JP2004277817A - High strength non-heat treated steel suitable for fracture separation, and forged part using the same - Google Patents

High strength non-heat treated steel suitable for fracture separation, and forged part using the same Download PDF

Info

Publication number
JP2004277817A
JP2004277817A JP2003071093A JP2003071093A JP2004277817A JP 2004277817 A JP2004277817 A JP 2004277817A JP 2003071093 A JP2003071093 A JP 2003071093A JP 2003071093 A JP2003071093 A JP 2003071093A JP 2004277817 A JP2004277817 A JP 2004277817A
Authority
JP
Japan
Prior art keywords
fracture
treated steel
fracture separation
heat treated
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003071093A
Other languages
Japanese (ja)
Other versions
JP4314851B2 (en
Inventor
Shinichiro Kato
進一郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2003071093A priority Critical patent/JP4314851B2/en
Publication of JP2004277817A publication Critical patent/JP2004277817A/en
Application granted granted Critical
Publication of JP4314851B2 publication Critical patent/JP4314851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide high strength non-heat treated steel for fracture separation which has high strength, improved fracture separation property and minimal deformation due to fracture separation and further can provide the resultant fracture surfaces with proper irregularities. <P>SOLUTION: The non-heat treated steel having a ferrite-pearlite structure and used for forged parts which can be obtained by being separated into two or more pieces by fracturing after hot forging has a composition consisting of, by weight, 0.2 to 0.6% C, 0.1 to 2% Si, 0.1 to 1.5% Mn, 0.03 to 0.2% S, 0.02 to 0.15% P, 0.03 to 1% Cu, 0.03 to 1% Ni, 0.05 to 1% Cr, 0.02 to 0.4% V, 0.01 to 0.8% Ti, 0.005 to 0.045% s-Al, 0.008 to 0.035% N and the balance Fe with inevitable impurities. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は鍛造後に2個以上に破断分離されるコネクティングロッド等の素材として好適な高強度非調質鋼及びこれを用いた鍛造部品に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
例えば図3に示す内燃往復エンジンのコネクティングロッド(以下コンロッド)200は、従来、図3に示しているようにその全体を鍛造で一体に成形加工し、そして仕上げの機械加工を施した後に分離部Pで機械加工により切断分離し、これにより小端部202とロッド部(Iセクション部)204と大端部206の半体206Aとを一体に有する本体側の第1部品と、大端部206の半体206Bからなる第2部品とに分離し、製造していた。
【0003】
しかしながらこの製造方法の場合、切断部分に切代として余分な材料を要するとともに、切断後に分離面を切削加工または研磨加工等によって仕上げる必要があり、多大な時間の浪費と価格の上昇をもたらしていた。
更に接合面の平面度や強度を確保するために、ある程度の表面積が必要となり、重量が増える問題があった。
更にこのような方法ではいくらクランクシャフト組付前に精度良く加工を施したとしても、加工後に分解してクランクシャフトに組付けるときに接合面で横滑りが生じ、組付精度即ち真円度が悪化する問題があった。
【0004】
このためノックピンを入れたり案内パイプを使用したりして横滑りを防止しているが、それでも十分な組付精度ないし組付状態での形状精度を確保できているわけではない。
またノックピンや案内パイプを設けることは価格の上昇をもたらすので好ましい方法とは言えない。
【0005】
そこで欧州ではノックピン等の廃止を目的とし、コンロッドを最終形状に一体に鍛造加工した後、破断分離によって上記の第1部品と第2部品とに分割する手法が用いられている。
このようにして得られたコンロッドの分割面即ち組付接合面は、機械加工面とは異なってランダムな凹凸を有する破断面であるので接合面での横滑りが生じず、従って精度良くこれを組付けることができる。
【0006】
現在欧州ではこのような破断分離加工によってコンロッドを製造するための材料としてXC70(フランス基準)型の鋼が用いられている。この鋼は米国特許5,135,587号等に紹介されており、ほぼ100%パーライト単一組織の鋼であって、重量%で0.6〜0.75%のCと0.2〜0.5%のMn、0.04〜0.12%のS(Mn/S>3)とを含み、残部は鉄と不可避不純物であり、不純物の含有率は1.2%を超えない化学組成のものである。
しかしながらこの鋼種は、専ら破断分離のし易さを主眼として開発された鋼種であり、従って上記のような破断分離加工には適しているものの、コンロッドとして必要な疲労強度や耐力が低く、更に被削性も悪いといった問題があり、自動車用部品としては適していない。
このため疲労強度,耐力に優れ、また被削性も良好で破断分離に適した鋼種の開発が求められている。
【0007】
これまでも破断分離が可能な非調質鋼は開発されており、例えば下記特許文献1には、高強度で破断分離が可能なコンロッド用非調質鋼が提案されている。
しかしながらこれらの求めるところは、機械加工で付与した切欠きを起点に破断分離してフラットな破面を得ることであり、破断面が適度な凹凸を有していないために、エンジンへの組付時やエンジン回転中に接合面での横滑りが生じ、真円度が劣化する恐れがある問題がある。
【0008】
以上コンロッドを例として説明したが、かかるコンロッドのように鍛造後に2個以上の個別部品に分離してクランクシャフトに連接する部品或いは鍛造後に破断分離して製造されるその他の部品においても事情はほぼ同様である。
【0009】
【特許文献1】
特開平7−338650号公報
【0010】
【課題を解決するための手段】
本発明の破断分離に適した高強度非調質鋼及びこれを用いた鍛造部品はこのような課題を解決するために案出されたものである。
而して請求項1は高強度非調質鋼に関するもので、重量%で、C :0.2〜0.6%,Si:0.1〜2%,Mn:0.1〜1.5%,S :0.03〜0.2%,P :0.02〜0.15%,Cu:0.03〜1%,Ni:0.03〜1%,Cr:0.05〜1%,V :0.02〜0.4%, Ti:0.01〜0.8%,s−Al:0.005〜0.045%,N :0.008〜0.035%残部不可避的不純物及びFeから成り、熱間鍛造後において破断により2個以上に分離される鍛造部品用のフェライトパーライト組織を有することを特徴とする。
【0011】
請求項2のものは、請求項1において、鋼中のTiN介在物の最大直径が5μm以上且つその量が数密度で5個/mm以上であることを特徴とする。
【0012】
請求項3のものは、請求項1,2の何れかにおいて、パーライト面積率が20%以上であることを特徴とする。
【0013】
請求項4のものは、請求項1〜3の何れかにおいて、以下の式(1)及び式(2)を満たすことを特徴とする。
式(1):0.65≦C−0.125Ti+0.428N+0.07Si+0.16Mn−0.27S+0.61P+0.19Cu+0.17Ni+0.2Cr+V≦0.96
式(2):134C−3.6Si+24Mn+22Cu+32Ni+30Cr−12Ti+41N≧31
【0014】
請求項5のものは、請求項1〜4の何れかにおいて、下記A群の成分の何れか1種若しくは2種以上及び/又は下記B群の成分の何れか1種若しくは2種以上を重量%で下記量で更に含有することを特徴とする。
A群 Pb:≦0.3%,Te:≦0.3%,Ca:≦0.01%,Bi:≦0.3%
B群 Nb:≦0.2%,Zr:≦0.5%,B :≦0.01%
【0015】
請求項6は鍛造部品に関するもので、請求項1〜5の非調質鋼を熱間鍛造して成り、破断分離後の破面の表面粗さRaが10μm以上であることを特徴とする。
【0016】
請求項7のものは、請求項6において、前記鍛造部品が内燃エンジン用のコネクティングロッドであることを特徴とする。
【0017】
【作用】
以上の本発明は、非調質鋼にTi,N,Sを所定量含有させることで鋼中に主としてTiN介在物を析出させ、かかるTiN介在物を所定の存在確率で存在させて、破断分離の際の亀裂の進行方向をTiN介在物で変化させることにより破面に凹凸を付与するものである。
また添加したTiはC及びSと結合してチタン炭硫化物を生成し、その生成によってドリル加工時の被削性を高めることができる。
【0018】
かかる本発明によれば、高強度で被削性も良く、また破断分離性能にも優れていて、なお且つ破面に良好な凹凸を形成することのできる高強度非調質鋼を提供することができる。
【0019】
TiN介在物による効果、即ち亀裂の進行方向を変化させる効果はTiN介在物が大きく且つ密度が高いほど大となる。
この意味においてTiN介在物は最大直径が5μm以上で且つその量が数密度で5個/mm以上としておくことが望ましい(請求項2)。
【0020】
更に本発明においては、請求項3に従いパーライト面積率を20%以上としておくことが望ましい。
破断分離の際の亀裂の進行方向は、亀裂がパーライトブロックに当ることによっても変化する。
而してパーライトブロックが一定以上の確率で存在していることによって、亀裂の進行方向を変化させる作用も大となり、この意味においてパーライト面積率は20%以上としておくことが望ましい。
【0021】
本発明では、請求項4に従って式(1),式(2)を満たすように各成分を調整しておくことが望ましい。
ここで式(1)は硬さを規定する式であり、また式(2)はパーライト面積率を規定する式である。
【0022】
本発明では、更に請求項5に規定する各成分を選択的元素として添加することができる。
また本発明の非調質鋼は、熱間鍛造後において鍛造品を破断分離したとき、破面の表面粗さRaが10μm以上となるようにしておくことが望ましい(請求項6)。
このように破面の表面粗さRaを10μm以上となしておくことで、再組付けの際の組付精度を高めることができるとともに再組付けをしたとき若しくはその後の横滑りを良好に防止することができる。
【0023】
本発明は特に内燃エンジン用のコネクティングロッドに適用して効果的なものである(請求項7)。
【0024】
次に本発明における各化学成分等の限定理由を以下に詳述する。
C:0.2〜0.6%
Cは強度を確保するために必要な元素であるとともに、適度な凹凸を有する破面を得るために必要な元素である。
本発明鋼のようなフェライト・パーライト組織の場合、脆性的な破壊を生じる場合の破面はフェライト・パーライト組織境界のみならず、パーライトブロックの境界で亀裂進展方向が変化する。
よって適度なパーライト量、即ちパーライトブロックサイズを有することは、亀裂を直線的に進行させず、ある程度のばらつきで亀裂進行させることができるために必要で、これにより適度な凹凸を有する破面を得ることができる。
周知の通りパーライト量はC含有量の影響を大きく受けるため、適度な破面の凹凸を得るためにも0.2%以上のC含有が必要である。
しかし過剰に添加すると硬さが高くなり被削性が低下するので、0.6%以下とする必要がある。
【0025】
Si:0.1〜2%
Siは鋼溶製時において脱酸作用および脱硫作用を有しているとともに、フェライト中に固溶し、破断分離時の塑性変形の主な原因である軟質相のフェライトの強度を向上させることによる脆性破面率を高め、破断面の密着性を向上させる。
このような効果を得るためには0.1%以上含有させることが必要である。
しかし多量の含有は硬さを高くし過ぎて被削性を低下させるので2%以下とする。
【0026】
Mn:0.1〜1.5%,Cr:0.05〜1%
Mn,Crは部品の強度を確保するのに有効な元素であるとともにパーライト量を増加させるため、破断分離時の適度な破面の凹凸を確保するためには必須な元素である。
このような効果を得るためにはMn:0.1%以上,Cr:0.05%以上含有させることが必要である。
しかしながら多量に添加するとパーライトラメラ間隔を小さくして延性向上,破断分離性の悪化を招くとともに鍛造後にベイナイトを発生させ、硬さを著しく増加させて被削性を低下させてしまうため、それぞれの上限をMn:1.5%,Cr:1%とする。
【0027】
P:0.02〜0.15%
Pは通常粒界への偏析により靭性を低下させる元素として低く抑えるのが一般的であるが、破断分離を行う本発明においては脆性破面率を高め、破断面の密着性を向上させる元素として非常に有効に作用するため、積極的な添加を行う。
しかし多量に添加してもその効果が飽和する上、熱間加工性を阻害してしまうため0.02〜0.15%とした。
【0028】
S:0.03〜0.2%
一般にSはMnと硫化物を生成し、被削性を改善するために添加される。
またSは、添加された全量又はその一部がCとともにTiと結合してTiの炭硫化物系介在物を形成し、ドリル被削性を向上させる効果がある。
更に適度なSの添加はPと同様粒界脆化を起こし、脆性破面率を高め、破断面の密着性を向上させる上で有用である。
しかし必要以上に添加しても熱間加工性を劣化させるため、上限を0.2%とする。
【0029】
Cu,Ni:0.03〜1%
Cu,Niは不可避的に鋼に含まれて来る元素であり、0.03%以下にすることは多大な努力を必要とし経済的に不利である。
一方Mn,Crと同様に強度を高めるためには有効な元素であるが多量の添加も同様に経済的に不利となるのみならずベイナイトの発生を招き、被削性を大幅に低下させるためその上限を1%以下にする。
【0030】
V:0.02〜0.4%
VはCやNと化合して微細な炭窒化物を形成し、鍛造後の強度を高くするので、そのために含有させる元素である。その効果を得るためには0.02%以上含有させる。
但し多くなると効果が飽和し、更に硬さ増加により被削性を低下させるので上限を0.4%とする。
【0031】
Ti:0.01〜0.8%
TiはVと同様、炭素や窒素と微細な炭(窒)化物を生成し、鍛造後の強度を高める元素である。
またTiは添加された全量又はその一部がC,Sと結合してTiの炭硫化物系介在物を形成することにより、ドリル被削性を向上させる効果がある。
更にTiは適度な破面を得るために有効なTiNの生成に必要な元素である。適度なTiNの晶出は、亀裂の発生及び亀裂進展方向の変化のために重要な働きをなす。
その効果を得るためためには0.01%以上の含有が必要である。
一方0.8%を超えて含有させてもその効果が飽和し、経済的に不利であるのみならず過度の添加は熱間加工性を阻害するため上限を0.8%とする。
【0032】
sol−Al:0.005〜0.045%
酸溶解性Alは鋼中のNと窒化物を形成し、微細に分散して熱間鍛造時の結晶粒成長を抑制する。
この効果を確実にするためには0.005%以上の存在が必要である。
一方多量に存在しても効果が飽和するのみでなく、結晶粒微細化により材料の延性が向上し、破断分離後の破面の密着性低下につながるため0.045%以下にする必要がある。
【0033】
N:0.008〜0.035%
Nは適度な破面の凹凸を形成するために必要なTiN介在物の形成のために必須な元素である。
また適度な大きさ且つ適度な量で晶出したTiN介在物は適度な凹凸を有する破面の確保には非常に有効となる。
このような効果を得るためにはNは0.008%以上の添加が必要である。
しかし過度に添加するとTiN介在物の過度の晶出の原因となり、而して過度のTiN介在物はドリル被削性低下の原因となるため上限を0.035%とする。
また微細析出したTi炭(窒)化物はフェライト強化によりマトリックスの強度を増し、鍛造後の強度を高める効果も有するため、この意味でも適量のN添加が必要である。
【0034】
本発明鋼には、上記成分に加え、被削性向上のためにPb,Te,Ca,Biのうちから選ばれる1種又は2種以上を含んでいても良い。
更にはこれに加えてNb,Zr,Bの1種又は2種以上を含んでいても良い。
これらの合金元素の効果と含有量を限定する理由について説明する。
【0035】
Pb:0.3%以下,Te:0.3%以下,Ca:0.01%以下,Bi:0.3%以下
Pb,Te,Ca,Biは何れも被削性を向上させるのに有効な元素であるので、鍛造品において被削性が更に良好であることが要求される場合には必要に応じてこれらのうちから選ばれる1種又は2種以上を適量添加する。
しかしながら添加量が多過ぎると強度や熱間加工性を低下させるので、添加するとしてもPbは0.3%以下、Teは0.3%以下、Caは0.01%以下、Biは0.3%以下とする。
【0036】
Nb:0.2%以下,Zr:0.5%以下,B:0.01%以下
Nb,Zrは高温における結晶粒の過度の粗大化を防ぐのに有効な元素であるが、過剰に添加すると粗大な炭窒化物が凝固時晶出し、部品強度を著しく低下してしまうため、添加するとしてもNbは0.2%以下、Zrは0.5%以下とする。
Bは焼入性を向上させ強度を高めるのに有効な元素であるが、過剰に添加すると熱間加工性の悪化を招くため0.01%以下とする。
【0037】
鋼中TiN介在物の最大直径が5μm以上且つその量が数密度で5個/mm以上
本発明鋼は適度な量のTiを添加するため、Ti炭(窒)化物が微細析出する。
微細析出したTi炭(窒)化物はフェライト強化によりマトリックスの強度を増すため鍛造後の強度を高めるには有効であるが、破断分離時の亀裂進展は直線的となり、破面は凹凸の少ない、フラットな脆性破面となる原因となる。
しかし適度な大きさで晶出したTiN介在物は破断分離時の亀裂進行方向を変える効果を有する。
よってある程度の大きさを有し且つ適度な量で晶出したTiN介在物の存在は、適度な凹凸を有する破面の確保には非常に有効となる。
またTiN晶出介在物は弾性率が低く且つマトリックスとの密着性が良いため亀裂を効果的に進展させる効果もあり、脆性破面率を高め、破断面の密着性を向上させる効果も有する。
このような効果を得るためにはTiN介在物の大きさは最大直径で5μm以上且つその量が数密度で5個/mm以上である必要がある。
また上記を得るためにはTi及びNが質量%で0.01%以上,0.008%以上であることが必要で、製造時の鋼塊の凝固速度は5℃/min以上であることが望ましい。
【0038】
式(1):0.65≦C−0.125Ti+0.428N+0.07Si+0.16Mn−0.27S+0.61P+0.19Cu+0.17Ni+0.2Cr+V≦0.96
上式はコンロッド等として適切な強度を得るために必要な炭素当量(Ceq)を規定している。
一般に自動車エンジンに用いられるコンロッドの硬さは20〜35HRCであり、20HRC以下では十分な強度が得られないとともに破断分離時の変形が大きく、破断分離工程を適用できない。
一方35HRC以上では被削性が低下するためコンロッドの加工に多大なコストを要する。
このため20〜35HRCに硬さを調整するのが望ましい。
このような硬さを得るために炭素当量(Ceq)を0.65〜0.96とする。
【0039】
式(2):134C−3.6Si+24Mn+22Cu+32Ni+30Cr−12Ti+41N≧31
前述のように、本発明鋼のようなフェライト・パーライト組織の場合、脆性的な破壊を生じる際の破面はフェライト・パーライト組織境界のみならず、パーライトブロックの境界で亀裂進行方向が変化する。
よって適度なパーライト量、即ちパーライトブロックサイズを有することは、亀裂の直線的な進行ではなく、ある程度の亀裂進行方向の変化による破面の適度な凹凸のため望ましい。
そのためにはパーライト面積率を20%以上にすることが望ましい。
このパーライト面積率はCだけではなくSi,Mn,Cu,Ni,Cr含有量の影響を受けて変化する。そこでパーライト面積率を20%以上にするため、式(2)を満足させることが望ましい。
【0040】
破断分離後の表面粗さRaが10μm以上
破断分離後の表面粗さが小さいと、コンロッド等組付時の横ずれの原因となり、製造工程内での能率低下及び精度低下の原因となる。
このため高能率で精度良く組付けを行うためには、破断分離によって得られる表面粗さRaが10μm以上であることが望ましい。
この表面粗さは、適度なパーライト面積率を有し且つ適度な大きさ且つ適度な量のTiN介在物の晶出により達成することができる。
【0041】
【実施例】
次に本発明の実施例を以下に詳述する。
表1及び表2に示す化学組成の本発明鋼及び比較鋼を溶製した後造塊し、熱間鍛造を行って50mm角の鍛造素材とし、これを1200℃で60分加熱保持した後、65×65×20mmの板に熱間鍛造を行い、適当な間隔をおいて床に放置し室温まで放冷した。
この板材より、図1に示しているようなコンロッドの大端部を模擬した試験片10を切出し、試験に供した。
図1において12は試験片10の中央穴であり、14はボルトを挿入して破断分離後の一対の分離体を締結するためのボルト締結孔である。
【0042】
また一部の供試材についてドリル加工能率を測定し、被削性の評価を行った。
硬さは各鍛造品の中心部の硬さをロックウェル硬度計で測定した。
またパーライト面積率は100倍で撮影した光学顕微鏡組織写真を用い画像解析装置で求めた。
【0043】
更に鋼中TiN介在物は、熱間鍛造材より試料を鍛造方向と平行に切り出し、鏡面研磨を行った後、倍率400倍で光学顕微鏡観察を60視野観察し、他の介在物と区分しながらその個数を測定した後、その個数を測定面積で除した値を数密度(個/mm)と定義し調査を行った。
また介在物最大直径も同様に倍率400倍の光学顕微鏡観察を60視野実施し調査した。
【0044】
破断分離特性は、大端部を模した試験片10に機械加工で深さ0.5mm,先端R0.1mmの形状の切欠16を施した後、室温で破断分離を行い、その時の真円度変化で評価した。
ここで真円度変化は靭性を表す指標としての意味を有している。即ち靭性が低く脆い材料は破断分離がし易く、且つ破断分離後において変形の程度も小さくなって真円度変化は小さくなる。
一方で靭性の高い材料は破断分離の際の破面の凹凸が靭性の低い材料に比べて大きくなる一方で、破断分離の際に割れ難いためにその際の変形の程度が大きくなって、真円度変化が大きくなる。
そこでここでは破断分離特性を調べるため、真円度変化を調査してその評価を行った。
【0045】
また破断後の破面22(図2(B)参照)を接触式粗さ計で測定し、Raを求めて破面の凹凸度合いを定量化した。
ここで破断分離は、図2(A)に示しているように試験片10の中央穴12に2分割の割型18を挿入し、その割型18の間にクサビ20を挿入して、これを油圧プレスで押し込むことにより実施した。
【0046】
更に鍛造材より引張試験片を切り出し、コンロッドの座屈強度の評価に用いられる0.2%耐力の測定を行った。
更に工具寿命は、以下の表5に示す条件によるドリル試験を行って測定した。
これらの結果を、発明鋼No.1を100とした場合の相対的な値でドリル加工能率として表3及び表4に示している。
また比較のために、従来鋼として欧州で破断分離工程が適用されるコンロッド用非調質鋼XC70の試験結果も併せて示した。
【0047】
尚本発明例及び比較例の各鋼には、表1及び表2に示す成分の他に、鋼に通常含まれるMo:≦0.05%,O:≦0.005%の不純物が含まれている。
また今回の試験では発明鋼,比較鋼とも、その鋼塊の凝固速度は5℃/min以上であった。
【0048】
【表1】

Figure 2004277817
【0049】
【表2】
Figure 2004277817
【0050】
【表3】
Figure 2004277817
【0051】
【表4】
Figure 2004277817
【0052】
【表5】
Figure 2004277817
【0053】
これらの表の結果に見られるように、本発明の条件を満たす成分のNo.1〜15では何れも高い強度を有しており、しかも破断分離後の真円度変化が小さいにも拘らず破面の凹凸が大きく、優れた破断分離特性を有している。
尚各実施例ではフェライトブロックのサイズが何れも15μm以上であった。
【0054】
これに対して比較例のものは以下のような問題点を有している。
先ず比較例Aは、C含有量が本発明の下限値である0.2%よりも低い0.11%であり、このため硬さが低く強度低下,破断後の真円度変化の増大に繋がっている。
またパーライト面積率が小さいため、破断粗さも小さく最組付性が悪いものとなっている。
【0055】
比較例Bは、逆にCの含有量が本発明の上限値である0.6%よりも高い0.65%であり、このため硬さが硬く被削性の点で問題がある。
【0056】
比較例Cは、Siの含有量が本発明の上限値である2%よりも多い2.80%であり、このため硬さが硬く被削性が悪化している。
【0057】
比較例Dは、Sの含有量が本発明の下限値である0.03%よりも低い0.005%であり、そのため被削性が悪化している。また真円度変化もやや大きい。
【0058】
比較例Eは、Sの含有量が高く、熱間鍛造時に割れが発生している。
【0059】
次に比較例Fは、Mn含有量が本発明の下限値である0.1%よりも低い0.03%であり強度不足となっている。
【0060】
比較例Gは、逆にMn含有量が本発明の上限値である1.5%よりも多い1.73%であり、そのため鍛造後にベイナイトが発生し、硬さが非常に高く、被削性が悪くなっている。
【0061】
比較例Hは、P含有量が低いため、破断分離後の真円度変化が大きくなっている。
【0062】
比較例Iは、P含有量が0.19%となっており、本発明の上限値の0.15%よりも高過ぎるため鍛造時に割れが発生している。
【0063】
比較例Jは、Cr含有量が1.52%と本発明の上限値である1%よりも高過ぎるため、鍛造後にベイナイトが発生し、硬さが非常に高くなり被削性が悪い。
【0064】
比較例Kは、V含有量が0.01%で本発明の下限値である0.02%よりも低いため、硬さが低く強度不足である。また真円度変化の値も悪い。
【0065】
比較例Lは、V含有量が0.44%と本発明の上限値である0.4%よりも高過ぎるため、硬さが高く被削性が悪くなっている。
【0066】
比較例Mは、Tiが無添加であるため、同一硬さの実施例と比べ強度が低下しているとともに、TiN生成量が実質的に無いため破断分離後の粗さが小さくなっている。また被削性も悪化している。
【0067】
比較例Nは、Ti含有量が0.852%と本発明の上限値である0.8%よりも高過ぎるため、熱間鍛造時に割れが発生している。
【0068】
比較例Oは、Al含有量が0.003%と本発明の下限値である0.005%よりも少なく、脱酸が不十分で鋳造欠陥が発生した。
【0069】
比較例Pは、N含有量が0.006%と本発明の下限値である0.008%よりも少ないため、破断分離後の適度な破面粗さに必要な数密度及び大きさのTiNが形成されず再組付性が悪い。
【0070】
比較例Qは、逆にN含有量が0.036%と本発明の上限値である0.035%よりも高いため鋳造欠陥が発生している。
【0071】
比較例Rは、快削元素を過剰に添加しているため熱間鍛造時割れが発生している。
【0072】
比較例Sは、快削元素を過剰に添加しているため熱間鍛造時割れが発生している。
【0073】
比較例Tは、Cuが1.12%と本発明の上限値である1%よりも高過ぎ、熱間鍛造後空冷ままでもベイナイトが発生し、硬さが著しく高く被削性も悪化している。
【0074】
比較例Uは、Niが1.23%と本発明の上限値の1%よりも高過ぎるため、熱間鍛造後空冷ままでもベイナイトが発生し、硬さが著しく高く被削性も悪化している。
【0075】
以上のように本実施例のものは、相反する特性であるところの真円度変化と表面粗さの両特性が共に良好となっている。また併せて優れたドリル加工性を備えている。
更に従来材(XC70)との比較からも明らかなように、かかるXC70に対し高い強度を保持している。
【0076】
以上本発明の実施例を詳述したがこれはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。
【0077】
【発明の効果】
以上の本発明によれば、高強度でしかも破断分離特性が良好であり、破断分離の際の歪みないし変形が小さくしかも破面に良好な凹凸を付与し得て、再組付時の組付精度が高く保持でき、更にその後における横ずれも良好に防止することのできる破断分離用の高強度非調質鋼を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例において作成した試験片の形状を示す図である。
【図2】(A) 図1の試験片の破断分離方法の説明図である。
(B) 上記試験片の破断状態及び再組付状態を示す図である。
【図3】従来のコンロッドの一例を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-strength non-heat treated steel suitable as a material for a connecting rod or the like which is broken and separated into two or more pieces after forging, and a forged part using the same.
[0002]
Problems to be solved by the prior art and the invention
For example, a connecting rod (hereinafter referred to as a connecting rod) 200 of an internal combustion reciprocating engine shown in FIG. 3 is conventionally formed integrally by forging as shown in FIG. The first part on the main body side having the small end portion 202, the rod portion (I-section portion) 204, and the half body 206A of the large end portion 206 integrally, and the large end portion 206 And a second part consisting of the half body 206B of the above.
[0003]
However, in the case of this manufacturing method, an extra material is required as a cutting allowance in a cut portion, and it is necessary to finish the separation surface by cutting or polishing after cutting, resulting in a great waste of time and an increase in price. .
Further, in order to secure the flatness and strength of the joint surface, a certain surface area is required, and there is a problem that the weight increases.
Furthermore, even if such a method is applied with high precision before assembling the crankshaft, side slip occurs on the joint surface when disassembling and assembling to the crankshaft after the machining, and the assembling accuracy, that is, the roundness deteriorates. There was a problem to do.
[0004]
For this reason, the side slip is prevented by inserting a knock pin or using a guide pipe. However, sufficient assembling accuracy or shape accuracy in an assembled state cannot be ensured.
Providing a knock pin or a guide pipe is not a preferable method because it increases the price.
[0005]
Therefore, in Europe, for the purpose of abolition of knock pins and the like, a method of integrally forging a connecting rod into a final shape and then dividing the connecting rod into the first part and the second part by breaking and separating is used.
The dividing surface of the connecting rod thus obtained, that is, the assembling joint surface is different from the machined surface and has a fractured surface having random irregularities, so that no side slip occurs at the joint surface, and therefore, the joining surface is assembled with high accuracy. Can be attached.
[0006]
At present, in Europe, XC70 (French standard) type steel is used as a material for manufacturing a connecting rod by such a fracture separation process. This steel is introduced in U.S. Pat. No. 5,135,587, etc., and has almost 100% pearlite single-structured steel, containing 0.6 to 0.75% of C and 0.2 to 0% by weight. 0.5% Mn, 0.04-0.12% S (Mn / S> 3), the balance being iron and unavoidable impurities, the chemical composition of which the impurity content does not exceed 1.2% belongs to.
However, this type of steel was developed mainly for the purpose of easy break separation, and is therefore suitable for the above-mentioned break separation processing, but has low fatigue strength and proof strength required for connecting rods, and furthermore, There is a problem that the machinability is poor, and it is not suitable as an automobile part.
For this reason, there is a demand for the development of a steel type that is excellent in fatigue strength and proof stress, has good machinability, and is suitable for fracture separation.
[0007]
Unheated steel capable of breaking and separating has been developed so far. For example, Patent Document 1 listed below proposes a non-heat treated steel for connecting rods capable of breaking and separating with high strength.
However, what is required is to obtain a flat fracture surface by breaking and separating from the notch provided by machining, and since the fracture surface does not have appropriate unevenness, it is assembled to the engine. There is a problem that side slip occurs at the joint surface at the time or during rotation of the engine, and the roundness may be deteriorated.
[0008]
Although the connecting rod has been described as an example above, the situation is almost the same for such connecting rod as a part that is separated into two or more individual parts after forging and connected to the crankshaft or other parts that are manufactured by forging and separated after forging. The same is true.
[0009]
[Patent Document 1]
JP-A-7-338650
[0010]
[Means for Solving the Problems]
The high-strength non-heat treated steel suitable for fracture separation of the present invention and a forged part using the same have been devised to solve such problems.
Claim 1 relates to a high-strength non-heat treated steel, in which, by weight%, C: 0.2 to 0.6%, Si: 0.1 to 2%, and Mn: 0.1 to 1.5%. %, S: 0.03 to 0.2%, P: 0.02 to 0.15%, Cu: 0.03 to 1%, Ni: 0.03 to 1%, Cr: 0.05 to 1% , V: 0.02 to 0.4%, Ti: 0.01 to 0.8%, s-Al: 0.005 to 0.045%, N: 0.008 to 0.035% Remaining unavoidable impurities And a ferrite pearlite structure for a forged part which is composed of Fe and Fe and is separated into two or more pieces by fracture after hot forging.
[0011]
According to a second aspect, in the first aspect, the maximum diameter of the TiN inclusion in the steel is 5 μm or more and the amount is 5 / mm in number density. 2 It is characterized by the above.
[0012]
According to a third aspect, in any one of the first and second aspects, the pearlite area ratio is 20% or more.
[0013]
According to a fourth aspect, in any one of the first to third aspects, the following formulas (1) and (2) are satisfied.
Formula (1): 0.65 ≦ C−0.125Ti + 0.428N + 0.07Si + 0.16Mn−0.27S + 0.61P + 0.19Cu + 0.17Ni + 0.2Cr + V ≦ 0.96
Formula (2): 134C-3.6Si + 24Mn + 22Cu + 32Ni + 30Cr-12Ti + 41N ≧ 31
[0014]
According to a fifth aspect, in any one of the first to fourth aspects, any one or more of the following components of Group A and / or one or more of the components of the following Group B are weighed. %, And the following amount is further included.
Group A Pb: ≦ 0.3%, Te: ≦ 0.3%, Ca: ≦ 0.01%, Bi: ≦ 0.3%
Group B Nb: ≦ 0.2%, Zr: ≦ 0.5%, B: ≦ 0.01%
[0015]
A sixth aspect of the present invention relates to a forged part, which is formed by hot forging the non-heat treated steel of the first to fifth aspects, and is characterized in that the fracture surface after fracture separation has a surface roughness Ra of 10 μm or more.
[0016]
According to a seventh aspect, in the sixth aspect, the forged part is a connecting rod for an internal combustion engine.
[0017]
[Action]
The present invention as described above includes a method in which TiN, S, and S are contained in a predetermined amount in a non-heat-treated steel to mainly precipitate TiN inclusions in the steel, and the TiN inclusions are present with a predetermined existence probability to cause fracture separation. In this case, irregularities are imparted to the fractured surface by changing the direction of progress of the crack with TiN inclusions.
In addition, the added Ti combines with C and S to form titanium carbosulfide, and the formation of titanium carbide can enhance machinability during drilling.
[0018]
According to the present invention, there is provided a high-strength non-refined steel having high strength, good machinability, excellent break separation performance, and capable of forming good irregularities on a fracture surface. Can be.
[0019]
The effect of the TiN inclusions, that is, the effect of changing the direction of crack propagation, increases as the TiN inclusions increase in size and density.
In this sense, the TiN inclusion has a maximum diameter of 5 μm or more and an amount of 5 / mm in number density. 2 It is desirable to keep the above (claim 2).
[0020]
Further, in the present invention, it is desirable to set the pearlite area ratio to 20% or more according to claim 3.
The direction of progress of the crack at the time of fracture separation also changes when the crack hits the pearlite block.
Since the pearlite block exists with a certain probability or more, the effect of changing the direction in which the crack propagates is also large, and in this sense, the pearlite area ratio is desirably set to 20% or more.
[0021]
In the present invention, it is desirable to adjust each component so as to satisfy the equations (1) and (2) according to claim 4.
Here, equation (1) is an equation that defines the hardness, and equation (2) is an equation that defines the pearlite area ratio.
[0022]
In the present invention, each component defined in claim 5 can be further added as a selective element.
In the non-heat-treated steel of the present invention, it is preferable that the surface roughness Ra of the fracture surface is 10 μm or more when the forged product is fractured and separated after hot forging (claim 6).
By setting the surface roughness Ra of the fractured surface to 10 μm or more in this way, the assembling accuracy at the time of reassembly can be increased, and the sideslip at the time of reassembly or thereafter can be prevented well. be able to.
[0023]
The present invention is particularly effective when applied to a connecting rod for an internal combustion engine (claim 7).
[0024]
Next, the reasons for limiting each chemical component in the present invention will be described in detail below.
C: 0.2-0.6%
C is an element necessary for securing the strength and an element necessary for obtaining a fractured surface having moderate irregularities.
In the case of a ferrite-pearlite structure such as the steel of the present invention, the fracture surface when brittle fracture occurs varies not only at the boundary of the ferrite-pearlite structure but also at the boundary of the pearlite block.
Therefore, it is necessary to have an appropriate amount of pearlite, that is, having a pearlite block size, so that the crack does not progress linearly and the crack can progress with a certain degree of variation, thereby obtaining a fracture surface having appropriate unevenness. be able to.
As is well known, the pearlite amount is greatly affected by the C content, so that 0.2% or more of the C content is necessary in order to obtain appropriate fracture surface irregularities.
However, if added in excess, the hardness increases and the machinability decreases, so the content needs to be 0.6% or less.
[0025]
Si: 0.1 to 2%
Si has a deoxidizing action and a desulfurizing action when steel is melted, and also forms a solid solution in ferrite, thereby improving the strength of the soft phase ferrite, which is the main cause of plastic deformation during fracture separation. Increases the brittle fracture rate and improves the adhesion of the fracture surface.
In order to obtain such an effect, it is necessary to contain 0.1% or more.
However, if the content is too large, the hardness becomes too high and the machinability is reduced.
[0026]
Mn: 0.1-1.5%, Cr: 0.05-1%
Mn and Cr are elements that are effective for securing the strength of the component and increase the amount of pearlite, and thus are essential elements for securing appropriate unevenness of the fracture surface during fracture separation.
In order to obtain such an effect, it is necessary to contain Mn: 0.1% or more and Cr: 0.05% or more.
However, when added in a large amount, the pearlite lamella spacing is reduced, thereby improving ductility and deteriorating fracture separation, and also generates bainite after forging, significantly increasing hardness and decreasing machinability. Are Mn: 1.5% and Cr: 1%.
[0027]
P: 0.02 to 0.15%
P is generally suppressed to be low as an element that lowers toughness due to segregation to the grain boundary, but in the present invention that performs fracture separation, as an element that increases the brittle fracture surface rate and improves the adhesion of the fracture surface Because it works very effectively, aggressive additions are made.
However, even if it is added in a large amount, the effect is saturated and the hot workability is impaired, so the content was made 0.02 to 0.15%.
[0028]
S: 0.03-0.2%
Generally, S forms sulfide with Mn and is added to improve machinability.
Further, S has an effect of improving the drill machinability, in which the whole or a part of S added is combined with Ti together with C to form Ti carbosulfide-based inclusions.
Further, an appropriate addition of S causes grain boundary embrittlement like P, and is useful for increasing the brittle fracture surface area and improving the adhesion of the fracture surface.
However, if added more than necessary, the hot workability deteriorates, so the upper limit is made 0.2%.
[0029]
Cu, Ni: 0.03 to 1%
Cu and Ni are elements unavoidably contained in steel, and making the content of 0.03% or less requires great effort and is economically disadvantageous.
On the other hand, like Mn and Cr, they are effective elements for increasing the strength, but the addition of a large amount is not only economically disadvantageous but also leads to the formation of bainite, which greatly reduces the machinability. The upper limit is set to 1% or less.
[0030]
V: 0.02 to 0.4%
V combines with C and N to form fine carbonitrides and increases the strength after forging, and is an element to be contained for that purpose. In order to obtain the effect, the content is made 0.02% or more.
However, when the content increases, the effect saturates and the machinability further decreases due to the increase in hardness. Therefore, the upper limit is set to 0.4%.
[0031]
Ti: 0.01 to 0.8%
Like V, Ti is an element that generates fine carbon (nitride) with carbon and nitrogen to increase the strength after forging.
Further, the whole or a part of the added Ti is combined with C and S to form Ti carbosulfide-based inclusions, thereby improving drill machinability.
Further, Ti is an element necessary for producing TiN effective for obtaining an appropriate fracture surface. Moderate crystallization of TiN plays an important role for crack initiation and changes in crack propagation direction.
In order to obtain the effect, the content needs to be 0.01% or more.
On the other hand, if the content exceeds 0.8%, the effect is saturated and not only is it economically disadvantageous, but excessive addition impairs hot workability, so the upper limit is made 0.8%.
[0032]
sol-Al: 0.005 to 0.045%
The acid-soluble Al forms nitrides with N in the steel and is finely dispersed to suppress the crystal grain growth during hot forging.
To ensure this effect, 0.005% or more is required.
On the other hand, even if a large amount is present, the effect is not only saturated, but also the ductility of the material is improved due to the refinement of the crystal grains, and the adhesion of the fracture surface after fracture separation is reduced, so that the content needs to be 0.045% or less. .
[0033]
N: 0.008 to 0.035%
N is an element indispensable for forming TiN inclusions necessary for forming appropriate fractured surface irregularities.
Further, TiN inclusions crystallized in an appropriate size and in an appropriate amount are very effective in securing a fracture surface having appropriate irregularities.
In order to obtain such an effect, it is necessary to add N at 0.008% or more.
However, excessive addition causes excessive crystallization of TiN inclusions, and excessive TiN inclusions lower the drill machinability, so the upper limit is made 0.035%.
Further, the finely precipitated Ti carbide (nitride) also has the effect of increasing the strength of the matrix by strengthening the ferrite and also increasing the strength after forging. Therefore, in this sense, it is necessary to add an appropriate amount of N.
[0034]
The steel of the present invention may contain, in addition to the above components, one or more selected from Pb, Te, Ca, and Bi for improving machinability.
Further, in addition to this, one or more of Nb, Zr, and B may be included.
The effects of these alloy elements and the reasons for limiting the contents will be described.
[0035]
Pb: 0.3% or less, Te: 0.3% or less, Ca: 0.01% or less, Bi: 0.3% or less
Since Pb, Te, Ca, and Bi are all effective elements for improving machinability, if it is required that forged products have better machinability, these elements may be used as necessary. One or two or more selected from them are added in an appropriate amount.
However, if the addition amount is too large, the strength and hot workability decrease, so even if added, Pb is 0.3% or less, Te is 0.3% or less, Ca is 0.01% or less, and Bi is 0.1% or less. 3% or less.
[0036]
Nb: 0.2% or less, Zr: 0.5% or less, B: 0.01% or less
Nb and Zr are effective elements for preventing excessive coarsening of crystal grains at a high temperature. However, if added excessively, coarse carbonitrides are crystallized during solidification, and the strength of parts is significantly reduced. Even so, Nb is set to 0.2% or less and Zr is set to 0.5% or less.
B is an element effective for improving hardenability and increasing strength. However, if added excessively, hot workability is deteriorated, so that the content of B is set to 0.01% or less.
[0037]
The maximum diameter of TiN inclusions in steel is 5 μm or more and the amount is 5 / mm in number density. 2 that's all
In the steel of the present invention, an appropriate amount of Ti is added, so that Ti carbide (nitride) is finely precipitated.
The finely precipitated Ti carbon (nitride) is effective in increasing the strength of the matrix after forging because it increases the strength of the matrix by ferrite reinforcement. However, the crack growth at the time of fracture separation becomes linear, and the fracture surface has few irregularities. It causes flat brittle fracture.
However, TiN inclusions crystallized in an appropriate size have the effect of changing the direction of crack propagation during fracture separation.
Therefore, the presence of TiN inclusions having a certain size and crystallized in an appropriate amount is very effective in securing a fracture surface having appropriate irregularities.
In addition, TiN crystallized inclusions have a low elastic modulus and good adhesion to the matrix, and thus have the effect of effectively developing cracks, have the effect of increasing the brittle fracture rate and improving the adhesion of the fracture surface.
In order to obtain such an effect, the size of the TiN inclusion is 5 μm or more in maximum diameter and the number is 5 / mm in number density. 2 It is necessary to be above.
Further, in order to obtain the above, Ti and N must be 0.01% or more and 0.008% or more by mass%, and the solidification rate of the steel ingot at the time of production is 5 ° C / min or more. desirable.
[0038]
Formula (1): 0.65 ≦ C−0.125Ti + 0.428N + 0.07Si + 0.16Mn−0.27S + 0.61P + 0.19Cu + 0.17Ni + 0.2Cr + V ≦ 0.96
The above equation defines the carbon equivalent (Ceq) necessary for obtaining appropriate strength as a connecting rod or the like.
In general, the hardness of a connecting rod used for an automobile engine is 20 to 35 HRC. If the hardness is 20 HRC or less, sufficient strength cannot be obtained and deformation at the time of break separation is large, so that the break separation step cannot be applied.
On the other hand, if it is 35 HRC or more, the machinability is reduced, so that a large cost is required for processing the connecting rod.
Therefore, it is desirable to adjust the hardness to 20 to 35 HRC.
In order to obtain such hardness, the carbon equivalent (Ceq) is set to 0.65 to 0.96.
[0039]
Formula (2): 134C-3.6Si + 24Mn + 22Cu + 32Ni + 30Cr-12Ti + 41N ≧ 31
As described above, in the case of a ferrite-pearlite structure such as the steel of the present invention, the fracture surface at the time of brittle fracture changes not only at the boundary of the ferrite-pearlite structure but also at the boundary of the pearlite block in the direction of crack propagation.
Therefore, it is desirable to have an appropriate amount of pearlite, that is, a pearlite block size, because the crack does not progress linearly but has a moderate unevenness of the fracture surface due to a change in the crack progress direction to some extent.
For that purpose, it is desirable to set the pearlite area ratio to 20% or more.
The pearlite area ratio changes under the influence of not only C but also Si, Mn, Cu, Ni, and Cr contents. Therefore, in order to make the pearlite area ratio equal to or more than 20%, it is desirable to satisfy Expression (2).
[0040]
Surface roughness Ra after fracture separation of 10 μm or more
If the surface roughness after fracture separation is small, it will cause lateral displacement when assembling the connecting rod and the like, and will cause a reduction in efficiency and a reduction in accuracy in the manufacturing process.
For this reason, in order to assemble with high efficiency and high accuracy, it is desirable that the surface roughness Ra obtained by breaking and separating be 10 μm or more.
This surface roughness can be achieved by crystallization of TiN inclusions having an appropriate pearlite area ratio and an appropriate size and amount.
[0041]
【Example】
Next, examples of the present invention will be described in detail below.
After ingoting the steels of the present invention and the comparative steels having the chemical compositions shown in Tables 1 and 2, the ingots were ingot, hot forged to form a 50 mm square forged material, and after heating and holding at 1200 ° C. for 60 minutes, A 65 × 65 × 20 mm plate was subjected to hot forging, left on the floor at appropriate intervals, and allowed to cool to room temperature.
From this plate material, a test piece 10 simulating the large end of the connecting rod as shown in FIG. 1 was cut out and used for the test.
In FIG. 1, reference numeral 12 denotes a center hole of the test piece 10, and reference numeral 14 denotes a bolt fastening hole for inserting a bolt to fasten a pair of separated bodies after breaking and separation.
[0042]
Drilling efficiency was measured for some of the test materials, and the machinability was evaluated.
The hardness was determined by measuring the hardness at the center of each forged product with a Rockwell hardness tester.
The pearlite area ratio was determined by an image analyzer using an optical microscope structure photograph taken at a magnification of 100 times.
[0043]
Furthermore, the TiN inclusions in the steel were cut out from the hot forged material in parallel with the forging direction, and after mirror polishing, observed by an optical microscope at a magnification of 400 times for 60 visual fields, and separated from other inclusions. After measuring the number, the value obtained by dividing the number by the measurement area is referred to as a number density (number / mm). 2 ) And conducted a survey.
Similarly, the maximum diameter of the inclusions was also examined by optical microscope observation at 400 times magnification in 60 visual fields.
[0044]
The fracture separation characteristics are as follows: a test piece 10 simulating a large end is machined into a notch 16 having a depth of 0.5 mm and a tip R of 0.1 mm, and then fracture separation is performed at room temperature. The change was evaluated.
Here, the change in roundness has a meaning as an index indicating toughness. That is, a brittle material having a low toughness is easily subjected to fracture separation, and the degree of deformation after fracture separation is small, so that a change in roundness is small.
On the other hand, a material with high toughness has larger irregularities on the fracture surface at the time of fracture separation than a material with low toughness. The change in circularity increases.
Therefore, here, in order to investigate the fracture separation characteristics, the roundness change was investigated and evaluated.
[0045]
Further, the fracture surface 22 (see FIG. 2B) after the fracture was measured with a contact-type roughness meter, and Ra was determined to quantify the degree of irregularity of the fracture surface.
Here, the fracture separation is performed by inserting a split mold 18 into the center hole 12 of the test piece 10 and inserting a wedge 20 between the split molds 18 as shown in FIG. By a hydraulic press.
[0046]
Further, a tensile test piece was cut out from the forged material, and the 0.2% proof stress used for evaluating the buckling strength of the connecting rod was measured.
Further, the tool life was measured by performing a drill test under the conditions shown in Table 5 below.
These results were compared with Invention Steel No. Tables 3 and 4 show the relative drilling efficiency as a relative value when 1 is set to 100.
For comparison, the test results of a non-heat treated steel XC70 for connecting rods to which a fracture separation process is applied in Europe as a conventional steel are also shown.
[0047]
In addition, in addition to the components shown in Tables 1 and 2, the steels of the present invention and comparative examples also contain impurities of Mo: ≦ 0.05% and O: ≦ 0.005%, which are usually contained in steel. ing.
In this test, the solidification rate of the ingot was 5 ° C./min or more for both the invention steel and the comparative steel.
[0048]
[Table 1]
Figure 2004277817
[0049]
[Table 2]
Figure 2004277817
[0050]
[Table 3]
Figure 2004277817
[0051]
[Table 4]
Figure 2004277817
[0052]
[Table 5]
Figure 2004277817
[0053]
As can be seen from the results in these tables, the component No. satisfying the conditions of the present invention. All of Nos. 1 to 15 have high strength, and despite the small change in roundness after fracture separation, the fracture surface has large irregularities and excellent fracture separation characteristics.
In each example, the size of each ferrite block was 15 μm or more.
[0054]
On the other hand, the comparative example has the following problems.
First, in Comparative Example A, the C content is 0.11%, which is lower than the lower limit of 0.2% of the present invention, that is, the hardness is low, the strength is reduced, and the change in roundness after fracture is increased. It is connected.
Further, since the pearlite area ratio is small, the breaking roughness is small and the maximum assembling property is poor.
[0055]
On the contrary, Comparative Example B has a content of C of 0.65%, which is higher than the upper limit of 0.6% of the present invention, that is, has a problem in terms of hardness and machinability.
[0056]
In Comparative Example C, the content of Si was 2.80%, which is more than the upper limit of 2% of the present invention, and thus the hardness was high and the machinability was deteriorated.
[0057]
In Comparative Example D, the content of S is 0.005%, which is lower than the lower limit of 0.03% of the present invention, so that the machinability is deteriorated. Also, the change in roundness is somewhat large.
[0058]
In Comparative Example E, the content of S was high, and cracks occurred during hot forging.
[0059]
Next, in Comparative Example F, the Mn content is 0.03%, which is lower than the lower limit value of 0.1% of the present invention, that is, the strength is insufficient.
[0060]
In Comparative Example G, conversely, the Mn content was 1.73%, which is more than the upper limit of 1.5% of the present invention, and therefore, bainite was generated after forging, the hardness was extremely high, and the machinability was high. Is getting worse.
[0061]
In Comparative Example H, since the P content was low, the change in roundness after fracture separation was large.
[0062]
In Comparative Example I, the P content was 0.19%, which was higher than the upper limit of 0.15% of the present invention, and thus cracks occurred during forging.
[0063]
In Comparative Example J, the Cr content was 1.52%, which was too high, which is higher than the upper limit of 1% of the present invention, so that bainite was generated after forging, the hardness was extremely high, and the machinability was poor.
[0064]
In Comparative Example K, the V content was 0.01%, which was lower than the lower limit of 0.02% of the present invention, so that the hardness was low and the strength was insufficient. Also, the value of the roundness change is bad.
[0065]
In Comparative Example L, the V content was 0.44%, which was too high, which is higher than the upper limit of 0.4% of the present invention, so that the hardness was high and the machinability was poor.
[0066]
In Comparative Example M, since no Ti was added, the strength was lower than that of the example having the same hardness, and the roughness after fracture separation was small because there was substantially no TiN generation. Also, the machinability has deteriorated.
[0067]
In Comparative Example N, since the Ti content was 0.852%, which was higher than the upper limit of 0.8% of the present invention, cracks occurred during hot forging.
[0068]
In Comparative Example O, the Al content was 0.003%, which was less than the lower limit of 0.005% of the present invention, and the deoxidation was insufficient and casting defects occurred.
[0069]
In Comparative Example P, since the N content was 0.006%, which was less than the lower limit of 0.008% of the present invention, TiN having a number density and a size required for appropriate fracture surface roughness after fracture separation was obtained. Are not formed and the re-assembly property is poor.
[0070]
In Comparative Example Q, conversely, the N content was 0.036%, which was higher than the upper limit of 0.035% of the present invention, and thus casting defects occurred.
[0071]
In Comparative Example R, cracking occurred during hot forging due to excessive addition of free-cutting elements.
[0072]
In Comparative Example S, cracking occurred during hot forging because the free-cutting element was excessively added.
[0073]
In Comparative Example T, Cu is 1.12%, which is too high, which is 1%, which is the upper limit of the present invention, and bainite is generated even when air-cooled after hot forging, the hardness is extremely high, and the machinability is deteriorated. I have.
[0074]
In Comparative Example U, Ni was 1.23%, which was higher than the upper limit of 1% of the present invention, so that bainite was generated even in the air-cooled state after hot forging, the hardness was extremely high, and the machinability deteriorated. I have.
[0075]
As described above, according to the present embodiment, both the characteristics of the change in roundness and the surface roughness, which are the contradictory characteristics, are good. It also has excellent drill workability.
Furthermore, as is clear from the comparison with the conventional material (XC70), it has high strength with respect to such XC70.
[0076]
Although the embodiment of the present invention has been described in detail, this is merely an example, and the present invention can be implemented in variously modified forms without departing from the spirit thereof.
[0077]
【The invention's effect】
According to the present invention described above, high strength and good fracture separation characteristics are obtained, distortion or deformation at the time of fracture separation is small, and good irregularities can be imparted to the fracture surface, and assembly at the time of reassembly is performed. It is possible to provide a high-strength non-heat-treated steel for fracture separation that can maintain high accuracy and can also prevent lateral displacement thereafter.
[Brief description of the drawings]
FIG. 1 is a view showing a shape of a test piece prepared in an example of the present invention.
FIG. 2 (A) is an explanatory view of a method of breaking and separating the test piece of FIG. 1;
(B) It is a figure which shows the fracture state and the reassembly state of the said test piece.
FIG. 3 is a diagram showing an example of a conventional connecting rod.

Claims (7)

重量%で、
C :0.2〜0.6%
Si:0.1〜2%
Mn:0.1〜1.5%
S :0.03〜0.2%
P :0.02〜0.15%
Cu:0.03〜1%
Ni:0.03〜1%
Cr:0.05〜1%
V :0.02〜0.4%
Ti:0.01〜0.8%
s−Al:0.005〜0.045%
N :0.008〜0.035%
残部不可避的不純物及びFeから成り、熱間鍛造後において破断により2個以上に分離される鍛造部品用のフェライトパーライト組織を有する破断分離に適した高強度非調質鋼。
In weight percent,
C: 0.2 to 0.6%
Si: 0.1 to 2%
Mn: 0.1-1.5%
S: 0.03 to 0.2%
P: 0.02 to 0.15%
Cu: 0.03 to 1%
Ni: 0.03 to 1%
Cr: 0.05-1%
V: 0.02 to 0.4%
Ti: 0.01 to 0.8%
s-Al: 0.005 to 0.045%
N: 0.008 to 0.035%
A high-strength non-heat treated steel suitable for fracture separation having a ferrite pearlite structure for a forged part which is composed of unavoidable impurities and Fe and separated by fracture after hot forging.
請求項1において、鋼中のTiN介在物の最大直径が5μm以上且つその量が数密度で5個/mm以上であることを特徴とする破断分離に適した高強度非調質鋼。 2. The high-strength non-heat-treated steel according to claim 1, wherein the maximum diameter of the TiN inclusions in the steel is 5 μm or more and the amount thereof is 5 / mm 2 or more in number density. 請求項1,2の何れかにおいて、パーライト面積率が20%以上であることを特徴とする破断分離に適した高強度非調質鋼。The high-strength non-heat-treated steel according to any one of claims 1 and 2, characterized in that the pearlite area ratio is 20% or more. 請求項1〜3の何れかにおいて、以下の式(1)及び式(2)を満たすことを特徴とする破断分離に適した高強度非調質鋼。
式(1):0.65≦C−0.125Ti+0.428N+0.07Si+0.16Mn−0.27S+0.61P+0.19Cu+0.17Ni+0.2Cr+V≦0.96
式(2):134C−3.6Si+24Mn+22Cu+32Ni+30Cr−12Ti+41N≧31
The high-strength non-heat treated steel suitable for fracture separation, wherein the steel satisfies the following formulas (1) and (2).
Formula (1): 0.65 ≦ C−0.125Ti + 0.428N + 0.07Si + 0.16Mn−0.27S + 0.61P + 0.19Cu + 0.17Ni + 0.2Cr + V ≦ 0.96
Formula (2): 134C-3.6Si + 24Mn + 22Cu + 32Ni + 30Cr-12Ti + 41N ≧ 31
請求項1〜4の何れかにおいて、下記A群の成分の何れか1種若しくは2種以上及び/又は下記B群の成分の何れか1種若しくは2種以上を重量%で下記量で更に含有することを特徴とする破断分離に適した高強度非調質鋼。
A群
Pb:≦0.3%
Te:≦0.3%
Ca:≦0.01%
Bi:≦0.3%
B群
Nb:≦0.2%
Zr:≦0.5%
B :≦0.01%
5. The composition according to claim 1, further comprising one or more of the following components of Group A and / or one or more of the following components of Group B in the following amounts by weight%. High strength non-heat treated steel suitable for fracture separation.
Group A Pb: ≦ 0.3%
Te: ≦ 0.3%
Ca: ≦ 0.01%
Bi: ≦ 0.3%
Group B Nb: ≦ 0.2%
Zr: ≦ 0.5%
B: ≦ 0.01%
請求項1〜5の非調質鋼を熱間鍛造して成り、破断分離後の破面の表面粗さRaが10μm以上であることを特徴とする鍛造部品。6. A forged part obtained by hot forging the non-heat treated steel according to any one of claims 1 to 5, wherein the fracture surface after fracture separation has a surface roughness Ra of 10 µm or more. 請求項6において、前記鍛造部品が内燃エンジン用のコネクティングロッドであることを特徴とする鍛造部品。The forged part according to claim 6, wherein the forged part is a connecting rod for an internal combustion engine.
JP2003071093A 2003-03-14 2003-03-14 High strength non-tempered steel suitable for fracture separation Expired - Fee Related JP4314851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003071093A JP4314851B2 (en) 2003-03-14 2003-03-14 High strength non-tempered steel suitable for fracture separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003071093A JP4314851B2 (en) 2003-03-14 2003-03-14 High strength non-tempered steel suitable for fracture separation

Publications (2)

Publication Number Publication Date
JP2004277817A true JP2004277817A (en) 2004-10-07
JP4314851B2 JP4314851B2 (en) 2009-08-19

Family

ID=33287609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003071093A Expired - Fee Related JP4314851B2 (en) 2003-03-14 2003-03-14 High strength non-tempered steel suitable for fracture separation

Country Status (1)

Country Link
JP (1) JP4314851B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277841A (en) * 2003-03-18 2004-10-07 Sumitomo Metal Ind Ltd Non-heat treated steel
JP2004277840A (en) * 2003-03-18 2004-10-07 Sumitomo Metal Ind Ltd Non-heat treated steel
JP2006118030A (en) * 2004-10-25 2006-05-11 Jfe Steel Kk Bearing steel with excellent grindability
JP2006322599A (en) * 2005-05-20 2006-11-30 Yamaha Motor Co Ltd Con'rod and internal combustion engine and motor vehicle comprising the same
JP2007003000A (en) * 2005-05-24 2007-01-11 Yamaha Motor Co Ltd Connecting rod, internal combustion engine equipped therewith and automobile
WO2007108365A1 (en) 2006-03-15 2007-09-27 Kabushiki Kaisha Kobe Seiko Sho Rolled material for fracture split connecting rod excelling in fracture splittability, hot forged part for fracture split connecting rod excelling in fracture splittability, and fracture split connecting rod
JP2009221590A (en) * 2008-03-19 2009-10-01 Honda Motor Co Ltd Fracture split connecting rod, and non-heat treated steel used therefor
WO2010013763A1 (en) 2008-07-29 2010-02-04 新日本製鐵株式会社 High-strength untempered steel for fracture splitting and steel component for fracture splitting
JP2010077488A (en) * 2008-09-25 2010-04-08 Nippon Steel Corp High strength non-heat-treated steel for fracture partition, and steel component for fracture partition
JP2010180473A (en) * 2009-02-09 2010-08-19 Daido Steel Co Ltd Cracking connecting rod and method for producing the same
JP2011084767A (en) * 2009-10-14 2011-04-28 Honda Motor Co Ltd Method of producing cracking connecting rod
WO2012164710A1 (en) * 2011-06-02 2012-12-06 新日鐵住金株式会社 Bar steel for non-heat treated connecting rods
JP2014077200A (en) * 2013-12-04 2014-05-01 Daido Steel Co Ltd Cracking connecting rod and its manufacturing method
WO2015174088A1 (en) * 2014-05-14 2015-11-19 新日鐵住金株式会社 Steel for use in non-heat treated crankshaft, and non-heat treated crankshaft
WO2016059664A1 (en) * 2014-10-17 2016-04-21 新日鐵住金株式会社 Rolled steel for cracked connecting rods
JP2016166384A (en) * 2015-03-09 2016-09-15 新日鐵住金株式会社 Hot rolled steel material for steel member excellent in fittability of fracture surfaces after fracture separation, and steel member
WO2017159738A1 (en) * 2016-03-16 2017-09-21 新日鐵住金株式会社 Microalloyed bar steel
WO2018061642A1 (en) * 2016-09-29 2018-04-05 新日鐵住金株式会社 Hot-rolled steel and steel part
KR20180049074A (en) * 2015-10-19 2018-05-10 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel and section
WO2018155610A1 (en) * 2017-02-24 2018-08-30 新日鐵住金株式会社 Steel rod for hot forging
US10087510B2 (en) 2011-05-19 2018-10-02 Nippon Steel & Sumitomo Metal Corporation Non-post-heat treated steel and non-post-heat treated steel member
US11111569B2 (en) 2017-02-24 2021-09-07 Nippon Steel Corporation Non-heat treated steel bar

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10036086B2 (en) 2013-04-30 2018-07-31 Nippon Steel & Sumitomo Metal Corporation Non-heat treated steel
JP6414319B2 (en) 2015-03-09 2018-10-31 新日鐵住金株式会社 Hot rolled steel and steel parts
CN108474068A (en) 2015-12-25 2018-08-31 新日铁住金株式会社 Steel
WO2019203348A1 (en) 2018-04-20 2019-10-24 日本製鉄株式会社 Steel, machine component, and connecting rod

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277841A (en) * 2003-03-18 2004-10-07 Sumitomo Metal Ind Ltd Non-heat treated steel
JP2004277840A (en) * 2003-03-18 2004-10-07 Sumitomo Metal Ind Ltd Non-heat treated steel
JP2006118030A (en) * 2004-10-25 2006-05-11 Jfe Steel Kk Bearing steel with excellent grindability
JP2006322599A (en) * 2005-05-20 2006-11-30 Yamaha Motor Co Ltd Con'rod and internal combustion engine and motor vehicle comprising the same
JP2007003000A (en) * 2005-05-24 2007-01-11 Yamaha Motor Co Ltd Connecting rod, internal combustion engine equipped therewith and automobile
WO2007108365A1 (en) 2006-03-15 2007-09-27 Kabushiki Kaisha Kobe Seiko Sho Rolled material for fracture split connecting rod excelling in fracture splittability, hot forged part for fracture split connecting rod excelling in fracture splittability, and fracture split connecting rod
JP2009221590A (en) * 2008-03-19 2009-10-01 Honda Motor Co Ltd Fracture split connecting rod, and non-heat treated steel used therefor
WO2010013763A1 (en) 2008-07-29 2010-02-04 新日本製鐵株式会社 High-strength untempered steel for fracture splitting and steel component for fracture splitting
JP2010077488A (en) * 2008-09-25 2010-04-08 Nippon Steel Corp High strength non-heat-treated steel for fracture partition, and steel component for fracture partition
JP2010180473A (en) * 2009-02-09 2010-08-19 Daido Steel Co Ltd Cracking connecting rod and method for producing the same
JP2011084767A (en) * 2009-10-14 2011-04-28 Honda Motor Co Ltd Method of producing cracking connecting rod
US10087510B2 (en) 2011-05-19 2018-10-02 Nippon Steel & Sumitomo Metal Corporation Non-post-heat treated steel and non-post-heat treated steel member
JPWO2012164710A1 (en) * 2011-06-02 2014-07-31 新日鐵住金株式会社 Steel bar for non-tempered connecting rod
JP5858996B2 (en) * 2011-06-02 2016-02-10 新日鐵住金株式会社 Steel bar for non-tempered connecting rod
WO2012164710A1 (en) * 2011-06-02 2012-12-06 新日鐵住金株式会社 Bar steel for non-heat treated connecting rods
JP2014077200A (en) * 2013-12-04 2014-05-01 Daido Steel Co Ltd Cracking connecting rod and its manufacturing method
WO2015174088A1 (en) * 2014-05-14 2015-11-19 新日鐵住金株式会社 Steel for use in non-heat treated crankshaft, and non-heat treated crankshaft
JPWO2015174088A1 (en) * 2014-05-14 2017-04-20 新日鐵住金株式会社 Non-tempered crankshaft steel and non-tempered crankshaft
WO2016059664A1 (en) * 2014-10-17 2016-04-21 新日鐵住金株式会社 Rolled steel for cracked connecting rods
JPWO2016059664A1 (en) * 2014-10-17 2017-08-17 新日鐵住金株式会社 Rolled steel for cracking connecting rod
JP2016166384A (en) * 2015-03-09 2016-09-15 新日鐵住金株式会社 Hot rolled steel material for steel member excellent in fittability of fracture surfaces after fracture separation, and steel member
KR20180049074A (en) * 2015-10-19 2018-05-10 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel and section
KR102092055B1 (en) 2015-10-19 2020-03-23 닛폰세이테츠 가부시키가이샤 Hot rolled steel and steel parts
CN108779534B (en) * 2016-03-16 2020-10-16 日本制铁株式会社 Non-quenched and tempered bar steel
WO2017159738A1 (en) * 2016-03-16 2017-09-21 新日鐵住金株式会社 Microalloyed bar steel
CN108779534A (en) * 2016-03-16 2018-11-09 新日铁住金株式会社 Micro Alloying bar steel
JPWO2017159738A1 (en) * 2016-03-16 2018-12-13 新日鐵住金株式会社 Non-tempered steel bar
CN109804097A (en) * 2016-09-29 2019-05-24 新日铁住金株式会社 Hot-strip and steel part
JPWO2018061642A1 (en) * 2016-09-29 2019-07-11 日本製鉄株式会社 Hot rolled steel and steel parts
WO2018061642A1 (en) * 2016-09-29 2018-04-05 新日鐵住金株式会社 Hot-rolled steel and steel part
CN110337504A (en) * 2017-02-24 2019-10-15 日本制铁株式会社 Bar steel is used in hot forging
WO2018155610A1 (en) * 2017-02-24 2018-08-30 新日鐵住金株式会社 Steel rod for hot forging
CN110337504B (en) * 2017-02-24 2021-06-15 日本制铁株式会社 Steel bar for hot forging
US11111569B2 (en) 2017-02-24 2021-09-07 Nippon Steel Corporation Non-heat treated steel bar
US11180818B2 (en) 2017-02-24 2021-11-23 Nippon Steel Corporation Steel bar for hot forging

Also Published As

Publication number Publication date
JP4314851B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP4314851B2 (en) High strength non-tempered steel suitable for fracture separation
JP4268194B2 (en) Rolled material for fracture separation type connecting rod excellent in fracture separation, hot forged parts for fracture separation type connecting rod excellent in fracture separation, and fracture separation type connecting rod
KR20050105281A (en) Steel wire for high strength spring excellent in workability and high strength spring
KR20130125816A (en) Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
KR101547015B1 (en) High strength large steel forging
JP6614393B2 (en) Non-tempered steel bar
JPWO2017159738A1 (en) Non-tempered steel bar
JP2017128795A (en) Steel for forging and large sized forged steel article
EP3272896B1 (en) Age-hardenable steel, and method for manufacturing components using age-hardenable steel
JP3893889B2 (en) Non-tempered steel for hot forging that can be easily separated by fracture
JP2006052432A (en) Method for manufacturing forged product for connecting rod easily separated through rupture and having high-strength
JP5050515B2 (en) Non-tempered steel containing V for crankshaft
JP2005314810A (en) Steel for induction hardening
JP3887271B2 (en) High-strength non-tempered steel that can be separated by breakage and intermediate products
JP5916553B2 (en) Steel for connecting rod and connecting rod
JP6617852B2 (en) Steel bar for hot forging
JP5354996B2 (en) Hot forged parts for connecting rods with excellent fracture splitting properties and manufacturing method thereof
JP5755965B2 (en) Steel for connecting rod and connecting rod
JP7273324B2 (en) Nitrided part blanks and nitrided parts
JP2017179475A (en) Molding component for breaking separation type connecting rod, connecting rod and manufacturing method of the connecting rod
EP2977482A1 (en) Forged part, method for producing same, and connecting rod
JPH10306342A (en) Case hardening steel excellent in cold workability
JP2000017377A (en) Air cooled martensitic steel and its production
WO2017126407A1 (en) Forging steel and large forged steel product
JP2017179476A (en) Molding component for breaking separation type connecting rod and connecting rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4314851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees