidity value, the dispersibility of the active ingredient is improved, the amount of acid sites on the carrier shows an optimal value, the adsorption of sulfur compounds is promoted, and the hydrogenation of sulfur compounds is promoted. Improve desulfurization activity. If the amount of P is too large, the surface area and pore volume of the catalyst decrease, and the desulfurization activity decreases. P is 0.8
If the amount is less than 5% by mass, the technical significance of including the P component is not exhibited, and the sulfur content in the gas oil fraction cannot be efficiently removed. It is uneconomical.

【0030】Co、Ni、Mo、P各成分の上記した含
有量において、活性金属であるCo、Ni、Moの最適
質量比は、〔CoO+NiO〕/〔CoO+NiO+M
oO 〕の値で、0.12〜0.33であり、活性金属
であるMoと触媒の酸性質向上成分であるPの最適質量
比は、〔P〕/〔MoO〕の値で、0.05〜
0.25である。Co、NiとMoの質量比が上記の値
で0.12未満では、脱硫の活性点と考えられるCo−
Mo−S相、Ni−Mo−S相が十分に生成できず、脱
硫活性が向上しない。0.33より大きいと、活性に関
与しない無駄なCo、Ni種(Co、Ni
種や、担体の格子内に取り込まれたCo、Niスピネル
種)が生成し、触媒活性が低下する。MoとPの質量比
が上記の値で0.05未満では、CoとMoの渾然一体
化が図れず、最終的に脱硫の活性点であるCo−Mo−
S相、Ni−Mo−S相が得られ難く、活性の低い触媒
となる。0.25より大きいと、触媒の表面積及び細孔
容積の減少を招き、触媒の活性が低下するのみならず、
酸量が増えることとなり、炭素析出を招いて活性劣化を
引き起こし易くなる。
The above-described components of Co, Ni, Mo, and P are included.
Optimal for active metals Co, Ni, and Mo
The mass ratio is [CoO + NiO] / [CoO + NiO + M
oO 30.12 to 0.33, and the active metal
Optimum mass of Mo which is P and P which is a component for improving the acidity of the catalyst
The ratio is [P2O5] / [MoO3], 0.05-
0.25. The mass ratio of Co, Ni and Mo is the above value
Below 0.12, Co- considered to be the active site of desulfurization
Mo-S phase and Ni-Mo-S phase could not be formed sufficiently,
Sulfuric acid activity does not improve. If it is greater than 0.33, the activity
Unnecessary Co and Ni species (Co9S8, Ni3S2
Co, Ni spinel incorporated in seeds and carrier lattice
Species) and the catalytic activity decreases. Mo / P mass ratio
If the above value is less than 0.05, Co and Mo are in harmony
Co-Mo-, which is the ultimate active point of desulfurization
S-phase, Ni-Mo-S phase is difficult to obtain and low activity catalyst
Becomes If greater than 0.25, the surface area and pores of the catalyst
This leads to a decrease in volume, which not only reduces the activity of the catalyst,
The amount of acid increases, leading to carbon deposition and degradation of activity.
It is easy to cause.

【0031】加えて、本発明の触媒は、CoO、Ni
O、MoO、P、ゼオライト、アルミナ、アル
ミナ含有物以外の金属含有量が1質量%以下であること
が好ましい。これら以外の金属が1質量%より多く含有
されていると、活性点が被毒され、脱硫活性の低い触媒
となる。
In addition, the catalyst according to the present invention comprises CoO, Ni
It is preferable that the content of metals other than O, MoO 3 , P 2 O 5 , zeolite, alumina, and a substance containing alumina is 1% by mass or less. When a metal other than these is contained in an amount of more than 1% by mass, active points are poisoned, and the catalyst has a low desulfurization activity.

【0032】本発明の第2工程は、Co、Niの少なく
とも一方を担持したゼオライト−アルミナ担体に、水、
酸等の溶媒に上記各成分の化合物を溶解した溶液を含浸
して担持させる含浸法により行うのが一般的である。こ
のとき、Co、Ni、Mo、Pの各成分を担体に含浸さ
せる方法は、これら各成分を同時に含浸させる一段含浸
法が好ましい。一段含浸法は、脱硫活性点数、酸性質、
細孔等の触媒の特性の面、あるいは操作性の面から、有
利と考えられるからである。すなわち、一段含浸法によ
れば、Co、NiとMoが渾然一体化して担体に取り込
まれることとなるため、第1工程で既に担持されている
Co、Niの少なくとも一方との相乗作用により、最終
的に脱硫の活性点であるCo−Mo−S相、Ni−Mo
−S相を大幅に増加させることができる。このとき、P
成分が含浸溶液に存在していると、Co、NiとMoの
渾然一体化が促進される。
In the second step of the present invention, water and water are added to a zeolite-alumina carrier supporting at least one of Co and Ni.
It is common to use an impregnation method of impregnating and supporting a solution of the above-mentioned components in a solvent such as an acid. At this time, as a method of impregnating each component of Co, Ni, Mo, and P into the carrier, a one-stage impregnation method of simultaneously impregnating these components is preferable. The one-stage impregnation method has a desulfurization active point number, an acid property,
This is because it is considered to be advantageous in terms of the characteristics of the catalyst such as pores or the operability. That is, according to the one-stage impregnation method, Co, Ni and Mo are completely integrated and taken into the carrier, so that the final action is achieved by the synergistic action with at least one of Co and Ni already supported in the first step. Co-Mo-S phase, which is the active site of desulfurization, Ni-Mo
-The S phase can be greatly increased. At this time, P
When the components are present in the impregnation solution, the coordination of Co, Ni and Mo is promoted.

【0033】これに対し、Co、NiとMoを二段含浸
させる方法では、Co、NiとMoは十分に渾然一体化
せず、第1工程で既に担持されているCo、Niの少な
くとも一方との相乗作用があっても、最終的に脱硫の活
性点であるCo−Mo−S相、Ni−Mo−S相の形成
が困難になると考えられる。例えば、Co、Niは、前
述した不活性な前駆体であるCo、NiO種や、
担体の格子内に取り込まれた活性に関与しないCo、N
iスピネル種となることがある。
On the other hand, in the method in which Co, Ni and Mo are impregnated in two steps, Co, Ni and Mo are not sufficiently integrated, and at least one of Co and Ni already carried in the first step. It is considered that the formation of the Co-Mo-S phase and the Ni-Mo-S phase, which are the active sites of desulfurization, will eventually be difficult even if there is a synergistic action of For example, Co and Ni are the above-mentioned inert precursors such as Co 3 O 4 and NiO species,
Co, N not involved in the activity incorporated in the lattice of the carrier
May be i-spinel species.

【0034】Co、NiとMoを担体に担持させる具体
的方法は、次の通りである。Co、Ni、Mo、Pの各
化合物(Mo化合物にPが含まれている場合はP化合物
を加えないか、適当量のP化合物を添加する)を含む溶
液を調製する。調製時、これらの化合物の溶解を促進す
るために、加温(30〜100℃)や、酸(硝酸、有機
酸《クエン酸、酢酸、リンゴ酸、酒石酸等》)の添加を
行ってもよい。調製した溶液を、担体に、均一になるよ
う徐々に添加して含浸する。含浸時間は1分〜5時間、
好ましくは5分〜3時間、温度は5〜100℃、好まし
くは10〜80℃、雰囲気は特に限定しないが、大気
中、窒素中、真空中が適している。
A specific method for supporting Co, Ni and Mo on a carrier is as follows. A solution containing each compound of Co, Ni, Mo, and P (if the P is contained in the Mo compound, the P compound is not added or an appropriate amount of the P compound is added) is prepared. During preparation, heating (30 to 100 ° C.) or addition of an acid (nitric acid, organic acid << citric acid, acetic acid, malic acid, tartaric acid, etc. &quot;) may be performed to promote the dissolution of these compounds. . The prepared solution is gradually added to the carrier so as to be uniform and impregnated. Impregnation time is 1 minute to 5 hours,
The temperature is preferably 5 minutes to 3 hours, the temperature is 5 to 100 ° C., preferably 10 to 80 ° C., and the atmosphere is not particularly limited, but air, nitrogen, and vacuum are suitable.

【0035】含浸担持後、常温〜80℃、窒素気流中、
空気気流中、あるいは真空中で、水分をある程度(LO
I《Loss on ignition》50%以下と
なるように)除去し、乾燥炉、空気気流中、80〜15
0℃で、10分〜10時間乾燥する。次いで、焼成炉、
空気気流中、300〜700℃で、10分〜10時間焼
成を行う。
After the impregnation and loading, at normal temperature to 80 ° C. in a nitrogen stream,
In a stream of air or vacuum, a certain amount of water (LO
I << Loss on ignition >> so as to be 50% or less), and dry in a drying oven in an air stream at 80 to 15%.
Dry at 0 ° C. for 10 minutes to 10 hours. Next, a firing furnace,
The baking is performed in an air stream at 300 to 700 ° C. for 10 minutes to 10 hours.

【0036】以上のようにして調製される本発明の触媒
は、軽油留分に対する水素化活性及び脱硫活性を高める
ために、その比表面積、細孔容積及び平均細孔径が、以
下の値に制限される。比表面積(BET法)は、180
〜300m/g、好ましくは200〜280m/g
とする。180m/g未満では、活性金属の分散性が
悪くなって低脱硫活性の触媒となり、300m/gよ
り大きいと、細孔直径が極端に小さくなるため、触媒の
細孔直径も小さくなって、水素化処理の際、硫黄化合物
の触媒細孔内への拡散が不十分となり、脱硫活性が低下
する。
The catalyst of the present invention prepared as described above has its specific surface area, pore volume and average pore diameter restricted to the following values in order to enhance the hydrogenation activity and desulfurization activity for the gas oil fraction. Is done. The specific surface area (BET method) is 180
300300 m 2 / g, preferably 200 to 280 m 2 / g
And If it is less than 180 m 2 / g, the dispersibility of the active metal becomes poor and the catalyst has low desulfurization activity. If it is more than 300 m 2 / g, the pore diameter becomes extremely small, so that the catalyst pore diameter also becomes small. During the hydrogenation, the diffusion of the sulfur compound into the pores of the catalyst becomes insufficient, and the desulfurization activity decreases.

【0037】細孔容積(水銀圧入法)は、0.4〜0.
7ml/g、好ましくは0.45〜0.6ml/gとす
る。0.4ml/g未満では、水素化処理の際、硫黄化
合物の触媒細孔内での拡散が不十分となって脱硫活性が
不十分となり、0.7ml/gより大きいと、触媒の比
表面積が極端に小さくなって、活性金属の分散性が低下
し、低脱硫活性の触媒となる。
The pore volume (mercury intrusion method) is 0.4 to 0.5.
7 ml / g, preferably 0.45 to 0.6 ml / g. If it is less than 0.4 ml / g, during the hydrogenation treatment, the diffusion of sulfur compounds in the pores of the catalyst becomes insufficient, resulting in insufficient desulfurization activity. Becomes extremely small, the dispersibility of the active metal decreases, and the catalyst has a low desulfurization activity.

【0038】平均細孔直径は、70〜100Å、好まし
くは75〜90Åとする。70Å未満では、反応物質が
細孔内に拡散し難くなるため、脱硫反応が効率的に進行
せず、100Åより大きいと、細孔内の拡散性は良いも
のの、細孔内表面積が減少するため、触媒の有効比表面
積が減少し、活性が低くなる。
The average pore diameter is 70-100 °, preferably 75-90 °. If it is less than 70 °, the reactants are difficult to diffuse into the pores, and the desulfurization reaction does not proceed efficiently. If it is more than 100 °, the diffusivity in the pores is good, but the surface area in the pores decreases. In addition, the effective specific surface area of the catalyst decreases, and the activity decreases.

【0039】また、上記の細孔条件を満たす細孔の有効
数を多くするために、触媒の細孔径分布、即ち平均細孔
径±15Åの細孔径を有する細孔の割合は、70%以
上、好ましくは80%以上とする。しかも、細孔分布
は、モノモーダルであることが好ましい。触媒の細孔径
分布がシャープなものでないと、活性に関与しない細孔
が増大し、脱硫活性が減少する。
In order to increase the effective number of pores satisfying the above pore conditions, the pore size distribution of the catalyst, that is, the proportion of pores having a pore diameter of an average pore diameter of ± 15 ° is 70% or more. Preferably, it is 80% or more. Moreover, the pore distribution is preferably monomodal. If the pore size distribution of the catalyst is not sharp, the pores not involved in the activity increase, and the desulfurization activity decreases.

【0040】触媒形状は、特に限定されず、通常、この
種の触媒に用いられている種々の形状、例えば、円柱
状、四葉型等を採用することができ、好ましくは拡散の
観点から四つ葉型である。触媒の大きさは、通常、直径
1〜2mm、長さ2〜5mmが好ましい。触媒の機械的
強度は、側面破壊強度(SCS《Side crush
strength》)で2lbs/mm以上が好まし
い。SCSが、2lbs/mm未満では、反応装置に充
填した触媒が破壊され、反応装置内で差圧が発生し、水
素化処理運転の続行が不可能となる。触媒の最密充填か
さ密度(CBD:Compacted Bulk De
nsity)は、0.6〜1.2が好ましい。
The shape of the catalyst is not particularly limited, and various shapes usually used for this type of catalyst, for example, a columnar shape, a four-leaf type, and the like can be adopted. It is a leaf type. Usually, the size of the catalyst is preferably 1 to 2 mm in diameter and 2 to 5 mm in length. The mechanical strength of the catalyst was determined by the side fracture strength (SCS << Side Crush).
strength >>) is preferably 2 lbs / mm or more. If the SCS is less than 2 lbs / mm, the catalyst filled in the reactor is destroyed, a pressure difference is generated in the reactor, and it becomes impossible to continue the hydrotreating operation. The closest packed bulk density (CBD: Compact Bulk De) of the catalyst
nsite) is preferably from 0.6 to 1.2.

【0041】触媒中の活性金属の分布状態は、触媒中で
活性金属が均一に分布しているユニフォーム型が好まし
い。
The distribution of the active metal in the catalyst is preferably a uniform type in which the active metal is uniformly distributed in the catalyst.

【0042】本発明の軽油の水素化処理方法は、上記の
ようにして製造される触媒を用い、水素分圧3〜8MP
a、300〜420℃、及び液空間速度0.3〜5hr
−1の条件で、硫黄化合物を含む軽油留分と接触させる
方法である。本発明の方法によれば、軽油留分中の難脱
硫性硫黄化合物までも減少することができる。
The gas oil hydrotreating method of the present invention uses the catalyst produced as described above and has a hydrogen partial pressure of 3 to 8 MPa.
a, 300-420 ° C, and liquid space velocity 0.3-5hr
This is a method of contacting with a gas oil fraction containing a sulfur compound under the condition of -1 . According to the method of the present invention, even the hardly desulfurizable sulfur compounds in the gas oil fraction can be reduced.

【0043】本発明の水素化処理方法を商業規模で行う
には、本発明の方法で得られる触媒の固定床、移動床、
あるいは流動床式の触媒層を反応装置内に形成し、この
反応装置内に原料油を導入し、上記の条件で水素化反応
を行えばよい。最も一般的には、固定床式触媒層を反応
装置内に形成し、原料油を反応装置の上部に導入し、固
定床を上から下に通過させ、反応装置の下部から生成物
を流出させるものか、反対に原料油を反応装置の下部に
導入し、固定床を下から上に通過させ、反応装置の上部
から生成物を流出させるものである。
In order to carry out the hydrotreating method of the present invention on a commercial scale, a fixed bed, a moving bed and a fixed bed of the catalyst obtained by the method of the present invention are used.
Alternatively, a fluidized bed catalyst layer may be formed in a reactor, a feedstock may be introduced into the reactor, and the hydrogenation reaction may be performed under the above conditions. Most commonly, a fixed bed catalyst layer is formed in the reactor, the feedstock is introduced into the upper part of the reactor, the fixed bed is passed from top to bottom, and the product flows out from the lower part of the reactor. Alternatively, the feedstock is introduced into the lower part of the reactor, passes through the fixed bed from bottom to top, and the product flows out of the upper part of the reactor.

【0044】本発明の水素化処理方法は、本発明の方法
で得られる触媒を、単独の反応装置に充填して行う一段
の水素化処理方法であってもよいし、幾つかの反応装置
に充填して行う多段連続水素化処理方法であってもよ
い。
The hydrotreating method of the present invention may be a single-stage hydrotreating method in which the catalyst obtained by the method of the present invention is charged into a single reactor, or may be used in several reactors. A multistage continuous hydrogenation method performed by filling may be used.

【0045】なお、本発明の方法で得られる触媒は、使
用前に(すなわち、上記の水素化処理方法を行うのに先
立って)、上記の反応装置中で硫化処理して活性化す
る。この硫化処理は、200〜400℃、好ましくは2
50〜350℃、常圧あるいはそれ以上の水素分圧の水
素雰囲気下で、硫黄化合物を含む石油蒸留物、それにジ
メチルジスルファイドや二硫化炭素等の硫化剤を加えた
もの、あるいは硫化水素を用い、30分〜100時間行
う。
The catalyst obtained by the method of the present invention is activated by sulfidation in the above-mentioned reactor before use (that is, prior to performing the above-mentioned hydrotreating method). This sulfidation treatment is performed at 200 to 400 ° C., preferably at 2 ° C.
Under a hydrogen atmosphere at 50 to 350 ° C. and a normal or higher hydrogen partial pressure, a petroleum distillate containing a sulfur compound, a substance added with a sulphide such as dimethyl disulfide or carbon disulfide, or hydrogen sulfide For 30 minutes to 100 hours.

【0046】[0046]

【実施例】〔触媒の製造例〕 実施例1 SiO/Alモル比6のSHYゼオライト粉末
(平均粒子径3.5μm、粒子径6μm以下のものがゼ
オライト全粒子の87%)と、アルミナ水和物を混練
し、押出成形後、600℃で2時間焼成して、直径1/
16インチの柱状成型物のゼオライト−アルミナ(ゼオ
ライト/アルミナ質量比=7/93、細孔容積0.65
ml/g、比表面積382m/g、平均細孔直径62
Å)を得た。
EXAMPLES [Production Example of Catalyst] Example 1 SHY zeolite powder having an SiO 2 / Al 2 O 3 molar ratio of 6 (average particle diameter 3.5 μm, particles having a particle diameter of 6 μm or less are 87% of the total particles of zeolite) , Kneaded with alumina hydrate, extruded and fired at 600 ° C for 2 hours to obtain
16-inch columnar zeolite-alumina (zeolite / alumina mass ratio = 7/93, pore volume 0.65)
ml / g, specific surface area 382 m 2 / g, average pore diameter 62
Å) was obtained.

【0047】一方、イオン交換水21.7gに、硝酸コ
バルト・6水和物1.17gを溶解させた含浸用の溶液
を調製した。
On the other hand, a solution for impregnation was prepared by dissolving 1.17 g of cobalt nitrate hexahydrate in 21.7 g of ion-exchanged water.

【0048】上記ゼオライト−アルミナ29.7gをナ
ス型フラスコ中に投入し、そこへ上記の含浸液の全量を
ピペットで添加し、約25℃で1時間浸漬した。この
後、窒素気流中で風乾し、マッフル炉中120℃で約1
時間乾燥させ、500℃で4時間焼成し、Co担持ゼオ
ライト−アルミナ担体(比表面積334m /g、細孔
容積0.65ml/g、細孔直径68Å)を得た。
29.7 g of the above zeolite-alumina was
Into the flask, and add the entire amount of the impregnating liquid
It was added with a pipette and immersed at about 25 ° C. for 1 hour. this
Then, air-dry in a stream of nitrogen, and about 1 at 120 ° C in a muffle furnace.
After drying for 4 hours, baking at 500 ° C for 4 hours,
Light-alumina carrier (334m specific surface area) 2/ G, pore
A volume of 0.65 ml / g and a pore diameter of 68 °) were obtained.

【0049】一方、イオン交換水11.58gに、炭酸
コバルト2.21gと、モリブドリン酸7.61gと、
リン酸0.78gを溶解させた含浸用の溶液を調製し
た。
On the other hand, 2.21 g of cobalt carbonate and 7.61 g of molybdophosphoric acid were added to 11.58 g of ion-exchanged water.
A solution for impregnation in which 0.78 g of phosphoric acid was dissolved was prepared.

【0050】ナス型フラスコ中に、上記のCo担持ゼオ
ライト−アルミナ担体20.0gを投入し、そこへ上記
の含浸用溶液の全量をピペットで添加し、約25℃で1
時間浸漬した。この後、窒素気流中で風乾し、マッフル
炉中120℃で約1時間乾燥させ、500℃で4時間焼
成し、触媒Aを得た。
Into an eggplant-shaped flask, 20.0 g of the above-mentioned zeolite-alumina carrier carrying Co was charged, and the entire amount of the above-mentioned impregnating solution was added thereto with a pipette.
Soaked for hours. Thereafter, it was air-dried in a nitrogen stream, dried in a muffle furnace at 120 ° C. for about 1 hour, and calcined at 500 ° C. for 4 hours to obtain Catalyst A.

【0051】実施例2 実施例1で得たゼオライト−アルミナ29.7gに、イ
オン交換水21.7gに硝酸ニッケル・6水和物1.1
7gを溶解させた含浸用の溶液をピペットで添加し、実
施例1と同様にして浸漬、風乾、乾燥、焼成を行い、N
i担持ゼオライト−アルミナ担体(比表面積332m
/g、細孔容積0.66ml/g、細孔直径69Å)を
得た。ナス型フラスコ中に、このNi担持ゼオライト−
アルミナ担体20.0gを投入し、実施例1で調製した
Co、Mo、P含浸溶液の全量を実施例1と同様にして
添加浸漬後、実施例1と同様にして風乾、乾燥、焼成を
行い、触媒Bを得た。
Example 2 29.7 g of zeolite-alumina obtained in Example 1 was mixed with 21.7 g of ion-exchanged water and nickel nitrate hexahydrate 1.1.
A solution for impregnation in which 7 g was dissolved was added with a pipette, and immersion, air drying, drying and baking were performed in the same manner as in Example 1 to obtain N.
i-supported zeolite-alumina support (specific surface area 332 m 2
/ G, a pore volume of 0.66 ml / g, and a pore diameter of 69 °). In an eggplant type flask, this Ni-supported zeolite
20.0 g of the alumina carrier was charged, and the total amount of the Co, Mo, and P impregnating solution prepared in Example 1 was added and immersed in the same manner as in Example 1, and then air-dried, dried, and fired in the same manner as in Example 1. Thus, catalyst B was obtained.

【0052】実施例3 実施例1で得たゼオライト−アルミナ29.7gに、イ
オン交換水21.7gに硝酸ニッケル・6水和物0.5
8gを溶解させた含浸用の溶液をピペットで添加し、実
施例1と同様にして浸漬、風乾、乾燥、焼成を行い、N
i担持ゼオライト−アルミナ担体(比表面積342m
/g、細孔容積0.65ml/g、細孔直径66Å)を
得た。ナス型フラスコ中に、このNi担持ゼオライト−
アルミナ担体20.0gを投入し、実施例1で調製した
Co、Mo、P含浸溶液の全量を実施例1と同様にして
添加浸漬後、実施例1と同様にして風乾、乾燥、焼成を
行い、触媒Cを得た。
Example 3 29.7 g of zeolite-alumina obtained in Example 1 was mixed with 21.7 g of ion-exchanged water and nickel nitrate hexahydrate 0.5%.
A solution for impregnation in which 8 g was dissolved was added with a pipette, and immersion, air drying, drying and baking were performed in the same manner as in Example 1 to obtain N.
i-supported zeolite-alumina carrier (specific surface area 342 m 2
/ G, a pore volume of 0.65 ml / g, and a pore diameter of 66 °). In an eggplant type flask, this Ni-supported zeolite
20.0 g of the alumina carrier was charged, and the total amount of the Co, Mo, and P impregnating solution prepared in Example 1 was added and immersed in the same manner as in Example 1, and then air-dried, dried, and fired in the same manner as in Example 1. Thus, catalyst C was obtained.

【0053】実施例4 実施例1で得たゼオライト−アルミナ29.7gに、イ
オン交換水21.7gに硝酸ニッケル・6水和物1.7
6gを溶解させた含浸用の溶液をピペットで添加し、実
施例1と同様にして浸漬、風乾、乾燥、焼成を行い、N
i担持ゼオライト−アルミナ担体(比表面積331m
/g、細孔容積0.63ml/g、細孔直径68Å)を
得た。ナス型フラスコ中に、このNi担持ゼオライト−
アルミナ担体20.0gを投入し、実施例1で調製した
Co、Mo、P含浸溶液の全量を実施例1と同様にして
添加浸漬後、実施例1と同様にして風乾、乾燥、焼成を
行い、触媒Dを得た。
Example 4 29.7 g of zeolite-alumina obtained in Example 1 was added to 21.7 g of ion-exchanged water, and nickel nitrate hexahydrate 1.7 was added.
A solution for impregnation in which 6 g was dissolved was added with a pipette, and immersion, air drying, drying and baking were performed in the same manner as in Example 1 to obtain N.
i-supported zeolite-alumina carrier (specific surface area 331 m 2
/ G, a pore volume of 0.63 ml / g, and a pore diameter of 68 °). In an eggplant type flask, this Ni-supported zeolite
20.0 g of the alumina carrier was charged, and the total amount of the Co, Mo, and P impregnating solution prepared in Example 1 was added and immersed in the same manner as in Example 1, and then air-dried, dried, and fired in the same manner as in Example 1. , Catalyst D was obtained.

【0054】比較例1 実施例1で得たゼオライト−アルミナ29.7gに、イ
オン交換水21.7gに硝酸ニッケル・6水和物4.8
2gを溶解させた含浸用の溶液をピペットで添加し、実
施例1と同様にして浸漬、風乾、乾燥、焼成を行い、N
i担持ゼオライト−アルミナ担体(比表面積311m
/g、細孔容積0.59ml/g、細孔直径70Å)を
得た。ナス型フラスコ中に、このNi担持ゼオライト−
アルミナ担体20.0gを投入し、実施例1で調製した
Co、Mo、P含浸溶液の全量を実施例1と同様にして
添加浸漬後、実施例1と同様にして風乾、乾燥、焼成を
行い、触媒aを得た。
Comparative Example 1 29.7 g of zeolite-alumina obtained in Example 1, 21.7 g of ion-exchanged water and 4.8 nickel hydrate
A solution for impregnation in which 2 g was dissolved was added with a pipette, and immersion, air drying, drying and baking were performed in the same manner as in Example 1 to obtain N.
i-supported zeolite-alumina support (specific surface area 311 m 2
/ G, pore volume 0.59 ml / g, pore diameter 70 °). In an eggplant type flask, this Ni-supported zeolite
20.0 g of the alumina carrier was charged, and the total amount of the Co, Mo, and P impregnating solution prepared in Example 1 was added and immersed in the same manner as in Example 1, and then air-dried, dried, and fired in the same manner as in Example 1. Thus, a catalyst a was obtained.

【0055】比較例2 ナス型フラスコ中に、実施例1で得たゼオライト−アル
ミナ20.0gを投入し、実施例1で調製したCo、M
o、P含浸溶液の全量を実施例1と同様にして添加浸漬
後、実施例1と同様にして風乾、乾燥、焼成を行い、触
媒bを得た。
Comparative Example 2 Into an eggplant type flask, 20.0 g of the zeolite-alumina obtained in Example 1 was charged, and Co, M prepared in Example 1 was added.
The total amount of the o and P impregnating solutions was added and immersed in the same manner as in Example 1, and then air-dried, dried and calcined in the same manner as in Example 1 to obtain Catalyst b.

【0056】比較例3 ナス型フラスコ中に、アルミナ(比表面積358m
g、細孔容積0.54ml/g、細孔直径53A)2
0.0gを投入し、実施例1で調製したCo、Mo、P
含浸溶液の全量を実施例1と同様にして添加浸漬後、実
施例1と同様にして風乾、乾燥、焼成を行い、触媒cを
得た。
Comparative Example 3 Alumina (specific surface area: 358 m 2 /
g, pore volume 0.54 ml / g, pore diameter 53A) 2
0.0 g, and Co, Mo, P prepared in Example 1
The entire amount of the impregnating solution was added and immersed in the same manner as in Example 1, and then air-dried, dried and calcined in the same manner as in Example 1 to obtain Catalyst c.

【0057】以上の実施例及び比較例で製造した触媒の
元素分析値と物性値を表1に示す。表1中の略語は、次
の通りを意味する。 SA :比表面積 PV :細孔容積 MPD:平均細孔直径 PSD:細孔分布 CBD:細密充填嵩密度
Table 1 shows the elemental analysis values and physical properties of the catalysts produced in the above Examples and Comparative Examples. The abbreviations in Table 1 mean the following. SA: specific surface area PV: pore volume MPD: average pore diameter PSD: pore distribution CBD: densely packed bulk density

【0058】[0058]

【表1】 [Table 1]

【0059】〔直留軽油の水素化脱硫例〕 実施例5、比較例4 上記の実施例及び比較例で調製した触媒A〜D、a〜c
を用い、以下の要領にて、下記性状の直留軽油の水素化
処理を行った。先ず、触媒を高圧流通式反応装置に充填
して固定床式触媒層を形成し、下記の条件で前処理し
た。次に、反応温度に加熱した原料油と水素含有ガスと
の混合流体を、反応装置の上部より導入して、下記の条
件で水素化反応を進行させ、生成油とガスの混合流体
を、反応装置の下部より流出させ、気液分離器で生成油
を分離した。
[Examples of hydrodesulfurization of straight-run gas oil] Example 5, Comparative Example 4 Catalysts A to D, a to c prepared in the above Examples and Comparative Examples
, A straight-run gas oil having the following properties was hydrotreated in the following manner. First, the catalyst was filled in a high-pressure flow reactor to form a fixed-bed catalyst layer, which was pretreated under the following conditions. Next, a mixed fluid of the feedstock oil and the hydrogen-containing gas heated to the reaction temperature is introduced from the top of the reactor, and the hydrogenation reaction proceeds under the following conditions, and the mixed fluid of the produced oil and the gas is reacted. It was discharged from the lower part of the device, and the generated oil was separated by a gas-liquid separator.

【0060】触媒の前処理条件: 圧力 ;常圧 雰囲気;硫化水素(5%)/水素ガス流通下 温度 ;150℃にて0.5hr維持、次いで350℃
にて1hr維持のステップ昇温
Pretreatment conditions of catalyst: pressure; normal pressure atmosphere; hydrogen sulfide (5%) / hydrogen gas flow temperature: maintained at 150 ° C. for 0.5 hour, then 350 ° C.
Step temperature rise for 1 hour at

【0061】水素化反応条件: 反応温度 ;340℃ 圧力(水素分圧);4.9MPa 液空間速度 ;1.5hr−1 水素/オイル比 ;560m/m Hydrogenation reaction conditions: Reaction temperature; 340 ° C. Pressure (hydrogen partial pressure); 4.9 MPa Liquid hourly space velocity; 1.5 hr -1 hydrogen / oil ratio; 560 m 3 / m 3

【0062】原料油の性状: 油種 ;中東系直留軽油 比重(15/4℃);0.8567 蒸留性状 ;初留点が203.0℃、50%点
が315.5℃、90%点が371.0℃、終点が38
9.0℃ 硫黄成分 ;1.364質量% 4,6−DMDBT;312ppm 窒素成分 ;150ppm 動粘度(@30℃);6.608cSt 流動点 ;5.0℃ くもり点 ;6.0℃ セタン指数 ;57.1 セイボルトカラー ;−10 ASTM色 ;0.5 アニリン点 ;74.3
Properties of feed oil: Oil type; Middle eastern straight-run gas oil Specific gravity (15/4 ° C); 0.8567 Distillation properties: Initial boiling point: 203.0 ° C, 50% point: 315.5 ° C, 90% The point is 371.0 ° C and the end point is 38
9.0 ° C Sulfur component; 1.364 mass% 4,6-DMDBT; 312 ppm Nitrogen component; 150 ppm Kinematic viscosity (@ 30 ° C); 6.608 cSt Pour point; 5.0 ° C Cloud point; 6.0 ° C Cetane index 57.1 Saybolt color; -10 ASTM color; 0.5 aniline point; 74.3

【0063】反応結果については、以下の方法で解析し
た。340℃で反応装置を運転し、6日経過した時点で
生成油を採取し、その性状を分析した。 〔1〕脱硫率(HDS)(%):原料中の硫黄分を脱硫
反応によって硫化水素に転換することにより、原料油か
ら消失した硫黄分の割合を脱硫率と定義し、原料油及び
生成油の硫黄分析値から以下の式により算出した。 〔2〕脱硫反応速度定数(Ks):生成油の硫黄分(S
p)の減少量に対して、1.5次の反応次数を得る反応
速度式の定数を脱硫反応速度定数(Ks)とする。な
お、反応速度定数が高い程、触媒活性が優れていること
を示している。これらの結果は、表2の通りであった。
The reaction results were analyzed by the following method. The reactor was operated at 340 ° C., and after 6 days had passed, the product oil was collected and its properties were analyzed. [1] Desulfurization rate (HDS) (%): The ratio of sulfur lost from the feedstock oil by converting the sulfur content in the feedstock to hydrogen sulfide by a desulfurization reaction is defined as the desulfurization rate, and the feedstock oil and product oil Was calculated by the following equation from the sulfur analysis value. [2] Desulfurization reaction rate constant (Ks): sulfur content (S
The constant of the reaction rate equation for obtaining the 1.5-order reaction order with respect to the decrease in p) is defined as the desulfurization reaction rate constant (Ks). The higher the reaction rate constant, the better the catalytic activity. These results were as shown in Table 2.

【0064】[0064]

【数1】 脱硫率(%)=〔(100−Sp)/Sf〕×100 脱硫反応速度定数=〔1/√(Sp)−1/√(S
f)〕×(LHSV) 式中、Sf:原料油中の硫黄分(質量%) Sp:反応生成油中の硫黄分(質量%) LHSV:液空間速度(hr−1) 比活性(%)=各脱硫反応速度定数/比較触媒cの脱硫
反応速度定数×100
## EQU1 ## Desulfurization rate (%) = [(100−Sp) / Sf] × 100 Desulfurization reaction rate constant = [1 / {(Sp) −1 /) (S
f)] × (LHSV) where Sf: sulfur content in feed oil (% by mass) Sp: sulfur content in reaction product oil (% by mass) LHSV: liquid hourly space velocity (hr-1) Specific activity (%) = Each desulfurization reaction rate constant / desulfurization reaction rate constant of comparative catalyst c x 100

【0065】[0065]

【表2】 [Table 2]

【0066】従来の脱硫領域(硫黄分0.2〜0.05
質量%)であれば、既存の触媒(比較触媒a〜y)でも
容易に脱硫することができるが、超深度脱硫領域(硫黄
分350質量ppm以下)では、4,6−ジメチルジベ
ンゾチオフェン等の難脱硫性硫黄化合物の存在により、
桁違いに脱硫が困難となる。これに対し、表2から判る
ように、本発明の触媒A〜Dを用いれば、350質量p
pm以下の超深度脱硫領域を容易にクリアーできること
がわかる。これは、本発明の触媒が、従来の軽油水素化
処理の場合とほぼ同じ水素分圧や反応温度等の条件下
で、深度脱硫領域での軽油の脱硫反応に対して、極めて
優れた活性を有することを示している。
Conventional desulfurization zone (sulfur content 0.2 to 0.05)
Mass%), the existing catalysts (comparative catalysts a to y) can be easily desulfurized, but in the ultra-deep desulfurization region (sulfur content 350 mass ppm or less), such as 4,6-dimethyldibenzothiophene Due to the presence of non-desulfurizable sulfur compounds,
Desulfurization becomes difficult by orders of magnitude. In contrast, as can be seen from Table 2, when the catalysts A to D of the present invention were used, 350 mass p
It can be seen that the ultra deep desulfurization region below pm can be easily cleared. This means that the catalyst of the present invention has extremely excellent activity against the desulfurization reaction of light oil in the deep desulfurization region under the same conditions such as hydrogen partial pressure and reaction temperature as in the conventional gas oil hydrotreatment. It shows that it has.

【0067】[0067]

【発明の効果】以上詳述したように、本発明によれば、
次のような効果を奏することができる。 (1)高い脱硫活性を有する触媒を製造することができ
るため、この触媒を使用して、軽油中の硫黄分の含有率
を大幅に低減させることができる。 (2)硫黄含有量の少ない軽油基材を、低コストで供給
することができる。 (3)反応条件を従来の水素化処理の際の反応条件とほ
ぼ同じとすることがきるため、従来の装置を大幅改造す
ることなく転用できる。
As described in detail above, according to the present invention,
The following effects can be obtained. (1) Since a catalyst having high desulfurization activity can be produced, the content of sulfur in light oil can be significantly reduced by using this catalyst. (2) A light oil base material having a low sulfur content can be supplied at low cost. (3) Since the reaction conditions can be made almost the same as the reaction conditions in the conventional hydrotreating, the conventional apparatus can be diverted without significant modification.

フロントページの続き (72)発明者 水口 博史 埼玉県幸手市権現堂1134−2 株式会社コ スモ総合研究所研究開発センター内 Fターム(参考) 4G069 AA03 AA08 BA01A BA01B BA07A BA07B BC59A BC59B BC67A BC67B BC68A BC68B BD07A BD07B CC02 DA05 FA06 FB14 FC08 ZA01A ZA04B ZD02 ZD06 ZD07 4H029 CA00 DA00 Continuing from the front page (72) Inventor Hiroshi Mizuguchi 1134-2 Gongendo, Satte-shi, Saitama F-term in the R & D Center of Kosmo Research Institute, Inc. (reference) 4G069 AA03 AA08 BA01A BA01B BA07A BA07B BC59A BC59B BC67A BC67B BC68A BC68B BD07A BD07B CC02 DA05 FA06 FB14 FC08 ZA01A ZA04B ZD02 ZD06 ZD07 4H029 CA00 DA00

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミナ又はアルミナ含有物80〜9
9.5質量%と、ゼオライト0.5〜20質量%とを有
する複合酸化物担体に、コバルト、ニッケルの少なくと
も一方を担持させる第1工程と、コバルト、ニッケルの
少なくとも一方とモリブデンとリンを担持させる第2工
程とからなり、上記第1工程で担持させるコバルト、ニ
ッケルの少なくとも一方の量を酸化物換算で担体に対し
0.1〜2質量%とし、コバルト、ニッケルの少なくと
も一方の全量を酸化物換算で触媒に対し3〜8質量%と
し、モリブデン量を酸化物換算で触媒に対し12〜22
質量%とし、リン量を酸化物換算で触媒に対し0.8〜
5質量%とすることを特徴とする軽油の水素化脱硫触媒
の製造方法。
1. Alumina or alumina-containing material 80-9
A first step of supporting at least one of cobalt and nickel on a composite oxide carrier having 9.5% by mass and 0.5 to 20% by mass of zeolite; and supporting at least one of cobalt and nickel, molybdenum and phosphorus. And the amount of at least one of cobalt and nickel supported in the first step is set to 0.1 to 2% by mass relative to the carrier in terms of oxide, and the total amount of at least one of cobalt and nickel is oxidized. The amount of molybdenum is 3 to 8% by mass based on the catalyst, and the amount of molybdenum is 12 to 22% based on the oxide.
%, And the amount of phosphorus is 0.8 to
A method for producing a gas oil hydrodesulfurization catalyst, comprising 5% by mass.
【請求項2】 請求項1で得られる触媒を用い、水素分
圧3〜8MPa、300〜420℃、及び液空間速度
0.3〜5hr−1の条件で、軽油留分と接触させるこ
とを特徴とする軽油の水素化処理方法。
2. Using the catalyst obtained in claim 1, contacting with a gas oil fraction under the conditions of a hydrogen partial pressure of 3 to 8 MPa, 300 to 420 ° C., and a liquid hourly space velocity of 0.3 to 5 hr −1. Characteristic method for hydrotreating light oil.
JP24443099A 1999-08-31 1999-08-31 Production of hydrodesulfurization catalyst of light oil and hydrogenation treatment method of light oil Pending JP2001062304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24443099A JP2001062304A (en) 1999-08-31 1999-08-31 Production of hydrodesulfurization catalyst of light oil and hydrogenation treatment method of light oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24443099A JP2001062304A (en) 1999-08-31 1999-08-31 Production of hydrodesulfurization catalyst of light oil and hydrogenation treatment method of light oil

Publications (1)

Publication Number Publication Date
JP2001062304A true JP2001062304A (en) 2001-03-13

Family

ID=17118550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24443099A Pending JP2001062304A (en) 1999-08-31 1999-08-31 Production of hydrodesulfurization catalyst of light oil and hydrogenation treatment method of light oil

Country Status (1)

Country Link
JP (1) JP2001062304A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238113A (en) * 2004-02-26 2005-09-08 Japan Energy Corp Catalyst for hydrogenation, method for hydrogenating hydrocarbon oil, method for manufacturing low-sulfur light oil and environment-friendly light oil
JP2008173640A (en) * 2002-12-18 2008-07-31 Cosmo Oil Co Ltd Hydrotreating catalyst for gas oil, process for producing the same, and method of hydrotreating gas oil
CN107774274A (en) * 2016-08-31 2018-03-09 中国石油化工股份有限公司 A kind of Hydrobon catalyst and preparation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008173640A (en) * 2002-12-18 2008-07-31 Cosmo Oil Co Ltd Hydrotreating catalyst for gas oil, process for producing the same, and method of hydrotreating gas oil
JP2005238113A (en) * 2004-02-26 2005-09-08 Japan Energy Corp Catalyst for hydrogenation, method for hydrogenating hydrocarbon oil, method for manufacturing low-sulfur light oil and environment-friendly light oil
JP4680520B2 (en) * 2004-02-26 2011-05-11 Jx日鉱日石エネルギー株式会社 Low sulfur gas oil production method and environmentally friendly gas oil
CN107774274A (en) * 2016-08-31 2018-03-09 中国石油化工股份有限公司 A kind of Hydrobon catalyst and preparation method
CN107774274B (en) * 2016-08-31 2020-02-14 中国石油化工股份有限公司 Hydrodesulfurization catalyst and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4156859B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP5015818B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
US7737071B2 (en) Catalyst for hydrotreating hydrocarbon oil, process for producing the same, and method for hydrotreating hydrocarbon oil
US10596555B2 (en) Catalyst to attain low sulfur gasoline
JP2547115B2 (en) Hydrotreating catalyst composition for hydrocarbon oil and hydrotreating method using the same
JP5409775B2 (en) Process for producing alkylbenzenes and catalyst used therefor
JP5928970B2 (en) Gas oil hydrodesulfurization catalyst, hydrodesulfurization catalyst production method, and gas oil hydrotreating method
CN109196077A (en) Upgrade the system and method for heavy oil
JP2009101362A (en) Method for producing catalyst for hydrogenation treatment of hydrocarbon oil
JP4545328B2 (en) Method for producing hydrotreating catalyst for hydrocarbon oil and hydrotreating method for hydrocarbon oil
JP4954095B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP4916370B2 (en) Process for hydrotreating diesel oil
RU2603776C1 (en) Method of hydrocracking hydrocarbon material
JP2001062304A (en) Production of hydrodesulfurization catalyst of light oil and hydrogenation treatment method of light oil
JP4480120B2 (en) Gas oil hydrotreating catalyst and gas oil hydrotreating method
JPH07196308A (en) Silica-alumina, its production and catalyst for hydrotreating of light hydrocarbon oil
CN1261541C (en) Heavy fraction oil hydrgenation cracking catalyst
RU2662234C1 (en) Method of preparing catalyst for hydrocracking hydrocarbon material
RU2662239C1 (en) Hydrocracking catalyst of raw hydrocarbon deposits
JP2004290728A (en) Method for manufacturing hydrogenation catalyst for light oil and hydrogenation method for light oil
JPH11179208A (en) Catalyst for hydrogenation of hydrocarbon oil
JP2000265175A (en) Hydrodesulfurization of light oil fraction
JP2014111233A (en) Hydrodesulfurization catalyst of hydrocarbon oil
JP2001038227A (en) Catalyst and method for hydrocracking and desulfurizing hydrocarbon oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050822

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070402

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070816

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081216