JP2004288426A - Cell voltage measurement assembly structure for polymer electrolyte fuel cell - Google Patents

Cell voltage measurement assembly structure for polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2004288426A
JP2004288426A JP2003077471A JP2003077471A JP2004288426A JP 2004288426 A JP2004288426 A JP 2004288426A JP 2003077471 A JP2003077471 A JP 2003077471A JP 2003077471 A JP2003077471 A JP 2003077471A JP 2004288426 A JP2004288426 A JP 2004288426A
Authority
JP
Japan
Prior art keywords
gas
fuel cell
gas separator
cell
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003077471A
Other languages
Japanese (ja)
Other versions
JP4389456B2 (en
Inventor
Yoshihito Fujikawa
義仁 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyotomi Kogyo Co Ltd
Toyotomi Co Ltd
Original Assignee
Toyotomi Kogyo Co Ltd
Toyotomi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyotomi Kogyo Co Ltd, Toyotomi Co Ltd filed Critical Toyotomi Kogyo Co Ltd
Priority to JP2003077471A priority Critical patent/JP4389456B2/en
Publication of JP2004288426A publication Critical patent/JP2004288426A/en
Application granted granted Critical
Publication of JP4389456B2 publication Critical patent/JP4389456B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To miniaturize a polymer electrolyte fuel cell having a cell voltage measurement function and to facilitate the assembly of the fuel cell. <P>SOLUTION: A membrane electrode assembly 3 is formed by sandwiching a solid polymer ion-exchange thin film 1 between electrodes 2. A fuel gas passage 4a and an oxidant gas passage 4b, between which the membrane electrode assembly 3 is sandwiched, constitute a gas separator 4 having conductivity. The gas separator 4 and the membrane electrode assembly 3 sandwiched by the gas separator 4 constitute a unit cell 5. A plurality of the unit cells 5 constitute a fuel cell stack 6, where the unit cells 5 are laminated in series. A slit 7 communicating with the outside is formed between the adjacent two of a plurality of the gas separators 4. Cell voltage measurement wire 8, conductive surfaces of which face opposite outward to each other, is fitted to the slit 7. The conductive surfaces formed on the cell voltage measurement wire 8 and facing opposite outward to each other make contact with the two boards of the gas separators 4, respectively, where the two board of the gas separators 4 have different potentials. This allows the potential difference between the gas separators 4 to be checked. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、セル電圧測定機能を持つ固体高分子電解質型燃料電池のガスセパレータの薄型化を可能とし、固体高分子型燃料電池の小型化、組立の簡易化を可能にする構造に関する。
【0002】
【従来の技術】
固体高分子電解質型燃料電池は、固体高分子イオン交換薄膜の両側を多孔質導電体からなる電極で挟んで形成される薄膜電極接合体を、導電性のある2枚のガスセパレータで挟んで形成され、このガスセパレータには薄膜電極接合体と接する部分に燃料ガス流路および酸化剤ガス流路を形成することで一組の燃料電池単セルを構成している。そして、1枚のガスセパレータの上面及び下面に薄膜電極接合体を位置させることで、単セルは複数個直列に積層することができ、燃料電池スタックが構成できる。
【0003】
イオン交換機能のある薄膜電極接合体を挟んだアノード側ガスセパレータの燃料ガス流路に水素などの燃料ガス、カソード側ガスセパレータの酸化剤ガス流路に酸素を含む空気などの酸化剤ガスを流すことで、燃料ガス中の水素イオンが固体高分子イオン交換薄膜中を透過してカソードに移動し、電子はアノード側ガスセパレータとカソード側ガスセパレータとの間に接続された外部負荷を通りカソード側セパレータに移動することにより、起電力が生じ電流が流れる。
【0004】
複数の単セルを直列に積層した燃料電池スタックでは、単セル同士が直列接続になるため、燃料電池スタックを構成する単セルの一つでも固体高分子イオン交換薄膜の破損などで発電不能になると、燃料電池スタック全体としての発電は不能になってしまう。
【0005】
また、燃料電池スタック中の一つの単セルが発電不能になった場合、その原因が固体高分子イオン交換薄膜の破損によるものであれば、燃料電池スタック内部で燃料ガスと酸化剤ガスが混合している可能性が高く、燃焼・爆発の恐れがあるため、早急に運転を中止して発電不能な単セルを交換する必要がある。しかし、従来の電力の取出しは燃料電池スタックの出力端子だけで行なわれるから、外部からどの単セルが発電不能であるかを確認することは困難である。
【0006】
このため、最近の燃料電池スタックを使用したシステムでは、燃料電池スタックを構成する導電性を有するガスセパレータのすべてに出力端子を設けて、各単セルのアノードガスセパレータとカソードガスセパレータ間の電圧を測定して、全ての単セルが正常に発電しているかを確認する構造が提案されている。
【0007】
そして、具体的な構造としては、固体高分子電解質型燃料電池の燃料電池スタックにおいて、アノード・カソードガスセパレータ間の電圧測定を行なう出力端子として、図5に示すようにガスセパレータの側面にネジ穴を設け、このネジ穴にリード線を結線した端子をネジ止めするのが一般的である。また、図6に示すようにガスセパレータの一部を外部に突出させてネジ穴を設けた出力端子を構成し、このネジ穴にリード線を結線した端子をネジによって接続する方法も用いられる。
【0008】
【発明が解決しようとする課題】
ところで、固体高分子電解質型燃料電池のガスセパレータの素材である樹脂含浸カーボンは、ネジ穴の加工のような機械加工を施すことが難しい上に、加工時間がかかってしまうという難点があり、更にネジ穴をガスセパレータの内部に向けて形成するときには、ガスセパレータの機械的強度が低下するという難点がある。
【0009】
また、ガスセパレータの側面にネジ穴などの出力端子を設けるときには、このネジ穴は小さい方が、ガスセパレータの厚さを薄くすることができるが、ネジ穴の小径化に伴い固定ネジが小さくなりすぎると、ドライバによるネジ締め作業は難しくなり、作業時間がかかって作業性が低下する。
【0010】
そのためネジの小径化には限度があり、ガスセパレータ厚さは必然的に一定以上の厚さにせざるを得ないため、ガスセパレータの薄型化は難しく、燃料電池スタックの薄型化を妨げて全高が大きくなってしまうという弊害もあり、燃料電池スタックの小型化、材料費の削減が困難である。
【0011】
一方、ガスセパレータの一部を突出させて電圧測定リード線を締め付けナットで固定する時には、締め付けナットの高さのスペースが必要で、この方式でもガスセパレータの薄型化は難しく、部品点数が増えて作業性が悪く、コストがかかり、またガスセパレータの材料費も高くなってしまう。
【0012】
更に、ガスセパレータの製造コスト低減のため、プレス成型によりガスセパレータを作成する方法の場合、ガスセパレータの側面部の螺旋形状を持つネジ穴を金型で成型することが考えられるが、正確なネジ穴を金型だけで成形することは不可能であり、ガスセパレータを金型成型で作製した後に、機械加工によってネジ穴加工を施す必要があるため、加工時間および製造コストの増加につながってしまう。
【0013】
また、金属材料をガスセパレータとして用いる場合にも、ガスセパレータの厚さの問題、機械的強度低下の問題、金型上の制約の問題は、上記した樹脂含浸カーボンの場合と変わらないものであった。
【0014】
【課題を解決するための手段】
この発明は上記の問題を解決するもので、固体高分子イオン交換薄膜1の両側を電極2で挟んで形成される薄膜電極接合体3と、この薄膜電極接合体3を挟んでその両側に燃料ガス流路4aおよび酸化剤ガス流路4bを形成する導電性を有するガスセパレータ4とを設け、ガスセパレータ4によって挟まれた薄膜電極接合体3とガスセパレータ4とは単セル5を構成し、該単セル5を複数個直列に積層することで、燃料電池スタック6を構成する固体高分子電解質型燃料電池において、重ね合わせた複数個の前記ガスセパレータ4の間に外部と連通して形成したスリット7と、導電面を互いに外向きにして前記スリット7に嵌合するセル電圧測定線8とを設け、前記セル電圧測定線8を前記スリット7に嵌合して各単セル5の電圧を測定する構造を有するものである。
【0015】
また、前記ガスセパレータ4の側面と連続する上下のいずれかの面または上下の両面に金型成型により凹部7aを形成し、前記スリット7は単セル5を積層したときに燃料電池スタック6の側面に現れるガスセパレータ4の凹部7aによって構成することで、ガスセパレータ4の作製に機械加工が不要となる。
【0016】
また、前記セル電圧測定線8は導電面を互いに外向きにした2枚のカード型電線8a・8bで構成し、該カード型電線8a・8bの間に、絶縁性を有する弾性体9を挟み込んで形成するものであるから、単セル5を積層しながらセル電圧測定線8を間に挟み込んでいく作業の必要がなくなった。
【0017】
また、2枚の前記カード型電線8a・8bの間に挟み込まれた弾性体9は、カード型電線8a・8bの先端もしくは側端から突出するように形成され、該弾性体9の突出した部分に凹ストッパ10を設け、かつガスセパレータ4のスリット7内には弾性体9に設けた凹ストッパ10に対応する凸ストッパ11を設け、該凹ストッパ10と凸ストッパ11とを嵌合させる構造とすることで、セル電圧測定線8は容易に抜けることがなくなった。
【0018】
【作用】
固体高分子電解質型燃料電池は、複数積層されたガスセパレータ4によって挟着された薄膜電極接合体3の両側の燃料ガス流路4aおよび酸化剤ガス流路4bに、それぞれ燃料ガスと酸化剤ガスを流しており、薄膜電極接合体3に接した2枚のガスセパレータ4間には電位が発生する。そして、前記薄膜電極接合体3に接した2枚のガスセパレータ4間には発電機能が生まれるので、このガスセパレータ4を多数積層することで希望する電圧が得られる燃料電池スタック6が構成できる。
【0019】
この重ねあわせたガスセパレータ4の側面には外部に連通したスリット7が設けてあり、このスリット7にセル電圧測定線8を差し込むことで、セル電圧測定線8の互いに外向きに設けた導電面が電位差を持った2枚のガスセパレータ4に接触し、このセル電圧測定線8の他端において、その電位差を計測することで、ガスセパレータ4間の電位差を確認することが出来る。
【0020】
【実施例】
実施例を示す図によって本発明を説明すると、1は燃料電池を構成部品である固体高分子イオン交換薄膜、2はこの固体高分子イオン交換薄膜1の両側に配置した電極、3は固体高分子イオン交換薄膜1と電極2を一体に形成した薄膜電極接合体、4はこの薄膜電極接合体3の電極2に燃料ガスまたは酸化剤ガスを供給するために薄膜電極接合体3の両側を挟むように配置したガスセパレータであり、このガスセパレータ4の素材は樹脂含浸カーボンを使い成形によって作られている。
【0021】
5は薄膜電極接合体3を2枚のガスセパレータ4で挟んで構成する燃料電池の基本の発電素子としての単セル、6は複数の前記単セル5を積層して構成した燃料電池スタックであり、複数個の単セル5を積層することで燃料電池として所定の電圧を得ることができる。
【0022】
4aはガスセパレータ4と片側の電極2との間に形成した燃料ガスを薄膜電極接合体3に供給するための燃料ガス流路、4bは他方のガスセパレータ4と電極2との間に形成した酸化剤ガスを薄膜電極接合体3に供給するための酸化剤ガス流路である。12は燃料電池スタック6内のすべての燃料ガス流路4aの入口側に連通して燃料ガスを供給するための燃料ガス供給管、12aは燃料電池スタック6内のすべての燃料ガス流路4aの排気出口側に連通した燃料ガス排気管、13は燃料電池スタック6内のすべての酸化剤ガス流路4bの入口側に連通して酸化剤ガスを供給するための酸化剤ガス供給管、13aは燃料電池スタック6内のすべての酸化剤ガス流路4bの排気出口側に連通した酸化剤ガス排気管である。
【0023】
ガスセパレータ4上の燃料ガス流路4aには燃料ガス供給管12から燃料ガスが供給されており、燃料ガス流路4a上を流れる燃料ガスは、薄膜電極接合体3上で水素イオンと電子に分かれ、水素イオンは薄膜電極接合体3を透過してカソードへ移動する。一方、薄膜電極接合体3を挟んで反対側のガスセパレータ4上の酸化剤ガス流路4bには酸化剤ガス供給管13から酸化剤ガスが供給されており、酸化剤ガス中の酸素は、薄膜電極接合体3を透過してきた水素イオンと、前記燃料ガス流路4a側のガスセパレータ4から酸化剤ガス流路4b側のガスセパレータ4に向かって図示しない外部回路を経由して流れてきた電子によって酸化反応を行なって水を生成する。そして、燃料ガスと酸化剤ガスの供給を続けることで、この反応が継続して行なわれるので、外部回路には電流が流れつづけ、このとき得られた電流を取出すことで直流電気エネルギとして利用することができる。なお、この酸化反応に使用されなかった燃料ガスや酸化剤ガスは、燃料ガス排気管12a及び酸化剤ガス排気管13aによって外部に排気される。
【0024】
このように作動する燃料電池は基本構成である単セル5を直列に積層して所定の直流電圧が得られる燃料電池スタック6を形成しているから、複数の単セル5のうち、1つでも発電不能となれば、燃料電池スタック6の全体として期待した発電能力が不能となってしまうものである。
【0025】
また、薄膜電極接合体3の破損により単セル5の発電が不能となった場合には、単セル5の内部で燃料ガスと酸化剤ガスが混合している可能性があり、もし、燃料ガスと酸化剤ガスが混合すれば、爆発・燃焼の恐れがあるため、電圧異常時には直ちに燃料ガスおよび酸化剤ガスの供給を直ちに停止する措置が必要であり、発電不能の単セル5は直ちに交換する必要がある。
【0026】
このように、燃料電池発電システムにおいては、安全に発電するために燃料電池スタック6を形成する単セル5がガスセパレータ4間に各々正常な電圧を発生しているかを常に確認する必要がある。
【0027】
この発明は上記の課題を解決するもので、図1乃至図2に示すように、7aはガスセパレータ4の重ね合わせ部において外部と連通しながら形成した凹部、7はこのガスセパレータ4の凹部7aによって外部と連通するように燃料電池スタック6の側面に形成したスリット、8は前記スリット7の内部のガスセパレータ4と接触するように導電面を互いに外側に向けたセル電圧測定線であり、該セル電圧測定線8をスリット7に嵌合すると重ね合わせたそれぞれのガスセパレータ4のスリット7の内部とセル電圧測定線8の外側に向いた導電面とが接触することができる。
【0028】
前記ガスセパレータ4の燃料ガス流路4aと酸化剤ガス流路4bには、それぞれ燃料ガスと酸化剤ガスが供給されており、薄膜電極接合体3を挟んだ2枚のガスセパレータ4間には電位差が生じている。そして、前記スリット7に嵌合してガスセパレータ4間に挟まれたセル電圧測定線8はそれぞれが接触する導電面がガスセパレータ4と同電位となるため、セル電圧測定線8の他端で、単セル5の起電力を測定することにより、前記燃料電池スタック6を構成する単セル5の発電不良を検出することができる。このため、故障となった単セル5の混じった燃料電池スタック6への燃料ガス及び酸化剤ガスの供給を停止し、故障した単セル5を修理する。
【0029】
このように、ガスセパレータ4の側面にスリット7を構成したから、互いに外向きの導電面を有するセル電圧測定線8をこのスリット7に挿入して、単セル5の出力電圧を測定できるようになり、従来のネジ固定に比べてセル電圧測定線8の取付けの作業性が格段によくなった。また、従来のようにそれぞれのガスセパレータ4に加工性の悪いネジ穴を設ける必要がなくなり、2枚のガスセパレータ4の間にスリット7を形成するだけであるから、厚さを薄くすることができ、燃料電池スタック6の小型化が実現できた。
【0030】
また、ガスセパレータ4を金型成形で作成するときに同時に形成できるスリット7であるから、後加工で作業しなければならなかったネジ穴のようなセル電圧測定線8を取付けるための特別な作業工程は不要になり、作業時間および製造コストを抑えることができた。またネジなどの部品が不要になり部品点数は少なくなり、材料費の削減が可能になる。
【0031】
前記凹部7aは上下2枚重ね合わせたガスセパレータ4の重ね合わせ面にそれぞれ構成しても良いが、このように両面に形成しなくとも、図1に示すように、片側だけのガスセパレータ4に凹部7aを形成しても良い。この時も2枚のガスセパレータ4が重ね合わせればスリット7が形成でき、前記セル電圧測定線8によって単セル5の起電力を測定することができる。また、スリット7を構成する凹部7aが片側であれば、ガスセパレータ4を成形する金型の製作が、一方の凹部7aが省略できるから簡単になる。
【0032】
また、8a・8bは前記セル電圧測定線8を構成する導電面を備えた2枚のカード型電線、9はこの2枚のカード型電線8a・8b間に挟み込んで一体化するための絶縁牲を有する弾性体であり、燃料電池スタック6を形成した後に、セル電圧測定線8を前記スリット7に差し込むと、弾性体9が変形することにより挿入が可能であり、さらに、挿入後は弾性体9の復元力によりカード型電線8a・8bの導電面がスリット7内のガスセパレータ4に強く押し付けられるため、確実な電圧測定が可能であり、またセル電圧測定線8の抜け防止効果も得ることができる。
【0033】
また、図3に示すように、10はカード型電線8a・8bの先端から更に突出させた絶縁性を有する弾性体9の上下面に形成した凹ストッパ、11はガスセパレータ4に形成した凹部7aに設けた凸ストッパであり、このガスセパレータ4の凸ストッパ11は前記弾性体9の凹ストッパ10と嵌合する構造とし、前記セル電圧測定線8は燃料電池スタック6の側面に形成されるスリット7に押し込まれる。このため、前記弾性体9は変形しながらカード型電線8a・8bと一緒にスリット7へ挿入され、凸ストッパ11と凹ストッパ10とが嵌合し、更に、弾性体9の復元力がカード型電線8a・8bの導電面を2枚のガスセパレータ4の間に形成したスリット7の内面を押す方向に働くため、従来の固定ネジを使用する時のように強固に取付けでき、セル電圧測定線8の抜け防止性能をより高めることができた。
【0034】
【発明の効果】
以上のように本発明では、固体高分子電解質型燃料電池の単セル5を構成する薄膜電極接合体3の起電力を測定するために2枚のガスセパレータ4の間に外部に連通するスリット7を設け、このスリット7にセル電圧測定線8の互いに外向きにした導電面がガスセパレータ4に密着することで、簡単に起電力が測定できるようになった。また、このスリット7の隙間は狭くすることができるので、固体高分子電解質型燃料電池のガスセパレータ4の薄型化を可能とし、単セル5を積み重ねて一体化した燃料電池スタック6がコンパクトに実現できた。
【0035】
また、前記セル電圧測定線8は従来のように固定ネジを用いて直接ガスセパレータ4に固定する必要はなく、燃料電池スタック6に固定するためには、作業時間の短縮が難しいネジ締め作業を行なう必要がなくなり、作業性が向上した。
【0036】
またセル電圧測定線8を差し込むためのスリット7を形成するガスセパレータ4の側面に接する上下面のいずれか、または両面に設けられた凹部7aはガスセパレータ4を金型成型により製造する場合にも容易に形成可能であり、機械加工によるネジ穴を必要としないため、より安価に製造することが可能である。
【0037】
また、前記セル電圧測定線8は2枚のカード型電線8a・8bの間に、絶縁性を有する弾性体9を挟み込むことにより構成したから、燃料電池スタック6を組立後にセル電圧測定線8を燃料電池スタック6のスリット7に差し込んでも、間の弾性体9が圧縮することで正しい位置に接続可能であり、前記セル電圧測定線8が容易に抜け落ちないようになった。
【0038】
またセル電圧測定線8を構成する2枚のカード型電線8a・8bの間に挟み込んだ弾性体9は、その先端または側端のカード型電線8a・8bよりも突出した部位に凹ストッパ10を設け、また、ガスセパレータ4のスリット7内には、該凹ストッパ10に嵌合する凸ストッパ11を設けたことで、セル電圧測定線8をスリット7に挿入した後からは、このセル電圧測定線8が更に抜けにくくなったものである。
【図面の簡単な説明】
【図1】この発明の燃料電池の単セル部を示す要部断面図。
【図2】この発明のセル電圧測定線による電圧測定部を示す斜視図である。
【図3】この発明の他の実施例のセル電圧測定線による電圧測定部を示す要部断面図である。
【図4】この発明の燃料電池の全体構成を示す正面図である。
【図5】従来の電圧測定状態を示す斜視図である。
【図6】従来の他の実施例の電圧測定状態を示す斜視図である。
【符号の説明】
1 固体高分子イオン交換薄膜
2 電極
3 薄膜電極接合体
4 ガスセパレータ
4a 燃料ガス流路
4b 酸化剤ガス流路
5 単セル
6 燃料電池スタック
7 スリット
7a 凹部
8 セル電圧測定線
8a カード型電線
8b カード型電線
9 弾性体
10 凹ストッパ
11 凸ストッパ
[0001]
[Industrial applications]
The present invention relates to a structure that enables a gas separator of a solid polymer electrolyte fuel cell having a cell voltage measuring function to be made thinner, and that allows a polymer electrolyte fuel cell to be reduced in size and simplified in assembly.
[0002]
[Prior art]
A solid polymer electrolyte fuel cell is formed by sandwiching a thin film electrode assembly formed by sandwiching a solid polymer ion exchange thin film on both sides with electrodes made of a porous conductor, and sandwiching it between two conductive gas separators. The gas separator forms a fuel cell unit cell by forming a fuel gas flow path and an oxidizing gas flow path at a portion in contact with the thin film electrode assembly. By arranging the thin film electrode assembly on the upper and lower surfaces of one gas separator, a plurality of single cells can be stacked in series, and a fuel cell stack can be configured.
[0003]
A fuel gas such as hydrogen flows through the fuel gas flow path of the anode side gas separator sandwiching the thin film electrode assembly having an ion exchange function, and an oxidizing gas such as air containing oxygen flows through the oxidizing gas flow path of the cathode side gas separator. As a result, hydrogen ions in the fuel gas pass through the solid polymer ion exchange thin film and move to the cathode, and electrons pass through an external load connected between the anode-side gas separator and the cathode-side gas separator, and the electrons pass through the cathode-side gas separator. By moving to the separator, an electromotive force is generated and a current flows.
[0004]
In a fuel cell stack in which a plurality of single cells are stacked in series, since the single cells are connected in series, even if one of the single cells constituting the fuel cell stack cannot generate power due to breakage of the solid polymer ion exchange thin film, etc. As a result, power generation of the entire fuel cell stack becomes impossible.
[0005]
If one single cell in the fuel cell stack is unable to generate power, if the cause is damage to the solid polymer ion exchange thin film, the fuel gas and the oxidant gas mix inside the fuel cell stack. Because of the high possibility of combustion and explosion, it is necessary to stop the operation immediately and replace single cells that cannot generate power. However, since conventional power extraction is performed only at the output terminal of the fuel cell stack, it is difficult to externally confirm which single cell cannot generate power.
[0006]
For this reason, in a recent system using a fuel cell stack, output terminals are provided for all conductive gas separators constituting the fuel cell stack, and the voltage between the anode gas separator and the cathode gas separator of each single cell is reduced. A structure has been proposed in which measurement is performed to confirm whether all the single cells are generating power normally.
[0007]
As a specific structure, in a fuel cell stack of a solid polymer electrolyte fuel cell, as an output terminal for measuring a voltage between an anode and a cathode gas separator, as shown in FIG. Generally, a terminal having a lead wire connected to the screw hole is screwed. As shown in FIG. 6, a method is also used in which a part of the gas separator is protruded to the outside to form an output terminal having a screw hole, and a terminal having a lead wire connected to the screw hole is connected by a screw.
[0008]
[Problems to be solved by the invention]
By the way, resin-impregnated carbon, which is a material of a gas separator of a solid polymer electrolyte fuel cell, is difficult to machine such as screw hole machining, and has a drawback that processing time is increased. When the screw holes are formed toward the inside of the gas separator, there is a problem that the mechanical strength of the gas separator is reduced.
[0009]
When an output terminal such as a screw hole is provided on the side surface of the gas separator, the smaller the screw hole, the smaller the thickness of the gas separator.However, the smaller the screw hole diameter, the smaller the fixing screw. If it is too long, the screw tightening work by the driver becomes difficult, and it takes a long time to work, and the workability is reduced.
[0010]
Therefore, there is a limit to reducing the diameter of the screw, and the thickness of the gas separator is inevitably greater than a certain thickness.Thus, it is difficult to reduce the thickness of the gas separator. There is also an adverse effect of increasing the size, and it is difficult to reduce the size of the fuel cell stack and reduce the material cost.
[0011]
On the other hand, when protruding a part of the gas separator and fixing the voltage measurement lead wire with the tightening nut, space for the height of the tightening nut is required, and it is difficult to make the gas separator thin even with this method, and the number of parts increases. The workability is poor, the cost is high, and the material cost of the gas separator is high.
[0012]
Furthermore, in the case of a method of producing a gas separator by press molding in order to reduce the production cost of the gas separator, it is conceivable to mold a screw hole having a helical shape on a side portion of the gas separator with a mold, but an accurate screw It is impossible to form the hole only with a mold, and it is necessary to machine the screw hole after forming the gas separator by mold molding, which leads to an increase in processing time and manufacturing cost. .
[0013]
Also, when a metal material is used as a gas separator, the problem of the thickness of the gas separator, the problem of a decrease in mechanical strength, and the problem of restrictions on the mold are the same as those of the resin-impregnated carbon described above. Was.
[0014]
[Means for Solving the Problems]
The present invention solves the above-mentioned problem, and includes a thin film electrode assembly 3 formed by sandwiching both sides of a solid polymer ion exchange thin film 1 between electrodes 2, and a fuel film formed on both sides of the thin film electrode assembly 3. A gas separator 4 having conductivity forming a gas flow path 4a and an oxidizing gas flow path 4b is provided, and the thin film electrode assembly 3 and the gas separator 4 sandwiched by the gas separators 4 constitute a single cell 5, By stacking a plurality of the single cells 5 in series, a solid polymer electrolyte fuel cell constituting the fuel cell stack 6 was formed so as to communicate with the outside between the plurality of stacked gas separators 4. A slit 7 and a cell voltage measuring line 8 fitted to the slit 7 with the conductive surfaces facing outward are provided, and the cell voltage measuring line 8 is fitted to the slit 7 to adjust the voltage of each single cell 5. Measure Those having an elephant.
[0015]
Further, a concave portion 7a is formed by die molding on one of upper and lower surfaces or both upper and lower surfaces continuous with the side surface of the gas separator 4, and the slit 7 is formed on the side surface of the fuel cell stack 6 when the unit cells 5 are stacked. By using the recess 7a of the gas separator 4 appearing in the above, the machining of the gas separator 4 becomes unnecessary.
[0016]
The cell voltage measuring line 8 is composed of two card-shaped electric wires 8a and 8b having conductive surfaces facing outward, and an elastic body 9 having insulating properties is sandwiched between the card-shaped electric wires 8a and 8b. Therefore, there is no need for an operation of sandwiching the cell voltage measurement lines 8 while stacking the single cells 5.
[0017]
The elastic body 9 sandwiched between the two card-shaped electric wires 8a and 8b is formed so as to protrude from the tip or side end of the card-shaped electric wires 8a and 8b, and the protruding portion of the elastic body 9 And a concave stopper 10 corresponding to the concave stopper 10 provided in the elastic body 9 is provided in the slit 7 of the gas separator 4, and the concave stopper 10 and the convex stopper 11 are fitted. As a result, the cell voltage measurement line 8 did not easily come off.
[0018]
[Action]
In the solid polymer electrolyte fuel cell, fuel gas and oxidant gas flow passages 4a and 4b on both sides of the thin film electrode assembly 3 sandwiched by a plurality of stacked gas separators 4, respectively. And a potential is generated between the two gas separators 4 in contact with the thin-film electrode assembly 3. Since a power generation function is generated between the two gas separators 4 in contact with the thin film electrode assembly 3, a fuel cell stack 6 that can obtain a desired voltage can be formed by stacking a large number of the gas separators 4.
[0019]
A slit 7 communicating with the outside is provided on a side surface of the superposed gas separator 4. By inserting a cell voltage measuring line 8 into the slit 7, the conductive surfaces provided outwardly of the cell voltage measuring line 8 are provided. Is in contact with two gas separators 4 having a potential difference, and by measuring the potential difference at the other end of the cell voltage measurement line 8, the potential difference between the gas separators 4 can be confirmed.
[0020]
【Example】
The present invention will be described with reference to the drawings showing an embodiment. 1 is a solid polymer ion exchange thin film which is a component of a fuel cell, 2 is electrodes arranged on both sides of the solid polymer ion exchange thin film 1, and 3 is a solid polymer ion exchange film. The thin film electrode assembly 4 in which the ion exchange thin film 1 and the electrode 2 are integrally formed is sandwiched on both sides of the thin film electrode assembly 3 for supplying a fuel gas or an oxidizing gas to the electrode 2 of the thin film electrode assembly 3. The gas separator 4 is made of resin-impregnated carbon by molding.
[0021]
Reference numeral 5 denotes a single cell as a basic power generation element of a fuel cell in which the thin film electrode assembly 3 is sandwiched between two gas separators 4, and 6 denotes a fuel cell stack formed by stacking a plurality of the single cells 5. By stacking a plurality of unit cells 5, a predetermined voltage can be obtained as a fuel cell.
[0022]
4a is a fuel gas flow path for supplying the fuel gas formed between the gas separator 4 and one electrode 2 to the thin film electrode assembly 3, and 4b is formed between the other gas separator 4 and the electrode 2. An oxidizing gas passage for supplying an oxidizing gas to the thin-film electrode assembly 3. Reference numeral 12 denotes a fuel gas supply pipe for supplying fuel gas by communicating with the inlet sides of all the fuel gas flow paths 4a in the fuel cell stack 6, and reference numeral 12a denotes a fuel gas supply pipe 4a for all the fuel gas flow paths 4a in the fuel cell stack 6. A fuel gas exhaust pipe connected to the exhaust outlet side, 13 is an oxidizing gas supply pipe communicating with the inlet side of all the oxidizing gas flow paths 4b in the fuel cell stack 6 to supply the oxidizing gas, and 13a is The oxidizing gas exhaust pipe communicates with the exhaust outlet side of all the oxidizing gas flow paths 4b in the fuel cell stack 6.
[0023]
The fuel gas is supplied from the fuel gas supply pipe 12 to the fuel gas flow path 4 a on the gas separator 4, and the fuel gas flowing on the fuel gas flow path 4 a is converted into hydrogen ions and electrons on the thin film electrode assembly 3. The hydrogen ions are separated and move through the thin film electrode assembly 3 to the cathode. On the other hand, an oxidizing gas is supplied from the oxidizing gas supply pipe 13 to the oxidizing gas flow path 4b on the gas separator 4 on the opposite side with the thin film electrode assembly 3 interposed therebetween. Hydrogen ions that have passed through the thin-film electrode assembly 3 and flowed from the gas separator 4 on the fuel gas flow path 4a side to the gas separator 4 on the oxidant gas flow path 4b side via an external circuit (not shown). The oxidation reaction is performed by the electrons to produce water. Then, by continuing the supply of the fuel gas and the oxidizing gas, this reaction is continuously performed, so that the current continues to flow in the external circuit, and the current obtained at this time is taken out and used as DC electric energy. be able to. The fuel gas and the oxidant gas not used in the oxidation reaction are exhausted to the outside by the fuel gas exhaust pipe 12a and the oxidant gas exhaust pipe 13a.
[0024]
The fuel cell that operates in this manner forms the fuel cell stack 6 that can obtain a predetermined DC voltage by stacking the single cells 5 that are the basic configuration in series, so that even one of the plurality of single cells 5 can be used. If power generation becomes impossible, the expected power generation capacity of the fuel cell stack 6 as a whole becomes impossible.
[0025]
Further, when power generation of the single cell 5 becomes impossible due to breakage of the thin film electrode assembly 3, there is a possibility that the fuel gas and the oxidizing gas are mixed inside the single cell 5. If there is a risk of explosion or combustion if the gas and the oxidizing gas are mixed, it is necessary to immediately stop the supply of the fuel gas and the oxidizing gas when the voltage is abnormal, and immediately replace the unit cell 5 that cannot generate power. There is a need.
[0026]
As described above, in the fuel cell power generation system, it is necessary to always check whether the single cells 5 forming the fuel cell stack 6 generate a normal voltage between the gas separators 4 in order to generate power safely.
[0027]
The present invention solves the above-mentioned problem. As shown in FIGS. 1 and 2, reference numeral 7a denotes a recess formed in the overlapping portion of the gas separator 4 while communicating with the outside, and 7 denotes a recess 7a of the gas separator 4. The slits 8 formed on the side surfaces of the fuel cell stack 6 so as to communicate with the outside by means of the cell voltage measurement lines 8 whose conductive surfaces face each other so as to contact the gas separator 4 inside the slits 7. When the cell voltage measurement line 8 is fitted into the slit 7, the inside of the slit 7 of each superposed gas separator 4 and the conductive surface facing the outside of the cell voltage measurement line 8 can come into contact.
[0028]
A fuel gas and an oxidizing gas flow are supplied to the fuel gas flow path 4a and the oxidizing gas flow path 4b of the gas separator 4, respectively, and between the two gas separators 4 sandwiching the thin film electrode assembly 3. A potential difference has occurred. The cell voltage measurement lines 8 fitted into the slits 7 and sandwiched between the gas separators 4 have the same potential as the conductive surface of the cell separator 4 at the other end of the cell voltage measurement lines 8. By measuring the electromotive force of the single cell 5, a power generation failure of the single cell 5 constituting the fuel cell stack 6 can be detected. Therefore, the supply of the fuel gas and the oxidizing gas to the fuel cell stack 6 in which the failed single cells 5 are mixed is stopped, and the failed single cells 5 are repaired.
[0029]
Since the slits 7 are formed on the side surfaces of the gas separator 4 in this manner, the cell voltage measurement lines 8 having the conductive surfaces facing each other are inserted into the slits 7 so that the output voltage of the single cell 5 can be measured. Thus, the workability of attaching the cell voltage measurement line 8 is significantly improved as compared with the conventional screw fixing. Further, unlike the conventional case, it is not necessary to provide a screw hole with poor workability in each gas separator 4, and only the slit 7 is formed between the two gas separators 4. As a result, the size of the fuel cell stack 6 can be reduced.
[0030]
In addition, since the slits 7 can be formed at the same time when the gas separator 4 is formed by molding, a special operation for attaching the cell voltage measurement line 8 such as a screw hole, which has to be performed in post-processing. The process becomes unnecessary, and the working time and the manufacturing cost can be reduced. Also, parts such as screws become unnecessary, the number of parts is reduced, and material cost can be reduced.
[0031]
The concave portion 7a may be formed on each of the superposed surfaces of the gas separators 4 which are superimposed on the upper and lower surfaces. However, even if the concave portions 7a are not formed on both surfaces, as shown in FIG. The recess 7a may be formed. Also at this time, when the two gas separators 4 are overlapped, the slit 7 can be formed, and the electromotive force of the single cell 5 can be measured by the cell voltage measurement line 8. Further, if the concave portion 7a forming the slit 7 is on one side, the manufacture of a mold for molding the gas separator 4 is simplified because one concave portion 7a can be omitted.
[0032]
Reference numerals 8a and 8b denote two card-type electric wires having a conductive surface constituting the cell voltage measuring line 8, and reference numeral 9 denotes an insulating material for being sandwiched and integrated between the two card-type electric wires 8a and 8b. When the cell voltage measuring line 8 is inserted into the slit 7 after the fuel cell stack 6 is formed, the elastic body 9 is deformable and can be inserted. Since the conductive surfaces of the card-shaped electric wires 8a and 8b are strongly pressed against the gas separator 4 in the slit 7 by the restoring force of 9, the voltage can be reliably measured, and the cell voltage measurement line 8 can be prevented from coming off. Can be.
[0033]
As shown in FIG. 3, reference numeral 10 denotes a concave stopper formed on the upper and lower surfaces of the elastic body 9 having an insulating property further protruding from the ends of the card-shaped electric wires 8a and 8b, and 11 denotes a concave portion 7a formed on the gas separator 4. The convex stopper 11 of the gas separator 4 has a structure to be fitted with the concave stopper 10 of the elastic body 9, and the cell voltage measurement line 8 is formed by a slit formed on the side surface of the fuel cell stack 6. Pressed into 7. For this reason, the elastic body 9 is inserted into the slit 7 together with the card type electric wires 8a and 8b while deforming, the convex stopper 11 and the concave stopper 10 are fitted, and the restoring force of the elastic body 9 is reduced by the card type. Since the conductive surfaces of the electric wires 8a and 8b work in the direction of pressing the inner surface of the slit 7 formed between the two gas separators 4, they can be firmly attached as when using a conventional fixing screw, and the cell voltage measurement line 8 was able to further improve the dropout prevention performance.
[0034]
【The invention's effect】
As described above, in the present invention, in order to measure the electromotive force of the thin film electrode assembly 3 constituting the single cell 5 of the solid polymer electrolyte fuel cell, the slit 7 communicating between the two gas separators 4 is connected to the outside. The electromotive force can be easily measured by making the conductive surfaces of the cell voltage measurement lines 8 facing each other close to the gas separator 4 in the slits 7. Further, since the gap between the slits 7 can be narrowed, the thickness of the gas separator 4 of the solid polymer electrolyte fuel cell can be reduced, and the fuel cell stack 6 in which the single cells 5 are stacked and integrated can be compactly realized. did it.
[0035]
Further, it is not necessary to fix the cell voltage measuring line 8 directly to the gas separator 4 by using a fixing screw as in the prior art. There is no need to perform this, and workability has improved.
[0036]
Further, any one of the upper and lower surfaces which are in contact with the side surface of the gas separator 4 forming the slit 7 for inserting the cell voltage measurement line 8 or the concave portion 7a provided on both surfaces is used even when the gas separator 4 is manufactured by die molding. Since it can be easily formed and does not require a screw hole formed by machining, it can be manufactured at lower cost.
[0037]
Further, since the cell voltage measuring line 8 is constituted by sandwiching an elastic body 9 having an insulating property between two card-type electric wires 8a and 8b, the cell voltage measuring line 8 is connected after the fuel cell stack 6 is assembled. Even if the cell voltage measurement line 8 is inserted into the slit 7 of the fuel cell stack 6, it can be connected to a correct position by compressing the elastic body 9 therebetween, so that the cell voltage measurement line 8 does not easily fall off.
[0038]
The elastic body 9 sandwiched between the two card-shaped electric wires 8a and 8b constituting the cell voltage measuring line 8 has a concave stopper 10 at a position protruding from the card-shaped electric wires 8a and 8b at the front end or side end. In addition, since the convex stopper 11 fitted to the concave stopper 10 is provided in the slit 7 of the gas separator 4, after the cell voltage measuring line 8 is inserted into the slit 7, the cell voltage measurement is performed. The line 8 is more difficult to come off.
[Brief description of the drawings]
FIG. 1 is a sectional view of a main part showing a single cell part of a fuel cell according to the present invention.
FIG. 2 is a perspective view showing a voltage measuring unit using a cell voltage measuring line of the present invention.
FIG. 3 is a cross-sectional view of a main part showing a voltage measuring unit using a cell voltage measuring line according to another embodiment of the present invention.
FIG. 4 is a front view showing the entire configuration of the fuel cell according to the present invention.
FIG. 5 is a perspective view showing a conventional voltage measurement state.
FIG. 6 is a perspective view showing a voltage measurement state of another conventional example.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 solid polymer ion exchange thin film 2 electrode 3 thin film electrode assembly 4 gas separator 4 a fuel gas flow path 4 b oxidizing gas flow path 5 single cell 6 fuel cell stack 7 slit 7 a recess 8 cell voltage measurement line 8 a card-type electric wire 8 b card Type electric wire 9 elastic body 10 concave stopper 11 convex stopper

Claims (4)

固体高分子イオン交換薄膜1の両側を電極2で挟んで形成される薄膜電極接合体3と、この薄膜電極接合体3を挟んでその両側に燃料ガス流路4aおよび酸化剤ガス流路4bを形成する導電性を有するガスセパレータ4とを設け、ガスセパレータ4によって挟まれた薄膜電極接合体3とガスセパレータ4とは単セル5を構成し、該単セル5を複数個直列に積層することで、燃料電池スタック6を構成する固体高分子電解質型燃料電池において、
重ね合わせた複数個の前記ガスセパレータ4の間に外部と連通して形成したスリット7と、導電面を互いに外向きにして前記スリット7に嵌合するセル電圧測定線8とを設け、前記セル電圧測定線8を前記スリット7に嵌合して各単セル5の電圧を測定することを特徴とする固体高分子電解質型燃料電池のセル電圧測定部構造。
A thin film electrode assembly 3 formed by sandwiching both sides of the solid polymer ion exchange thin film 1 between electrodes 2, and a fuel gas flow path 4 a and an oxidizing gas flow path 4 b formed on both sides of the thin film electrode assembly 3 A gas separator 4 having conductivity to be formed is provided, and the thin film electrode assembly 3 and the gas separator 4 sandwiched by the gas separator 4 constitute a single cell 5, and a plurality of the single cells 5 are stacked in series. In the solid polymer electrolyte fuel cell constituting the fuel cell stack 6,
A slit 7 formed between the plurality of gas separators 4 overlapped with each other so as to communicate with the outside, and a cell voltage measuring line 8 fitted in the slit 7 with the conductive surfaces facing outward. A cell voltage measuring part structure of a solid polymer electrolyte fuel cell, wherein a voltage measuring line 8 is fitted into the slit 7 to measure a voltage of each unit cell 5.
前記ガスセパレータ4の側面と連続する上下のいずれかの面または上下の両面に金型成型により凹部7aを形成し、
前記スリット7は単セル5を積層したときに燃料電池スタック6の側面に現れるガスセパレータ4の凹部7aによって構成されることを特徴とする請求項1に記載の固体高分子電解質型燃料電池のセル電圧測定部構造。
Forming a concave portion 7a by die molding on one of upper and lower surfaces or both upper and lower surfaces continuous with the side surface of the gas separator 4;
The cell of the polymer electrolyte fuel cell according to claim 1, wherein the slit (7) is formed by a concave portion (7a) of a gas separator (4) that appears on a side surface of the fuel cell stack (6) when the unit cells (5) are stacked. Voltage measurement structure.
前記セル電圧測定線8は導電面を互いに外向きにした2枚のカード型電線8a・8bで構成し、該カード型電線8a・8bの間に、絶縁性を有する弾性体9を挟み込んで形成されることを特徴とする請求項1または2に記載の固体高分子電解質型燃料電池のセル電圧測定部構造。The cell voltage measuring line 8 is composed of two card-type electric wires 8a and 8b having conductive surfaces facing outward, and formed by sandwiching an elastic body 9 having an insulating property between the card-type electric wires 8a and 8b. 3. The structure of a cell voltage measuring section of a solid polymer electrolyte fuel cell according to claim 1, wherein 2枚の前記カード型電線8a・8bの間に挟み込まれた弾性体9は、カード型電線8a・8bの先端もしくは側端から突出するように形成され、該弾性体9の突出した部分に凹ストッパ10を設け、かつガスセパレータ4のスリット7内には弾性体9に設けた凹ストッパ10に対応する凸ストッパ11を設け、該凹ストッパ10と凸ストッパ11とを嵌合させたことを特徴とする請求項3に記載の固体高分子電解質型燃料電池のセル電圧測定部構造。The elastic body 9 sandwiched between the two card-type electric wires 8a and 8b is formed so as to protrude from the tip or side end of the card-type electric wires 8a and 8b, and has a concave portion at the projecting portion of the elastic body 9. A stopper 10 is provided, and a convex stopper 11 corresponding to the concave stopper 10 provided on the elastic body 9 is provided in the slit 7 of the gas separator 4, and the concave stopper 10 and the convex stopper 11 are fitted. The structure of a cell voltage measuring unit of the solid polymer electrolyte fuel cell according to claim 3.
JP2003077471A 2003-03-20 2003-03-20 Cell voltage measuring part structure of solid polymer electrolyte fuel cell Expired - Fee Related JP4389456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003077471A JP4389456B2 (en) 2003-03-20 2003-03-20 Cell voltage measuring part structure of solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003077471A JP4389456B2 (en) 2003-03-20 2003-03-20 Cell voltage measuring part structure of solid polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2004288426A true JP2004288426A (en) 2004-10-14
JP4389456B2 JP4389456B2 (en) 2009-12-24

Family

ID=33292220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003077471A Expired - Fee Related JP4389456B2 (en) 2003-03-20 2003-03-20 Cell voltage measuring part structure of solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4389456B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139972A (en) * 2004-11-10 2006-06-01 Hitachi Ltd Fuel cell module
JP2007265881A (en) * 2006-03-29 2007-10-11 Honda Motor Co Ltd Fuel cell stack and method of manufacturing carbon separator
JP2008147067A (en) * 2006-12-12 2008-06-26 Hitachi Ltd Voltage detecting device for fuel cell stack and fuel cell system
JP2009004158A (en) * 2007-06-20 2009-01-08 Nissan Motor Co Ltd Connection structure of cell voltage detection connector in fuel cell stack
JP2013051036A (en) * 2011-08-30 2013-03-14 Daihatsu Motor Co Ltd Fuel cell and method for manufacturing the same
DE102015223040A1 (en) 2015-11-23 2017-05-24 Volkswagen Ag Fuel cell and fuel cell system with such
DE102016116536A1 (en) 2016-09-05 2018-03-08 Audi Ag Sealing element with single cell voltage measuring device for a fuel cell
WO2020064975A1 (en) * 2018-09-28 2020-04-02 Reinz-Dichtungs-Gmbh Separator plate and electrochemical system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2250131A1 (en) * 2022-02-10 2023-08-11 Powercell Sweden Ab Voltage monitoring device for an electric stack, particularly for a fuel cell stack

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139972A (en) * 2004-11-10 2006-06-01 Hitachi Ltd Fuel cell module
JP4690701B2 (en) * 2004-11-10 2011-06-01 株式会社日立製作所 Fuel cell module
JP2007265881A (en) * 2006-03-29 2007-10-11 Honda Motor Co Ltd Fuel cell stack and method of manufacturing carbon separator
JP2008147067A (en) * 2006-12-12 2008-06-26 Hitachi Ltd Voltage detecting device for fuel cell stack and fuel cell system
JP2009004158A (en) * 2007-06-20 2009-01-08 Nissan Motor Co Ltd Connection structure of cell voltage detection connector in fuel cell stack
JP2013051036A (en) * 2011-08-30 2013-03-14 Daihatsu Motor Co Ltd Fuel cell and method for manufacturing the same
DE102015223040A1 (en) 2015-11-23 2017-05-24 Volkswagen Ag Fuel cell and fuel cell system with such
DE102016116536A1 (en) 2016-09-05 2018-03-08 Audi Ag Sealing element with single cell voltage measuring device for a fuel cell
WO2020064975A1 (en) * 2018-09-28 2020-04-02 Reinz-Dichtungs-Gmbh Separator plate and electrochemical system
CN112789753A (en) * 2018-09-28 2021-05-11 莱茵兹密封垫有限公司 Separator and electrochemical system
US11967739B2 (en) 2018-09-28 2024-04-23 Reinz-Dichtungs-Gmbh Separator plate and electrochemical system

Also Published As

Publication number Publication date
JP4389456B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
US7947408B2 (en) Collecting plate, fuel cell, and method for manufacturing same
JPH11339828A (en) Fuel cell stack with cell voltage measuring terminal
JP5330532B2 (en) Solid oxide fuel cell
US20060024561A1 (en) Fuel cell stack
KR101941739B1 (en) Fuel cell stack
JP2006260916A (en) Fuel cell
JP4389456B2 (en) Cell voltage measuring part structure of solid polymer electrolyte fuel cell
US9660283B2 (en) Current measurement device
JP4165876B2 (en) Fuel cell stack
JP2015057766A (en) Fuel cell stack
JP5034273B2 (en) Fuel cell
JP2008293766A (en) Fuel cell stack
JP5078573B2 (en) Fuel cell system
JP3674921B2 (en) Fuel cell
CN111477928A (en) Fuel cell stack
JP2006236792A (en) Fuel cell stack insulating structure
JP4773055B2 (en) FUEL CELL STACK, SEPARATOR INTERMEDIATE AND SEPARATOR MANUFACTURING METHOD
JP4862256B2 (en) Flat type polymer electrolyte fuel cell separator
JP2018081771A (en) Interconnector-electrochemical reaction single cell complex, and electrochemical reaction cell stack
JP4539069B2 (en) Fuel cell
JP6867852B2 (en) Current collector-electrochemical reaction single cell complex and battery chemical reaction cell stack
CN109075371B (en) Fuel cell stack structure
JP4281330B2 (en) Polymer electrolyte fuel cell
JP2018081770A (en) Interconnector-electrochemical reaction single cell complex, and electrochemical reaction cell stack
CN111600054B (en) Fuel cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151016

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees