JP2004273650A - Method for cleaning substrate with metal film - Google Patents

Method for cleaning substrate with metal film Download PDF

Info

Publication number
JP2004273650A
JP2004273650A JP2003060772A JP2003060772A JP2004273650A JP 2004273650 A JP2004273650 A JP 2004273650A JP 2003060772 A JP2003060772 A JP 2003060772A JP 2003060772 A JP2003060772 A JP 2003060772A JP 2004273650 A JP2004273650 A JP 2004273650A
Authority
JP
Japan
Prior art keywords
metal film
substrate
cleaning
solution
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003060772A
Other languages
Japanese (ja)
Other versions
JP4010359B2 (en
Inventor
Hisafumi Shintani
尚史 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2003060772A priority Critical patent/JP4010359B2/en
Publication of JP2004273650A publication Critical patent/JP2004273650A/en
Application granted granted Critical
Publication of JP4010359B2 publication Critical patent/JP4010359B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Detergent Compositions (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for cleaning a substrate with a metal film without deteriorating its surface roughness after polishing. <P>SOLUTION: In the method for cleaning the substrate with the metal film, the pH of each of a reserved liquid and a cleaning liquid is eight or more. The reserved liquid and the cleaning liquid preferably contain a surface active agent, and preferably contain at least one type of a compound of a concentration of 0.01-100 wt.% selected from the group consisting of a polyoxyethylene alkylether and a polyoxyethylene alkylphenylether. The substrate with the metal film is preferably obtained by arranging a metal film different from the substrate on the substrate containing one or more selected from the group consisting of an aluminum, a copper, a brass, a glass, a carbon and a silicon. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、金属膜付基板の研磨後の洗浄方法に関する。
【0002】
【従来の技術】
従来、半導体基板の研磨後には、搬送時の保存液としては研磨面の保護として酸性(pH<7)の界面活性剤を使用する。また、洗浄液では、過酸化水素とアンモニアによるSC1洗浄が一般的である。過酸化水素とフッ化水素と界面活性剤を含む洗浄液も報告されている(特許文献1)。しかし、金属膜付基板の場合、保存液として酸性(pH<7)の界面活性剤を使用したりSC1洗浄してしまうと逆にエッチングが進行し、研磨面の面粗さが増大してしまう。
【0003】
【特許文献1】
特開2002−261069号
【0004】
【発明が解決しようとする課題】
本発明は、上記の様な従来技術に伴う問題点を解決しようとするものであって、研磨後の金属膜付基板の面粗さを劣化させることなく洗浄する方法を提供する。
【0005】
【課題を解決するための手段】
本発明は、研磨後の金属膜付基板の保存液及び洗浄液のpHを8以上とすることで、金属膜付基板の面粗さを劣化させることなく洗浄することを特徴とする。つまり、保存液、洗浄液を金属膜のエッチングが進行しないpHである8以上にすることで、研磨直後の面粗さを洗浄・乾燥後に維持するための方法である。
【0006】
本発明は、具体的には、金属膜付基板の研磨後の洗浄方法であって、pHが8以上の洗浄液を用いるアルカリ洗浄工程を含むことを特徴とする洗浄方法を提供する。また、洗浄工程の前に、pHが8以上の保存液中に浸すアルカリ保存工程を含む洗浄方法を提供する。なお、本発明において、アルカリ保存工程の後に別個独立のアルカリ洗浄工程を設けなくても、アルカリ保存工程の後にアルカリ保存液から基板を取り出す工程は、アルカリ保存液をアルカリ洗浄液とみなし、アルカリ洗浄工程とみなすものとする。
【0007】
【発明の実施の形態】
以下に、本発明の金属膜付基板面の研磨後の洗浄方法について詳細に説明する。
本発明の金属膜付基板の基板は、好ましくは記録メディア用であり、好ましくは、アルミニウムと銅と真鍮とガラスとカーボンと珪素とからなる一群から選ばれる一以上である。
研磨する金属膜付基板は、好ましくは、金属膜付アルミニウムディスク、金属膜付銅ディスク、金属膜付ガラスディスク、金属膜付カーボンディスク、又は金属膜付珪素ディスクであって、この基板上に基板とは異なる金属膜を配した金属膜付基板である。この基板上に基板とは異なる金属膜を配するのは、基板の強度向上や記録メディアとしての用途が主であるためである。
基板の厚さは、特に限定されないが、通常、0.1〜1.0mmである。
【0008】
研磨する金属膜付基板の金属膜は、単金属又は2種以上の合金もしくは2種以上の多層膜である。金属膜は、好ましくは、コバルトとニッケルと鉄と白金と銅とからなる一群から選ばれる一種又は二種以上の合金、又は二種以上の多面層である。
金属膜の厚さは、特に限定されないが、好ましくは0.1〜10μmである。
【0009】
金属膜を金属基板に設ける方法は、特に限定されず、公知の方法が用いられる。好ましい方法としては、スパッタ法、メッキ法、ペースト法、接着法、焼結法等である。
【0010】
研磨工程は、特に限定しないが、好ましくは研磨液を用いるものであり、好ましくは、アルミナと酸化ジルコニウムと酸化チタンと酸化セリウムとシリカとからなる一群から選ばれる1種以上の酸化物粒子を含む分散液である。粒子の大きさは、特に限定されず、用途に応じて選択できるが、通常はナノメーターオーダー又はマイクロメーターオーダーである。研磨液の濃度は、用途に応じて適宜希釈して用いることができる。
研磨液として特に好ましくは、コロイダルシリカ等のシリカを砥粒とするものである。その後のアルカリ保存工程又はアルカリ洗浄工程により、シリカがアルカリ液中に溶け出すため、洗浄の促進となるからである。
【0011】
本発明によれば、この金属膜を研磨し、面粗さを劣化させることなく洗浄・乾燥を行うために、金属膜付基板の研磨後に用いる保存液、洗浄液のpHをアルカリ側(pH≧8)に設定し、洗浄前の保存中及び洗浄中での面粗さの劣化を防止する。
洗浄工程は、研磨後の金属膜付基板を洗浄する工程であり、pH8以上の洗浄液を用いるアルカリ洗浄工程の前に水で洗浄しても良い。特に、酸性条件下で研磨した場合には、前もって水で洗浄することが好ましい。また、アルカリ洗浄工程の後に水で洗浄しても良い。
保存液を用いる保存工程は、金属膜の研磨後にすぐに洗浄できない場合等に、金属膜付基板を保存液に浸して保管する工程である。保存工程の前に水で洗浄してもよい。本発明において、アルカリ保存工程の後に別個独立のアルカリ洗浄工程を設けなくても、アルカリ保存工程の後にアルカリ保存液から基板を取り出す工程は、アルカリ保存液をアルカリ洗浄液とみなし、アルカリ洗浄工程とみなすものとする。取り出した基板は、水で洗浄してもよい。
【0012】
本発明に用いる洗浄液又は保存液は、好ましくは界面活性剤を含む溶液であり、好ましくは水溶液である。界面活性剤を用いると、砥粒の再付着を防止でき、砥粒の脱離を促進できるからである。界面活性剤は、好ましくは、ポリオキシエチレンアルキルエーテルと、ポリオキシエチレンアルキルフェニルエーテルとからなる一群から選ばれる少なくとも1種の化合物であり、好ましくは0.01〜100重量%の濃度とする。
界面活性剤の具体例としては、ポリオキシエチレンアルキルエーテルでは、クリーンスルーKS−3030、KS−3053(花王社製)、エクセムライト(共栄社化学社製)、BL−2(日光ケミカル社製)等が挙げられ、ポリオキシエチレンアルキルフェニルエーテルでは、NOW−601A(和光純薬社製)等が挙げられる。
【0013】
保存液及び洗浄液のpHコントロールは、酸性側は無機酸(塩酸、硝酸、硫酸等)、有機酸(酢酸、酒石酸、クエン酸等)、アルカリ性側は無機塩(水酸化カリウム、水酸化ナトリウム、水酸化リチウム、アンモニア等)、有機塩(酢酸ナトリウム、酒石酸ナトリウム、クエン酸ナトリウム等)又はイオン交換により調整することができるが、保存・洗浄する材料の特性に応じ選択することができ、特に限定されるものでない。
【0014】
本発明に用いる洗浄液又は保存液は、界面活性剤に加えて、無機酸、有機酸、無機塩、有機塩等を含んでいても良い。
【0015】
また、保存液及び洗浄液は、洗浄能力を高めるために加温(30〜80℃)して使用しても良い。加温することにより、常温と比べて界面活性剤の濃度を低下させることができる。
【0016】
これら保存液・洗浄液を用いて、金属膜付基板面の研磨後の基板を保存・洗浄することで面粗さを劣化させない洗浄方法が確立できる。特に、本発明の利点としては搬送時の保存液として界面活性剤を使用するので、保存中にも洗浄が行われるために、洗浄工程が短時間でき、生産性の向上も期待できる。
【0017】
本発明の洗浄方法は、磁気記録媒体に用いられる、軟磁性膜付基板の研磨に特に好ましい。軟磁性膜付基板は、軟磁性膜の上に硬磁性膜である記録層を設けると、ハードディスク等となるものである。なお、軟磁性膜とは、保磁力で定義すると数十Oe以下の膜であり、保持力数百Oe以上の硬磁性膜と区別される。
基板としては、Si単結晶基板やガラス基板が挙げられる。軟磁性膜としては、好ましくは、コバルトとニッケルと鉄とからなる一群から選ばれる一種以上の金属が挙げられる。軟磁性膜付基板の洗浄では、pH11以上の界面活性剤を用いることにより、効率良く洗浄する効果がある。
【0018】
【実施例】
以下、本発明を実施例に基づき説明するが、本発明はこれに限定されるものではない。
実施例1〜3、比較例1〜3
金属膜付基板としてNi−Fe(重量比1:1)膜が5μm付着した3.5インチガラス基板を1枚準備した。
研磨機は6B型両面研磨機(キャリアサイズ6インチ)とし、研磨パッドはファイナル用のスエードタイプを用いて研磨した。研磨液は、粒径が60〜80nmのコロイダルシリカを準備した。なお、pH調整はイオン交換法で行った。
研磨及び洗浄工程は、図1に示すように、研磨した後、リンス後、簡易洗浄(手洗浄)・乾燥した。図2に示すように、この研磨品を6分割し、ポリオキシエチレンアルキルエーテル系の界面活性剤(クリーンスルーKS3053(花王社製))の5重量%水溶液である保存液等に浸漬し、72時間放置後、取り出し、簡易洗浄(手洗浄)・乾燥した。保存液のpH調整には水酸化ナトリウムを使用した。この各種研磨品を原子間力顕微鏡(日本電子社製走査プローブ顕微鏡JSPM−4200)を用いて、AFM(アトミック・フォース・マイクロスコープ)観察を行い、面粗さを測定し、表1に示した。
【0019】
【表1】

Figure 2004273650
【0020】
実施例1〜3及び比較例1〜3の結果より、保存液の種類により研磨面の面粗さの劣化が起こった。特に、比較例3のpH=4.9品は、外観も変色が認められ面粗さの劣化が大きかった。また、比較例2の超純水pH=6.8品についても予想外に面粗さの劣化が起こり、金属の研磨面に対しては中性付近でもダメージがあるものと考えられる。これに対し、実施例1〜3のpH=8〜13.5品については、大気放置に比べ、研磨面の面粗さの劣化は無く保存液として使用できることが確認できた。しかし、実施例3のpH=13.5品については、実施例1〜2に比べ、研磨面が若干劣化しているように見えることから、保存液としてのpHは8〜12の範囲が好ましいと考えられる。
今回、各種保存液の検討を行うため、研磨後直ちに洗浄・乾燥を行ったが、簡易洗浄のため、一部研磨砥粒の残留が認められた。この、試験はあくまで保存液が研磨面にダメージを与える確認を行うものであり、生産性は考えていない。
また、研磨面の面粗さについては、砥粒の残留が無い部分について測定を行った。
【0021】
実施例4〜15、比較例4〜6
金属膜付基板としてNi−Fe(重量比1:1)膜が2μm付着した1.8インチSi基板を10枚準備した。
研磨機は6B型両面研磨機(キャリアサイズ6インチ)とし、研磨パッドはファイナル用のスエードタイプを用いて研磨した。
研磨液は、粒径が20〜40nmのコロイダルシリカを準備し、pH調整は、炭酸ナトリウムで行った。
研磨及び洗浄工程は、図3と図4に示すように、研磨後、研磨品を各種条件のポリオキシエチレンアルキルエーテル系界面活性剤(クリーンスルーKS3053(花王社製))の入りの保存液に1枚づつ浸漬し、60分後、洗浄機を用いて洗浄・乾燥を行った後、集光灯(山田光学社製)よる研磨面のパーティクルの有無及び数について目視観察を行った。パーティク数は、目視観察による研磨面(片面)に付着した斑点の数で表した。また、原子間力顕微鏡(AFM)(日本電子社製走査プローブ顕微鏡JSPM−4200)を用いて、研磨面のAFM観察を行い、面粗さを測定し、表2に示した。
【0022】
【表2】
Figure 2004273650
【0023】
実施例4〜15及び比較例4〜6の結果より、保存液の界面活性剤が洗浄後のパーティクルの除去に不可欠であることが判った。また、洗剤濃度についても常温では10重量%以上で、残留するパーティクルがなくなった。さらに、保存液を加温することにより、1重量%でも充分な効果が認められた。
保存液のpHについても、研磨液の砥粒がシリカ系であるということもあり、PHの高い領域において、十分な効果が得られることが確認できた。
これらの結果から、保存液は、pHを8〜13、洗剤濃度1〜50重量%、液温40〜60℃とすることで、充分な効果が得られることが判った。また、洗浄での洗剤液の条件も保存液と同等にすることで更に効果が期待できると考えられるが、今回の検討では洗浄液濃度は1重量%(20℃)で十分であった。これに対し、洗剤を含まない水のみに保存した研磨品は、その後の洗浄時の条件を検討しても、パーティクルを完全に除去することは出来なかった。このことより、一度研磨面に固着した砥粒を除去することは難しく、研磨直後に保管する保存液の重要性が高いことを裏付けている。
【0024】
なお、使用した評価方法について以下に説明する。
面粗さの測定
原子間力顕微鏡(日本電子社製走査プローブ顕微鏡JSPM−4200)を用いて、AFM観察を行い、面粗さを測定した。観察エリアは10μm角とした。
【0025】
集光灯による目視観察
集光灯(山田光学社製)を用いて、10万ルクスの照度でパーティクルの有無及び数を目視観察した。
【0026】
【発明の効果】
本発明によれば、金属膜付基板の研磨後の洗浄を、研磨面にダメージを与えることなく砥粒やその他微粒子などの汚染物を除去できる洗浄方法が可能となる。
【図面の簡単な説明】
【図1】実施例1〜3及び比較例1〜3の研磨及び洗浄工程と示す図である。
【図2】研磨品を6分割し、保存液に入れることを示す概略図である。
【図3】実施例4〜6及び比較例4〜6の研磨及び洗浄工程と示す図である。
【図4】研磨品を保存液に入れることを示す概略図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for cleaning a substrate with a metal film after polishing.
[0002]
[Prior art]
Conventionally, after polishing a semiconductor substrate, an acidic (pH <7) surfactant is used as a preservation solution for transporting to protect a polished surface. In addition, SC1 cleaning with hydrogen peroxide and ammonia is generally used as the cleaning liquid. A cleaning solution containing hydrogen peroxide, hydrogen fluoride and a surfactant has also been reported (Patent Document 1). However, in the case of a substrate with a metal film, if an acidic (pH <7) surfactant is used as a preservative, or if SC1 cleaning is performed, etching proceeds in reverse, and the surface roughness of the polished surface increases. .
[0003]
[Patent Document 1]
JP-A-2002-261609
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention is directed to solving the problems associated with the prior art as described above, and provides a method for cleaning a polished substrate with a metal film without deteriorating the surface roughness.
[0005]
[Means for Solving the Problems]
The present invention is characterized in that the substrate with a metal film is cleaned without deteriorating the surface roughness of the substrate with a metal film by setting the pH of the preservation solution and the cleaning solution of the substrate with the metal film to 8 or more. In other words, this is a method for maintaining the surface roughness immediately after polishing after cleaning and drying by adjusting the preservation solution and the cleaning solution to a pH of 8 or more at which the etching of the metal film does not proceed.
[0006]
The present invention specifically provides a method for cleaning a substrate with a metal film after polishing, the method including an alkaline cleaning step using a cleaning solution having a pH of 8 or more. Further, the present invention provides a cleaning method including an alkali preserving step of immersing in a preserving solution having a pH of 8 or more before the cleaning step. In the present invention, the step of taking out the substrate from the alkaline preservation solution after the alkali preservation step is performed without considering a separate and independent alkali cleaning step after the alkali preservation step. Shall be considered.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the method for cleaning the surface of the substrate with a metal film after polishing according to the present invention will be described in detail.
The substrate of the substrate with a metal film of the present invention is preferably for a recording medium, and is preferably at least one selected from the group consisting of aluminum, copper, brass, glass, carbon, and silicon.
The substrate with a metal film to be polished is preferably an aluminum disk with a metal film, a copper disk with a metal film, a glass disk with a metal film, a carbon disk with a metal film, or a silicon disk with a metal film. This is a substrate provided with a metal film provided with a metal film different from the above. The reason why a metal film different from that of the substrate is provided on the substrate is mainly to improve the strength of the substrate and to use it as a recording medium.
The thickness of the substrate is not particularly limited, but is usually 0.1 to 1.0 mm.
[0008]
The metal film of the substrate with a metal film to be polished is a single metal, two or more alloys, or two or more multilayer films. The metal film is preferably one or more alloys selected from the group consisting of cobalt, nickel, iron, platinum, and copper, or two or more polyhedral layers.
The thickness of the metal film is not particularly limited, but is preferably 0.1 to 10 μm.
[0009]
The method for providing the metal film on the metal substrate is not particularly limited, and a known method is used. Preferred methods include a sputtering method, a plating method, a paste method, a bonding method, and a sintering method.
[0010]
The polishing step is not particularly limited, but preferably uses a polishing liquid, and preferably contains one or more oxide particles selected from the group consisting of alumina, zirconium oxide, titanium oxide, cerium oxide, and silica. It is a dispersion. The size of the particles is not particularly limited and can be selected according to the application, but is usually on the order of nanometers or micrometers. The concentration of the polishing liquid can be appropriately diluted according to the intended use.
Particularly preferably, the polishing liquid uses silica such as colloidal silica as abrasive grains. This is because the silica is dissolved in the alkaline liquid in the subsequent alkaline storage step or alkaline cleaning step, which promotes the cleaning.
[0011]
According to the present invention, in order to polish the metal film and perform cleaning and drying without deteriorating the surface roughness, the pH of the preservation solution and the cleaning solution used after polishing the substrate with the metal film is set to the alkaline side (pH ≧ 8). ) To prevent the surface roughness from deteriorating during storage before washing and during washing.
The cleaning step is a step of cleaning the substrate with the metal film after polishing, and may be performed with water before the alkaline cleaning step using a cleaning liquid having a pH of 8 or more. In particular, when polishing is performed under acidic conditions, it is preferable to wash with water in advance. After the alkaline cleaning step, the substrate may be washed with water.
The preservation step using a preservation liquid is a step of immersing the substrate with the metal film in the preservation liquid and storing it when the metal film cannot be washed immediately after polishing. It may be washed with water before the storage step. In the present invention, the step of removing the substrate from the alkaline preservation solution after the alkali preservation process is regarded as the alkali preservation solution, and the alkali preservation solution is regarded as the alkali cleaning process without providing a separate and independent alkali cleaning process after the alkali preservation process. Shall be. The removed substrate may be washed with water.
[0012]
The washing solution or preservation solution used in the present invention is preferably a solution containing a surfactant, and is preferably an aqueous solution. This is because the use of a surfactant can prevent the reattachment of the abrasive grains and promote the detachment of the abrasive grains. The surfactant is preferably at least one compound selected from a group consisting of polyoxyethylene alkyl ether and polyoxyethylene alkyl phenyl ether, and preferably has a concentration of 0.01 to 100% by weight.
Specific examples of the surfactant include, for polyoxyethylene alkyl ether, clean-through KS-3030, KS-3053 (manufactured by Kao Corporation), Exemlite (manufactured by Kyoeisha Chemical Co., Ltd.), BL-2 (manufactured by Nikko Chemical Co., Ltd.), etc. Examples of the polyoxyethylene alkyl phenyl ether include NOW-601A (manufactured by Wako Pure Chemical Industries, Ltd.).
[0013]
For the pH control of the preservation solution and the washing solution, the acidic side is an inorganic acid (hydrochloric acid, nitric acid, sulfuric acid, etc.), the organic acid (acetic acid, tartaric acid, citric acid, etc.), and the alkaline side is an inorganic salt (potassium hydroxide, sodium hydroxide, water). It can be adjusted by lithium ion, ammonia, etc.), organic salts (sodium acetate, sodium tartrate, sodium citrate, etc.) or ion exchange, but can be selected according to the properties of the material to be stored and washed, and are particularly limited. Not something.
[0014]
The washing solution or the preservation solution used in the present invention may contain an inorganic acid, an organic acid, an inorganic salt, an organic salt and the like in addition to the surfactant.
[0015]
Further, the preservation solution and the washing solution may be used after being heated (30 to 80 ° C.) in order to enhance the washing ability. By heating, the concentration of the surfactant can be reduced as compared with normal temperature.
[0016]
A cleaning method that does not degrade the surface roughness can be established by storing and cleaning the substrate after polishing the surface of the metal film-coated substrate using these preservation liquid and cleaning liquid. In particular, as an advantage of the present invention, since a surfactant is used as a preservation solution at the time of transportation, cleaning is performed during storage, so that the cleaning step can be performed in a short time, and improvement in productivity can be expected.
[0017]
The cleaning method of the present invention is particularly preferable for polishing a substrate with a soft magnetic film used for a magnetic recording medium. A substrate with a soft magnetic film becomes a hard disk or the like when a recording layer that is a hard magnetic film is provided on the soft magnetic film. The soft magnetic film is a film having a coercive force of several tens Oe or less and is distinguished from a hard magnetic film having a coercive force of several hundreds Oe or more.
Examples of the substrate include a Si single crystal substrate and a glass substrate. The soft magnetic film preferably includes at least one metal selected from the group consisting of cobalt, nickel and iron. In the cleaning of the substrate with a soft magnetic film, the use of a surfactant having a pH of 11 or more has an effect of efficiently cleaning the substrate.
[0018]
【Example】
Hereinafter, the present invention will be described based on examples, but the present invention is not limited thereto.
Examples 1-3, Comparative Examples 1-3
As a substrate with a metal film, one 3.5-inch glass substrate to which a Ni—Fe (weight ratio: 1: 1) film was adhered to 5 μm was prepared.
The polishing machine was a 6B type double-side polishing machine (carrier size 6 inches), and the polishing pad was polished using a suede type for final. As the polishing liquid, colloidal silica having a particle size of 60 to 80 nm was prepared. The pH was adjusted by an ion exchange method.
In the polishing and cleaning steps, as shown in FIG. 1, after polishing, rinsing, simple cleaning (hand cleaning) and drying were performed. As shown in FIG. 2, this polished product was divided into six parts, immersed in a preservative solution or the like, which was a 5% by weight aqueous solution of a polyoxyethylene alkyl ether-based surfactant (Clean-Thru KS3053 (manufactured by Kao Corporation)), and was immersed in a 72-part water solution. After leaving for a period of time, it was taken out, washed briefly (hand washing) and dried. Sodium hydroxide was used to adjust the pH of the storage solution. The various polished products were observed by AFM (atomic force microscope) using an atomic force microscope (scanning probe microscope JSPM-4200 manufactured by JEOL Ltd.), and the surface roughness was measured. .
[0019]
[Table 1]
Figure 2004273650
[0020]
From the results of Examples 1 to 3 and Comparative Examples 1 to 3, deterioration of the surface roughness of the polished surface occurred depending on the type of the preservation solution. In particular, in the product of pH = 4.9 of Comparative Example 3, discoloration was observed in the appearance, and the surface roughness was largely deteriorated. It is also considered that the surface roughness of the ultrapure water product of Comparative Example 2 with a pH of 6.8 was unexpectedly deteriorated, and the polished metal surface was damaged even in the vicinity of neutrality. On the other hand, it was confirmed that the samples of Examples 1 to 3 having a pH of 8 to 13.5 did not deteriorate in the surface roughness of the polished surface and could be used as a preservative as compared with the case where the product was left in the air. However, the pH of the preservative solution is preferably in the range of 8 to 12, since the polished surface of the product of Example 3 having a pH of 13.5 seems slightly deteriorated as compared with Examples 1 and 2. it is conceivable that.
This time, cleaning and drying were performed immediately after polishing in order to examine various preservatives. However, due to simple cleaning, some polishing abrasive grains remained. This test is intended only to confirm that the preservative solution causes damage to the polished surface, and does not consider productivity.
The surface roughness of the polished surface was measured at a portion where no abrasive grains remained.
[0021]
Examples 4 to 15, Comparative Examples 4 to 6
Ten 1.8-inch Si substrates to which a Ni—Fe (weight ratio 1: 1) film was adhered to 2 μm were prepared as substrates with metal films.
The polishing machine was a 6B type double-side polishing machine (carrier size 6 inches), and the polishing pad was polished using a suede type for final.
As the polishing liquid, colloidal silica having a particle size of 20 to 40 nm was prepared, and the pH was adjusted with sodium carbonate.
In the polishing and washing steps, as shown in FIGS. 3 and 4, after polishing, the polished product is placed in a storage solution containing a polyoxyethylene alkyl ether-based surfactant (Clean-through KS3053 (manufactured by Kao Corporation)) under various conditions. After immersion one by one, and after 60 minutes, washing and drying were performed using a washing machine, visual observation was made on the presence or absence and the number of particles on the polished surface by a condensing lamp (manufactured by Yamada Optical Co., Ltd.). The number of particles was represented by the number of spots adhered to the polished surface (one surface) by visual observation. The polished surface was subjected to AFM observation using an atomic force microscope (AFM) (a scanning probe microscope JSPM-4200 manufactured by JEOL Ltd.), and the surface roughness was measured.
[0022]
[Table 2]
Figure 2004273650
[0023]
From the results of Examples 4 to 15 and Comparative Examples 4 to 6, it was found that the surfactant in the preservation solution was indispensable for removing particles after washing. Also, the detergent concentration was 10% by weight or more at room temperature, and the remaining particles were eliminated. Further, by heating the preservation solution, a sufficient effect was recognized even at 1% by weight.
Regarding the pH of the preservation solution, the abrasive grains of the polishing solution were silica-based, and it was confirmed that a sufficient effect was obtained in a high PH region.
From these results, it was found that a sufficient effect can be obtained by adjusting the pH of the storage solution to 8 to 13, the detergent concentration to 1 to 50% by weight, and the solution temperature to 40 to 60 ° C. Further, it is considered that the effect can be further expected by making the condition of the detergent solution in the washing the same as that of the preservative solution. However, in this study, the washing solution concentration of 1% by weight (20 ° C.) was sufficient. On the other hand, in the case of the polished product stored only in water containing no detergent, the particles could not be completely removed even if the conditions at the time of subsequent washing were examined. From this, it is difficult to remove the abrasive grains once adhered to the polished surface, which confirms that the preservation solution stored immediately after polishing is highly important.
[0024]
The evaluation method used is described below.
AFM observation was performed using an atomic force microscope (a scanning probe microscope JSPM-4200 manufactured by JEOL Ltd.) to measure the surface roughness. The observation area was 10 μm square.
[0025]
Visual observation with condensing lamp Using a condensing lamp (manufactured by Yamada Optical Co., Ltd.), the presence and number of particles were visually observed at an illuminance of 100,000 lux.
[0026]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, after the grinding | polishing of the board | substrate with a metal film, the washing | cleaning method which can remove contaminants, such as abrasive grains and other fine particles, without damaging a grinding | polishing surface is attained.
[Brief description of the drawings]
FIG. 1 is a diagram showing polishing and cleaning steps of Examples 1 to 3 and Comparative Examples 1 to 3.
FIG. 2 is a schematic view showing that an abrasive article is divided into six parts and put into a preservative solution.
FIG. 3 is a diagram showing polishing and cleaning steps of Examples 4 to 6 and Comparative Examples 4 to 6.
FIG. 4 is a schematic view showing putting an abrasive in a preservative solution.

Claims (7)

金属膜付基板の研磨後の洗浄方法であって、pHが8以上の洗浄液を用いるアルカリ洗浄工程を含むことを特徴とする洗浄方法。A cleaning method after polishing a substrate with a metal film, comprising an alkali cleaning step using a cleaning liquid having a pH of 8 or more. 上記アルカリ洗浄工程の前に、pHが8以上の保存液中に浸すアルカリ保存工程を含む請求項1に記載の洗浄方法。The cleaning method according to claim 1, further comprising, before the alkaline cleaning step, an alkaline storage step of immersing in a storage solution having a pH of 8 or more. 上記洗浄液又は保存液が、界面活性剤を含む請求項1又は請求項2に記載の洗浄方法。The cleaning method according to claim 1 or 2, wherein the cleaning solution or the preservation solution contains a surfactant. 上記界面活性剤が、ポリオキシエチレンアルキルエーテルとポリオキシエチレンアルキルフェニルエーテルとからなる一群から選ばれる少なくとも1種の化合物であって0.01〜100重量%の濃度とするものである請求項3に記載の洗浄方法。4. The surfactant according to claim 3, wherein the surfactant is at least one compound selected from the group consisting of polyoxyethylene alkyl ether and polyoxyethylene alkyl phenyl ether, and has a concentration of 0.01 to 100% by weight. The washing method according to 1. 上記金属膜付基板が、アルミニウムと銅と真鍮とガラスとカーボンと珪素とからなる一群から選ばれる一以上を含む基板上に、該基板とは異なる金属膜を配したものである請求項1〜4のいずれかに記載の洗浄方法。The substrate with a metal film, wherein a metal film different from the substrate is disposed on a substrate including at least one selected from the group consisting of aluminum, copper, brass, glass, carbon, and silicon. 5. The washing method according to any one of 4. 上記金属膜付基板の金属膜が、単金属又は2種以上の合金もしくは2種以上の多層膜である請求項1〜5のいずれかに記載の洗浄方法。The cleaning method according to claim 1, wherein the metal film of the substrate with a metal film is a single metal, two or more alloys, or two or more multilayer films. 上記金属膜付基板の金属膜が、軟磁性膜である請求項1〜6のいずれかに記載の洗浄方法。The cleaning method according to claim 1, wherein the metal film of the substrate with a metal film is a soft magnetic film.
JP2003060772A 2003-03-07 2003-03-07 Cleaning method for substrate with metal film Expired - Fee Related JP4010359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003060772A JP4010359B2 (en) 2003-03-07 2003-03-07 Cleaning method for substrate with metal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003060772A JP4010359B2 (en) 2003-03-07 2003-03-07 Cleaning method for substrate with metal film

Publications (2)

Publication Number Publication Date
JP2004273650A true JP2004273650A (en) 2004-09-30
JP4010359B2 JP4010359B2 (en) 2007-11-21

Family

ID=33123179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003060772A Expired - Fee Related JP4010359B2 (en) 2003-03-07 2003-03-07 Cleaning method for substrate with metal film

Country Status (1)

Country Link
JP (1) JP4010359B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255581A1 (en) * 2019-06-20 2020-12-24 富士フイルム株式会社 Polishing fluid and chemical mechanical polishing method
JPWO2020255602A1 (en) * 2019-06-20 2020-12-24
WO2020255582A1 (en) * 2019-06-20 2020-12-24 富士フイルム株式会社 Polishing liquid and chemical mechanical polishing method
WO2020255603A1 (en) * 2019-06-20 2020-12-24 富士フイルム株式会社 Polishing liquid and chemical-mechanical polishing method
US12006446B2 (en) 2019-06-20 2024-06-11 Fujifilm Corporation Polishing liquid and chemical mechanical polishing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255581A1 (en) * 2019-06-20 2020-12-24 富士フイルム株式会社 Polishing fluid and chemical mechanical polishing method
JPWO2020255602A1 (en) * 2019-06-20 2020-12-24
WO2020255602A1 (en) * 2019-06-20 2020-12-24 富士フイルム株式会社 Polishing solution and chemical-mechanical polishing method
JPWO2020255581A1 (en) * 2019-06-20 2020-12-24
WO2020255582A1 (en) * 2019-06-20 2020-12-24 富士フイルム株式会社 Polishing liquid and chemical mechanical polishing method
WO2020255603A1 (en) * 2019-06-20 2020-12-24 富士フイルム株式会社 Polishing liquid and chemical-mechanical polishing method
JPWO2020255603A1 (en) * 2019-06-20 2020-12-24
JPWO2020255582A1 (en) * 2019-06-20 2020-12-24
JP7244642B2 (en) 2019-06-20 2023-03-22 富士フイルム株式会社 Polishing liquid and chemical mechanical polishing method
JP7295236B2 (en) 2019-06-20 2023-06-20 富士フイルム株式会社 Polishing liquid and chemical mechanical polishing method
JP7331103B2 (en) 2019-06-20 2023-08-22 富士フイルム株式会社 Polishing liquid and chemical mechanical polishing method
JP7333396B2 (en) 2019-06-20 2023-08-24 富士フイルム株式会社 Polishing liquid and chemical mechanical polishing method
US12006446B2 (en) 2019-06-20 2024-06-11 Fujifilm Corporation Polishing liquid and chemical mechanical polishing method

Also Published As

Publication number Publication date
JP4010359B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
JP6206360B2 (en) Polishing method of silicon wafer
EP1286928B1 (en) Lanthanide oxide dissolution from glass surface
JP5177087B2 (en) Glass substrate for information recording medium, manufacturing method thereof, and magnetic recording medium
JP4557222B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP5029792B2 (en) Glass substrate manufacturing method for information recording medium
TWI464125B (en) Preparation of synthetic quartz glass substrates
JP5386036B2 (en) Manufacturing method of glass substrate for magnetic disk
CN107398780B (en) Double-side polishing method for wafer
TWI440712B (en) Aqueous cleaning composition for substrate of perpendicular magnetic recording hard disk
JP4085356B2 (en) Cleaning and drying method for semiconductor wafer
TW201402805A (en) Washing agent for alloy material and method for producing alloy material
JP4010359B2 (en) Cleaning method for substrate with metal film
WO2008004470A1 (en) Method for manufacturing glass substrate for information recording medium
CN102473423A (en) Method for producing glass substrate for magnetic disk
CN110064984A (en) A kind of wafer processing method and device
KR100329115B1 (en) Processing method of polishing semiconductor wafer after polishing of semiconductor wafer
TW561135B (en) Method for the production of glass substrates for magnetic recording mediums
JP3879827B2 (en) Photomask blank manufacturing method
CN107532115A (en) Glass hard disk substrate cleansing composition
JP2004002163A (en) Production method for chemically strengthened glass and method of producing glass substrate for information recording medium
JP2004182800A (en) Rinsing agent composition
JP7380492B2 (en) Polishing composition and wafer processing method
JP4285222B2 (en) Pretreatment method for electroless plating, method for producing substrate for magnetic recording medium including the method, and substrate for magnetic recording medium produced by the production method
JP4228902B2 (en) Magnetic recording medium and method for manufacturing the same
JP5386037B2 (en) Manufacturing method of glass substrate for magnetic disk

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050127

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070803

A61 First payment of annual fees (during grant procedure)

Effective date: 20070828

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees