JP2004284904A - Method of producing sunbeam shielding material, sunbeam shielding material, coating liquid for forming sunbeam shielding film, and sunbeam shielding film - Google Patents

Method of producing sunbeam shielding material, sunbeam shielding material, coating liquid for forming sunbeam shielding film, and sunbeam shielding film Download PDF

Info

Publication number
JP2004284904A
JP2004284904A JP2003080984A JP2003080984A JP2004284904A JP 2004284904 A JP2004284904 A JP 2004284904A JP 2003080984 A JP2003080984 A JP 2003080984A JP 2003080984 A JP2003080984 A JP 2003080984A JP 2004284904 A JP2004284904 A JP 2004284904A
Authority
JP
Japan
Prior art keywords
sunbeam
film
solar shading
solar
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003080984A
Other languages
Japanese (ja)
Inventor
Takeshi Naganami
武 長南
Hiroko Kuno
裕子 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003080984A priority Critical patent/JP2004284904A/en
Publication of JP2004284904A publication Critical patent/JP2004284904A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a sunbeam shielding material in which sunbeam transmission is low and haze value is also low even in a region where visible light transmission is as high as ≥80%, to provide a sunbeam shielding material, to provide a coating liquid for forming a sunbeam shielding film, and to provide a sunbeam shielding film. <P>SOLUTION: The fine particles of a sunbeam shielding material 9 are obtained by performing the dropping 13 of an alkaline solution 5 into a raw material mixed solution 4 obtained by mixing 11 an aqueous solution of a tin compound 1, an aqueous solution of an indium compound 2 and an aqueous solution of a rhenium compound 3 for 25 min while carrying out stirring under the control at 20°C, then, performing stirring 12 for 10 min to cause aging 14 so as to obtain coprecipitated matter 6, then subjecting the precipitated matter to washing 15 and drying 16 into indium-tin-rhenium hydroxide 7, further, subjecting the same to heating 18 while performing stirring 17 in a reducing gas-inert gas atmosphere 8, and carrying out reduction treatment. The coating liquid for forming a sunbeam shielding film is obtained by dispersing the fine particles into a solvent together with a binder and a hardening agent. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は車両、ビル、事務所、一般住宅などの窓、電話ボックス、ショ−ウィンド−、照明用ランプ、透明ケ−スなど、ガラス、プラスチックスその他の、日射遮蔽機能を必要とする透明基材に適用される日射遮蔽材料に係り、特に、可視光透過率が80%以上の高い領域においても、日射透過率が低くしかもヘイズ値の低い日射遮蔽膜と、この日射遮蔽膜の形成を可能とする日射遮蔽材料およびその製造方法と、この日射遮蔽材料を用いた塗布液とに関するものである。
【0002】
【従来の技術】
太陽光や電球などの外部光源から熱成分を除去・減少する方法として、従来、熱効果に大きく寄与する赤外線を反射する材料を、膜としてガラス表面に形成して、これを熱線反射ガラスとすることが行われていた。そして、赤外線を反射する材料として、FeOx、CoOx、CrOx、TiOxなどの金属酸化物や、Ag、Au、Cu、Ni、Alなどの自由電子を多量にもつ金属材料が選択されてきた。
【0003】
しかし、これらの金属酸化物や金属材料では、赤外線以外に可視光も同時に反射もしくは吸収する性質があるため、これらの材料の膜が形成された熱線反射ガラスを用いると、可視光透過率が低下する問題があった。ところが、建材、乗り物、電話ボックスなどに用いられる透明基材では可視光領域の高い透過率が必要とされることから、上記材料を利用する場合は、その膜厚を非常に薄くしなければならない。このため、スプレ−焼付けやCVD法、あるいはスパッタ法や真空蒸着法などの物理成膜法を用いて、10nmレベルの薄膜として成膜することが通常行われてきた。
【0004】
しかしながら、これらの成膜方法は、大がかりな装置や真空設備を必要とし、生産性や成膜面積の大面積化に問題があり、膜の製造コストが高くなるといった課題がある。また、これらの材料を用いて日射遮蔽特性(波長域300〜2100nmの光を遮蔽する特性)を向上させようとすると、可視光領域の反射率も同時に高くなってしまう傾向がある。このため、これらの材料を成膜された熱線反射ガラスは、鏡のようなギラギラした外観を与えて美観を損ねてしまう。さらに、これらの材料は、膜の導電性が高いものが多く、膜の導電性が高いと携帯電話やTV、ラジオなどの電波を反射して、受信不能になったり、周辺地域に電波障害を引き起こすなどの課題もある。
【0005】
このような、従来の熱線反射膜の課題を改善するには、膜の物理特性として、可視光領域の光の透過率が高くて、赤外線領域の反射率が高く、かつ膜の表面抵抗が概ね10Ω/□以上となる膜を形成する必要がある。
【0006】
ここで、可視光透過率が高くしかも優れた日射遮蔽機能を持つ材料の一つとしてインジウム錫酸化物(以下、ITOと記載する。)が知られている。そして、この日射遮蔽機能を有するITOを得る方法として、一般的にはインジウム塩と錫塩の混合水溶液に沈澱剤を添加して共沈させ、この沈澱物を乾燥焼成する方法が知られている。
【0007】
さらに、例えば、特許文献1には、ITO粉末をさらに加圧不活性ガス中で熱処理する方法が開示され、特許文献2には、ITO粉末をアルコ−ル雰囲気下で加熱処理する方法が開示され、特許文献3には、錫塩とインジウム塩との溶液を30℃以下に保持し、アルカリ水溶液を、反応系のpHが最終的に5.0〜9.0となるように0.5〜12時間の添加時間をもって添加し、得られた水和物を不活性ガス雰囲気下あるいは還元性ガス雰囲気下で加熱処理する方法等が開示されている。
【0008】
しかしながら、これらの方法で得られたITO粉末を用いて形成した膜では、80%以上の高い可視光透過率を維持しつつ、60%未満の低い日射透過率を発揮し、かつ1%を下回るような低ヘイズ値を満たすことは、未だ実現されておらず、さらには生産性の点でも十分満足すべきものではない。
尚、上記ヘイズ値とは、全透過光に対する拡散透過光の割合であり、この値が高いと人間の目には曇って見える。したがって、透明性を要求される窓材、特により透明性を必要とする車両用途では、1%を下回るヘイズ値の膜が望まれている。
【0009】
【特許文献1】
特開平7−69632号公報
【特許文献2】
特開平5−24837号公報
【特許文献3】
特開平10−120946号公報
【0010】
【発明が解決しようとする課題】
そこで、本発明の課題とするところは、可視光領域においては高い透過率を持つとともに、可視光領域により近い近赤外域においては日射透過率が低く、しかもヘイズ値が低い日射遮蔽膜を形成することができる日射遮蔽材料の製造方法、当該製造方法により製造された日射遮蔽材料、当該日射遮蔽材料を含有し簡便な塗布法で日射遮蔽膜を形成できる日射遮蔽膜形成用塗布液、および当該日射遮蔽材料を用いた日射遮蔽膜を提供することにある。
【0011】
【課題を解決するための手段】
本発明は、以下の構成を有する。
(構成1)錫化合物とインジウム化合物とレニウム化合物とを含有する50℃以下に保持しながら攪拌し、前記溶液へ、アルカリ溶液を滴下時間30分未満で滴下し、その後も攪拌を続けて沈殿物を得る工程と、
前記沈澱物を洗浄した後、乾燥して、インジウムと錫とレニウムとの水酸化物を得る工程と、
前記水酸化物を、還元性ガスと不活性ガスとの混合ガス雰囲気下において攪拌しながら加熱処理する工程とを具備することを特徴とする日射遮蔽材料の製造方法である。
【0012】
上述の製造方法によれば、可視光領域においては高い透過率を持つとともに、可視光領域により近い近赤外域においては、強いプラズマ吸収を発現して低い日射透過率を持ち、且つ熱線遮蔽に好ましい粒径を有し、日射遮蔽膜中に高度に分散することのできる日射遮蔽材料を製造することができる。
【0013】
(構成2)構成1に記載の製造方法で製造されたことを特徴とする日射遮蔽材料である。
【0014】
(構成3)構成2に記載の日射遮蔽材料であって、
錫と、インジウムと、レニウムとを含有する粉体であり、
表色系による、Lが52〜80、aが−10〜−0.1、bが−14〜20である粉体色を有し、
前記粉体の比表面積が50m/g以上であることを特徴とする日射遮蔽材料である。
【0015】
上述の構成を有する日射遮蔽材料は、可視光領域においては高い透過率を持つとともに、可視光領域により近い近赤外域においては、強いプラズマ吸収を発現して低い日射透過率を持ち、且つ熱線遮蔽に好ましい粒径を有し、日射遮蔽膜中に高度に分散することができるため、可視光領域においては高い透過率を持つとともに、可視光領域により近い近赤外域においては低い日射透過率を持ち、かつヘイズ値が低い日射遮蔽膜を形成することができる。
【0016】
(構成4)構成2または構成3に記載の日射遮蔽材料が、溶媒中に分散されていることを特徴とする日射遮蔽膜形成用塗布液である。
【0017】
(構成5)構成4に記載の日射遮蔽膜形成用塗布液であって、無機バインダ−および/または樹脂バインダ−が含まれていることを特徴とする日射遮蔽膜形成用塗布液である。
【0018】
(構成6)構成2または構成3に記載の日射遮蔽材料を、含有することを特徴とする日射遮蔽膜である。
【0019】
(構成7)構成6に記載の日射遮蔽膜であって、
前記日射遮蔽膜の可視光透過率が80%以上のとき、波長域300〜2100nmにおける日射透過率が60%未満で、ヘイズ値が1%未満であることを特徴とする日射遮蔽膜である。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら具体的に説明する。
(日射遮蔽材料)
図1は、本発明に係る日射遮蔽材料の製造方法を示すフロー図である。
図1に示すように、本発明に係る日射遮蔽材料の製造方法は、錫化合物1、インジウム化合物2およびレニウム化合物3を混合11して調製し、かつ50℃以下に保持された原料混合溶液4を攪拌12しつつ、アルカリ溶液5を滴下時間30分未満の条件で滴下13し熟成14させて共沈沈殿物6を得る工程と、上記沈澱物6を、例えばデカンテ−ションにより洗浄15した後、乾燥16してインジウムと錫とレニウムの水酸化物7を得る工程と、該水酸化物7を還元性ガスと不活性ガスとの混合ガス雰囲気8下において攪拌17しながら加熱18処理する工程を具備することを特徴とするものである。
【0021】
ここで、本発明において適用されるインジウム化合物2、錫化合物1およびレニウム化合物3は、特に限定されるものでなく、例えば硝酸インジウム、塩化インジウム、塩化錫、硝酸錫、七酸化レニウム、過レニウム酸水溶液、レニウムオキシ酸、過レニウム酸アンモニウム、塩化レニウム酸などが挙げられる。
【0022】
インジウム化合物2、錫化合物1およびレニウム化合物3の構成において、元素換算での錫含有量は1〜12原子%未満が好ましく、より好ましくは3〜8原子%で、元素換算でのレニウム含有量は0.5〜10原子%以下が好ましく、より好ましくは1〜5原子%である。錫含有量、レニウム含有量がこの範囲にあると、可視光透過率が80%以上の高い領域でも、日射透過率が低くしかもヘイズ値の低い日射遮蔽膜を得ることができる。
【0023】
次に、本発明で用いるアルカリ溶液5も特に限定されず、例えば、炭酸水素アンモニウム、水酸化アンモニウム、水酸化ナトリウム、水酸化カリウム、などの各水溶液が挙げられる。アルカリ溶液の濃度は、各原料化合物塩が水酸化物となるのに必要な化学当量以上、好ましくはアルカリ残留による洗浄時間の観点から当量〜1.5倍過剰量とする。
【0024】
このときの原料混合溶液4の温度は、50℃以下とすることが好ましい。温度下限は、得られる共沈沈澱物6微粒子の特性の観点より、特に限定されないが、低すぎると新たに冷却装置などが必要になってくることから、そのような装置を要しない温度とすることが好ましい。他方、50℃を超えない範囲であれば共沈沈殿物6の粒成長が所定の範囲に入り、日射遮蔽材料9へ所望の光学特性を付与することが出来るためである。
【0025】
アルカリ溶液5の滴下13の時間は、共沈沈殿物6の粒子の微細化および生産性の観点から30分未満であることが好ましく、さらに好ましくは25分以下とする。
滴下13の時間と共沈沈殿物6の粒子径には以下の関係がある。即ち、滴下時間が長い場合は、過飽和度が下がらないため(=生成する核の数が少ない)沈殿生成速度は遅くなり、粒子成長が主反応となるため共沈沈殿物6の粒子径は大きくなる。他方、滴下時間が短い場合は、過飽和度がすぐに下がるため(=生成する核の数が多い)沈殿生成速度は早くなり、核生成が主反応となるため共沈沈殿物6の粒子径は小さくなる。この関係より、滴下時間が30分以下であると、共沈沈殿物6の粒子径が大きくなり過ぎるのを回避できると供に、沈殿生成速度が速いのでコンパクトな設備でも生産量を確保できる。
【0026】
滴下13終了後、系内の均一化を図るために継続的に攪拌12しながら熟成14を行うが、そのときの温度は共沈温度と同温以下とし、攪拌12・熟成14は30分以下が好ましく、さらに好ましくは15分以下、最も好ましくは10分以下とする。これは、微少な粒子が分散している系において、より小さな粒子が減少・消滅して、より大きな粒子が成長する現象(オストワルド成長と呼ばれている。)が知られているが、上述の条件は、この大きな粒子が成長する現象が起こらない条件を選定し、共沈沈殿物6の粒子の微粒子化を図っているものである。
さらに、攪拌12・熟成14の時間を短くすることは、生産性の観点からも好ましい。
【0027】
次に、熟成14させて得られた共沈沈澱物6はデカンテ−ションによって十分洗浄15した後、乾燥16する。共沈沈澱物6の微粒子中に残留する塩素イオン、硝酸イオン、硫酸イオンなどの不純物は、後工程において還元阻害因子となる。このため、洗浄15によって、残留不純物量を好ましくは1.5重量%以下、より好ましくは0.2重量%以下とする。乾燥16の温度や時間は特に限定されるものではない。
【0028】
乾燥16の処理を終えて、インジウムと錫とレニウムの水酸化物7を得る。得られた、乾燥状態のインジウムと錫とレニウムの水酸化物7は、比表面積100m/gを有する。
このインジウムと錫とレニウムの水酸化物7に対し、還元処理を施して、特定の粉体色、すなわち国際照明委員会(CIE)が推奨しているL表色系(JIS Z8729)における粉体色Lが52〜80、aが−10〜−0.1、bが−14〜20を持つように調製する。
【0029】
インジウムと錫とレニウムの水酸化物7へ、上述の粉体色を付与するための処理は、窒素、アルゴン、ヘリウムなどの不活性ガス単独またはこれらの混合ガスと、水素ガス等の還元性ガスとの混合ガス8を供給し、インジウムと錫とレニウムの水酸化物7を攪拌17しながら、加熱18することで行う。この攪拌は、例えば、攪拌羽根を有する回転攪拌機等が好適に用いられる。
この時の処理温度は、所望とする光学特性および生産効率の観点から、下限は200℃以上が好ましい。一方、上限は400℃以下が好ましい。200℃〜400℃の範囲においては、適宜な反応速度と粒成長を達成することができ、光学特性および生産効率の観点から好ましい。このときの還元時間は、処理温度に応じて、上述した粉体色となるよう適宜選択すればよい。
こうして本発明に係る日射遮蔽材料9を得る。得られた日射遮蔽材料9は、比表面積50m/g以上を有し、(1)式より算出した平均一次粒径は16.7nm以下となった。
d=6/ρ×SA……(1)
(dは平均一次粒子径、ρは密度、SAは比表面積である。)
【0030】
ここで、日射遮蔽材料が熱線を遮蔽する面積は次式で表され、遮蔽面積は、日射遮蔽材料の粒子径に反比例して増加する。
A=πrMρ/4/3πr……(2)
(Aは遮蔽面積、Mは微粒子重量、ρは比重、rは粒子半径である。)
式(2)より、上述の製造方法で得られる本発明に係る日射遮蔽材料は、熱線遮蔽に好ましい粒径を有していることが判明した。
【0031】
上述の製造方法によれば、錫化合物およびインジウム化合物へ、さらに可視光領域に選択的透過性を示し、近赤外領域から長波長側では伝導電子のプラズモンによる光吸収特性を有するレニウム化合物を添加し、これらを共沈させる条件、共沈沈殿物を乾燥して得た乾燥粉を還元処理する際の最適条件を見出した。この結果、日射遮蔽膜中に高度に分散することができ、可視光領域においては高い透過率を持つとともに、可視光領域により近い近赤外域においては、強いプラズマ吸収を発現して低い日射透過率を持ち、かつヘイズ値が低い日射遮蔽膜を形成することができる日射遮蔽材料を製造することができた。
【0032】
また、日射遮蔽材料9の粉体色は、粉体中の自由電子密度と相関しているものと考えられる。そして粉体中の自由電子密度と、この粉体がプラズマ吸収を発現する帯域とは相関していることから、日射遮蔽材料9の粉体色と、当該粉体が発現するプラズマ吸収帯域とは相関していると考えられる。この仮説を基に、日射遮蔽材料9の粉体色と、これから形成された日射遮蔽膜の日射透過率とを研究した結果、Lが52〜80、aが−10〜−0.1、bが−14〜20を有すると、上述した所望の特性を発揮することが判明した。そこで、インジウムと錫とレニウムの水酸化物7に対し還元処理を施して、上述の粉体色を持つ日射遮蔽材料9を調製したものである。
【0033】
(日射遮蔽膜形成用塗布液)
本発明に係る日射遮蔽膜形成用塗布液(以下、塗布液と記載する。)は、上記日射遮蔽材料を溶媒中に分散したものであるが、溶媒は特に限定されるものではなく、塗布条件、塗布環境に合わせて適宜選択する。また、後述するように、塗布液中へ無機バインダ−や樹脂バインダ−を含有させたときは、これらに合わせて適宜選択する。
具体例としては、水やエタノ−ル、プロパノ−ル、ブタノ−ル、イソプロピルアルコ−ル、イソブチルアルコ−ル、ジアセトンアルコ−ルなどのアルコ−ル類、メチルエ−テル,エチルエ−テル,プロピルエ−テルなどのエ−テル類、エステル類、アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン、イソブチルケトンなどのケトン類といった、各種の溶媒が使用可能であり、また必要に応じて酸やアルカリを添加してpH調整してもよい。さらに、塗布液中の微粒子の分散安定性を向上させるため各種の界面活性剤、カップリング剤などの添加も勿論可能である。
【0034】
また、必要に応じて配合される無機バインダ−や樹脂バインダ−について、その種類は特に限定されるものではない。例えば、無機バインダ−としては、珪素、ジルコニウム、チタン、もしくはアルミニウムの金属アルコキシドやこれらの部分加水分解縮重合物あるいはオルガノシラザンが利用でき、樹脂バインダ−として、アクリル樹脂などの熱可塑性樹脂、エポキシ樹脂などの熱硬化性樹脂などが利用できる。
【0035】
日射遮蔽材料の溶媒への分散方法は、均一に分散した塗布液が製造される方法であれば特に限定されず、例えば、ビ−ズミル、ボ−ルミル、サンドミル、ペイントシェ−カ−、超音波ホモジナイザ−などが挙げられる。
【0036】
(日射遮蔽膜)
この塗布液を用いて日射遮蔽膜を形成したとき、形成された膜の導電特性および光学特性について説明する。
【0037】
本発明に係る日射遮蔽膜の導電性は、インジウム錫レニウム酸化物微粒子の接触個所を経由した導電パスに沿ってなされるため、例えば、上述した界面活性剤やカップリング剤の添加量を加減することで、導電パスを部分的に切断することができ、膜の導電性を、10Ω/□以上の表面抵抗値へ低下させることは容易である。また、無機バインダ−、あるいは樹脂バインダ−の含有量の加減によっても導電性を制御できる。
【0038】
次に、本発明に係る日射遮蔽膜は、透明基板上に上記インジウム錫レニウム酸化物微粒子を高密度に堆積させて膜形成されたものであるが、塗布液中に樹脂バインダ−または無機バインダ−を含有させることで、塗布硬化後にインジウム錫レニウム酸化物微粒子の基材への密着性を向上させ、さらに膜の硬度を向上させる効果を得ることができる。
【0039】
そして、このようにして得られた膜上に、さらに珪素、ジルコニウム、チタン、もしくはアルミニウムの金属アルコキシド、これらの部分加水分解縮重合物からなる被膜を第2層として被着して、180℃程度の温度で10〜30分加熱する。このようにして、珪素、ジルコニウム、チタン、もしくはアルミニウムの酸化物膜を形成することで、インジウム錫レニウム酸化物微粒子を主成分とする日射遮蔽膜の基材への結着力や膜の硬度、耐候性を一層向上させることができる。
【0040】
一方、塗布液中に樹脂バインダ−または無機バインダ−を含まない場合に得られる日射遮蔽膜は、基材上に上述したインジウム錫レニウム酸化物微粒子のみが堆積した膜構造になる。この膜は、勿論このままでも日射遮蔽効果を示すが、この膜上にさらに珪素、ジルコニウム、チタン、もしくはアルミニウムの金属アルコキシドやこれらの部分加水分解縮重合物などの無機バインダ−、または樹脂バインダ−を含む塗布液を塗布して被膜を形成し、多層膜とするとよい。このように日射遮蔽膜を多層構造とすることにより、塗布液成分が第1層のインジウム錫レニウム酸化物微粒子の堆積した間隙を埋めて成膜されるため、膜のヘイズが低減して可視光透過率が向上し、また微粒子の基材への結着性が向上する。
【0041】
また、本発明に係る塗布液およびバインダ−を含有する塗布液の塗布方法は、特に限定されず、例えば、スピンコ−ト法、バ−コ−ト法、スプレ−コ−ト法、ディップコ−ト法、スクリ−ン印刷法、ロ−ルコ−ト法、流し塗りなど、処理液を平坦かつ薄く均一に塗布できる方法であればいずれの方法でもよい。
【0042】
無機バインダ−として珪素、ジルコニウム、チタン、もしくはアルミニウムの金属アルコキシドおよびその加水分解重合物を含む塗布液を、塗布する場合、塗布後の基材の加熱温度を、100℃以上とすることが好ましく、さらに好ましくは塗布液中の溶媒の沸点以上に加熱することが好ましい。100℃以上に加熱することで、塗膜中に含まれるアルコキシドまたはその加水分解重合物の重合反応を殆ど完結させることができ、また水や有機溶媒が膜中に残留することを抑制し加熱後における、膜の可視光透過率の低下を回避することができるからである。
【0043】
他方、樹脂バインダ−を使用した場合は、それぞれの硬化方法に従って硬化させればよい。例えば、紫外線硬化樹脂であれば紫外線を適宜照射すればよく、また常温硬化樹脂であれば塗布後そのまま放置しておけばよい。このため、既存の窓ガラスなどへの現場での塗布が可能である。
【0044】
本発明に係る日射遮蔽膜では、インジウム錫レニウム酸化物微粒子が分散しているため、物理成膜法により製造された酸化物薄膜のような、結晶が緻密に膜内を埋めた状態を有し鏡面状表面をもつ膜に比べると、可視光領域での反射が少なく、ギラギラした外観を呈することが回避できる。その一方で、可視から近赤外域にプラズマ周波数をもつため、これに伴うプラズマ吸収が近赤外域で大きくなる。さらに可視光領域の反射を抑制したい場合には、インジウム錫レニウム酸化物微粒子分散膜の上に、SiOやMgFのような低屈折率の膜を成膜することにより、容易に視感反射率1%以下の多層膜を得ることができる。
【0045】
本発明に係る日射遮蔽材料、塗布液並びに日射遮蔽膜のさらなる紫外線遮蔽機能を付与させるため、無機系の酸化チタンや酸化亜鉛、酸化セリウムなどの微粒子や、有機系のベンゾフェノンやベンゾトリアゾ−ルなどの1種もしくは2種以上を添加してもよい。
【0046】
上記のように、本発明によれば、日射遮蔽効果を有する塗布膜製造が可能であり、インジウム錫レニウム酸化物微粒子は無機材料であるので有機材料と比べて耐候性は非常に高く、例えば太陽光線(紫外線)の当たる部位に使用しても色や諸機能の劣化はほとんど生じない。また、本発明に係る塗布液は、焼成時の熱によって塗布成分の分解あるいは化学反応を利用して目的の日射遮蔽膜を形成するものではないため、特性の安定した均一な膜厚の透過膜を形成することができる。
【0047】
以下、本発明についてその実施例を挙げ、さらに具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
なお、得られた膜の可視光透過率や日射透過率は、日立製作所(株)製の分光光度計U−4000を用いて測定した。また、ヘイズ値は、村上色彩技術研究所(株)製HR−200を用いて測定した。膜評価においては線径の異なる3種のバ−コ−タ−で膜厚が異なる3種類の膜を成膜し、得られた3種類の膜の3点プロットから可視光透過率84%のときの日射透過率およびヘイズ値を求めた。
【0048】
[実施例1]
濃度10wt%In(NO3HO水溶液500g、濃度10wt%SnCl55HO水溶液30.4g(Sn5原子%相当)およびReO換算で濃度60wt%の過レニウム酸水溶液0.35g(Re0.9原子%相当)を混合した原料混合溶液に、20℃制御下で攪拌しながら濃度15wt%NHHCO水溶液259gを25分かけて滴下し、滴下後さらに10分間攪拌して熟成し共沈沈殿物を得た。得られた共沈沈殿物に対し、デカンテ−ションにて一回につき700mlのイオン交換水での洗浄を繰り返し行い、その後105℃で乾燥し、インジウム、錫、レニウム水酸化物を得た。
【0049】
得られたインジウム、錫、レニウム水酸化物の乾燥物へ粉砕処理を施し、その25gを500mlのセパラブルフラスコに投入し、攪拌しながらNガスをキャリアとした9%Hガスを供給しながら加熱し、280℃の温度で4.5時間攪拌しながら還元処理することによって日射遮蔽材料の微粒子を得た。
【0050】
日射遮蔽材料の微粒子20重量%、メチルイソブチルケトン63.3重量%、分散剤16.7重量%を、充填率63%相当の0.3mmジルコニアビ−ズを入れたペイントシェ−カ−で18時間分散し分散液とした。そして、該分散液67.5重量%と、バインダ−としてメチルイソブチルケトンに溶解したアクリル樹脂溶液27.5重量%と、硬化剤5重量%とを混合して日射遮蔽膜形成用塗布液を得た。
【0051】
得られた日射遮蔽膜形成用塗布液を、番手40,24,6のバ−を用いて、それぞれ100mm×100mm×3mmのソ−ダライムガラス基板に塗布した後、180℃で1時間焼成して日射遮蔽膜aを得た。膜aの日射透過率は57.9%、ヘイズ値は0.40%であった。この結果を、本発明に係る日射遮蔽材料の粒径および日射遮蔽膜の光学特性一覧表である図2に示す。
【0052】
[実施例2〜実施例3]
インジウム、錫、レニウム水酸化物の乾燥物より日射遮蔽材料の微粒子を得る際の加熱処理温度を325℃とした以外は、実施例1と同様にして日射遮蔽材料を製造し、日射遮蔽膜b(実施例2)を得た。また、同様に、加熱処理温度を350℃とした以外は実施例1と同様にして日射遮蔽材料を製造し、日射遮蔽膜c(実施例3)を得た。
【0053】
成膜された膜b、膜cに対し、膜aと同様に日射透過率およびヘイズ値を測定した。その結果、実施例2の膜b、実施例3の膜cの日射透過率はいずれも58%未満であり、ヘイズ値は1%未満であった。この結果を図2に示す。
【0054】
[比較例1〜比較例2]
共沈沈殿物を調製する際、過レニウム酸水溶液を添加しない以外は、実施例1と同様に日射遮蔽材料を製造し、日射遮蔽膜d(比較例1)を得た。
また、原料混合溶液を60℃に保持して共沈させた以外は、実施例1と同様にして日射遮蔽材料を製造し、日射遮蔽膜e(比較例2)を得た。
【0055】
成膜された膜d、膜eに対し、膜aと同様に日射透過率およびヘイズ値を測定した。その結果、比較例の膜d、膜eは、ヘイズ値は1%未満であるものの実施例に比較して高く、また、日射透過率はいずれも60%以上となった。この結果を図2に示す。
【0056】
また、代表的な膜の透過プロファイルとして、実施例1の膜a、および比較例1の膜dのプロファイルを図3に示す。図3は、縦軸に光の透過率を採り、横軸に透過する光の波長を採ったグラフである。この図3に示すプロファイルから明らかなように、膜aは、膜dに比べ、より近赤外域を遮蔽していることが明らかである。
【0057】
【発明の効果】
本発明に係る、錫化合物とインジウム化合物とレニウム化合物とを含有する溶液を50℃以下に保持しながら攪拌し、前記溶液へ、アルカリ溶液を滴下時間30分未満で滴下し、その後も攪拌を続けて沈殿物を得る工程と、
前記沈澱物を洗浄した後、乾燥して、インジウムと錫とレニウムとの水酸化物を得る工程と、
前記水酸化物を、還元性ガスと不活性ガスとの混合ガス雰囲気下において攪拌しながら加熱処理する工程とを具備する日射遮蔽材料の製造方法によれば、可視光領域においては高い透過率を持つとともに、可視光領域により近い近赤外域においては低い日射透過率を持ち、かつヘイズ値が低い日射遮蔽膜を形成することができる日射遮蔽材料を製造することができた。
【図面の簡単な説明】
【図1】本発明に係る日射遮蔽材料の製造方法を示すフロー図である
【図2】本発明に係る日射遮蔽材料の粒径および日射遮蔽膜の光学特性一覧表である。
【図3】本発明に係る日射遮蔽膜の透過プロファイルの一例である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a transparent substrate that requires a solar shading function, such as a window of a vehicle, a building, an office, a general house, a telephone box, a show window, a lighting lamp, a transparent case, etc. The present invention relates to a solar shading material applied to a material, and particularly to a solar shading film having a low solar transmittance and a low haze value even in a high visible light transmittance region of 80% or more, and the formation of the solar shading film. And a coating method using the solar shading material.
[0002]
[Prior art]
As a method of removing or reducing heat components from external light sources such as sunlight and light bulbs, conventionally, a material that reflects infrared rays that greatly contributes to the thermal effect is formed on the glass surface as a film, and this is used as heat ray reflective glass That was being done. As a material that reflects infrared rays, metal oxides such as FeOx, CoOx, CrOx, and TiOx, and metal materials having a large amount of free electrons such as Ag, Au, Cu, Ni, and Al have been selected.
[0003]
However, these metal oxides and metal materials have the property of simultaneously reflecting or absorbing visible light as well as infrared light, so using a heat ray reflective glass with a film of these materials reduces the visible light transmittance. There was a problem to do. However, transparent materials used for building materials, vehicles, telephone boxes, and the like require a high transmittance in the visible light region. Therefore, when using the above materials, the film thickness must be extremely thin. . For this reason, it has been common practice to form a thin film of a 10 nm level using a physical film forming method such as spray baking, CVD method, sputtering method or vacuum evaporation method.
[0004]
However, these film forming methods require large-scale equipment and vacuum equipment, have problems in productivity and increase in the film forming area, and have a problem that the film manufacturing cost increases. Further, when the solar shading property (the property of blocking light in a wavelength range of 300 to 2100 nm) is improved by using these materials, the reflectance in the visible light region tends to be increased at the same time. For this reason, the heat ray reflective glass formed with these materials gives a glare-like appearance like a mirror and impairs the appearance. In addition, many of these materials have high conductivity of the film, and if the conductivity of the film is high, radio waves of mobile phones, TVs, radios, and the like are reflected, and reception becomes impossible, and radio waves are hindered in surrounding areas. There are also issues such as causing.
[0005]
In order to improve the problem of such a conventional heat ray reflective film, as physical characteristics of the film, the transmittance of light in a visible light region is high, the reflectivity in an infrared region is high, and the surface resistance of the film is approximately. 10 6 It is necessary to form a film having a resistance of Ω / □ or more.
[0006]
Here, indium tin oxide (hereinafter, referred to as ITO) is known as one of the materials having a high visible light transmittance and having an excellent solar shading function. As a method for obtaining ITO having the solar shading function, a method is generally known in which a precipitant is added to a mixed aqueous solution of an indium salt and a tin salt to cause coprecipitation, and the precipitate is dried and calcined. .
[0007]
Further, for example, Patent Document 1 discloses a method of further heat treating ITO powder in a pressurized inert gas, and Patent Document 2 discloses a method of heat treating ITO powder in an alcohol atmosphere. Patent Literature 3 discloses that a solution of a tin salt and an indium salt is kept at 30 ° C. or lower, and an alkaline aqueous solution is added to a solution of 0.5 to 9.0 so that the pH of the reaction system finally becomes 5.0 to 9.0. A method is disclosed in which a hydrate is added with an addition time of 12 hours, and the obtained hydrate is heat-treated in an inert gas atmosphere or a reducing gas atmosphere.
[0008]
However, a film formed using the ITO powder obtained by these methods exhibits a low solar radiation transmittance of less than 60% while maintaining a high visible light transmittance of 80% or more, and is less than 1%. Satisfaction of such a low haze value has not yet been realized, and furthermore, it is not sufficiently satisfactory in terms of productivity.
The haze value is a ratio of diffuse transmitted light to total transmitted light, and when this value is high, it looks cloudy to human eyes. Therefore, a film having a haze value of less than 1% is desired for window materials that require transparency, particularly for vehicles that require more transparency.
[0009]
[Patent Document 1]
JP-A-7-69632
[Patent Document 2]
JP-A-5-24837
[Patent Document 3]
JP-A-10-120946
[0010]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to form a solar shading film having a high transmittance in the visible light region, a low solar transmittance in the near infrared region closer to the visible light region, and a low haze value. A method for producing a solar shading material, a solar shading material manufactured by the manufacturing method, a solar shading film forming coating solution containing the solar shading material and capable of forming a solar shading film by a simple coating method, and the solar shading An object of the present invention is to provide a solar shading film using a shading material.
[0011]
[Means for Solving the Problems]
The present invention has the following configuration.
(Structure 1) Stirring while maintaining the temperature at 50 ° C. or lower containing a tin compound, an indium compound, and a rhenium compound, an alkali solution is dropped into the solution in less than 30 minutes, and the stirring is continued. Obtaining a
Washing the precipitate, drying and obtaining a hydroxide of indium, tin and rhenium;
And heating the hydroxide while stirring in a mixed gas atmosphere of a reducing gas and an inert gas.
[0012]
According to the above-described manufacturing method, while having a high transmittance in the visible light region, in the near infrared region closer to the visible light region, it has strong solar absorption, has a low solar transmittance, and is preferable for heat ray shielding. It is possible to produce a solar shading material having a particle size and which can be highly dispersed in a solar shading film.
[0013]
(Structure 2) A solar shading material manufactured by the manufacturing method described in Structure 1.
[0014]
(Constitution 3) The solar shading material according to constitution 2,
A powder containing tin, indium, and rhenium,
L * a * b * L by color system * Is 52-80, a * Is -10 to -0.1, b * Has a powder color of -14 to 20,
The specific surface area of the powder is 50 m 2 / G or more.
[0015]
The solar shading material having the above-described configuration has a high transmittance in the visible light region, has a strong solar absorption in the near infrared region closer to the visible light region, has a low solar transmittance, and has a heat shielding property. It has a preferred particle size and can be highly dispersed in the solar shading film, so it has a high transmittance in the visible light region and a low solar transmittance in the near infrared region closer to the visible light region. In addition, a solar shading film having a low haze value can be formed.
[0016]
(Structure 4) A coating liquid for forming a solar shading film, wherein the solar shading material according to Structure 2 or 3 is dispersed in a solvent.
[0017]
(Structure 5) A coating liquid for forming a solar shading film according to structure 4, wherein the coating liquid contains an inorganic binder and / or a resin binder.
[0018]
(Structure 6) A solar shading film comprising the solar shading material according to Structure 2 or 3.
[0019]
(Arrangement 7) The solar radiation shielding film according to Arrangement 6,
When the visible light transmittance of the solar shading film is 80% or more, the solar shading film has a solar light transmittance of less than 60% in a wavelength range of 300 to 2100 nm and a haze value of less than 1%.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
(Solar shielding material)
FIG. 1 is a flowchart showing a method for manufacturing a solar shading material according to the present invention.
As shown in FIG. 1, the method for producing a solar shading material according to the present invention comprises mixing a tin compound 1, an indium compound 2 and a rhenium compound 3 11 and preparing a raw material mixed solution 4 maintained at 50 ° C. or lower. A process of obtaining a coprecipitated precipitate 6 by dripping the alkali solution 5 under the conditions of a dripping time of less than 30 minutes 13 while agitating 12 to obtain a coprecipitated precipitate 6, and washing the precipitate 6 by, for example, decantation 15 Drying 16 to obtain a hydroxide 7 of indium, tin and rhenium, and a step 18 of heating and treating the hydroxide 7 with stirring 17 in a mixed gas atmosphere 8 of a reducing gas and an inert gas. It is characterized by having.
[0021]
Here, the indium compound 2, tin compound 1, and rhenium compound 3 applied in the present invention are not particularly limited, and for example, indium nitrate, indium chloride, tin chloride, tin nitrate, rhenium pentoxide, perrhenic acid Aqueous solution, rhenium oxyacid, ammonium perrhenate, rhenic chloride and the like can be mentioned.
[0022]
In the composition of the indium compound 2, the tin compound 1 and the rhenium compound 3, the tin content in terms of element is preferably less than 1 to 12 atomic%, more preferably 3 to 8 atomic%, and the rhenium content in element conversion is It is preferably 0.5 to 10 atomic% or less, more preferably 1 to 5 atomic%. When the tin content and the rhenium content are in this range, a solar radiation shielding film having a low solar transmittance and a low haze value can be obtained even in a region where the visible light transmittance is as high as 80% or more.
[0023]
Next, the alkaline solution 5 used in the present invention is not particularly limited, and examples thereof include aqueous solutions of ammonium bicarbonate, ammonium hydroxide, sodium hydroxide, potassium hydroxide, and the like. The concentration of the alkali solution is at least a chemical equivalent required for each raw material compound salt to become a hydroxide, preferably an equivalent to 1.5-fold excess from the viewpoint of the washing time due to residual alkali.
[0024]
At this time, the temperature of the raw material mixed solution 4 is preferably set to 50 ° C. or less. The lower limit of the temperature is not particularly limited from the viewpoint of the characteristics of the obtained fine particles of coprecipitated precipitate 6, but if the temperature is too low, a cooling device or the like is newly required. Is preferred. On the other hand, if the temperature does not exceed 50 ° C., the grain growth of the coprecipitated precipitate 6 falls within a predetermined range, and desired optical characteristics can be imparted to the solar shading material 9.
[0025]
The time of the dropwise addition 13 of the alkaline solution 5 is preferably less than 30 minutes, more preferably 25 minutes or less, from the viewpoint of miniaturization of the particles of the coprecipitated precipitate 6 and productivity.
The relationship between the time of dropping 13 and the particle size of the coprecipitated precipitate 6 is as follows. That is, when the dropping time is long, the supersaturation degree does not decrease (= the number of generated nuclei is small), the precipitation generation rate becomes slow, and the particle size becomes a main reaction, so that the particle diameter of the coprecipitated precipitate 6 becomes large. Become. On the other hand, when the dropping time is short, the degree of supersaturation is immediately reduced (= the number of nuclei to be generated is large), and the rate of precipitation is increased, and nucleation is the main reaction. Become smaller. According to this relationship, if the dropping time is 30 minutes or less, the particle size of the coprecipitated precipitate 6 can be prevented from becoming too large, and the production rate can be secured even with compact equipment because the precipitation generation rate is high.
[0026]
After the completion of the dropping 13, the aging 14 is performed while continuously stirring 12 in order to homogenize the system. The temperature at this time is set to the same temperature or lower as the coprecipitation temperature, and the stirring 12 and the aging 14 are performed for 30 minutes or less. It is preferably 15 minutes or less, more preferably 10 minutes or less. This is known as a phenomenon in which smaller particles decrease or disappear in a system in which fine particles are dispersed, and larger particles grow (called Ostwald growth). The conditions are selected so as not to cause the phenomenon that the large particles grow, and the particles of the coprecipitated precipitate 6 are made finer.
Furthermore, shortening the time of stirring 12 and aging 14 is also preferable from the viewpoint of productivity.
[0027]
Next, the coprecipitated precipitate 6 obtained by aging 14 is sufficiently washed 15 by decantation and dried 16. Impurities such as chloride ions, nitrate ions, and sulfate ions remaining in the fine particles of the coprecipitate 6 serve as a reduction inhibitor in a subsequent step. For this reason, the amount of residual impurities is preferably set to 1.5% by weight or less, more preferably 0.2% by weight or less by the cleaning 15. The temperature and time of the drying 16 are not particularly limited.
[0028]
After the drying 16 is completed, a hydroxide 7 of indium, tin and rhenium is obtained. The obtained dried indium, tin and rhenium hydroxide 7 has a specific surface area of 100 m. 2 / G.
This indium, tin and rhenium hydroxide 7 is subjected to a reduction treatment to obtain a specific powder color, that is, L which is recommended by the International Commission on Illumination (CIE). * a * b * Powder color L in color system (JIS Z8729) * Is 52-80, a * Is -10 to -0.1, b * Is prepared to have -14 to 20.
[0029]
The treatment for imparting the powder color to the hydroxide 7 of indium, tin, and rhenium is performed by using an inert gas such as nitrogen, argon, or helium alone or a mixed gas thereof, and a reducing gas such as hydrogen gas. The mixed gas 8 is supplied and heated 18 while stirring 17 the indium, tin and rhenium hydroxide 7. For this stirring, for example, a rotary stirrer having a stirring blade is suitably used.
The lower limit of the processing temperature at this time is preferably 200 ° C. or higher from the viewpoint of desired optical characteristics and production efficiency. On the other hand, the upper limit is preferably 400 ° C. or lower. In the range of 200 ° C. to 400 ° C., an appropriate reaction rate and grain growth can be achieved, which is preferable from the viewpoint of optical characteristics and production efficiency. The reduction time at this time may be appropriately selected according to the processing temperature so as to obtain the above-described powder color.
Thus, the solar shading material 9 according to the present invention is obtained. The obtained solar shading material 9 has a specific surface area of 50 m. 2 / G or more, and the average primary particle diameter calculated from the equation (1) was 16.7 nm or less.
d = 6 / ρ × SA (1)
(D is the average primary particle diameter, ρ is the density, and SA is the specific surface area.)
[0030]
Here, the area where the solar shading material shields heat rays is represented by the following equation, and the shielding area increases in inverse proportion to the particle size of the solar shading material.
A = πr 2 Mρ / 4 / 3πr 3 …… (2)
(A is the shielding area, M is the particle weight, ρ is the specific gravity, and r is the particle radius.)
From the formula (2), it has been found that the solar shading material according to the present invention obtained by the above-described manufacturing method has a preferable particle size for heat ray shielding.
[0031]
According to the above manufacturing method, a tin compound and an indium compound are further added with a rhenium compound having a selective transmittance in the visible light region and having a light absorption characteristic of plasmons of conduction electrons on the long wavelength side from the near infrared region. Then, they found conditions for coprecipitating them and optimum conditions for reducing the dried powder obtained by drying the coprecipitated precipitate. As a result, it can be highly dispersed in the solar shading film, has high transmittance in the visible light region, and exhibits strong plasma absorption in the near-infrared region closer to the visible light region, resulting in low solar transmittance. And a solar shading material capable of forming a solar shading film having a low haze value.
[0032]
Further, it is considered that the powder color of the solar shading material 9 is correlated with the free electron density in the powder. Since the free electron density in the powder and the band in which the powder exhibits plasma absorption are correlated, the powder color of the solar shading material 9 and the plasma absorption band in which the powder manifests are different. It seems that they are correlated. Based on this hypothesis, a study was conducted on the powder color of the solar shading material 9 and the solar transmittance of the solar shading film formed therefrom. * Is 52-80, a * Is -10 to -0.1, b * Has a value of -14 to 20, it has been found that the desired characteristics described above are exhibited. Therefore, a reduction treatment is performed on the hydroxide 7 of indium, tin, and rhenium to prepare the solar shading material 9 having the powder color described above.
[0033]
(Coating solution for solar shading film formation)
The coating solution for forming a solar shading film according to the present invention (hereinafter, referred to as a coating solution) is obtained by dispersing the above solar shading material in a solvent, but the solvent is not particularly limited, and the coating conditions are not limited. , According to the application environment. Further, as described later, when an inorganic binder or a resin binder is contained in the coating solution, it is appropriately selected according to these.
Specific examples include water, alcohols such as ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, diacetone alcohol, methyl ether, ethyl ether and propyl ether. -Various solvents such as ethers such as ter, ethers, ketones such as acetone, methyl ethyl ketone, diethyl ketone, cyclohexanone and isobutyl ketone can be used, and if necessary, acid or alkali may be added. The pH may be adjusted. Further, it is of course possible to add various surfactants and coupling agents in order to improve the dispersion stability of the fine particles in the coating solution.
[0034]
Further, the types of the inorganic binder and the resin binder to be added as required are not particularly limited. For example, as the inorganic binder, a metal alkoxide of silicon, zirconium, titanium, or aluminum, a partially hydrolyzed polycondensate thereof, or an organosilazane can be used. As the resin binder, a thermoplastic resin such as an acrylic resin, an epoxy resin, or the like. And the like can be used.
[0035]
The method of dispersing the solar shading material in the solvent is not particularly limited as long as a uniformly dispersed coating liquid is produced, and examples thereof include a bead mill, a ball mill, a sand mill, a paint shaker, and an ultrasonic wave. Homogenizer and the like.
[0036]
(Solar shielding film)
When a solar shading film is formed using this coating solution, the conductive and optical characteristics of the formed film will be described.
[0037]
Since the conductivity of the solar shading film according to the present invention is made along a conductive path passing through the contact portion of the indium tin rhenium oxide fine particles, for example, the addition amount of the above-described surfactant or coupling agent is adjusted. As a result, the conductive path can be partially cut, and the conductivity of the film can be reduced by 10%. 6 It is easy to reduce the surface resistance to Ω / □ or more. The conductivity can also be controlled by adjusting the content of the inorganic binder or the resin binder.
[0038]
Next, the solar shading film according to the present invention is formed by depositing the indium tin rhenium oxide fine particles at a high density on a transparent substrate, and is formed into a film. A resin binder or an inorganic binder is contained in a coating solution. The effect of improving the adhesion of the indium tin rhenium oxide fine particles to the base material after application and curing can be obtained, and the hardness of the film can be further improved.
[0039]
Then, a film made of a metal alkoxide of silicon, zirconium, titanium, or aluminum, or a partially hydrolyzed polycondensate thereof is further applied as a second layer on the film obtained in this manner, at about 180 ° C. Heat at a temperature of 10 to 30 minutes. By forming an oxide film of silicon, zirconium, titanium, or aluminum in this manner, the binding strength to the substrate of the solar shading film containing indium tin rhenium oxide fine particles as a main component, the hardness of the film, and weather resistance Properties can be further improved.
[0040]
On the other hand, the solar shading film obtained when the coating liquid does not contain a resin binder or an inorganic binder has a film structure in which only the above-described indium tin rhenium oxide fine particles are deposited on a base material. This film, of course, exhibits a solar shading effect as it is. However, an inorganic binder such as a metal alkoxide of silicon, zirconium, titanium, or aluminum or a partially hydrolyzed polycondensate thereof, or a resin binder is further provided on the film. It is preferable to form a coating film by applying a coating solution containing the coating solution to form a multilayer film. By thus forming the solar shading film into a multilayer structure, the coating liquid component is formed to fill the gap where the indium tin rhenium oxide fine particles of the first layer are deposited, so that the haze of the film is reduced and visible light is reduced. The transmittance is improved, and the binding property of the fine particles to the base material is improved.
[0041]
The method of applying the coating solution containing the coating solution and the binder according to the present invention is not particularly limited, and examples thereof include a spin coating method, a bar coating method, a spray coating method, and a dip coating method. , A screen printing method, a roll coating method, a flow coating method, etc., as long as the processing liquid can be applied flatly, thinly and uniformly.
[0042]
When applying a coating liquid containing a metal alkoxide of silicon, zirconium, titanium, or aluminum and a hydrolyzed polymer thereof as an inorganic binder, the heating temperature of the substrate after the coating is preferably set to 100 ° C. or higher, More preferably, the heating is performed at a temperature higher than the boiling point of the solvent in the coating solution. By heating to 100 ° C. or more, the polymerization reaction of the alkoxide or its hydrolyzed polymer contained in the coating film can be almost completed, and the water and the organic solvent can be prevented from remaining in the film and heated. This is because a decrease in the visible light transmittance of the film can be avoided.
[0043]
On the other hand, when a resin binder is used, it may be cured according to each curing method. For example, an ultraviolet curable resin may be appropriately irradiated with ultraviolet light, and a room temperature curable resin may be left as it is after application. Therefore, it can be applied to an existing window glass or the like on site.
[0044]
In the solar shading film according to the present invention, since the indium tin rhenium oxide fine particles are dispersed, such as an oxide thin film manufactured by a physical film forming method, the crystal has a state in which the film is densely embedded in the film. Compared to a film having a mirror-like surface, reflection in the visible light region is less, and it is possible to avoid giving a glare-like appearance. On the other hand, since the plasma frequency is in the visible to near-infrared range, the accompanying plasma absorption increases in the near-infrared range. When it is desired to further suppress the reflection in the visible light region, a SiO 2 film is formed on the indium tin rhenium oxide fine particle dispersed film. 2 And MgF 2 By forming a film having a low refractive index as described above, a multilayer film having a luminous reflectance of 1% or less can be easily obtained.
[0045]
In order to impart a further ultraviolet shielding function of the solar shading material, the coating liquid and the solar shading film according to the present invention, inorganic titanium oxide, zinc oxide, fine particles such as cerium oxide, and organic benzophenone and benzotriazole. One or more kinds may be added.
[0046]
As described above, according to the present invention, it is possible to produce a coating film having a solar shading effect, and since indium tin rhenium oxide fine particles are inorganic materials, they have extremely high weather resistance as compared with organic materials, such as solar cells. Even if it is used in a part to which a light beam (ultraviolet light) is applied, color and various functions hardly deteriorate. Further, since the coating liquid according to the present invention does not form a target solar radiation shielding film by using decomposition or chemical reaction of coating components due to heat at the time of baking, a permeable film having a uniform film thickness with stable characteristics. Can be formed.
[0047]
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
The visible light transmittance and solar radiation transmittance of the obtained film were measured using a spectrophotometer U-4000 manufactured by Hitachi, Ltd. The haze value was measured using HR-200 manufactured by Murakami Color Research Laboratory. In the film evaluation, three kinds of films having different film thicknesses were formed with three kinds of bar coaters having different wire diameters, and a three-point plot of the obtained three kinds of films showed a visible light transmittance of 84%. The solar transmittance and haze value at that time were determined.
[0048]
[Example 1]
10 wt% In (NO 3 ) 3 3H 2 O aqueous solution 500g, concentration 10wt% SnCl 4 55H 2 30.4 g of O aqueous solution (corresponding to 5 atomic% of Sn) and ReO 3 A 15 wt% NH solution was added to a raw material mixed solution obtained by mixing 0.35 g (equivalent to 0.9 atomic% Re) of a perrhenic acid aqueous solution having a concentration of 60 wt% in conversion under stirring at 20 ° C. 4 HCO 3 An aqueous solution (259 g) was added dropwise over 25 minutes, and after the addition, the mixture was further stirred for 10 minutes and aged to obtain a coprecipitated precipitate. The obtained coprecipitated precipitate was repeatedly washed with 700 ml of ion-exchanged water each time by decantation, and then dried at 105 ° C. to obtain indium, tin and rhenium hydroxide.
[0049]
The obtained dried indium, tin, and rhenium hydroxides are subjected to a pulverizing treatment, and 25 g of the resulting indium, tin, and rhenium hydroxides are charged into a 500 ml separable flask, and stirred with N 2. 2 9% H with gas as carrier 2 Heating was performed while supplying a gas, and a reduction treatment was performed while stirring at a temperature of 280 ° C. for 4.5 hours to obtain fine particles of a solar shading material.
[0050]
20% by weight of the fine particles of the solar shading material, 63.3% by weight of methyl isobutyl ketone, and 16.7% by weight of the dispersant are mixed with a paint shaker containing 0.3 mm zirconia beads equivalent to a filling rate of 63%. It was dispersed for a time to obtain a dispersion. Then, 67.5% by weight of the dispersion, 27.5% by weight of an acrylic resin solution dissolved in methyl isobutyl ketone as a binder, and 5% by weight of a curing agent are mixed to obtain a coating liquid for forming a solar shading film. Was.
[0051]
The obtained coating solution for forming a solar shading film is applied to soda lime glass substrates of 100 mm × 100 mm × 3 mm using bars of numbers 40, 24 and 6, respectively, and then baked at 180 ° C. for 1 hour. Thus, a solar shading film a was obtained. The solar transmittance of the film a was 57.9%, and the haze value was 0.40%. The results are shown in FIG. 2 which is a list of the particle size of the solar shading material according to the present invention and the optical characteristics of the solar shading film.
[0052]
[Examples 2 and 3]
A solar shading material was produced in the same manner as in Example 1 except that the heat treatment temperature for obtaining fine particles of the solar shading material from a dried product of indium, tin, and rhenium hydroxide was 325 ° C. (Example 2) was obtained. Similarly, a solar shading material was produced in the same manner as in Example 1 except that the heat treatment temperature was 350 ° C., and a solar shading film c (Example 3) was obtained.
[0053]
The solar transmittance and the haze value of the formed films b and c were measured in the same manner as the film a. As a result, each of the film b of Example 2 and the film c of Example 3 had a solar transmittance of less than 58% and a haze value of less than 1%. The result is shown in FIG.
[0054]
[Comparative Examples 1 and 2]
When preparing the coprecipitated precipitate, a solar shading material was produced in the same manner as in Example 1 except that the perrhenic acid aqueous solution was not added, and a solar shading film d (Comparative Example 1) was obtained.
Further, a solar shading material was produced in the same manner as in Example 1 except that the raw material mixed solution was kept at 60 ° C. and coprecipitated to obtain a solar shading film e (Comparative Example 2).
[0055]
The solar transmittance and the haze value of the formed films d and e were measured in the same manner as the film a. As a result, although the haze value of the films d and e of the comparative examples was less than 1%, they were higher than those of the examples, and the solar transmittance was 60% or more. The result is shown in FIG.
[0056]
FIG. 3 shows profiles of a film a of Example 1 and a film d of Comparative Example 1 as typical transmission profiles of the film. FIG. 3 is a graph in which the vertical axis indicates the light transmittance and the horizontal axis indicates the wavelength of the transmitted light. As is clear from the profile shown in FIG. 3, it is clear that the film a shields the near infrared region more than the film d.
[0057]
【The invention's effect】
According to the present invention, the solution containing the tin compound, the indium compound, and the rhenium compound is stirred while being kept at 50 ° C. or lower, and the alkali solution is dropped into the solution in a dropping time of less than 30 minutes. Obtaining a precipitate,
Washing the precipitate, drying and obtaining a hydroxide of indium, tin and rhenium;
According to the method for manufacturing a solar shading material, comprising a step of performing heat treatment while stirring the hydroxide in a mixed gas atmosphere of a reducing gas and an inert gas, a high transmittance in a visible light region. In addition, a solar shading material having a low solar transmittance in the near infrared region closer to the visible light region and capable of forming a solar shading film with a low haze value could be manufactured.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a method for manufacturing a solar shading material according to the present invention.
FIG. 2 is a table showing the particle size of the solar shading material and the optical characteristics of the solar shading film according to the present invention.
FIG. 3 is an example of a transmission profile of the solar shading film according to the present invention.

Claims (7)

錫化合物とインジウム化合物とレニウム化合物とを含有する溶液を50℃以下に保持しながら攪拌し、前記溶液へ、アルカリ溶液を滴下時間30分未満で滴下し、その後も攪拌を続けて沈殿物を得る工程と、
前記沈澱物を洗浄した後、乾燥して、インジウムと錫とレニウムとの水酸化物を得る工程と、
前記水酸化物を、還元性ガスと不活性ガスとの混合ガス雰囲気下において攪拌しながら加熱処理する工程とを具備することを特徴とする日射遮蔽材料の製造方法。
The solution containing the tin compound, the indium compound, and the rhenium compound is stirred while being kept at 50 ° C. or lower, and the alkali solution is dropped into the solution in less than 30 minutes, and the stirring is continued to obtain a precipitate. Process and
Washing the precipitate, drying and obtaining a hydroxide of indium, tin and rhenium;
Heating the hydroxide while stirring the hydroxide in a mixed gas atmosphere of a reducing gas and an inert gas.
請求項1に記載の製造方法で製造されたことを特徴とする日射遮蔽材料。A solar shading material manufactured by the manufacturing method according to claim 1. 請求項2に記載の日射遮蔽材料であって、
錫と、インジウムと、レニウムとを含有する粉体であり、
表色系による、Lが52〜80、aが−10〜−0.1、bが−14〜20である粉体色を有し、
前記粉体の比表面積が50m/g以上であることを特徴とする日射遮蔽材料。
It is a solar shading material according to claim 2,
A powder containing tin, indium, and rhenium,
According to the L * a * b * color system, L * has a powder color of 52 to 80, a * of -10 to -0.1, and b * of -14 to 20,
A solar shading material, wherein the powder has a specific surface area of 50 m 2 / g or more.
請求項2または3に記載の日射遮蔽材料が、溶媒中に分散されていることを特徴とする日射遮蔽膜形成用塗布液。A coating liquid for forming a solar shading film, wherein the solar shading material according to claim 2 or 3 is dispersed in a solvent. 請求項4に記載の日射遮蔽膜形成用塗布液であって、無機バインダ−および/または樹脂バインダ−が含まれていることを特徴とする日射遮蔽膜形成用塗布液。5. The coating liquid for forming a solar shading film according to claim 4, wherein the coating liquid contains an inorganic binder and / or a resin binder. 請求項2または3に記載の日射遮蔽材料を、含有することを特徴とする日射遮蔽膜。A solar shading film comprising the solar shading material according to claim 2. 請求項6に記載の日射遮蔽膜であって、
前記日射遮蔽膜の可視光透過率が80%以上のとき、波長域300〜2100nmにおける日射透過率が60%未満で、ヘイズ値が1%未満であることを特徴とする日射遮蔽膜。
It is a solar shading film according to claim 6,
When the visible light transmittance of the solar radiation shielding film is 80% or more, the solar radiation transmittance in a wavelength range of 300 to 2100 nm is less than 60% and the haze value is less than 1%.
JP2003080984A 2003-03-24 2003-03-24 Method of producing sunbeam shielding material, sunbeam shielding material, coating liquid for forming sunbeam shielding film, and sunbeam shielding film Pending JP2004284904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003080984A JP2004284904A (en) 2003-03-24 2003-03-24 Method of producing sunbeam shielding material, sunbeam shielding material, coating liquid for forming sunbeam shielding film, and sunbeam shielding film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003080984A JP2004284904A (en) 2003-03-24 2003-03-24 Method of producing sunbeam shielding material, sunbeam shielding material, coating liquid for forming sunbeam shielding film, and sunbeam shielding film

Publications (1)

Publication Number Publication Date
JP2004284904A true JP2004284904A (en) 2004-10-14

Family

ID=33294683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003080984A Pending JP2004284904A (en) 2003-03-24 2003-03-24 Method of producing sunbeam shielding material, sunbeam shielding material, coating liquid for forming sunbeam shielding film, and sunbeam shielding film

Country Status (1)

Country Link
JP (1) JP2004284904A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178573A (en) * 2010-02-26 2011-09-15 Sumitomo Metal Mining Co Ltd Method for producing ammonium perrhenate
JP2012142257A (en) * 2010-12-14 2012-07-26 Dowa Holdings Co Ltd Electrode material for secondary battery and method for manufacturing the same
WO2014015360A1 (en) * 2012-07-23 2014-01-30 Ljw Solar Pty Ltd Method for coating a solar panel
JP2015511575A (en) * 2012-03-28 2015-04-20 廈門納諾泰克科技有限公司 Nanotin-containing metal oxide particles and dispersion, production method and application thereof
WO2016185951A1 (en) * 2015-05-15 2016-11-24 住友大阪セメント株式会社 Transparent resin composition and heat ray-shielding film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178573A (en) * 2010-02-26 2011-09-15 Sumitomo Metal Mining Co Ltd Method for producing ammonium perrhenate
JP2012142257A (en) * 2010-12-14 2012-07-26 Dowa Holdings Co Ltd Electrode material for secondary battery and method for manufacturing the same
JP2015511575A (en) * 2012-03-28 2015-04-20 廈門納諾泰克科技有限公司 Nanotin-containing metal oxide particles and dispersion, production method and application thereof
EP2835352A4 (en) * 2012-03-28 2015-12-30 Xiamen Nanotech Co Ltd Nanometric tin-containing metal oxide particle and dispersion, and preparation method and application thereof
WO2014015360A1 (en) * 2012-07-23 2014-01-30 Ljw Solar Pty Ltd Method for coating a solar panel
GB2514712A (en) * 2012-07-23 2014-12-03 Solar Developments Pty Ltd Method for coating a solar panel
GB2514712B (en) * 2012-07-23 2015-11-18 Solar Developments Pty Ltd Method for coating a solar panel
US9455370B2 (en) 2012-07-23 2016-09-27 Solar Developments Pty., Ltd. Method for coating a solar panel
WO2016185951A1 (en) * 2015-05-15 2016-11-24 住友大阪セメント株式会社 Transparent resin composition and heat ray-shielding film
CN107406684A (en) * 2015-05-15 2017-11-28 住友大阪水泥株式会社 Transparent resin composition and heat ray shielding film
US10472488B2 (en) 2015-05-15 2019-11-12 Sumitomo Osaka Cement Co., Ltd. Transparent resin composition and heat ray-shielding film

Similar Documents

Publication Publication Date Title
JP4626284B2 (en) Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield
JP2000096034A (en) Sun radiation screening material, coating solution for sun radiation screening membrane and sun radiation screening membrane
JP2005226008A (en) Dispersion for forming solar radiation-shielding body, and solar radiation-shielding body and method for producing the same
US20090216492A1 (en) Solar radiation shielding member and solar radiation shielding member forming fluid dispersion
JP2003176132A (en) Antimony-tin oxide particle for shielding insolation, coating solution for forming insolation shielding film and insolation shielding film
JP2008230954A (en) Manufacturing method for antimony-containing tin oxide fine particles for forming solar radiation shielding body, dispersion for forming solar radiation shielding body, solar radiation shielding body, and solar radiation shielding base material
JP3744188B2 (en) Heat ray shielding film forming coating solution and heat ray shielding film
JP4182825B2 (en) Antimony tin oxide fine particles for sunscreen, dispersion for forming sunscreen using the same, sunscreen and transparent substrate for sunscreen
EP1967495B1 (en) Manufacturing method for antimony-containing tin oxide fine particles for forming solar radiation shielding body, dispersion for forming solar radiation shielding body, solar radiation sheilding body, and solar radiation shielding base material
JP2004284904A (en) Method of producing sunbeam shielding material, sunbeam shielding material, coating liquid for forming sunbeam shielding film, and sunbeam shielding film
JP4120887B2 (en) In4Sn3O12 composite oxide fine particles for solar radiation shielding, method for producing the same, coating liquid for solar radiation shielding film formation, solar radiation shielding film, and solar radiation shielding substrate
JP3915880B2 (en) Method for producing fine particles for solar radiation shielding film formation
JP2002194291A (en) Method for preparing coating fluid for forming insolation shielding film
JP4200424B2 (en) Manufacturing method of solar shading material, coating liquid for forming solar shading film, solar shading film, and transparent base material for solar shading
JP4487787B2 (en) Solar-shielding boride fine particles, solar-shielding-body-forming dispersion liquid and solar-light shielding body using the boride-fine particles, method for producing solar-shielding boride fine particles, and method for producing solar-shielding body-forming dispersion liquid
JP2003215328A (en) Fine particles for sun protection, coating liquid for forming sun protection film containing the same and sun protection film
JP4941637B2 (en) Method for producing boride particles and boride particles
JP6413969B2 (en) Dispersion for forming solar shading body and solar shading body using the dispersion
JP4375531B2 (en) Method for producing boride fine particles
JP2002138271A (en) Manufacturing method of fine particle for heat ray shielding and manufacturing method of coating liquid for forming heat ray shielding film using the fine particle manufactured by the former method
JP4399707B2 (en) Method for producing boride fine particles for solar shading
JP2003327917A (en) Method for producing sun-shielding material, coating liquid produced by using the sun-shielding material and sun-shielding film
JP2012082109A (en) Method for producing tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material, tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material and dispersion for forming highly heat-resistant heat ray-shielding material, and highly heat-resistant heat ray-shielding material
JP2002201027A (en) Ito microparticle for daylight screening, method for producing the same, and coating liquid and daylight screening film using the same
JP2002146228A (en) Method for treating fine indium-tin oxide particle for forming sunshine-screening film and sunshine-screening film