JP2004277548A - Method for producing alkenyl group-containing polyglycerol derivative - Google Patents

Method for producing alkenyl group-containing polyglycerol derivative Download PDF

Info

Publication number
JP2004277548A
JP2004277548A JP2003070065A JP2003070065A JP2004277548A JP 2004277548 A JP2004277548 A JP 2004277548A JP 2003070065 A JP2003070065 A JP 2003070065A JP 2003070065 A JP2003070065 A JP 2003070065A JP 2004277548 A JP2004277548 A JP 2004277548A
Authority
JP
Japan
Prior art keywords
glycidol
alkenyl group
group
mol
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003070065A
Other languages
Japanese (ja)
Other versions
JP4776873B2 (en
Inventor
Yoshihiro Hayashi
由浩 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP2003070065A priority Critical patent/JP4776873B2/en
Publication of JP2004277548A publication Critical patent/JP2004277548A/en
Application granted granted Critical
Publication of JP4776873B2 publication Critical patent/JP4776873B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkenyl group-containing polyglycerol derivative having a double bond at a terminal, and to provide a polyglycerol-modified silicone compound using the same. <P>SOLUTION: The alkenyl group-containing polyglycerol derivative is produced by subjecting 1-10 moles of glycidol to ring-opening polymerization to 1 mole of a hydroxy group-containing compound represented by formula (1) (wherein R denotes a 3-5C alkenyl group having a double bond at a terminal, and m denotes an integer of 0 or 1) in the presence of an alkali catalyst at conditions where the catalyst concentration is 0.1-3 mol% relative to the hydroxy group-containing compound and a glycidol addition reaction temperature is 100-140°C. The derivative can be obtained in high yields and the proportion in which the double bond undergoes internal transitions can be reduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は末端に二重結合を有するアルケニル基含有ポリグリセリン誘導体の製造方法に関する。さらに詳しくは、本発明は未反応グリシドール分及び副生ポリグリセリンの少ないアルケニル基含有ポリグリセリン誘導体の製造方法並びに本製造方法により得られたアルケニル基含有ポリグリセリン誘導体と反応性シリコーン化合物との反応により得られるポリグリセリン変性シリコーン化合物に関する。
【0002】
【従来の技術】
従来よりSi−H基を有する反応性ジメチルポリシロキサンの変性材料や、二重結合を有する反応性モノマーとの共重合用の原料として、末端に二重結合を有するアルケニル基含有ポリオキシアルキレン誘導体、特にアリル基含有ポリオキシアルキレン誘導体が工業的に広く使用されている。その中でもポリオキシエチレン鎖を有する誘導体は親水性の特徴を有しており、親水性セグメントを樹脂骨格に導入するための樹脂改質剤として用いられているが、さらに親水性の高い材料としてアルケニル基含有ポリグリセリン誘導体も知られている。
例えば、(ポリ)グリセリン変性シリコーンの原材料として、アリルアルコールにグリシドールを開環反応させた誘導体や、ジグリセリンにアリルグリシジルエーテルを開環反応させた誘導体が知られている。(例えば特許文献1)
【特許文献1】特公昭62−34039号公報
しかし、これらの誘導体の合成は、アリルアルコールへのグリシドール開環反応触媒としてルイス酸触媒の三フッ化ホウ素が使用されており、触媒除去手段として珪酸マグネシウム系吸着剤を3.5重量%使用して精製処理を行っているが、吸着剤の量が多く高粘性を有する合成物の濾過は工業的には、収量、製造時間などの点で問題がある。また、精製工程で三フッ化ホウ素に含まれるホウ素分が残存した場合、アルケニル基含有ポリグリセリン誘導体中の水酸基とのエステル化反応により架橋成分が生成するため問題となる。
【0003】
上記の合成方法以外に、グリシドールの開環反応にはアルカリ触媒を用いることも可能である。しかし、この場合アリル基の二重結合がα位からβ位に内部転移して反応性の劣るプロペニル基に変化する事が知られており、シリコーン変性反応や、反応性モノマーとの共重合反応の反応性を低下させる要因となる。
【0004】
【発明が解決しようとする課題】
さらに、プロペニル基の一部は分解してプロピオンアルデヒドに変化する。このプロピオンアルデヒドは強度の臭気を有する物質であり、合成物中に極めて微量に存在しても不快な臭気が感じられる。
【0005】
アルケニル基含有ポリグリセリン誘導体は分子中に多数の水酸基を含有しており、高粘度のためアルケニル基含有ポリオキシアルキレン誘導体と比較して熱履歴の影響を受け易く、二重結合がα位からβ位に内部転移する割合が高い傾向にある。アルケニル基含有ポリグリセリン誘導体は高親水性という特徴から、化粧品関連用途における改質剤としての使用が見込まれ、臭気の無いアリル基含有ポリグリセリン誘導体が求められている。
【0006】
本発明の課題は、末端に二重結合を1個有するアルケニル基含有ポリグリセリン誘導体を製造するのに際して、本誘導体を高収率で得ることができ、二重結合の内部転移する割合を低くできるようにすることである。
【0007】
【課題を解決するための手段】
本発明は、式(1)で示される水酸基含有化合物にアルカリ触媒存在下、触媒濃度が式(1)で表される化合物に対し0.1〜3モル%、グリシドール付加反応温度が100〜140℃の条件にて、式(1)で示される水酸基含有化合物1モルに対して1〜10モルに相当するグリシドールを開環重合することを特徴とする方法に関するものである。
【化3】

Figure 2004277548
【0008】
前記条件下で水酸基含有化合物にアルカリ触媒存在下、グリシドールを開環重合させることによって、本誘導体を高収率で得ることができ、二重結合の内部転移する割合を低くできる。
【0009】
また、本発明は、前記製造方法で得られたアルケニル基含有ポリグリセリン誘導体を酸で処理し、不活性ガス雰囲気下で精製処理を行うことを特徴とするアルケニル基含有ポリグリセリン誘導体の製造方法に係るものである。
【0010】
これによって、本誘導体中に含まれる、二重結合の内部転移に起因する臭い成分を一層低減し、本誘導体の臭いを少なくすることに成功した。これは、特に化粧品などの用途においてきわめて重要である。
【0011】
また、本発明は、前記製造方法により得られるアルケニル基含有ポリグリセリン誘導体に係るものである。
【0012】
更に、本発明は、前記製造方法で得られたアルケニル基含有ポリグリセリン誘導体と、式(2)で示される反応性シリコーン化合物との反応により、ポリグリセリン変性シリコーン化合物を製造する方法に係るものである。
【化4】
Figure 2004277548
(但し、式中Rは炭素数1〜5のアルキル基、またはフェニル基を示し、mおよびnは平均重合度を示し、mは1〜300、nは0〜50、RおよびRは炭素数1〜5のアルキル基、フェニル基または水素原子を示し、同一でも異なってもよい。但しn=0のとき、R、Rの少なくとも一方は水素原子である。)
【0013】
【発明の実施の形態】
本発明の製造方法は、式(1)で示される末端に二重結合を1個有する水酸基含有化合物に、グリシドール(2,3−エポキシ−1−プロパノール)を開環重合させ、末端に二重結合を1個有するアルケニル基含有ポリグリセリン誘導体を得る。
【0014】
式(1)において、Rは炭素数3〜5の末端に二重結合を1個有するアルケニル基であり、2−プロペニル基(アリル基)、2−メチル−2−プロペニル基(メタリル基)、3−ブテニル基、3−メチル−3−ブテニル基などが挙げられ、好ましくはアリル基である。
また、式(1)において、mは0又は1の整数であり、水酸基含有化合物として具体的にはmが0の場合は2−プロペン−1−オール(アリルアルコール)、2−メチル−2−プロペン−1−オール(メタリルアルコール)、3−ブテン−1−オール、3−メチル−3−ブテン−1−オールなどのオレフィンアルコールが挙げられ、mが1の場合は式(3)で示されるグリセリンモノアリルエーテル、グリセリンモノメタリルエーテルなどが挙げられる。作業性、誘導体の分子量が安定する等の利点から、m=1であることがより好ましい。
なお、グリセリンモノアリルエーテルはアリルグリシジルエーテルのエポキシ基の加水分解物や、グリセリンとアリルクロリドのエーテル化物をそれぞれ蒸留することによって得ることができる。
式(1)で示される水酸基含有化合物としては、製造性の点で式(3)で示されるグリセリンモノアリルエーテルが特に好ましい。
【化5】
Figure 2004277548
【0015】
本発明方法において、グリシドール開環重合反応に使用する触媒としては公知のアルカリ触媒を使用することができる。アルカリ触媒としては、例えば、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド、ナトリウムメトキシドのメタノール溶液、カリウム−t−ブトキシドなどを用いることができる。
本発明方法において、使用するアルカリ触媒の量は式(1)で表される化合物に対し0.1〜3モル%とするが、0.2モル%以上とすることが更に好ましく、あるいは、2モル%以下とすることが更に好ましい。触媒の量が、式(1)で表される化合物に対し0.1モル%未満であると、反応速度が遅く、反応に長時間を要したり未反応のグリシドールが残存する恐れがある。触媒の量が、式(1)で表される化合物に対し3モル%を超えると、反応速度が速すぎて反応の制御が困難になり、二重結合がα位からβ位へ内部転移する割合が増える。なお、アルカリ触媒としてアルコール溶液を用いた場合は、実際に含まれるアルカリ触媒に換算して仕込みモル数の計算を行う。
【0016】
また、式(1)においてmが1の水酸基含有化合物を用いる場合は、触媒の仕込後にアルケニル基を含有しない副生ポリグリセリン誘導体の生成を抑制するため、温度70〜90℃、不活性ガスバブリング下、−0.2MPa(ゲージ圧力)以下の条件下で30分〜2時間、水酸基含有化合物の水分及びアルコラート化により生成した水分もしくはアルコールを反応系外へ減圧留去することができる。
【0017】
本発明方法において、グリシドールの開環重合時における反応温度は100〜140℃とする。この反応温度は、105℃以上とすることが更に好ましく、あるいは、125℃以下とすることが更に好ましい。反応温度が100℃未満であると、反応速度が遅く、反応に長時間を要したり未反応のグリシドールが残存する。反応速度が140℃を超えると、二重結合がα位からβ位へ内部転移する割合が増える。
【0018】
本発明方法において、グリシドール開環重合時のグリシドールの仕込み時間は3〜10時間が好ましく、6〜10時間がさらに好ましい。グリシドール開環重合時のグリシドールの仕込み時間が3時間未満の場合は、反応器内のグリシドール濃度が上昇し、グリシドールの水酸基への開環重合が起こりポリグリセリンが副生する恐れがある。グリシドール開環重合時のグリシドールの仕込み時間が10時間を超える場合は、工業上効率的ではない。なお、グリシドールの仕込み方法は、滴下による方法や、反応器下部より仕込む方法のいずれも用いることができ、仕込み速度はできるだけ均一にすることが望ましい。またグリシドールの開環重合時には、溶媒を用いないで反応を行うことが望ましいが、系内の粘度を下げ撹拌効率の低下を防止する目的でベンゼン、トルエン、キシレン、ジグライムなどの有機溶媒を用いてもよい。
【0019】
本発明において、グリシドールの付加モル数は、式(1)で示される水酸基含有化合物1モルに対して1〜10モルとする。この付加モル数は、8モル以下とすることが更に好ましい。グリシドールの付加モル数が10モルを超えると、グリシドール付加物が高粘度となり、反応器の撹拌効率が低下するため、ポリグリセリンの副生物や二重結合の内部転移が促進され、目的とするアルケニル基含有ポリグリセリン誘導体を得ることが難しい。
なお、本製造方法により得られるアルケニル基含有ポリグリセリン誘導体は、分岐構造の複雑な化学構造を有する重合体となる。そして実際の反応物は、これら分岐構造を有する多数の重合体の混合物となる。
【0020】
本発明方法において、アルカリ触媒を用いたグリシドール開環重合後に精製処理を行うことにより、臭いの少ない化合物を得ることができる。精製は以下のように行うことができる。精製処理剤として、アルカリ触媒の中和及び二重結合の内部転移物を分解する目的で酸を用いる。酸の中でも強酸を用いることが好ましい。強酸としては、例えば、硫酸、塩酸、燐酸などが挙げられ、より好ましくは塩酸である。
さらに、精製処理の際、内部転移物の分解を促進させることを目的として水を加えるのが好ましい。水の添加量は水酸基含有化合物とグリシドールの仕込み総量に対し2〜10重量%であることが好ましい。処理条件としては処理温度が60〜100℃、処理時間が20分〜2時間で撹拌しながら行うのが好ましい。また、精製処理は温度100〜120℃、不活性ガスバブリング下、−0.05MPa(ゲージ圧力)以下の条件下で3〜6時間程度行うのが好ましい。不活性ガスは二重結合およびエーテル結合が酸素との接触により酸化されるのを防止するために使用し、具体的には窒素、ヘリウム、ネオン、アルゴン等が好ましい。なお、精製処理終了後は濾過により析出した塩を除去することができるが、必要に応じて活性白土や合成ゼオライト系吸着剤、イオン交換樹脂を用いてさらに高度に精製することも可能である。さらに、必要に応じて二重結合及びエーテル結合の酸化を防止するため、2,6−ジ−t−ブチル−p−クレゾール(BHT)、4,4’−ブチリデン−ビス−(6−t−ブチル−3−メチルフェノール)等のヒンダードフェノール系酸化防止剤や、トコフェロール等の酸化防止剤を添加することも可能である。また、製造後の保管方法については酸化による臭気の発生を避けるため、気密容器に密充填もしくは不活性ガスで置換の上保管することが好ましい。
【0021】
本発明の請求項1記載の製造方法で得られたアルケニル基含有ポリグリセリン誘導体は、式(2)で表される反応性シリコーンとを反応させることで、ポリグリセリン変性シリコーン化合物を得ることができる。
【化6】
Figure 2004277548
(但し、式中Rは炭素数1〜5のアルキル基、またはフェニル基を示し、mおよびnは平均重合度を示し、mは1〜300、nは0〜50、RおよびRは炭素数1〜5のアルキル基、フェニル基または水素原子を示し、同一でも異なってもよい。但しn=0のとき、R、Rの少なくとも一方は水素原子である。)
【0022】
式(2)において、R、RおよびRで示される炭素数1〜5のアルキル基、またはフェニル基としては、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、ペンチル基、イソペンチル基、フェニル基等が挙げられ、好ましくはメチル基およびフェニル基、より好ましくはメチル基である。また、RおよびRは同一でも異なってもよいがn=0のとき、R、Rの少なくとも一方は水素原子である。
また、式(2)において、mおよびnは平均重合度を示し、mは1〜300で、好ましくは1〜200である。nは0〜50で、好ましくは0〜30である。
【0023】
本発明において、請求項1記載の製造方法で得られたアルケニル基含有ポリグリセリン誘導体と、式(2)で示される反応性シリコーン化合物との仕込み比は、請求項1記載の製造方法で得られたアルケニル基含有ポリグリセリン誘導体の二重結合の当量と、式(2)で示される反応性シリコーン化合物の−SiH基当量の比が1:0.7〜1:1.4であることが好ましく、1:0.8〜1:1.2であることがより好ましい。
【0024】
本発明において、請求項1記載の製造方法で得られたアルケニル基含有ポリグリセリン誘導体と、式(2)で示される反応性シリコーン化合物との反応において、反応性シリコーン化合物の−SiH基とアルケニル基含有ポリグリセリン誘導体の二重結合を容易に反応させ、高収率でポリグリセリン変性シリコーンを得るためには、触媒を使用する。使用する触媒は特に制限は無いが、ニッケル、ルテニウム、ロジウム、パラジウム、イリジウム、白金などの第VIII族遷移金属あるいはそれらの化合物を好適に使用することができる。このような化合物の具体的な例としては、第VIII族遷移金属のクロロ錯体、オレフィン錯体、アルデヒド錯体、ケトン錯体、ホスフィン錯体、スルフィド錯体、ニトリル錯体などを挙げることができる。これらのうち、白金黒、塩化白金酸、あるいは、白金のオレフィン錯体、アルデヒド錯体、ケトン錯体などの白金系触媒が好ましく、塩化白金酸が特に好ましい。塩化白金酸は入手しやすく、また、塩化白金酸のアルコール溶液は均一系となるため取り扱いが容易であり、しかも反応の収率がよい。
【0025】
本発明において、請求項1記載の製造方法で得られたアルケニル基含有ポリグリセリン誘導体と、式(2)で示される反応性シリコーン化合物の反応温度は40〜140℃で反応することが好ましく、さらに60〜120℃で反応することがより好ましい。反応温度が40℃未満であると反応時間が長くなり、反応温度が140℃を超えると反応時の圧力が高くなり操作が煩雑になる。
本発明において、請求項1記載の製造方法で得られたアルケニル基含有ポリグリセリン誘導体と、式(2)で示される反応性シリコーン化合物の反応時間は30分〜40時間の範囲で行うのが通常である。
【0026】
本発明において、請求項1記載の製造方法で得られたアルケニル基含有ポリグリセリン誘導体と、式(2)で示される反応性シリコーン化合物の反応に際して、原料や製品の化合物の粘度を下げて撹拌を容易にしたり、反応をより円滑に行う目的でメタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノールなどの脂肪族アルコール系溶媒や、トルエン、キシレンなどの芳香族系溶媒を用いることができる。さらに、アルコール系溶媒を使用した場合、−Si基とアルコールの水酸基との副反応を抑制するため酢酸カリウム、酢酸ナトリウム等の反応調整剤を添加することも可能である。
【0027】また、本発明は、グリセリンモノアリルエーテルとグリシドールとの反応生成物からなり、配合比がモル比でグリセリンモノアリルエーテル:グリシドール=1:0.95〜1.05であり、この反応生成物の水酸基価が750〜850KOHmg/gであり、かつ25℃における動粘度が400〜480mm/sであることを特徴とする、アルケニル基含有ポリグリセリン誘導体に係るものである。
この発明において更に好ましくは、前記水酸基価が770〜830KOHmg/gである。あるいは、25℃における動粘度が410〜460mm/sである。
【0028】グリセリンモノアリルエーテルとグリシドールとの反応によって得られた前記アルケニル基含有ポリグリセリン誘導体において、水酸基価を750KOHmg/g以上とすることによって、高分子量成分を抑制し、親水性が過度に上昇することを防止できる。また、水酸基価が850KOHmg/gを超え、かつ25℃における動粘度が400mm/s未満になると、未反応のグリシドールが含まれ、全体として低分子量となり、アルケニル基含有ポリグリセリン誘導体の親水性が低下する。水酸基価が850KOHmg/gを超え、かつ25℃における動粘度が480mm/sを超えると、他の反応性化合物との反応に寄与しないポリグリセリンが含まれるので好ましくない。
【0029】また、本発明は、グリセリンモノアリルエーテルとグリシドールとの反応生成物からなり、配合比がモル比でグリセリンモノアリルエーテル:グリシドール=1:1.90〜2.10であり、この反応生成物の水酸基価が770〜810KOHmg/gであり、かつ25℃における動粘度が2600〜3200mm/sであることを特徴とする、アルケニル基含有ポリグリセリン誘導体に係るものである。この発明において更に好ましくは、前記水酸基価が780〜805KOHmg/gである。あるいは、25℃における動粘度が2700〜3100mm/sである。
【0030】グリセリンモノアリルエーテルとグリシドールとの反応によって得られた前記アルケニル基含有ポリグリセリン誘導体において、水酸基価を770KOHmg/g以上とすることによって、高分子量成分を抑制し、親水性が過度に上昇することを防止できる。また、水酸基価が810KOHmg/gを超え、かつ25℃における動粘度が2600mm/s未満になると、未反応のグリシドールが含まれ、全体として低分子量となり、アルケニル基含有ポリグリセリン誘導体の親水性が低下する。水酸基価が810KOHmg/gを超え、かつ25℃における動粘度が3200mm/sを超えると、他の反応性化合物との反応に寄与しないポリグリセリンが含まれるので好ましくない。
【0031】本発明で得られたポリグリセリン変性シリコーンは、親水性の性質を有するポリグリセリンと疎水性の性質を有するポリジメチルシロキサンを界面活性剤として作用し、化粧品原料、洗浄剤、乳化分散剤、繊維処理剤、塗料添加剤、インク用添加剤、プラスチック添加剤、防曇剤、消泡剤、潤滑剤などに利用することが可能である。
【0032】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明する。なお、合成品の分析は下記に記す方法で行った。
(実験方法)
水酸基価: JIS K−1557 6.4
動粘度: JIS K−2283
不飽和度: JIS K−1557 6.7
また、臭気の判定方法については、10人のパネリストに次の5段階評価により臭気を判定してもらい、平均値を算出することにより行った。
1 全く臭いが無い
2 僅かに臭い有り
3 若干の刺激臭有り
4 やや強い刺激臭有り
5 かなり強い刺激臭有り
(理論値の計算方法:触媒添加量は無視する)
1.理論水酸基価
56110/[A(1+B/C)]×D
A:水酸基含有化合物の分子量
B:グリシドール仕込み量(g)
C:水酸基含有化合物仕込み量(g)
D: 式(1)で表される水酸基含有化合物において、m=0の場合には、D=1+AB/74C、m=1の場合はD=2+AB/74C
2.理論不飽和度
1000/[A(1+B/C)]
【0033】
(実施例1)
グリセリンモノアリルエーテル264g(2モル)、およびナトリウムメトキシド0.54g(0.01モル)を1リットル容オートクレーブに仕込み、系中を窒素で置換した後、撹拌しながら80℃まで昇温し、−0.05MPa(ゲージ圧力)以下、窒素バブリング中で1時間脱水を行った。次いで110℃まで昇温し、グリシドール296g(4モル)を計量槽に計り取り、105〜115℃、0.5MPa(ゲージ圧力)以下の条件でグリシドールを7時間かけて圧入し、さらに2時間反応を続けた。次に85〜95℃まで降温し、未反応のグリシドールを−0.097MPa(ゲージ圧力)以下、窒素バブリング中で除去した後、水11g(原料総仕込量に対して2重量%量)を添加して塩酸でpHを4〜6の弱酸性に調整し、30分間撹拌した。次いで105〜115℃、−0.097MPa(ゲージ圧力)以下、窒素バブリング中で4時間、水分の除去を行い、最後に析出した塩を濾別して化合物505gを得た。
合成品の分析値は水酸基価797KOHmg/g(理論値802)、動粘度(25℃)2900mm/s、不飽和度3.48meq/g(理論値3.57)となり、臭気判定の平均値は1.1であった。なお、実施例1〜6についての製造条件および測定結果を表1に示す。
【0034】
【表1】
Figure 2004277548
【0035】
(実施例2)
グリセリンモノアリルエーテル264g(2モル)、および水酸化カリウム1.12g(0.02モル)を1リットル容オートクレーブに仕込み、系中を窒素で置換した後、撹拌しながら80℃まで昇温し、−0.05MPa(ゲージ圧力)以下、窒素バブリング中で1時間脱水を行った。次いで120℃まで昇温し、グリシドール296g(4モル)を計量槽に計り取り、115〜125℃、0.5MPa(ゲージ圧力)以下の条件でグリシドールを9時間かけて圧入し、さらに2時間反応を続けた。次に85〜95℃まで降温し、未反応のグリシドールを−0.097MPa(ゲージ圧力)以下、窒素バブリング中で除去した後、水28g(原料総仕込量に対して5重量%量)を添加して塩酸でpHを4〜6の弱酸性に調整し、30分間撹拌した。次いで105〜115℃、−0.097MPa(ゲージ圧力)以下、窒素バブリング中で4時間、水分の除去を行い、最後に析出した塩を濾別して化合物510gを得た。
合成品の分析値は水酸基価799KOHmg/g(理論値802)、動粘度(25℃)3005mm/s、不飽和度3.45meq/g(理論値3.57)となり、臭気判定の平均値も低かった。
【0036】
(実施例3)
グリセリンモノアリルエーテル356.4g(2.7モル)、および水酸化ナトリウム0.32g(0.008モル)を1リットル容オートクレーブに仕込み、系中を窒素で置換した後、撹拌しながら80℃まで昇温し、−0.05MPa(ゲージ圧力)以下、窒素バブリング中で1時間脱水を行った。次いで120℃まで昇温し、グリシドール200g(2.7モル)を計量槽に計り取り、115〜125℃、0.5MPa(ゲージ圧力)以下の条件でグリシドールを6時間かけて圧入し、さらに2時間反応を続けた。次に85〜95℃まで降温し、未反応のグリシドールを−0.097MPa(ゲージ圧力)以下、窒素バブリング中で除去した後、水17g(原料総仕込量に対して3重量%量)を添加して塩酸でpHを4〜6の弱酸性に調整し、30分間撹拌した。次いで105〜115℃、−0.097MPa(ゲージ圧力)以下、窒素バブリング中で4時間、水分の除去を行い、最後に析出した塩を濾別して化合物510gを得た。
合成品の分析値は水酸基価816KOHmg/g(理論値817)、動粘度(25℃)434mm/s、不飽和度4.84meq/g(理論値4.85)となり、臭気判定の平均値も低かった。
【0037】
(実施例4)
グリセリンモノアリルエーテル264g(2モル)、およびナトリウムメトキシド0.54g(0.01モル)を1リットル容オートクレーブに仕込み、系中を窒素で置換した後、撹拌しながら80℃まで昇温し、−0.05MPa(ゲージ圧力)以下、窒素バブリング中で1時間脱水を行った。次いで110℃まで昇温し、グリシドール296g(4モル)を計量槽に計り取り、105〜115℃、0.5MPa(ゲージ圧力)以下の条件でグリシドールを7時間かけて圧入し、さらに2時間反応を続けた。次に85〜95℃まで降温し、未反応のグリシドールを−0.097MPa(ゲージ圧力)以下、窒素バブリング中で除去した後、水11g(原料総仕込量に対して2重量%量)を添加して酢酸でpHを4〜6の弱酸性に調整し、30分間撹拌した。次いで105〜115℃、−0.097MPa(ゲージ圧力)以下、窒素バブリング中で4時間、水分の除去を行い、最後に析出した塩を濾別して化合物511gを得た。
合成品の分析値は水酸基価795KOHmg/g(理論値802)、動粘度(25℃)2930mm/s、不飽和度3.49meq/g(理論値3.57)となり、臭気判定の平均値は2.2であった。
【0038】
(実施例5)
グリセリンモノアリルエーテル264g(2モル)、および水酸化カリウム1.12g(0.02モル)を1リットル容オートクレーブに仕込み、系中を窒素で置換した後、撹拌しながら80℃まで昇温し、−0.05MPa(ゲージ圧力)以下、窒素バブリング中で1時間脱水を行った。次いで120℃まで昇温し、グリシドール296g(4モル)を計量槽に計り取り、115〜125℃、0.5MPa(ゲージ圧力)以下の条件でグリシドールを9時間かけて圧入し、さらに2時間反応を続けた。次に85〜95℃まで降温し、未反応のグリシドールを−0.097MPa(ゲージ圧力)以下、窒素バブリング中で除去した後、水28g(原料総仕込量に対して5重量%量)を添加して酢酸でpHを4〜6の弱酸性に調整し、30分間撹拌した。次いで105〜115℃、−0.097MPa(ゲージ圧力)以下、窒素バブリング中で4時間、水分の除去を行い、最後に析出した塩を濾別して化合物508gを得た。
合成品の分析値は水酸基価797KOHmg/g(理論値802)、動粘度(25℃)2980mm/s、不飽和度3.51meq/g(理論値3.57)となり、臭気判定の平均値は2.2であった。
【0039】
(実施例6)
グリセリンモノアリルエーテル356.4g(2.7モル)、および水酸化ナトリウム0.32g(0.008モル)を1リットル容オートクレーブに仕込み、系中を窒素で置換した後、撹拌しながら80℃まで昇温し、−0.05MPa(ゲージ圧力)以下、窒素バブリング中で1時間脱水を行った。次いで120℃まで昇温し、グリシドール200g(2.7モル)を計量槽に計り取り、115〜125℃、0.5MPa(ゲージ圧力)以下の条件でグリシドールを6時間かけて圧入し、さらに2時間反応を続けた。次に85〜95℃まで降温し、未反応のグリシドールを−0.097MPa(ゲージ圧力)以下、窒素バブリング中で除去した後、水17g(原料総仕込量に対して3重量%量)を添加して酢酸でpHを4〜6の弱酸性に調整し、30分間撹拌した。次いで105〜115℃、−0.097MPa(ゲージ圧力)以下、窒素バブリング中で4時間、水分の除去を行い、最後に析出した塩を濾別して化合物513gを得た。
合成品の分析値は水酸基価814KOHmg/g(理論値817)、動粘度(25℃)431mm/s、不飽和度4.83meq/g(理論値4.85)となり、臭気判定の平均値は2.1であった。
【0040】
(比較例1)
グリセリンモノアリルエーテル264g(2モル)、および水酸化ナトリウム5.60g(0.14モル)を1リットル容オートクレーブに仕込み、系中を窒素で置換した後、撹拌しながら80℃まで昇温し、−0.05MPa(ゲージ圧力)以下、窒素バブリング中で1時間脱水を行った。次いで110℃まで昇温し、グリシドール296g(4モル)を計量槽に計り取り、105〜115℃、0.5MPa(ゲージ圧力)以下の条件でグリシドールを8時間かけて圧入し、さらに2時間反応を続けた。次に85〜95℃まで降温し、未反応のグリシドールを−0.097MPa(ゲージ圧力)以下、窒素バブリング中で除去した後、酢酸でpHを4〜6の弱酸性に調整し、30分間撹拌した。次いで105〜115℃、−0.097MPa(ゲージ圧力)以下、窒素バブリング中で1時間、水分の除去を行い、最後に析出した塩を濾別して化合物499gを得た。
合成品の分析値は水酸基価817KOHmg/g(理論値802)、動粘度(25℃)3278mm/s、不飽和度3.24meq/g(理論値3.57)となり、臭気を調べたところかなり強い刺激臭が認められた。アリル基が一部内部転移してプロペニル基へと変化したことが窺える。なお、比較例1〜6の製造条件および測定結果を表2に示す。
【0041】
【表2】
Figure 2004277548
【0042】
(比較例2)
グリセリンモノアリルエーテル264g(2モル)、およびナトリウムメトキシド1.12g(0.02モル)を1リットル容オートクレーブに仕込み、系中を窒素で置換した後、撹拌しながら80℃まで昇温し、−0.05MPa(ゲージ圧力)以下、窒素バブリング中で1時間脱水を行った。次いで80℃の温度のままグリシドール296g(4モル)を計量槽に計り取り、75〜85℃、0.5MPa(ゲージ圧力)以下の条件でグリシドールを10時間かけて圧入し、さらに2時間反応を続けた。次に85〜95℃まで降温し、未反応のグリシドールを−0.097MPa(ゲージ圧力)以下、窒素バブリング中で除去した後、塩酸でpH4〜6の弱酸性に調整し、30分間撹拌した。次いで105〜115℃、−0.097MPa(ゲージ圧力)以下、窒素バブリング中で1時間、水分の除去を行い、最後に析出した塩を濾別して化合物395gを得た。
合成品の分析値は水酸基価897KOHmg/g(理論値802)、動粘度(25℃)2460mm/s、不飽和度3.97meq/g(理論値3.57)となり、臭気判定の平均値は2.3であった。収量が少なく且つ分子量が小さくなっており、未反応のグリシドールが多く残存したことが窺える。
【0043】
(比較例3)
グリセリンモノアリルエーテル264g(2モル)、およびナトリウムメトキシド0.56g(0.01モル)を1リットル容オートクレーブに仕込み、系中を窒素で置換した後、撹拌しながら80℃まで昇温し、−0.05MPa(ゲージ圧力)以下、窒素バブリング中で1時間脱水を行った。次いで150℃まで昇温し、グリシドール296g(4モル)を計量槽に計り取り、115〜125℃、0.5MPa(ゲージ圧力)以下の条件でグリシドールを8時間かけて圧入し、さらに2時間反応を続けた。次に85〜95℃まで降温し、未反応のグリシドールを−0.097MPa(ゲージ圧力)以下、窒素バブリング中で除去した後、酢酸でpH4〜6の弱酸性に調整し、30分撹拌した。次いで105〜115℃、−0.097MPa(ゲージ圧力)以下、窒素バブリング中で1時間、水分の除去を行い、最後に析出した塩を濾別して化合物500gを得た。
合成品の分析値は水酸基価813KOHmg/g(理論値802)、動粘度(25℃)3168mm/s、不飽和度3.38meq/g(理論値3.57)となり、臭気判定の平均値は4.1であった。アリル基が一部内部転移してプロペニル基へと変化したことが窺える。
【0044】
(比較例4)
グリセリンモノアリルエーテル264g(2モル)、および三フッ化ホウ素ジエチルエーテル錯体5.6gを1リットル容オートクレーブに仕込み、系中を窒素で置換した後、撹拌しながら60℃まで昇温し、グリシドール296g(4モル)を計量槽に計り取り、55〜65℃、0.5MPa(ゲージ圧力)以下の条件でグリシドールを7時間かけて圧入し、さらに2時間反応を続けた。次に85〜95℃まで昇温し、未反応のグリシドールを−0.097MPa(ゲージ圧力)以下、窒素バブリング中で除去した後、キョーワード600(協和化学工業(株)製)20g(原料総仕込量に対して3.5重量%量)を添加して95〜105℃、−0.097MPa(ゲージ圧力)以下、窒素バブリング中で1時間処理を行い、吸着剤を濾別して化合物370gを得た。なお、濾過の途中で目詰まりが生じ、収量が低下した。
合成品の分析値は水酸基価780KOHmg/g(理論値802)、動粘度(25℃)3784mm/s、不飽和度3.48meq/g(理論値3.57)となり、臭気判定の平均値は2.5であった。多量の吸着剤を使用していることにより収量が少ない点と、ホウ素が残存して一部ホウ酸エステル化され架橋構造を持った化合物が生成していることが窺える。
【0045】(比較例5)
グリセリンモノアリルエーテル264g(2モル)、および水酸化ナトリウム5.60g(0.14モル)を1リットル容オートクレーブに仕込み、系中を窒素で置換した後、撹拌しながら80℃まで昇温し、−0.05MPa(ゲージ圧力)以下、窒素バブリング中で1時間脱水を行った。次いで110℃まで昇温し、グリシドール296g(4モル)を計量槽に計り取り、105〜115℃、0.5MPa(ゲージ圧力)以下の条件でグリシドールを8時間かけて圧入し、さらに2時間反応を続けた。次に85〜95℃まで降温し、未反応のグリシドールを−0.097MPa(ゲージ圧力)以下、窒素バブリング中で除去した後、水16.7g(原料総仕込み量に対して3重量%量)を添加して塩酸でpHを4〜6の弱酸性に調整し、30分間撹拌した。次いで105〜115℃、−0.097MPa(ゲージ圧力)以下、窒素バブリング中で4時間、水分の除去を行い、最後に析出した塩を濾別して化合物495gを得た。
合成品の分析値は水酸基価830KOHmg/g(理論値802)、動粘度(25℃)3402mm/s、不飽和度3.20meq/g(理論値3.57)となり、臭気判定の平均値は1.5であった。アリル基が一部内部転移してプロペニル基へと変化したことが窺える。
【0046】(比較例6)
グリセリンモノアリルエーテル264g(2モル)、およびナトリウムメトキシド0.56g(0.01モル)を1リットル容オートクレーブに仕込み、系中を窒素で置換した後、撹拌しながら80℃まで昇温し、−0.05MPa(ゲージ圧力)以下、窒素バブリング中で1時間脱水を行った。次いで150℃まで昇温し、グリシドール296g(4モル)を計量槽に計り取り、115〜125℃、0.5MPa(ゲージ圧力)以下の条件でグリシドールを8時間かけて圧入し、さらに2時間反応を続けた。次に85〜95℃まで降温し、未反応のグリシドールを−0.097MPa(ゲージ圧力)以下、窒素バブリング中で除去した後、水16.7g(原料総仕込み量に対して3重量%量)を添加して塩酸でpH4〜6の弱酸性に調整し、30分撹拌した。次いで105〜115℃、−0.097MPa(ゲージ圧力)以下、窒素バブリング中で4時間、水分の除去を行い、最後に析出した塩を濾別して化合物497gを得た。
合成品の分析値は水酸基価824KOHmg/g(理論値802)、動粘度(25℃)3284mm/s、不飽和度3.34meq/g(理論値3.57)となり、臭気判定の平均値は1.3であった。アリル基が一部内部転移してプロペニル基へと変化したことが窺える。
【0047】
(実施例7)
1リットル容四ツ口フラスコに撹拌装置、冷却管、滴下漏斗、窒素導入管を取り付け、実施例1で得られた化合物100gに、式(5)で示されるハイドロジェンジメチルポリシロキサン(商品名:KME1234、バイエル社製、Si−H基当量:2.17ミリ当量)128.7g、触媒として塩化白金酸六水和物のイソプロピルアルコール溶液(1×10−3モル/リットル)7.0ml、酢酸カリウム 0.1g、溶媒としてイソプロピルアルコール200gを仕込み、窒素雰囲気下イソプロピルアルコール還流温度で5時間撹拌を行った。反応終了後、サンプリングを行いN/10水酸化カリウムのイソプロピルアルコール溶液を加えて水素ガスの発生の有無を確認したところ、水素ガスの発生は認められなかった。
【化7】
Figure 2004277548
(但し、式中m=18、n=5を表す)
【0048】
(比較例7)
1リットル容四ツ口フラスコに撹拌装置、冷却管、滴下漏斗、窒素導入管を取り付け、比較例4で得られた化合物100gに、式(5)で示されるハイドロジェンジメチルポリシロキサン(商品名:KME1234、バイエル社製、Si−H基当量:2.17ミリ当量)128.7g、触媒として塩化白金酸六水和物のイソプロピルアルコール溶液(1×10−3モル/リットル)7.0ml、酢酸カリウム 0.1g、溶媒としてイソプロピルアルコール200gを仕込み、窒素雰囲気下イソプロピルアルコール還流温度で5時間撹拌を行った。反応終了後、サンプリングを行いN/10水酸化カリウムのイソプロピルアルコール溶液を加えて水素ガスの発生の有無を確認したところ、水素ガスが発生し、実施例5と比較してハイドロジェジメチルポリシロキサンとの反応性が低下した。
【0049】
【発明の効果】
本発明は、末端に二重結合を1個有するアルケニル基含有ポリグリセリン誘導体を製造するのに際し、未反応グリシドール分及び副生ポリグリセリンが少なく、さらに末端二重結合含有アルケニル基の内部転移を抑制することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an alkenyl group-containing polyglycerin derivative having a terminal double bond. More specifically, the present invention provides a method for producing an alkenyl group-containing polyglycerin derivative having a low unreacted glycidol content and by-product polyglycerin, and a reaction between an alkenyl group-containing polyglycerin derivative obtained by the present production method and a reactive silicone compound. It relates to the polyglycerin-modified silicone compound obtained.
[0002]
[Prior art]
Conventionally, a modified material of a reactive dimethylpolysiloxane having a Si-H group or a raw material for copolymerization with a reactive monomer having a double bond, an alkenyl group-containing polyoxyalkylene derivative having a double bond at a terminal, In particular, allyl group-containing polyoxyalkylene derivatives are widely used industrially. Among them, derivatives having a polyoxyethylene chain have a hydrophilic property, and are used as a resin modifier for introducing a hydrophilic segment into a resin skeleton. Group-containing polyglycerin derivatives are also known.
For example, as a raw material of (poly) glycerin-modified silicone, a derivative in which glycidol is subjected to a ring-opening reaction with allyl alcohol, and a derivative in which an allyl glycidyl ether is subjected to a ring-opening reaction with diglycerin are known. (For example, Patent Document 1)
[Patent Document 1] Japanese Patent Publication No. Sho 62-34039
However, the synthesis of these derivatives uses a Lewis acid catalyst, boron trifluoride, as a catalyst for the glycidol ring-opening reaction to allyl alcohol, and uses 3.5% by weight of a magnesium silicate adsorbent as a catalyst removing means. However, filtration of a synthetic product having a large amount of adsorbent and having high viscosity has problems industrially in terms of yield, production time, and the like. Further, when boron contained in boron trifluoride remains in the purification step, a problem occurs because a cross-linking component is generated by an esterification reaction with a hydroxyl group in the alkenyl group-containing polyglycerin derivative.
[0003]
In addition to the above synthesis method, an alkali catalyst can be used for the glycidol ring-opening reaction. However, in this case, it is known that the double bond of the allyl group is internally transferred from the α-position to the β-position to change to a less reactive propenyl group, which results in a silicone modification reaction or a copolymerization reaction with a reactive monomer. Is a factor that reduces the reactivity of
[0004]
[Problems to be solved by the invention]
In addition, some of the propenyl groups are decomposed and converted to propionaldehyde. This propionaldehyde is a substance having a strong odor, and an unpleasant odor is felt even if it is present in a very small amount in the synthesized product.
[0005]
The alkenyl group-containing polyglycerin derivative contains a large number of hydroxyl groups in the molecule, and is more susceptible to heat history than the alkenyl group-containing polyoxyalkylene derivative because of its high viscosity, and the double bond is changed from the α-position to the β-position. There is a tendency for the rate of internal metastasis to the higher position. The alkenyl group-containing polyglycerol derivative is expected to be used as a modifier in cosmetics-related applications because of its high hydrophilicity, and there is a demand for an odor-free allyl group-containing polyglycerol derivative.
[0006]
An object of the present invention is to provide an alkenyl group-containing polyglycerol derivative having one double bond at a terminal, to obtain the derivative in high yield and to reduce the rate of internal transfer of the double bond. Is to do so.
[0007]
[Means for Solving the Problems]
In the present invention, the hydroxyl group-containing compound represented by the formula (1) has a catalyst concentration of 0.1 to 3 mol% with respect to the compound represented by the formula (1) in the presence of an alkali catalyst, and has a glycidol addition reaction temperature of 100 to 140. The present invention relates to a method characterized in that ring-opening polymerization of glycidol corresponding to 1 to 10 mols per 1 mol of the hydroxyl group-containing compound represented by the formula (1) is carried out at a temperature of ° C.
Embedded image
Figure 2004277548
[0008]
By subjecting the hydroxyl-containing compound to ring-opening polymerization of glycidol in the presence of an alkali catalyst under the above conditions, the present derivative can be obtained in high yield, and the rate of internal transfer of the double bond can be reduced.
[0009]
Further, the present invention provides a method for producing an alkenyl group-containing polyglycerin derivative, which comprises treating the alkenyl group-containing polyglycerin derivative obtained by the above-mentioned production method with an acid and performing a purification treatment under an inert gas atmosphere. It is related.
[0010]
As a result, the odor component contained in the present derivative due to the internal transfer of the double bond was further reduced, and the odor of the present derivative was successfully reduced. This is especially important in applications such as cosmetics.
[0011]
Further, the present invention relates to an alkenyl group-containing polyglycerin derivative obtained by the production method.
[0012]
Further, the present invention relates to a method for producing a polyglycerin-modified silicone compound by reacting an alkenyl group-containing polyglycerin derivative obtained by the above production method with a reactive silicone compound represented by the formula (2). is there.
Embedded image
Figure 2004277548
(Where R 1 Represents an alkyl group having 1 to 5 carbon atoms or a phenyl group, m and n represent an average degree of polymerization, m is 1 to 300, n is 0 to 50, R 2 And R 3 Represents an alkyl group having 1 to 5 carbon atoms, a phenyl group or a hydrogen atom, and may be the same or different. However, when n = 0, R 2 , R 3 At least one is a hydrogen atom. )
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In the production method of the present invention, glycidol (2,3-epoxy-1-propanol) is subjected to ring-opening polymerization on a hydroxyl group-containing compound having one terminal double bond represented by the formula (1) to form a double terminal at the terminal. An alkenyl group-containing polyglycerin derivative having one bond is obtained.
[0014]
In the formula (1), R is an alkenyl group having one double bond at the terminal having 3 to 5 carbon atoms, and is a 2-propenyl group (allyl group), a 2-methyl-2-propenyl group (methallyl group), Examples thereof include a 3-butenyl group and a 3-methyl-3-butenyl group, and preferably an allyl group.
Further, in the formula (1), m is an integer of 0 or 1, and when the m is 0 specifically as a hydroxyl group-containing compound, 2-propen-1-ol (allyl alcohol), 2-methyl-2- Examples thereof include olefin alcohols such as propen-1-ol (methallyl alcohol), 3-buten-1-ol, and 3-methyl-3-buten-1-ol. When m is 1, it is represented by the formula (3). Glycerin monoallyl ether, glycerin monomethallyl ether and the like. It is more preferable that m = 1 from the viewpoints of workability, stability of the molecular weight of the derivative, and the like.
Glycerin monoallyl ether can be obtained by distilling a hydrolyzate of an epoxy group of allyl glycidyl ether or an etherified product of glycerin and allyl chloride.
As the hydroxyl group-containing compound represented by the formula (1), glycerin monoallyl ether represented by the formula (3) is particularly preferable in terms of productivity.
Embedded image
Figure 2004277548
[0015]
In the method of the present invention, a known alkali catalyst can be used as a catalyst used for the glycidol ring-opening polymerization reaction. As the alkali catalyst, for example, sodium hydroxide, potassium hydroxide, sodium methoxide, a methanol solution of sodium methoxide, potassium-t-butoxide and the like can be used.
In the method of the present invention, the amount of the alkali catalyst to be used is 0.1 to 3 mol% with respect to the compound represented by the formula (1), preferably 0.2 mol% or more, or 2 mol% or more. More preferably, it is set to not more than mol%. When the amount of the catalyst is less than 0.1 mol% with respect to the compound represented by the formula (1), the reaction rate is low, the reaction may take a long time or unreacted glycidol may remain. When the amount of the catalyst exceeds 3 mol% with respect to the compound represented by the formula (1), the reaction rate is too high to control the reaction, and the double bond is internally transferred from the α-position to the β-position. The percentage increases. When an alcohol solution is used as the alkali catalyst, the number of moles to be charged is calculated in terms of the alkali catalyst actually contained.
[0016]
In addition, when a hydroxyl group-containing compound in which m is 1 in the formula (1) is used, generation of a by-product polyglycerin derivative containing no alkenyl group after charging the catalyst is suppressed. Under the conditions of -0.2 MPa (gauge pressure) or less, the water content of the hydroxyl group-containing compound and the water or alcohol generated by the alcoholation can be distilled out of the reaction system under reduced pressure for 30 minutes to 2 hours.
[0017]
In the method of the present invention, the reaction temperature during the ring-opening polymerization of glycidol is 100 to 140 ° C. The reaction temperature is more preferably 105 ° C. or higher, or even more preferably 125 ° C. or lower. When the reaction temperature is lower than 100 ° C., the reaction rate is slow, and the reaction requires a long time or unreacted glycidol remains. When the reaction rate exceeds 140 ° C., the ratio of internal transfer of the double bond from the α-position to the β-position increases.
[0018]
In the method of the present invention, the charging time of glycidol at the time of glycidol ring-opening polymerization is preferably 3 to 10 hours, more preferably 6 to 10 hours. If the charging time of glycidol at the time of glycidol ring-opening polymerization is less than 3 hours, the concentration of glycidol in the reactor increases, and ring-opening polymerization of glycidol to a hydroxyl group may occur, and polyglycerin may be by-produced. When the charging time of glycidol at the time of glycidol ring-opening polymerization exceeds 10 hours, it is not industrially efficient. The method of charging glycidol may be any of a method by dropping and a method of charging from the lower part of the reactor, and it is desirable that the charging speed is as uniform as possible. In addition, during the ring-opening polymerization of glycidol, it is desirable to carry out the reaction without using a solvent, but using an organic solvent such as benzene, toluene, xylene, or diglyme for the purpose of lowering the viscosity of the system and preventing a decrease in stirring efficiency. Is also good.
[0019]
In the present invention, the addition mole number of glycidol is 1 to 10 moles per 1 mole of the hydroxyl group-containing compound represented by the formula (1). It is more preferable that the number of moles added is 8 mol or less. If the number of moles of glycidol exceeds 10 moles, the glycidol adduct will have a high viscosity and the stirring efficiency of the reactor will decrease, so that the internal transfer of by-products and double bonds of polyglycerin will be promoted, and the desired alkenyl It is difficult to obtain a group-containing polyglycerin derivative.
In addition, the alkenyl group-containing polyglycerin derivative obtained by the present production method becomes a polymer having a complicated chemical structure having a branched structure. The actual reactant is a mixture of many polymers having these branched structures.
[0020]
In the method of the present invention, a compound having less odor can be obtained by performing a purification treatment after glycidol ring-opening polymerization using an alkali catalyst. Purification can be performed as follows. As a refining agent, an acid is used for the purpose of neutralizing an alkali catalyst and decomposing a double bond internal transfer product. It is preferable to use a strong acid among the acids. Examples of the strong acid include sulfuric acid, hydrochloric acid, phosphoric acid and the like, and more preferably hydrochloric acid.
Further, at the time of the purification treatment, it is preferable to add water for the purpose of accelerating the decomposition of the internal transfer product. The amount of water to be added is preferably 2 to 10% by weight based on the total charged amount of the hydroxyl group-containing compound and glycidol. Processing conditions are preferably such that the processing temperature is 60 to 100 ° C. and the processing time is 20 minutes to 2 hours with stirring. Further, the purification treatment is preferably performed at a temperature of 100 to 120 ° C. and under an inert gas bubbling under a condition of −0.05 MPa (gauge pressure) or less for about 3 to 6 hours. The inert gas is used to prevent the double bond and the ether bond from being oxidized by contact with oxygen, and specifically, nitrogen, helium, neon, argon and the like are preferable. After completion of the purification treatment, the precipitated salts can be removed by filtration. However, if necessary, it is possible to further refine the salt using activated clay, a synthetic zeolite-based adsorbent, or an ion exchange resin. Further, if necessary, 2,6-di-t-butyl-p-cresol (BHT), 4,4′-butylidene-bis- (6-t- It is also possible to add a hindered phenol-based antioxidant such as butyl-3-methylphenol) and an antioxidant such as tocopherol. Regarding the storage method after the production, in order to avoid generation of an odor due to oxidation, it is preferable to tightly fill the airtight container or replace it with an inert gas before storing.
[0021]
The alkenyl group-containing polyglycerin derivative obtained by the production method according to claim 1 of the present invention can be reacted with a reactive silicone represented by the formula (2) to obtain a polyglycerin-modified silicone compound. .
Embedded image
Figure 2004277548
(Where R 1 Represents an alkyl group having 1 to 5 carbon atoms or a phenyl group, m and n represent an average degree of polymerization, m is 1 to 300, n is 0 to 50, R 2 And R 3 Represents an alkyl group having 1 to 5 carbon atoms, a phenyl group or a hydrogen atom, and may be the same or different. However, when n = 0, R 2 , R 3 At least one is a hydrogen atom. )
[0022]
In the formula (2), R 1 , R 2 And R 3 Specific examples of the alkyl group having 1 to 5 carbon atoms or the phenyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, a pentyl group and an isopentyl group. And a phenyl group, preferably a methyl group and a phenyl group, more preferably a methyl group. Also, R 2 And R 3 May be the same or different, but when n = 0, R 2 , R 3 At least one is a hydrogen atom.
In the formula (2), m and n indicate an average degree of polymerization, and m is 1 to 300, preferably 1 to 200. n is 0 to 50, preferably 0 to 30.
[0023]
In the present invention, the charging ratio of the alkenyl group-containing polyglycerin derivative obtained by the production method of claim 1 to the reactive silicone compound represented by the formula (2) is obtained by the production method of claim 1. It is preferable that the ratio of the equivalent of the double bond of the alkenyl group-containing polyglycerin derivative to the -SiH group equivalent of the reactive silicone compound represented by the formula (2) is 1: 0.7 to 1: 1.4. , 1: 0.8 to 1: 1.2.
[0024]
In the present invention, in the reaction between the alkenyl group-containing polyglycerin derivative obtained by the production method according to claim 1 and the reactive silicone compound represented by the formula (2), the —SiH group and the alkenyl group of the reactive silicone compound A catalyst is used in order to easily react the double bond of the polyglycerin derivative to obtain a polyglycerin-modified silicone in high yield. The catalyst to be used is not particularly limited, but a Group VIII transition metal such as nickel, ruthenium, rhodium, palladium, iridium and platinum or a compound thereof can be suitably used. Specific examples of such a compound include a chloro complex of a Group VIII transition metal, an olefin complex, an aldehyde complex, a ketone complex, a phosphine complex, a sulfide complex, and a nitrile complex. Of these, platinum-based catalysts such as platinum black, chloroplatinic acid, and platinum olefin complexes, aldehyde complexes, and ketone complexes are preferable, and chloroplatinic acid is particularly preferable. Chloroplatinic acid is easily available, and the alcoholic solution of chloroplatinic acid is homogeneous, so that it is easy to handle and the reaction yield is good.
[0025]
In the present invention, the reaction temperature of the alkenyl group-containing polyglycerin derivative obtained by the production method according to claim 1 with the reactive silicone compound represented by the formula (2) is preferably 40 to 140 ° C, and furthermore, It is more preferable to react at 60 to 120 ° C. If the reaction temperature is lower than 40 ° C., the reaction time is prolonged. If the reaction temperature is higher than 140 ° C., the pressure during the reaction is increased, and the operation becomes complicated.
In the present invention, the reaction time of the alkenyl group-containing polyglycerin derivative obtained by the production method according to claim 1 and the reactive silicone compound represented by the formula (2) is usually in the range of 30 minutes to 40 hours. It is.
[0026]
In the present invention, when the alkenyl group-containing polyglycerin derivative obtained by the production method according to claim 1 is reacted with the reactive silicone compound represented by the formula (2), the viscosity of the raw material or the product compound is reduced and stirring is performed. For the purpose of facilitating or performing the reaction more smoothly, aliphatic alcohol solvents such as methanol, ethanol, 1-propanol, 2-propanol and 1-butanol, and aromatic solvents such as toluene and xylene can be used. . Further, when an alcohol-based solvent is used, a reaction modifier such as potassium acetate or sodium acetate can be added to suppress a side reaction between the -Si group and the hydroxyl group of the alcohol.
The present invention also comprises a reaction product of glycerin monoallyl ether and glycidol, and the compounding ratio is glycerin monoallyl ether: glycidol = 1: 0.95 to 1.05 in a molar ratio. The product has a hydroxyl value of 750 to 850 KOH mg / g and a kinematic viscosity at 25 ° C. of 400 to 480 mm. 2 / S, which relates to an alkenyl group-containing polyglycerin derivative.
In the present invention, more preferably, the hydroxyl value is 770 to 830 KOHmg / g. Alternatively, the kinematic viscosity at 25 ° C. is 410 to 460 mm 2 / S.
The alkenyl group-containing polyglycerol derivative obtained by the reaction of glycerin monoallyl ether and glycidol has a hydroxyl value of 750 KOH mg / g or more, thereby suppressing high molecular weight components and excessively increasing hydrophilicity. Can be prevented. Further, the hydroxyl value exceeds 850 KOHmg / g, and the kinematic viscosity at 25 ° C. is 400 mm. 2 If it is less than / s, unreacted glycidol is contained, the molecular weight becomes low as a whole, and the hydrophilicity of the alkenyl group-containing polyglycerol derivative decreases. Hydroxyl value exceeds 850 KOHmg / g, and kinematic viscosity at 25 ° C. is 480 mm 2 If it exceeds / s, polyglycerin which does not contribute to the reaction with other reactive compounds is contained, which is not preferable.
The present invention also comprises a reaction product of glycerin monoallyl ether and glycidol, and the compounding ratio is glycerin monoallyl ether: glycidol = 1: 1.90 to 2.10 in a molar ratio. The product has a hydroxyl value of 770 to 810 KOH mg / g and a kinematic viscosity at 25 ° C. of 2600 to 3200 mm. 2 / S, which relates to an alkenyl group-containing polyglycerin derivative. In the present invention, more preferably, the hydroxyl value is 780 to 805 KOH mg / g. Alternatively, the kinematic viscosity at 25 ° C. is 2700 to 3100 mm 2 / S.
In the alkenyl group-containing polyglycerol derivative obtained by the reaction of glycerin monoallyl ether and glycidol, the hydroxyl value is set to 770 KOH mg / g or more, whereby the high molecular weight component is suppressed and the hydrophilicity is excessively increased. Can be prevented. Also, the hydroxyl value exceeds 810 KOHmg / g and the kinematic viscosity at 25 ° C. is 2600 mm 2 If it is less than / s, unreacted glycidol is contained, the molecular weight becomes low as a whole, and the hydrophilicity of the alkenyl group-containing polyglycerol derivative decreases. Hydroxyl value exceeds 810 KOHmg / g and kinematic viscosity at 25 ° C. is 3200 mm 2 If it exceeds / s, polyglycerin which does not contribute to the reaction with other reactive compounds is contained, which is not preferable.
The polyglycerin-modified silicone obtained according to the present invention uses polyglycerin having a hydrophilic property and polydimethylsiloxane having a hydrophobic property as surfactants, and is used as a cosmetic raw material, a detergent, an emulsifying dispersant. It can be used as a fiber treating agent, a paint additive, an ink additive, a plastic additive, an antifogging agent, an antifoaming agent, a lubricant and the like.
[0032]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. The analysis of the synthesized product was performed by the method described below.
(experimental method)
Hydroxyl value: JIS K-1557 6.4
Kinematic viscosity: JIS K-2283
Unsaturation degree: JIS K-1557 6.7
In addition, the method of determining odor was determined by having ten panelists determine odor by the following five-step evaluation and calculating an average value.
1 No smell
2 There is a slight smell
3 Some irritating odor
4 Slightly irritating odor
5 There is quite strong pungent smell
(Theoretical calculation method: Ignore the amount of catalyst added)
1. Theoretical hydroxyl value
56110 / [A (1 + B / C)] × D
A: Molecular weight of hydroxyl group-containing compound
B: Glycidol charge (g)
C: amount of charged hydroxyl group-containing compound (g)
D: In the hydroxyl group-containing compound represented by the formula (1), when m = 0, D = 1 + AB / 74C, and when m = 1, D = 2 + AB / 74C.
2. Theoretical unsaturation
1000 / [A (1 + B / C)]
[0033]
(Example 1)
264 g (2 mol) of glycerin monoallyl ether and 0.54 g (0.01 mol) of sodium methoxide were charged into a 1-liter autoclave, and the system was purged with nitrogen. Dehydration was performed for 1 hour in nitrogen bubbling at -0.05 MPa (gauge pressure) or less. Then, the temperature was raised to 110 ° C., 296 g (4 mol) of glycidol was measured in a measuring tank, and glycidol was injected under a condition of 105 to 115 ° C. and 0.5 MPa (gauge pressure) or less over 7 hours, and the reaction was further performed for 2 hours. Continued. Next, the temperature was lowered to 85 to 95 ° C., unreacted glycidol was removed in nitrogen bubbling at −0.097 MPa or less (gauge pressure), and then 11 g of water (2% by weight based on the total charged amount of raw materials) was added. Then, the pH was adjusted to a weak acidity of 4 to 6 with hydrochloric acid, and the mixture was stirred for 30 minutes. Next, water was removed at 105 to 115 ° C. and at −0.097 MPa (gauge pressure) or less in nitrogen bubbling for 4 hours, and finally precipitated salts were separated by filtration to obtain 505 g of a compound.
The analytical value of the synthesized product was a hydroxyl value of 797 KOH mg / g (theoretical value: 802) and a kinematic viscosity (25 ° C.) of 2900 mm 2 / S, the degree of unsaturation was 3.48 meq / g (theoretical value: 3.57), and the average value of the odor determination was 1.1. Table 1 shows production conditions and measurement results for Examples 1 to 6.
[0034]
[Table 1]
Figure 2004277548
[0035]
(Example 2)
264 g (2 mol) of glycerin monoallyl ether and 1.12 g (0.02 mol) of potassium hydroxide were charged into a 1-liter autoclave, and the system was purged with nitrogen. Dehydration was performed for 1 hour in nitrogen bubbling at -0.05 MPa (gauge pressure) or less. Then, the temperature was raised to 120 ° C., 296 g (4 mol) of glycidol was weighed and measured in a measuring tank, and glycidol was injected under the conditions of 115 to 125 ° C. and 0.5 MPa (gauge pressure) or less over 9 hours, and further reacted for 2 hours. Continued. Next, the temperature was lowered to 85 to 95 ° C., and unreacted glycidol was removed in nitrogen bubbling at −0.097 MPa (gauge pressure) or less, and then 28 g of water (5% by weight based on the total charged amount of raw materials) was added. Then, the pH was adjusted to a weak acidity of 4 to 6 with hydrochloric acid, and the mixture was stirred for 30 minutes. Next, water was removed at 105 to 115 ° C. and at −0.097 MPa (gauge pressure) or less in nitrogen bubbling for 4 hours, and finally precipitated salts were separated by filtration to obtain 510 g of a compound.
The analytical value of the synthesized product was a hydroxyl value of 799 KOH mg / g (theoretical value: 802) and a kinematic viscosity (25 ° C.) of 3005 mm 2 / S, the degree of unsaturation was 3.45 meq / g (theoretical value 3.57), and the average value of the odor judgment was also low.
[0036]
(Example 3)
356.4 g (2.7 mol) of glycerin monoallyl ether and 0.32 g (0.008 mol) of sodium hydroxide were charged into a 1-liter autoclave, and the system was replaced with nitrogen. The temperature was raised, and dehydration was performed for 1 hour in nitrogen bubbling under -0.05 MPa (gauge pressure). Then, the temperature was raised to 120 ° C., 200 g (2.7 mol) of glycidol was weighed and weighed in a measuring tank, and glycidol was injected under a condition of 115 to 125 ° C. and 0.5 MPa (gauge pressure) or less over 6 hours. The reaction was continued for hours. Next, the temperature was lowered to 85 to 95 ° C., and unreacted glycidol was removed in nitrogen bubbling at −0.097 MPa (gauge pressure) or less, and then 17 g of water (3% by weight based on the total charged amount of raw materials) was added. Then, the pH was adjusted to a weak acidity of 4 to 6 with hydrochloric acid, and the mixture was stirred for 30 minutes. Next, water was removed at 105 to 115 ° C. and at −0.097 MPa (gauge pressure) or less in nitrogen bubbling for 4 hours, and finally precipitated salts were separated by filtration to obtain 510 g of a compound.
The analytical value of the synthesized product was a hydroxyl value of 816 KOHmg / g (theoretical value of 817) and a kinematic viscosity (25 ° C.) of 434 mm. 2 / S, the degree of unsaturation was 4.84 meq / g (theoretical value 4.85), and the average value of the odor judgment was also low.
[0037]
(Example 4)
264 g (2 mol) of glycerin monoallyl ether and 0.54 g (0.01 mol) of sodium methoxide were charged into a 1-liter autoclave, and the system was purged with nitrogen. Dehydration was performed for 1 hour in nitrogen bubbling at -0.05 MPa (gauge pressure) or less. Next, the temperature was raised to 110 ° C., 296 g (4 mol) of glycidol was measured in a measuring tank, and glycidol was injected under a condition of 105 to 115 ° C. and 0.5 MPa (gauge pressure) or less over 7 hours, and further reacted for 2 hours. Continued. Next, the temperature was lowered to 85 to 95 ° C., unreacted glycidol was removed in nitrogen bubbling at −0.097 MPa or less (gauge pressure), and then 11 g of water (2% by weight based on the total charged amount of raw materials) was added. Then, the pH was adjusted to a weak acidity of 4 to 6 with acetic acid, and the mixture was stirred for 30 minutes. Then, water was removed at 105 to 115 ° C. and at −0.097 MPa (gauge pressure) or less in nitrogen bubbling for 4 hours, and finally precipitated salts were separated by filtration to obtain 511 g of a compound.
The analytical value of the synthesized product was a hydroxyl value of 795 KOH mg / g (theoretical value: 802) and a kinematic viscosity (25 ° C.) of 2930 mm 2 / S, the degree of unsaturation was 3.49 meq / g (theoretical value: 3.57), and the average value of the odor determination was 2.2.
[0038]
(Example 5)
264 g (2 mol) of glycerin monoallyl ether and 1.12 g (0.02 mol) of potassium hydroxide were charged into a 1-liter autoclave, and the system was purged with nitrogen. Dehydration was performed for 1 hour in nitrogen bubbling at -0.05 MPa (gauge pressure) or less. Then, the temperature was raised to 120 ° C., 296 g (4 mol) of glycidol was weighed and measured in a measuring tank, and glycidol was injected under the conditions of 115 to 125 ° C. and 0.5 MPa (gauge pressure) or less over 9 hours, and further reacted for 2 hours. Continued. Next, the temperature was lowered to 85 to 95 ° C., and unreacted glycidol was removed in nitrogen bubbling at −0.097 MPa (gauge pressure) or less, and then 28 g of water (5% by weight based on the total charged amount of raw materials) was added. Then, the pH was adjusted to a weak acidity of 4 to 6 with acetic acid, and the mixture was stirred for 30 minutes. Next, water was removed at 105 to 115 ° C. and at −0.097 MPa (gauge pressure) or less in nitrogen bubbling for 4 hours, and finally precipitated salts were separated by filtration to obtain 508 g of a compound.
The analytical value of the synthesized product was a hydroxyl value of 797 KOH mg / g (theoretical value: 802) and a kinematic viscosity (25 ° C.) of 2980 mm 2 / S, the degree of unsaturation was 3.51 meq / g (theoretical value: 3.57), and the average value of the odor determination was 2.2.
[0039]
(Example 6)
356.4 g (2.7 mol) of glycerin monoallyl ether and 0.32 g (0.008 mol) of sodium hydroxide were charged into a 1-liter autoclave, and the system was replaced with nitrogen. The temperature was raised, and dehydration was performed for 1 hour in nitrogen bubbling under -0.05 MPa (gauge pressure). Then, the temperature was raised to 120 ° C., 200 g (2.7 mol) of glycidol was weighed and weighed in a measuring tank, and glycidol was injected under a condition of 115 to 125 ° C. and 0.5 MPa (gauge pressure) or less over 6 hours. The reaction was continued for hours. Next, the temperature was lowered to 85 to 95 ° C., and unreacted glycidol was removed in nitrogen bubbling at −0.097 MPa (gauge pressure) or less, and then 17 g of water (3% by weight based on the total charged amount of raw materials) was added. Then, the pH was adjusted to a weak acidity of 4 to 6 with acetic acid, and the mixture was stirred for 30 minutes. Next, water was removed at 105 to 115 ° C. and at −0.097 MPa (gauge pressure) or less in nitrogen bubbling for 4 hours, and finally precipitated salts were separated by filtration to obtain 513 g of a compound.
The analytical value of the synthesized product was a hydroxyl value of 814 KOHmg / g (theoretical value: 817) and a kinematic viscosity (25 ° C.) of 431 mm. 2 / S, the degree of unsaturation was 4.83 meq / g (theoretical value: 4.85), and the average value of the odor judgment was 2.1.
[0040]
(Comparative Example 1)
264 g (2 mol) of glycerin monoallyl ether and 5.60 g (0.14 mol) of sodium hydroxide were charged into a 1-liter autoclave, and the system was purged with nitrogen. Dehydration was performed for 1 hour in nitrogen bubbling at -0.05 MPa (gauge pressure) or less. Then, the temperature was raised to 110 ° C., 296 g (4 mol) of glycidol was measured in a measuring tank, and glycidol was injected under the conditions of 105 to 115 ° C. and 0.5 MPa (gauge pressure) or less over 8 hours, and the reaction was continued for 2 hours. Continued. Then, the temperature was lowered to 85 to 95 ° C., and unreacted glycidol was removed in nitrogen bubbling at −0.097 MPa (gauge pressure) or less. Then, the pH was adjusted to a weak acidity of 4 to 6 with acetic acid and stirred for 30 minutes. did. Next, water was removed at 105 to 115 ° C. and at −0.097 MPa (gauge pressure) or less in nitrogen bubbling for 1 hour, and finally precipitated salts were separated by filtration to obtain 499 g of a compound.
The analytical value of the synthesized product was a hydroxyl value of 817 KOH mg / g (theoretical value: 802) and a kinematic viscosity (25 ° C.) of 3278 mm 2 / S, and the degree of unsaturation was 3.24 meq / g (theoretical value: 3.57). When the odor was examined, a considerably strong pungent odor was recognized. It can be seen that part of the allyl group was internally transferred to a propenyl group. Table 2 shows the production conditions and measurement results of Comparative Examples 1 to 6.
[0041]
[Table 2]
Figure 2004277548
[0042]
(Comparative Example 2)
264 g (2 mol) of glycerin monoallyl ether and 1.12 g (0.02 mol) of sodium methoxide were charged into a 1-liter autoclave, the atmosphere in the autoclave was replaced with nitrogen, and the temperature was raised to 80 ° C. while stirring. Dehydration was performed for 1 hour in nitrogen bubbling at -0.05 MPa (gauge pressure) or less. Next, 296 g (4 mol) of glycidol was measured in a measuring tank at a temperature of 80 ° C., and glycidol was injected under the conditions of 75 to 85 ° C. and 0.5 MPa (gauge pressure) or less over 10 hours, and the reaction was further performed for 2 hours. Continued. Next, the temperature was lowered to 85 to 95 ° C., and unreacted glycidol was removed at −0.097 MPa (gauge pressure) or less in nitrogen bubbling, adjusted to a weak acidity of pH 4 to 6 with hydrochloric acid, and stirred for 30 minutes. Next, water was removed at 105 to 115 ° C. and at −0.097 MPa (gauge pressure) or less in nitrogen bubbling for 1 hour, and finally precipitated salts were separated by filtration to obtain 395 g of a compound.
The analytical value of the synthesized product was a hydroxyl value of 897 KOH mg / g (theoretical value: 802) and a kinematic viscosity (25 ° C.) of 2460 mm 2 / S, and the degree of unsaturation was 3.97 meq / g (theoretical value: 3.57), and the average value of the odor determination was 2.3. The yield was low and the molecular weight was low, indicating that a large amount of unreacted glycidol remained.
[0043]
(Comparative Example 3)
Glycerin monoallyl ether (264 g, 2 mol) and sodium methoxide 0.56 g (0.01 mol) were charged into a 1-liter autoclave, and the system was purged with nitrogen. Dehydration was performed for 1 hour in nitrogen bubbling at -0.05 MPa (gauge pressure) or less. Next, the temperature was raised to 150 ° C., 296 g (4 mol) of glycidol was weighed and measured in a measuring tank, and glycidol was injected under the conditions of 115 to 125 ° C. and 0.5 MPa (gauge pressure) or less over 8 hours, and the reaction was further performed for 2 hours. Continued. Next, the temperature was lowered to 85 to 95 ° C., and unreacted glycidol was removed in nitrogen bubbling at −0.097 MPa (gauge pressure) or less, and the pH was adjusted to weakly acidic with acetic acid at pH 4 to 6, followed by stirring for 30 minutes. Next, water was removed at 105 to 115 ° C. and at −0.097 MPa (gauge pressure) or less in nitrogen bubbling for 1 hour, and finally the precipitated salt was separated by filtration to obtain 500 g of a compound.
The analytical value of the synthesized product was a hydroxyl value of 813 KOH mg / g (theoretical value: 802) and a kinematic viscosity (25 ° C.) of 3168 mm 2 / S, and the degree of unsaturation was 3.38 meq / g (theoretical value: 3.57), and the average value of the odor determination was 4.1. It can be seen that part of the allyl group was internally transferred to a propenyl group.
[0044]
(Comparative Example 4)
264 g (2 mol) of glycerin monoallyl ether and 5.6 g of boron trifluoride diethyl ether complex were charged into a 1-liter autoclave, and the system was purged with nitrogen. (4 mol) was weighed into a measuring tank, and glycidol was injected under the conditions of 55 to 65 ° C. and 0.5 MPa (gauge pressure) or less over 7 hours, and the reaction was continued for 2 hours. Next, the temperature was raised to 85 to 95 ° C., and unreacted glycidol was removed at −0.097 MPa (gauge pressure) or less in nitrogen bubbling, and then 20 g of KYOWARD 600 (manufactured by Kyowa Chemical Industry Co., Ltd.) (3.5% by weight based on the charged amount), and treated for 1 hour in nitrogen bubbling at 95 to 105 ° C. under -0.097 MPa (gauge pressure), and the adsorbent was filtered off to obtain 370 g of a compound. Was. In addition, clogging occurred during the filtration, and the yield was reduced.
The analytical value of the synthesized product was a hydroxyl value of 780 KOH mg / g (theoretical value: 802) and a kinematic viscosity (25 ° C.) of 3784 mm 2 / S, the degree of unsaturation was 3.48 meq / g (theoretical value: 3.57), and the average value of the odor determination was 2.5. It can be seen that the yield is small due to the use of a large amount of the adsorbent, and that a compound having a crosslinked structure is produced by the remaining boron and partial borate esterification.
(Comparative Example 5)
264 g (2 mol) of glycerin monoallyl ether and 5.60 g (0.14 mol) of sodium hydroxide were charged into a 1-liter autoclave, and the system was purged with nitrogen. Dehydration was performed for 1 hour in nitrogen bubbling at -0.05 MPa (gauge pressure) or less. Then, the temperature was raised to 110 ° C., 296 g (4 mol) of glycidol was measured in a measuring tank, and glycidol was injected under the conditions of 105 to 115 ° C. and 0.5 MPa (gauge pressure) or less over 8 hours, and the reaction was continued for 2 hours. Continued. Next, the temperature was lowered to 85 to 95 ° C., and unreacted glycidol was removed in nitrogen bubbling at −0.097 MPa (gauge pressure) or less, and then 16.7 g of water (3% by weight based on the total charged amount of raw materials). Was added to adjust the pH to a weakly acidic value of 4 to 6 with hydrochloric acid, followed by stirring for 30 minutes. Next, water was removed at 105 to 115 ° C. and at −0.097 MPa (gauge pressure) or less in nitrogen bubbling for 4 hours, and finally precipitated salt was separated by filtration to obtain 495 g of a compound.
The analysis value of the synthesized product was a hydroxyl value of 830 KOHmg / g (theoretical value: 802) and a kinematic viscosity (25 ° C.) of 3402 mm 2 / S, the degree of unsaturation was 3.20 meq / g (theoretical value 3.57), and the average value of the odor determination was 1.5. It can be seen that part of the allyl group was internally transferred to a propenyl group.
(Comparative Example 6)
Glycerin monoallyl ether (264 g, 2 mol) and sodium methoxide 0.56 g (0.01 mol) were charged into a 1-liter autoclave, and the system was purged with nitrogen. Dehydration was performed for 1 hour in nitrogen bubbling at -0.05 MPa (gauge pressure) or less. Next, the temperature was raised to 150 ° C., 296 g (4 mol) of glycidol was weighed and measured in a measuring tank, and glycidol was injected under the conditions of 115 to 125 ° C. and 0.5 MPa (gauge pressure) or less over 8 hours, and the reaction was further performed for 2 hours. Continued. Next, the temperature was lowered to 85 to 95 ° C., and unreacted glycidol was removed in nitrogen bubbling at −0.097 MPa (gauge pressure) or less, and then 16.7 g of water (3% by weight based on the total charged amount of raw materials). And adjusted to a weakly acidic pH of 4 to 6 with hydrochloric acid, followed by stirring for 30 minutes. Next, water was removed at 105 to 115 ° C. and at −0.097 MPa (gauge pressure) or less in nitrogen bubbling for 4 hours, and finally precipitated salts were separated by filtration to obtain 497 g of a compound.
The analytical value of the synthesized product was a hydroxyl value of 824 KOH mg / g (theoretical value: 802) and a kinematic viscosity (25 ° C.) of 3284 mm. 2 / S, and the degree of unsaturation was 3.34 meq / g (theoretical value: 3.57), and the average odor determination value was 1.3. It can be seen that part of the allyl group was internally transferred to a propenyl group.
[0047]
(Example 7)
A 1-liter four-necked flask was equipped with a stirrer, a condenser, a dropping funnel, and a nitrogen inlet tube, and 100 g of the compound obtained in Example 1 was charged with hydrogen dimethylpolysiloxane represented by the formula (5) (trade name: KME1234, manufactured by Bayer AG, Si—H group equivalent: 2.17 meq) 128.7 g, chloroplatinic acid hexahydrate isopropyl alcohol solution (1 × 10 -3 (Mol / liter) 7.0 ml, potassium acetate 0.1 g, and isopropyl alcohol 200 g as a solvent were charged, and the mixture was stirred at a reflux temperature of isopropyl alcohol for 5 hours under a nitrogen atmosphere. After completion of the reaction, sampling was performed, and the presence or absence of hydrogen gas was confirmed by adding an isopropyl alcohol solution of N / 10 potassium hydroxide. As a result, no hydrogen gas was generated.
Embedded image
Figure 2004277548
(However, it represents m = 18 and n = 5 in the formula)
[0048]
(Comparative Example 7)
A 1-liter four-necked flask was equipped with a stirrer, a condenser, a dropping funnel, and a nitrogen inlet tube, and 100 g of the compound obtained in Comparative Example 4 was charged with hydrogen dimethylpolysiloxane represented by the formula (5) (trade name: KME1234, manufactured by Bayer AG, Si—H group equivalent: 2.17 meq) 128.7 g, chloroplatinic acid hexahydrate isopropyl alcohol solution (1 × 10 -3 (Mol / liter) 7.0 ml, potassium acetate 0.1 g, and isopropyl alcohol 200 g as a solvent were charged, and the mixture was stirred at a reflux temperature of isopropyl alcohol for 5 hours under a nitrogen atmosphere. After the completion of the reaction, sampling was performed, and the presence or absence of hydrogen gas was confirmed by adding an isopropyl alcohol solution of N / 10 potassium hydroxide. As a result, hydrogen gas was generated. Decreased in reactivity.
[0049]
【The invention's effect】
The present invention provides a method for producing an alkenyl group-containing polyglycerin derivative having one double bond at the terminal, in which the amount of unreacted glycidol and by-product polyglycerin is small, and furthermore, the internal transfer of the terminal double bond-containing alkenyl group is suppressed. can do.

Claims (6)

式(1)で示される水酸基含有化合物にアルカリ触媒存在下、触媒濃度が前記水酸基含有化合物に対し0.1〜3モル%、グリシドール付加反応温度が100〜140℃の条件にて、前記水酸基含有化合物1モルに対して1〜10モルに相当するグリシドールを開環重合することを特徴とする、アルケニル基含有ポリグリセリン誘導体の製造方法。
Figure 2004277548
(但し、式中Rは炭素数3〜5の末端に二重結合を有するアルケニル基、mは0または1の整数を表す)
In the presence of an alkali catalyst, the hydroxyl group-containing compound represented by the formula (1) has a catalyst concentration of 0.1 to 3 mol% with respect to the hydroxyl group-containing compound and a glycidol addition reaction temperature of 100 to 140 ° C. A process for producing an alkenyl group-containing polyglycerol derivative, comprising subjecting 1 to 10 mol of glycidol to ring-opening polymerization with respect to 1 mol of the compound.
Figure 2004277548
(Where R represents an alkenyl group having a double bond at the terminal having 3 to 5 carbon atoms, and m represents an integer of 0 or 1)
請求項1記載の製造方法で得られたアルケニル基含有ポリグリセリン誘導体を酸で処理し、不活性ガス雰囲気下で精製処理を行うことを特徴とする、アルケニル基含有ポリグリセリン誘導体の製造方法。A method for producing an alkenyl group-containing polyglycerin derivative, comprising treating the alkenyl group-containing polyglycerin derivative obtained by the production method according to claim 1 with an acid, and performing a purification treatment in an inert gas atmosphere. 請求項1または請求項2記載の製造方法により得られるアルケニル基含有ポリグリセリン誘導体。An alkenyl group-containing polyglycerin derivative obtained by the production method according to claim 1 or 2. 請求項1または請求項2記載の製造方法で得られたアルケニル基含有ポリグリセリン誘導体と、式(2)で示される反応性シリコーン化合物との反応により、ポリグリセリン変性シリコーン化合物を製造する方法。
Figure 2004277548
(但し、式中Rは炭素数1〜5のアルキル基、またはフェニル基を示し、mおよびnは平均重合度を示し、mは1〜300、nは0〜50、RおよびRは炭素数1〜5のアルキル基、フェニル基または水素原子を示し、同一でも異なってもよい。但しn=0のとき、R、Rの少なくとも一方は水素原子である。)
A method for producing a polyglycerin-modified silicone compound by reacting an alkenyl group-containing polyglycerin derivative obtained by the production method according to claim 1 or 2 with a reactive silicone compound represented by the formula (2).
Figure 2004277548
(Where R 1 represents an alkyl group having 1 to 5 carbon atoms or a phenyl group, m and n each represent an average degree of polymerization, m represents 1 to 300, n represents 0 to 50, R 2 and R 3 Represents an alkyl group having 1 to 5 carbon atoms, a phenyl group or a hydrogen atom, and may be the same or different, provided that when n = 0, at least one of R 2 and R 3 is a hydrogen atom.)
グリセリンモノアリルエーテルとグリシドールとの反応生成物からなり、配合比がモル比でグリセリンモノアリルエーテル:グリシドール=1:0.95〜1.05であり、前記反応生成物の水酸基価が750〜850KOHmg/gであり、かつ25℃における動粘度が400〜480mm/sであることを特徴とする、アルケニル基含有ポリグリセリン誘導体。It consists of a reaction product of glycerin monoallyl ether and glycidol, and the compounding ratio is glycerin monoallyl ether: glycidol = 1: 0.95 to 1.05 in molar ratio, and the hydroxyl value of the reaction product is 750 to 850 KOHmg. / G and a kinematic viscosity at 25 ° C. of 400 to 480 mm 2 / s, wherein the alkenyl group-containing polyglycerol derivative is characterized in that: グリセリンモノアリルエーテルとグリシドールとの反応生成物からなり、配合比がモル比でグリセリンモノアリルエーテル:グリシドール=1:1.90〜2.10であり、前記反応生成物の水酸基価が770〜810KOHmg/gであり、かつ25℃における動粘度が2600〜3200mm/sであることを特徴とする、アルケニル基含有ポリグリセリン誘導体。It consists of a reaction product of glycerin monoallyl ether and glycidol, and the compounding ratio is glycerin monoallyl ether: glycidol = 1: 1.90 to 2.10 in a molar ratio, and the hydroxyl value of the reaction product is 770 to 810 KOHmg. / G and a kinematic viscosity at 25 ° C. of 2600 to 3200 mm 2 / s, wherein the alkenyl group-containing polyglycerol derivative is characterized in that:
JP2003070065A 2003-03-14 2003-03-14 Process for producing alkenyl group-containing polyglycerol derivative Expired - Lifetime JP4776873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003070065A JP4776873B2 (en) 2003-03-14 2003-03-14 Process for producing alkenyl group-containing polyglycerol derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003070065A JP4776873B2 (en) 2003-03-14 2003-03-14 Process for producing alkenyl group-containing polyglycerol derivative

Publications (2)

Publication Number Publication Date
JP2004277548A true JP2004277548A (en) 2004-10-07
JP4776873B2 JP4776873B2 (en) 2011-09-21

Family

ID=33286913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003070065A Expired - Lifetime JP4776873B2 (en) 2003-03-14 2003-03-14 Process for producing alkenyl group-containing polyglycerol derivative

Country Status (1)

Country Link
JP (1) JP4776873B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195891A (en) * 2007-02-15 2008-08-28 Nof Corp Method for preparing polyoxyalkylene-modified organopolysiloxane compound
DE102008032064A1 (en) * 2008-07-08 2010-01-14 Byk-Chemie Gmbh Polyhydroxy-functional polysiloxanes for increasing the surface energy of thermoplastics, processes for their preparation and their use
DE102008032066A1 (en) * 2008-07-08 2010-01-14 Byk-Chemie Gmbh Polyhydroxy-functional polysiloxanes as anti-adhesive and dirt-repellent additives in coatings, polymeric molding compounds and thermoplastics, process for their preparation and their use
JP2011252049A (en) * 2010-06-01 2011-12-15 Daicel Corp Polylactic acid plasticization composition
WO2014104255A1 (en) 2012-12-28 2014-07-03 東レ・ダウコーニング株式会社 High-purity monoalkenyl-containing glycerin derivative, and method for producing same
WO2017189077A1 (en) 2016-04-27 2017-11-02 Dow Corning Corporation Hydrophilic silanes
WO2017189076A1 (en) 2016-04-27 2017-11-02 Dow Corning Corporation Hydrophilic silanes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6882148B2 (en) 2017-11-29 2021-06-02 信越化学工業株式会社 Both continuous microemulsion compositions and cosmetics

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195891A (en) * 2007-02-15 2008-08-28 Nof Corp Method for preparing polyoxyalkylene-modified organopolysiloxane compound
DE102008032064A1 (en) * 2008-07-08 2010-01-14 Byk-Chemie Gmbh Polyhydroxy-functional polysiloxanes for increasing the surface energy of thermoplastics, processes for their preparation and their use
DE102008032066A1 (en) * 2008-07-08 2010-01-14 Byk-Chemie Gmbh Polyhydroxy-functional polysiloxanes as anti-adhesive and dirt-repellent additives in coatings, polymeric molding compounds and thermoplastics, process for their preparation and their use
JP2011252049A (en) * 2010-06-01 2011-12-15 Daicel Corp Polylactic acid plasticization composition
WO2014104255A1 (en) 2012-12-28 2014-07-03 東レ・ダウコーニング株式会社 High-purity monoalkenyl-containing glycerin derivative, and method for producing same
KR20150100736A (en) 2012-12-28 2015-09-02 다우 코닝 도레이 캄파니 리미티드 High-purity monoalkenyl-containing glycerin derivative, and method for producing same
JPWO2014104255A1 (en) * 2012-12-28 2017-01-19 東レ・ダウコーニング株式会社 High purity monoalkenyl-containing glycerin derivative and process for producing the same
US9663432B2 (en) 2012-12-28 2017-05-30 Dow Corning Toray Co., Ltd. High-purity monoalkenyl-containing glycerin derivative and method of manufacturing same
KR102180163B1 (en) * 2012-12-28 2020-11-18 듀폰 도레이 스페셜티 머티리얼즈 가부시키가이샤 High-purity monoalkenyl-containing glycerin derivative, and method for producing same
WO2017189077A1 (en) 2016-04-27 2017-11-02 Dow Corning Corporation Hydrophilic silanes
WO2017189076A1 (en) 2016-04-27 2017-11-02 Dow Corning Corporation Hydrophilic silanes

Also Published As

Publication number Publication date
JP4776873B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
US6822068B2 (en) Method for producing highly-branched glycidol-based polyols
EP1904557B2 (en) Aldehyde functional siloxanes
JP2019510862A (en) Alkali catalyzed treatment of alkoxylated products
JP5081625B2 (en) Process for the preparation of pure alpha-alkoxy-omega-hydroxy-polyalkylene glycols
JP2008069220A (en) Method for producing alkenyl group-containing polyglycerol derivative
TW552281B (en) Purification of 1,3-propanediol in carbonyl-containing stream
JP4776873B2 (en) Process for producing alkenyl group-containing polyglycerol derivative
JP3925940B2 (en) Method for producing ether compound
JP3855344B2 (en) Process for producing polyoxyalkylene carboxylic acid
KR20220107237A (en) Polyether-modified polybutadiene and method for preparing same
JP4399110B2 (en) Preparation of oxyalkylated amines or alcohols
CN102050943A (en) Compounding method for glycidyl ether polyether
JP3739178B2 (en) Process for producing polyoxyalkylene polyol
JP4468629B2 (en) Organic polymer having epoxy group-containing silicon group at terminal and method for producing the same
JP5057215B2 (en) Process for producing polyoxyalkylene-modified organopolysiloxane compound
CN108409958B (en) Process for preparing hydrosilylatable polyoxyalkylene ether
EP2170923B1 (en) Process for preparation of oligomeric or polymeric compounds using selective michael addition
JPH10330475A (en) Production of polyoxyalkylene polyol
CN1156498C (en) Process for producing modified vinylic-ether polymer
JP2006069975A (en) Method for production of alkylene oxide adduct
JP2003096192A (en) Polyoxyalkylene-modified polysiloxane of high purity and its production method
JP2024519165A (en) Hydrogenated polyether modified polybutadiene and its manufacturing method
JP6202471B2 (en) Method for producing medical polyoxypropylene polymer and method for producing medical polyoxypropylene / polyoxyethylene block copolymer
JP2023167514A (en) Production method of oxyalkylene polymer having carbon-carbon unsaturated group at its terminal, production method of oxyalkylene polymer having reactive silicon group at its terminal, oxyalkylene polymer having carbon-carbon unsaturated group at its terminal, and oxyalkylene polymer having reactive silicon group at its terminal
JP2005350402A (en) Monohydric alcohol alkylene oxide adduct and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080611

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080813

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110629

R150 Certificate of patent or registration of utility model

Ref document number: 4776873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term