JP2004273451A - Positive electrode activator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery - Google Patents

Positive electrode activator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2004273451A
JP2004273451A JP2004045258A JP2004045258A JP2004273451A JP 2004273451 A JP2004273451 A JP 2004273451A JP 2004045258 A JP2004045258 A JP 2004045258A JP 2004045258 A JP2004045258 A JP 2004045258A JP 2004273451 A JP2004273451 A JP 2004273451A
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
secondary battery
positive electrode
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004045258A
Other languages
Japanese (ja)
Other versions
JP4427351B2 (en
Inventor
Katsuya Kase
克也 加瀬
Hirofumi Iizaka
浩文 飯坂
Satoru Suzuki
覚 鈴木
Manabu Yamada
学 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Denso Corp
Toyota Motor Corp
Original Assignee
Sumitomo Metal Mining Co Ltd
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Denso Corp, Toyota Motor Corp filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004045258A priority Critical patent/JP4427351B2/en
Publication of JP2004273451A publication Critical patent/JP2004273451A/en
Application granted granted Critical
Publication of JP4427351B2 publication Critical patent/JP4427351B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium metal complex oxide capable of obtaining a nonaqueous electrolyte secondary battery with a high initial discharge capacity, a small irreversible capacity, and high output characteristics at high and low temperatures. <P>SOLUTION: The lithium metal complex oxide is expressed in formula: Li<SB>x</SB>(Ni<SB>1-y</SB>Co<SB>y</SB>)<SB>1-z</SB>M<SB>z</SB>O<SB>2</SB>(0.98≤x≤1.10, 0.05≤y≤0.4, 0.01≤z≤0.2, provided that, M is one or more kind of metal element selected from a group consisting of Al, Mg, Mn, Ti, Fe, Cu, Zn and Ga.), and contains SO<SB>4</SB>ion by 0.4 mass % or more and 2.5 mass % or less, and the space share of lithium determined by Riedvelt analysis using an X-ray refraction chart is 98% or more. It is preferable that the C adhesion amount is 0.12 mass % or less, and Karl Fischer moisture percentage at 180°C is 0.2 mass % or less. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、非水系電解質二次電池用正極活物質、およびそれを用いた非水系電解質二次電池に関し、特に、非水系電解質二次電池の高容量化、クーロン効率の向上、不可逆容量の減少、低温出力の向上、サイクル特性の向上に関する。   The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same, and in particular, to increase the capacity of the non-aqueous electrolyte secondary battery, improve the coulomb efficiency, and reduce the irreversible capacity. , Improvement of low temperature output, improvement of cycle characteristics.

近年、リチウム二次電池は、高電圧かつ高エネルギー密度を実現することが可能となった。そのため、その小型かつ高容量である特性から、携帯電話やノート型パソコン、ビデオカムおよび携帯情報端末などの小型移動機器の電源として搭載され、急激に社会に浸透した。さらに最近では、ハイブリッドカーに代表される自動車への搭載を目指して、研究および開発が進められている。そのような中、社会からは、より高容量で、安全性および出力特性の優れた電池の要求が高まってきている。   In recent years, lithium secondary batteries have been able to achieve high voltage and high energy density. Therefore, due to its small size and high capacity, it has been installed as a power source for small mobile devices such as mobile phones, notebook computers, video cams and personal digital assistants, and has rapidly penetrated society. More recently, research and development have been progressing with the aim of mounting on automobiles represented by hybrid cars. Under such circumstances, there is an increasing demand from society for batteries with higher capacity, safety and output characteristics.

リチウムイオン二次電池は、高電圧および高エネルギー密度を実現することが可能であるが、正極材料として最も広く用いられているのは、リチウムコバルト複合酸化物である。このリチウムコバルト複合酸化物を用いたリチウムイオン二次電池では、優れた初期容量特性やサイクル特性を得るための研究開発が広く行われ、既に様々な成果が得られており、その製品化も進んでいる。   A lithium ion secondary battery can achieve a high voltage and a high energy density, but lithium cobalt composite oxide is most widely used as a positive electrode material. Lithium-ion secondary batteries using this lithium-cobalt composite oxide have been widely researched and developed to obtain excellent initial capacity characteristics and cycle characteristics, and various results have already been obtained. It is out.

しかし、リチウムコバルト複合酸化物は、原料に高価なコバルト化合物を用い、正極材料のコスト、ひいては二次電池のコストアップの原因となるため、より安価な活物質への代替の要求が高い。   However, since the lithium cobalt composite oxide uses an expensive cobalt compound as a raw material and causes an increase in the cost of the positive electrode material and the cost of the secondary battery, there is a high demand for replacement with a cheaper active material.

リチウムコバルト複合酸化物に代わる正極活物質としては、マンガンやニッケルを用いたリチウム金属複合酸化物の研究が行われている。特に、リチウムニッケル複合酸化物は、リチウムコバルト複合酸化物と同様に高い電池電圧を示し、かつ、リチウムコバルト複合酸化物よりも理論容量が大きく、原料であるニッケルがコバルトと比べて、安価で安定して入手可能であることから、次世代正極材料として期待され、広く研究開発が行われている。   Research has been conducted on lithium metal composite oxides using manganese or nickel as positive electrode active materials instead of lithium cobalt composite oxides. In particular, lithium nickel composite oxide shows high battery voltage like lithium cobalt composite oxide, has a larger theoretical capacity than lithium cobalt composite oxide, and nickel, the raw material, is cheaper and more stable than cobalt. Therefore, it is expected as a next-generation positive electrode material, and is widely researched and developed.

従来、提案されている製造方法によって得られたリチウムニッケル複合酸化物を正極活物質として利用すると、リチウムコバルト複合酸化物の場合に比べて、充電容量および放電容量がともに高く、サイクル特性も改善されているが、1回目の充放電に限り、充電容量に比べて放電容量が小さく、両者の差で定義されるいわゆる不可逆容量が、コバルト系複合酸化物に比べてかなり大きいという問題がある。   Conventionally, when the lithium nickel composite oxide obtained by the proposed manufacturing method is used as the positive electrode active material, both the charge capacity and the discharge capacity are higher than those of the lithium cobalt composite oxide, and the cycle characteristics are also improved. However, only in the first charge / discharge, there is a problem that the discharge capacity is smaller than the charge capacity, and the so-called irreversible capacity defined by the difference between the two is considerably larger than that of the cobalt-based composite oxide.

また、高温環境下または低温環境下で使用した場合に、比較的、電池性能を損ないやすいという欠点を有していた。二次電池として、高温あるいは低温での出力特性は、温度変化の大きい環境で使用する機器に搭載して使用する際に極めて重要な特性であり、特に寒冷地での使用を考慮した場合、低温で十分な出力特性を有する必要がある。したがって、リチウムニッケル複合酸化物を用いた二次電池を自動車に搭載する場合には、その低温出力の向上が重要な課題となっている。   Further, when used in a high temperature environment or a low temperature environment, the battery performance is relatively easily lost. As a secondary battery, the output characteristics at high or low temperatures are extremely important characteristics when mounted on devices used in environments with large temperature changes, especially when considering use in cold regions. It is necessary to have sufficient output characteristics. Therefore, when a secondary battery using a lithium nickel composite oxide is mounted on an automobile, improvement of the low temperature output is an important issue.

特開平8−7894号公報には、LiNiO2を正極活物質として用いた非水系リチウム二次電池において、二次粒子径が3〜30μmの範囲内にあり、細孔体積の80%以上が50nm以下の細孔半径を有し、かつ、平均細孔半径が3〜10nmの範囲内にあるLiNiO2粒子を用いることで、初期容量の再現性を確保し、サイクル特性の良好な正極活物質が提案されている。 In JP-A-8-7894, in a non-aqueous lithium secondary battery using LiNiO 2 as a positive electrode active material, the secondary particle diameter is in the range of 3 to 30 μm, and 80% or more of the pore volume is 50 nm. By using LiNiO 2 particles having the following pore radii and an average pore radius in the range of 3 to 10 nm, a positive electrode active material that ensures reproducibility of initial capacity and has good cycle characteristics can be obtained. Proposed.

特開平11−185755号公報では、LiNi1-xCox2(0<x<1)において、ニッケル塩、コバルト塩およびリチウム化合物から正極活物質を製造するに際し、その製造条件を細かく制御すれば、高い初期放電容量と良好なサイクル特性を示す正極活物質が得られると記載されている。他にも、正極活物質の粒子物性を制御し、性能向上を目指す発明が提案されているが、前記問題を十分に克服できているとはいえなかった。 In Japanese Patent Laid-Open No. 11-185755, when manufacturing a positive electrode active material from a nickel salt, a cobalt salt and a lithium compound in LiNi 1-x Co x O 2 (0 <x <1), the production conditions are finely controlled. For example, it is described that a positive electrode active material exhibiting a high initial discharge capacity and good cycle characteristics can be obtained. In addition, although an invention for controlling the particle physical properties of the positive electrode active material to improve the performance has been proposed, it cannot be said that the above problem has been sufficiently overcome.

サイクル特性の向上のため、リチウムニッケル複合酸化物に異種元素を添加置換すると(例えば、特開平8−78006号公報では、Li(Ni,Co)O2複合酸化物に、B、Al、InおよびSnからなる群から選ばれた1種以上の元素を添加することが記載されている)、サイクル特性は向上するものの、活物質のリチウムイオンをインターカレーションおよびデインターカレーションし得る範囲を狭めることとなり、放電容量を低下させる傾向があり、この放電容量の低下は、特に放電電流が大きい重負荷条件時や、低温で電解液の移動度が小さくなる低温効率放電条件で、顕著になることが知られている。 In order to improve the cycle characteristics, when a different element is added to the lithium nickel composite oxide and replaced (for example, in JP-A-8-78006, Li (Ni, Co) O 2 composite oxide is replaced with B, Al, In and Although it is described that one or more elements selected from the group consisting of Sn are added), the cycle characteristics are improved, but the range in which lithium ions of the active material can be intercalated and deintercalated is narrowed. Therefore, there is a tendency to decrease the discharge capacity, and this decrease in the discharge capacity becomes remarkable particularly under heavy load conditions where the discharge current is large or low temperature efficiency discharge conditions where the mobility of the electrolyte solution is low at low temperatures. It has been known.

また、特開2000−30693号公報では、[Li]3a[Ni1-x-yCoxAly3b[O26c(但し、[ ]に添付した添え字は、サイトを表し、x、yは、0<x≦0.20、0<y≦0.15なる条件を満たす)で表され、かつ、層状構造を有する六方晶系のリチウムニッケル複合酸化物において、X線回折のリートベルト解析結果から得られた3aサイトのリチウム以外の金属イオン(以下、「非リチウムイオン」という)のサイト占有率が、3%以下であることを特徴とし、粒子形状およびX線回折図形の003ピークの半値幅から計算される結晶子径を制御することで、初期放電容量が高く、かつ、不可逆容量の小さい非水系電解質二次電池が得られる正極活物質が提案されている。 Further, in JP-2000-30693, [Li] 3a [Ni 1-xy Co x Al y] 3b [O 2] 6c ( where subscript attached to [] denotes the site, x, y Is a condition of 0 <x ≦ 0.20 and 0 <y ≦ 0.15), and a Rietveld analysis of X-ray diffraction in a hexagonal lithium nickel composite oxide having a layered structure The site occupancy of metal ions other than lithium (hereinafter referred to as “non-lithium ions”) at the 3a site obtained from the results is 3% or less, and the 003 peak of the particle shape and X-ray diffraction pattern There has been proposed a positive electrode active material capable of obtaining a nonaqueous electrolyte secondary battery having a high initial discharge capacity and a small irreversible capacity by controlling the crystallite diameter calculated from the half width.

また、特開平11−224664号公報には、例えばニッケル酸リチウムの結晶構造中に、Co、Mn、Fe、Mg、Alなどを均一に固溶した構造のリチウム金属複合酸化物微粒子の表面、およびリチウム金属複合酸化物微粒子よりなる正極材を含む正極の表面のうちの少なくとも一方に、フッ素含有高分子化合物および有機ケイ素化合物から選ばれた少なくとも1種の撥水性物質の皮膜を有することにより、正極材のリチウム金属複合酸化物が水分の影響を受けて電池性能が低下するのを防ぎ、また、ドライルームなどの除湿設備を設けた作業室で作業して、耐湿性に優れた安全性の高いリチウムイオン二次電池が提供可能であることが記載されている。しかし、正極活物質あるいは正極材が撥水性物質で被覆されることから、リチウムイオンのインターカレーションおよびデインターカレーションが影響を受け、高率放電特性を達成することは難しい。   JP-A-11-224664 discloses, for example, the surface of lithium metal composite oxide fine particles having a structure in which Co, Mn, Fe, Mg, Al and the like are uniformly dissolved in the crystal structure of lithium nickelate, and By having a film of at least one water-repellent substance selected from a fluorine-containing polymer compound and an organosilicon compound on at least one of the surfaces of the positive electrode including the positive electrode material made of lithium metal composite oxide fine particles, The lithium metal composite oxide of the material prevents the battery performance from being affected by moisture, and works in a work room equipped with dehumidifying equipment such as a dry room to provide excellent moisture resistance and high safety. It is described that a lithium ion secondary battery can be provided. However, since the positive electrode active material or the positive electrode material is coated with a water repellent material, lithium ion intercalation and deintercalation are affected, and it is difficult to achieve high rate discharge characteristics.

また、本発明に関連して、特開平9−245898号公報には、Lixy2(式中、xは0.3〜1.2を示し、yは0.8〜1.2を示し、Mは遷移金属を示す。)の組成で示され、かつリチウムと遷移金属との複合酸化物中の硫酸根(SO4)の含有率を0.1〜2.0質量%とするリチウム二次電池用正極活物質により、リチウム二次電池用正極集合体の腐食を防止し、同時に高い電池容量を保持しうるリチウム二次電池が得られることが記載されている。なお、硫酸根は、硫酸塩物を焼成前に添加したり、リチウム原料や遷移金属原料を合成する際に、硫酸塩を残留させている。 In connection with the present invention, JP-A-9-245898, Li x M y O 2 ( wherein, x is indicates 0.3 to 1.2, y is 0.8 to 1.2 M represents a transition metal.) And the content of sulfate radicals (SO 4 ) in the composite oxide of lithium and transition metal is 0.1 to 2.0 mass%. It is described that a lithium secondary battery capable of preventing corrosion of a positive electrode assembly for a lithium secondary battery and simultaneously maintaining a high battery capacity can be obtained by using a positive electrode active material for a lithium secondary battery. It should be noted that sulfate radicals leave sulfates when sulfates are added before firing, or when lithium raw materials and transition metal raw materials are synthesized.

また、本発明に関連して、特開2000−21402号公報には、Lix1-yy2-za(Mは、CoまたはNi、Nは、Mと同一でない遷移金属元素、または周期律表の第2族、第13族、第14族の元素の中から選ばれる1種以上の元素、Xは、ハロゲン元素であり、0.2<x≦1.2、0≦y≦0.5、0≦z≦1、0≦a≦2z)の組成で示されるリチウム含有複合酸化物に、無機およびまたは有機の硫酸塩に基づく硫酸根を含有するリチウムイオン非水電解質二次電池用正極活物質において、サイクル寿命の優れた二次電池が得られることが記載されている。 In connection with the present invention, JP-2000-21402, Li x M 1-y N y O 2-z X a (M is, Co or Ni, N is a transition metal not identical to M Element, or one or more elements selected from Group 2, Group 13, and Group 14 elements of the periodic table, X is a halogen element, 0.2 <x ≦ 1.2, 0 ≤ y ≤ 0.5, 0 ≤ z ≤ 1, 0 ≤ a ≤ 2z) A lithium ion non-aqueous electrolyte containing a sulfate group based on inorganic and / or organic sulfates in a lithium-containing composite oxide In the positive electrode active material for secondary batteries, it is described that a secondary battery having excellent cycle life can be obtained.

また、特開2002−15739号公報および特開2002−15740号公報では、正極材料に用いるリチウム金属複合酸化物に、Na、K、Rb、Cs、Ca、Mg、SrおよびBaからなる群から選ばれた少なくとも1種の元素と、硫酸イオンとを共存含有させることによって、高温容量維持率が高く、高電圧充電を行ってもサイクル特性等に優れたリチウム二次電池が提案されている。いずれも硫酸イオンに着目しているが、その目的はサイクル特性の改善にある。なお、硫酸イオンは、電池の製造段階で適宜所定箇所に添加されている。   In JP 2002-15739 A and JP 2002-15740 A, the lithium metal composite oxide used for the positive electrode material is selected from the group consisting of Na, K, Rb, Cs, Ca, Mg, Sr and Ba. By coexisting at least one kind of element and sulfate ions, a lithium secondary battery having a high high-temperature capacity retention rate and excellent cycle characteristics even when high voltage charging is performed has been proposed. Although all focus on sulfate ions, the purpose is to improve cycle characteristics. In addition, the sulfate ion is appropriately added to a predetermined location in the battery manufacturing stage.

特開平8−7894号公報JP-A-8-7894

特開平9−245787号公報Japanese Patent Laid-Open No. 9-245787

特開平11−185755号公報Japanese Patent Laid-Open No. 11-185755

特開平8−78006号公報JP-A-8-78006

特開2000−30693号公報JP 2000-30893 A

特開平11−224664号公報Japanese Patent Laid-Open No. 11-224664

特開2000−21402号公報JP 2000-21402 A

特開2002−15739号公報JP 2002-15739 A

特開2002−15740号公報JP 2002-15740 A

本発明の目的は、初期放電容量が高く、かつ、不可逆容量が小さく、高温および低温での出力特性の高い非水系電解質二次電池を得ることが可能なリチウム金属複合酸化物の提供、および二次電池の提供にある。   An object of the present invention is to provide a lithium metal composite oxide capable of obtaining a nonaqueous electrolyte secondary battery having a high initial discharge capacity, a small irreversible capacity, and high output characteristics at high and low temperatures, and two Next is to provide batteries.

本発明の非水系電解質二次電池用正極活物質は、一般式Lix(Ni1-yCoy1-zz2(0.98≦x≦1.10、0.05≦y≦0.4、0.01≦z≦0.2、但し、MはAl、Mg、Mn、Ti、Fe、Cu、ZnおよびGaからなる群から選ばれた1種以上の金属元素)で表されるリチウム金属複合酸化物であって、SO4イオンを0.4質量%以上、2.5質量%以下含有し、X線回折チャートからリートベルト解析を用いて求められるリチウム席占有率が、98%以上である。 The positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention has a general formula Li x (Ni 1-y Co y ) 1-z M z O 2 (0.98 ≦ x ≦ 1.10, 0.05 ≦ y ≦ 0.4, 0.01 ≦ z ≦ 0.2, where M is one or more metal elements selected from the group consisting of Al, Mg, Mn, Ti, Fe, Cu, Zn, and Ga) Lithium metal composite oxide containing 0.4 mass% or more and 2.5 mass% or less of SO 4 ions, and the lithium seat occupancy determined from the X-ray diffraction chart using Rietveld analysis, 98% or more.

C付着量が0.12質量%以下であり、180℃加熱によるカールフィッシャー水分率が0.2質量%以下であることが望ましい。   It is desirable that the C adhesion amount is 0.12% by mass or less and the Karl Fischer moisture content by heating at 180 ° C. is 0.2% by mass or less.

本明細書において、C付着量は、リチウム−金属複合酸化物に含有、付着、堆積させた全炭素量をいい、JISZ2615(金属材料の炭素定量方法通則)による高周波燃焼−赤外吸収法で測定される全炭素量をいう。   In this specification, the C adhesion amount means the total carbon amount contained, adhered and deposited in the lithium-metal composite oxide, and measured by a high-frequency combustion-infrared absorption method according to JISZ2615 (general rules for carbon determination of metal materials). Refers to the total amount of carbon produced.

本発明の非水系電解質二次電池は、前記非水系電解質二次電池用正極活物質を用いて製造される。   The non-aqueous electrolyte secondary battery of the present invention is manufactured using the positive electrode active material for non-aqueous electrolyte secondary batteries.

本発明による非水系電解質二次電池用正極活物質は、非水系電解質二次電池の正極活物質として用いることで、初期放電容量が高く、かつ、不可逆容量が小さく、高温および低温での出力特性の高い非水系電解質二次電池を得ることが可能となる。   The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is used as a positive electrode active material for a non-aqueous electrolyte secondary battery, so that the initial discharge capacity is high, the irreversible capacity is small, and the output characteristics at high and low temperatures. High non-aqueous electrolyte secondary battery can be obtained.

リチウム金属複合酸化物を正極活物質に用いたリチウムイオン二次電池の充放電は、リチウム金属複合酸化物中のリチウムイオンが可逆的に出入りすることで進行する。リチウムイオンの出入りは、リチウム金属複合酸化物表面と電解液の界面を通して行われるため、リチウム金属複合酸化物中から電解液へのリチウムイオンの移動のし易さは、電池特性に大きな影響を及ぼす。   Charge / discharge of a lithium ion secondary battery using a lithium metal composite oxide as a positive electrode active material proceeds by reversibly entering and exiting lithium ions in the lithium metal composite oxide. Since lithium ions enter and exit through the interface between the lithium metal composite oxide surface and the electrolyte, the ease of movement of lithium ions from the lithium metal composite oxide into the electrolyte has a significant effect on battery characteristics. .

充放電容量は、出入りするリチウムイオンの量に比例するので、リチウムイオンの移動のし易さは、充放電容量を左右すると言える。   Since the charge / discharge capacity is proportional to the amount of lithium ions entering and leaving, it can be said that the ease of movement of lithium ions affects the charge / discharge capacity.

一方、このリチウム金属複合酸化物と電解液間のリチウムイオンの移動し易さは、電池の内部抵抗の大きさを左右し、内部抵抗の大きな電池は、良好な出力特性を発現できないため、この点からも、リチウムイオンの移動し易さは、重要な特性となっている。   On the other hand, the ease of movement of lithium ions between the lithium metal composite oxide and the electrolyte affects the magnitude of the internal resistance of the battery, and a battery with a large internal resistance cannot exhibit good output characteristics. From the point of view, the ease of movement of lithium ions is an important characteristic.

本発明者等は、XPS等の表面解析手段を用いて、リチウム金属複合酸化物の表面に炭酸イオンが存在することを確認し、また、試作したリチウム金属複合酸化物に付着したC付着量と、表面の炭酸イオン量とに、相関があることを見出し、さらには、リチウム金属複合酸化物に付着したC付着量と、低温出力との間に、密接な相関があることを見出した。C付着量は、JISZ2615(金属材料の炭素定量方法通則)に規定される高周波燃焼−赤外吸収法で測定される。一方、リチウム金属複合酸化物中のリチウム/遷移金属の比の大きさと、炭酸イオン量とに、正の相関が見られることから、表面に存在する炭酸イオンのほとんどは、炭酸リチウムの形で存在すると思われ、実際にXPS等の表面解析により、炭酸リチウムの存在が確認された。すなわち、前記2つの分析結果および測定結果から、リチウム金属複合酸化物表面に形成される炭酸リチウムは、リチウム金属複合酸化物へのリチウムイオンの移動し易さを阻害し、充放電容量や出力特性を低下させるものと推測された。   The present inventors confirmed that carbonate ions are present on the surface of the lithium metal composite oxide by using a surface analysis means such as XPS, and the amount of C deposited on the prototype lithium metal composite oxide The present inventors have found that there is a correlation with the amount of carbonate ions on the surface, and furthermore, there has been a close correlation between the amount of C deposited on the lithium metal composite oxide and the low temperature output. The C adhesion amount is measured by a high-frequency combustion-infrared absorption method defined in JISZ2615 (general rules for carbon determination of metal materials). On the other hand, since there is a positive correlation between the lithium / transition metal ratio in the lithium metal composite oxide and the amount of carbonate ions, most of the carbonate ions present on the surface exist in the form of lithium carbonate. It seems that the presence of lithium carbonate was confirmed by surface analysis such as XPS. That is, from the two analysis results and measurement results, the lithium carbonate formed on the surface of the lithium metal composite oxide hinders the ease of migration of lithium ions to the lithium metal composite oxide, and the charge / discharge capacity and output characteristics It was presumed to decrease

本発明者等は、さらに、リチウム金属複合酸化物に含まれるSO4イオンにも着目し、SO4イオンの量が充放電容量を左右すること、およびX線回折チャートからリートベルト解析を用いて求められるリチウム席占有率が低い場合は、SO4イオンの量だけでは充放電容量の推定ができないことも見出し、本発明を完成するに至った。SO4イオンは、意図的に添加しない場合であっても、原料であるニッケル、コバルトなどの金属元素の化合物から混入し、最大5%程度の含有率になる。 The present inventors also focused on SO 4 ions contained in the lithium metal composite oxide, using the Rietveld analysis from the fact that the amount of SO 4 ions affects the charge / discharge capacity and the X-ray diffraction chart. When the required lithium seat occupancy is low, it has also been found that the charge / discharge capacity cannot be estimated only by the amount of SO 4 ions, and the present invention has been completed. Even when SO 4 ions are not added intentionally, they are mixed from a metal element compound such as nickel or cobalt, which is a raw material, and have a maximum content of about 5%.

本発明は、非水系電解質二次電池用正極活物質を提供する。該正極活物質は、初期放電容量が高く、かつ、不可逆容量が小さく、高温および低温での出力特性の高い非水系電解質二次電池を得ることが可能なリチウム金属複合酸化物である。   The present invention provides a positive electrode active material for a non-aqueous electrolyte secondary battery. The positive electrode active material is a lithium metal composite oxide that has a high initial discharge capacity, a small irreversible capacity, and a high-temperature and low-temperature output characteristic that can provide a non-aqueous electrolyte secondary battery.

前記一般式で表されるリチウム金属複合酸化物において、Coは、サイクル特性の向上に寄与するものである。前記範囲を外れると、充分なサイクル特性が得られず、容量維持率も低下してしまう。特に、前記範囲を超えて添加すると、初期放電容量の低下が大きくなってしまう。また、高価なCoの量の増加は、コストの観点からも実用的ではなくなってしまう。   In the lithium metal composite oxide represented by the general formula, Co contributes to improvement of cycle characteristics. If it is out of the range, sufficient cycle characteristics cannot be obtained, and the capacity retention rate is also lowered. In particular, if the addition exceeds the above range, the initial discharge capacity is greatly reduced. Further, an increase in the amount of expensive Co becomes impractical from the viewpoint of cost.

また、前記一般式で表されるリチウム金属複合酸化物中の金属元素Mは、Al、Mg、Mn、Ti、Fe、Cu、ZnおよびGaからなる群から選ばれた1種以上の金属元素であるが、リチウム金属複合酸化物中に均一に拡散されることにより、リチウム金属複合酸化物の結晶構造を安定化させている。添加量が、前記範囲よりも少ないと、結晶構造の安定化は認められず、また、前記範囲を超えて添加すると、結晶構造は安定化するが、初期放電容量の低下が大きくなってしまうため、好ましくない。   The metal element M in the lithium metal composite oxide represented by the general formula is one or more metal elements selected from the group consisting of Al, Mg, Mn, Ti, Fe, Cu, Zn, and Ga. However, the crystal structure of the lithium metal composite oxide is stabilized by being uniformly diffused into the lithium metal composite oxide. If the addition amount is less than the above range, stabilization of the crystal structure is not observed, and if added over the above range, the crystal structure is stabilized, but the initial discharge capacity is greatly reduced. It is not preferable.

前記一般式で表されるリチウム金属複合酸化物の含有するSO4イオンは、0.4質量%以上、2.5質量%以下である。SO4イオンの作用としては、以下のような現象が考えられる。 The SO 4 ion contained in the lithium metal composite oxide represented by the general formula is 0.4 mass% or more and 2.5 mass% or less. The following phenomena can be considered as the action of SO 4 ions.

リチウム金属複合酸化物の余剰リチウム、すなわち、式Lix(Ni1-yCoy1-zz2構造中のリチウム席以外に存在するリチウムは、そのままでは空気中の炭酸ガスあるいは水蒸気と反応し、炭酸リチウムあるいは水酸化リチウムとして、リチウム金属複合酸化物表面に該化合物被膜を形成する(式(1)、式(2)、式(3))。 Excess lithium of the lithium metal composite oxide, that is, lithium existing in the structure other than the lithium site in the structure Li x (Ni 1 -y Co y ) 1 -z M z O 2 , as it is, is carbon dioxide gas or water vapor in the air. To form a compound film on the surface of the lithium metal composite oxide as lithium carbonate or lithium hydroxide (formula (1), formula (2), formula (3)).

この化合物被膜は、電池作成後もリチウム金属複合酸化物表面に残存し、充放電時のリチウムイオンの移動を阻害する。   This compound film remains on the surface of the lithium metal composite oxide even after the battery is formed, and inhibits the movement of lithium ions during charge and discharge.

一方、リチウム金属複合酸化物自体も、水蒸気と反応し、以下の式(4)の反応を起こして分解し、二次電池中の有効な活物質を減少させ、充放電容量の減少をもたらす。   On the other hand, the lithium metal composite oxide itself reacts with water vapor and decomposes by causing the reaction of the following formula (4), thereby reducing the effective active material in the secondary battery and reducing the charge / discharge capacity.

式1Formula 1

Figure 2004273451
Figure 2004273451

式2Formula 2

Figure 2004273451
Figure 2004273451

式3Formula 3

Figure 2004273451
Figure 2004273451

式4Formula 4

Figure 2004273451
Figure 2004273451

リチウム金属複合酸化物中に一定量以上のSO4イオンが存在すると、前記の余剰リチウムはSO4イオンと反応し、硫酸リチウムを生成し、リチウム金属複合酸化物表面への炭酸リチウム、水酸化リチウム皮膜の形成を抑制する。また、式(4)の反応の原因となるH2Oも、硫酸リチウムを溶解することに消費され、リチウム金属複合酸化物の分解反応を起こしにくくなる。 When a certain amount or more of SO 4 ions are present in the lithium metal composite oxide, the excess lithium reacts with SO 4 ions to produce lithium sulfate, and lithium carbonate and lithium hydroxide on the surface of the lithium metal composite oxide Suppresses film formation. Further, H 2 O that causes the reaction of the formula (4) is also consumed in dissolving lithium sulfate, and it is difficult to cause a decomposition reaction of the lithium metal composite oxide.

前記SO4イオンの効果を発揮するためには、リチウム金属複合酸化物に付着したC付着量は、0.12質量%以下であり、かつ、180℃加熱によるカールフィッシャー水分率が0.2質量%以下であることが好ましい。前記範囲を超えると、前記SO4イオンの効果以上に、前記化合物の表面被覆による電池特性の低下が大きくなり、SO4イオンの効果を十分発揮することができないので好ましくない。また、180℃加熱によるカールフィッシャー水分率が0.2質量%を超えた場合も、同様に低温出力特性が低下してしまう。 In order to exert the effect of the SO 4 ions, the amount of C attached to the lithium metal composite oxide is 0.12% by mass or less, and the Karl Fischer moisture content by heating at 180 ° C. is 0.2% by mass. % Or less is preferable. When exceeding the above range, more than the SO 4 ion effect, reduction increases battery characteristics due to the surface coating of the compound, it is not possible to sufficiently exhibit the effect of the SO 4 ions is not preferable. Also, when the Karl Fischer moisture content by heating at 180 ° C. exceeds 0.2% by mass, the low-temperature output characteristics are similarly lowered.

ここで、前記リチウム金属複合酸化物に付着したC付着量は、高周波燃焼−赤外吸収法、具体的にはJISZ2615、にて測定したものである。また、180℃加熱によるカールフィッシャー水分率とは、カールフィッシャー法によって水分率を測定する時の試料加熱温度が180℃であることを示している。いいかえると、試料を180℃に加熱した状態で、該試料の水分率をカールフィッシャー法で測定する。   Here, the amount of C adhering to the lithium metal composite oxide is measured by a high-frequency combustion-infrared absorption method, specifically, JISZ2615. Further, the Karl Fischer moisture content by heating at 180 ° C. indicates that the sample heating temperature when the moisture content is measured by the Karl Fischer method is 180 ° C. In other words, with the sample heated to 180 ° C., the moisture content of the sample is measured by the Karl Fischer method.

また、リチウム金属複合酸化物の充放電時には、リチウム金属複合酸化物表面に存在する反応活性点において、局所的高電圧による電解液の分解反応が起こることが一般に知られており、電解液の分解反応は、サイクル特性の低下や、充放電時の電池の膨れ等の原因となることが知られているが、硫酸リチウムが存在すると、リチウム金属複合酸化物表面の反応活性点を不活性化し、電解液の分解反応を抑制すると思われる。   In addition, it is generally known that when a lithium metal composite oxide is charged and discharged, a decomposition reaction of the electrolytic solution due to a local high voltage occurs at a reaction active point existing on the surface of the lithium metal composite oxide. The reaction is known to cause deterioration of cycle characteristics and battery swelling during charge / discharge, etc., but when lithium sulfate is present, the reaction active sites on the surface of the lithium metal composite oxide are inactivated, It seems to suppress the decomposition reaction of the electrolyte.

SO4イオンは、硫酸リチウムとして存在していると考えられるが、前記反応過程を効率良く行うためには、硫酸リチウムは、そのほとんどがリチウム金属複合酸化物粒子表面に存在することが好ましい。硫酸リチウムのリチウム金属複合酸化物粒子表面に存在する量は、含有される硫酸リチウム全量の60%以上が好ましい。さらには、80%以上であることがより好ましく、90%以上であればさらに好ましい。 Although SO 4 ions are considered to exist as lithium sulfate, most of the lithium sulfate is preferably present on the surface of the lithium metal composite oxide particles in order to efficiently perform the reaction process. The amount of lithium sulfate present on the surface of the lithium metal composite oxide particles is preferably 60% or more of the total amount of lithium sulfate contained. Further, it is more preferably 80% or more, and further preferably 90% or more.

リチウム金属複合酸化物粒子表面に存在する硫酸リチウム量は、例えばリチウム金属複合酸化物を純水で洗浄し、洗浄前後のSO4イオンを定量することで確認することができる。 The amount of lithium sulfate present on the surface of the lithium metal composite oxide particles can be confirmed, for example, by washing the lithium metal composite oxide with pure water and quantifying SO 4 ions before and after washing.

前記のように、SO4イオンの存在は、リチウムイオンの移動し易さを阻害する炭酸リチウムの生成を抑制し、充放電容量を低下させない効果があると思われる。ただし、SO4イオンの存在は、リチウム金属複合酸化物を構成すべきリチウムを硫酸リチウムとして固定してしまうため、多量のSO4イオンの存在は、電解質中のリチウム金属複合酸化物の存在割合を低下させ、結果として充放電容量を低下させる恐れがある。そのため、SO4イオンの存在量は、2.5%以下が望ましい。但し、X線回折チャートからリートベルト解析を用いて求められるリチウム席占有率が低い場合は、SO4イオンの量だけでは充放電容量の推定ができないこともあり、SO4イオンの存在量が2.5%以下でも、リチウム席占有率は98%以上であることが、充放電容量の維持には必要である。 As described above, the presence of SO 4 ions seems to have an effect of suppressing the generation of lithium carbonate that hinders the ease of movement of lithium ions and does not reduce the charge / discharge capacity. However, since the presence of SO 4 ions fixes the lithium that should constitute the lithium metal composite oxide as lithium sulfate, the presence of a large amount of SO 4 ions indicates the proportion of the lithium metal composite oxide present in the electrolyte. As a result, the charge / discharge capacity may be reduced. Therefore, the abundance of SO 4 ions is desirably 2.5% or less. However, when the lithium seat occupancy obtained from the X-ray diffraction chart using Rietveld analysis is low, the charge / discharge capacity may not be estimated only by the amount of SO 4 ions, and the amount of SO 4 ions present is 2 Even if it is 0.5% or less, the lithium seat occupancy must be 98% or more in order to maintain the charge / discharge capacity.

化学量論性の検討は、X線回折によるリートベルト解析(例えば、R.A.Young,ed.,"The Rietveld Method",Oxford University Press(1992).)を用いて行うことができ、指標としては、各イオンのサイト占有率がある。六方晶系の化合物の場合には、3a、3b、6cのサイトがあり、LiNiO2が完全な化学量論組成の場合には、3aサイトはLi、3bサイトはNi、6cサイトはOがそれぞれ100%のサイト占有率を示す。3aサイトのLiイオンのサイト占有率が98%以上であるようなリチウムニッケル複合酸化物は、化学量論性に優れていると言える。 The stoichiometry can be examined using Rietveld analysis by X-ray diffraction (for example, RAYoung, ed., “The Rietveld Method”, Oxford University Press (1992)). There is ion site occupancy. In the case of a hexagonal compound, there are 3a, 3b, and 6c sites. When LiNiO 2 has a complete stoichiometric composition, the 3a site is Li, the 3b site is Ni, and the 6c site is O. Shows 100% site occupancy. It can be said that the lithium nickel composite oxide in which the site occupancy of the Li ions at the 3a site is 98% or more is excellent in stoichiometry.

二次電池用活物質として考えた場合、Liは脱離および挿入が可能なため、Li欠損が生じても結晶の完全性は維持できる。したがって、現実的には3aサイトの非リチウムイオンの混入率をもって、化学量論性あるいは結晶の完全性を示すのがよい方法と考えられる。本発明のリチウム金属複合酸化物は、Niの一部を、サイクル特性向上や熱安定性改善のために、CoやAlで置換した活物質に関するものであり、電池の充放電反応は、3aサイトのLiイオンが可逆的に出入りすることで進行する。したがって、固相内でのLiの拡散パスとなる3aサイトに他の金属イオンが混入すると、拡散パスが阻害され、これが電池の充放電特性を悪化させる原因となりうる。本発明者等は、粉末X線回折より求めた3aサイトの非リチウムイオンの混入率と不可逆容量に深い関係があることを見出しており、X線回折のリートベルト解析結果から得られた3aサイトのリチウムイオンのサイト占有率が98%以上であることが必要となっている。   When considered as an active material for a secondary battery, since Li can be desorbed and inserted, the integrity of the crystal can be maintained even if Li deficiency occurs. Therefore, in reality, it is considered a good method to show the stoichiometry or the crystal perfection with the mixing ratio of non-lithium ions at the 3a site. The lithium metal composite oxide of the present invention relates to an active material in which a part of Ni is substituted with Co or Al for improving cycle characteristics and thermal stability. It proceeds by reversibly entering and exiting Li ions. Therefore, when other metal ions are mixed into the 3a site, which is the Li diffusion path in the solid phase, the diffusion path is inhibited, which may cause deterioration of the charge / discharge characteristics of the battery. The present inventors have found that there is a deep relationship between the mixing rate of non-lithium ions at the 3a site determined by powder X-ray diffraction and the irreversible capacity, and the 3a site obtained from the Rietveld analysis results of X-ray diffraction. It is necessary that the lithium ion site occupancy is 98% or more.

また、このような正極活物質において、Liの拡散に関する研究をさらに進めた結果、不可逆容量が、活物質粉末の粉体特性と深い相関をもつことを見出している。不可逆容量は、Liの拡散と深い関係にあると考えられる。Liの拡散は、大きく分けて、固相内での拡散と電解液中での拡散とに分けられ、電解液中での拡散の方が数桁速いと考えられている。正極活物質粉末が、小さな一次粒子が集合して二次粒子を形成している場合、個々の一次粒子をある程度成長させることによって、二次粒子内部の一次粒子同士の間に、細かなすき間を作り出すことができ、それによって、そのすき間に電解液がしみ込んで、二次粒子内部まで電解液を通じてLiイオンを供給することが可能となる。その結果、二次粒子全体にLiイオンが拡散する速度が速くなり、不可逆容量が低減すると考えられる。したがって、リチウムニッケル複合酸化物は、一次粒子の平均粒径が0.1μm以上であり、かつ該一次粒子が複数集合して二次粒子を形成していることが好ましい形態の一つである。   In addition, as a result of further research on the diffusion of Li in such a positive electrode active material, it has been found that the irreversible capacity has a deep correlation with the powder characteristics of the active material powder. The irreversible capacity is considered to be deeply related to the diffusion of Li. Li diffusion is broadly divided into diffusion in the solid phase and diffusion in the electrolytic solution, and diffusion in the electrolytic solution is considered to be several orders of magnitude faster. In the case where the positive electrode active material powder is formed by aggregating small primary particles to form secondary particles, a small gap is formed between the primary particles inside the secondary particles by growing each primary particle to some extent. It is possible to create, so that the electrolytic solution penetrates into the gap, and Li ions can be supplied to the inside of the secondary particles through the electrolytic solution. As a result, it is considered that the speed at which Li ions diffuse throughout the secondary particles increases and the irreversible capacity decreases. Accordingly, in the lithium nickel composite oxide, it is one of preferred embodiments that the primary particles have an average particle size of 0.1 μm or more and a plurality of the primary particles are aggregated to form secondary particles.

また、リチウムニッケル複合酸化物においては、一次粒子の平均粒径と、X線回折図形の003ピークの半値幅から計算される結晶子径との間に、リニアな相関があることがわかっており、X線回折図形の003ピークの半値幅から計算される結晶子径が、40nm以上であることが好ましい。   In addition, in lithium-nickel composite oxides, it is known that there is a linear correlation between the average particle size of primary particles and the crystallite size calculated from the half width of the 003 peak of the X-ray diffraction pattern. The crystallite diameter calculated from the half width of the 003 peak of the X-ray diffraction pattern is preferably 40 nm or more.

リチウム金属複合酸化物中のSO4イオンは、ほとんどが原材料であるニッケル、コバルトおよび金属元素Mの化合物中のSO4イオンであり、その存在量はニッケル、コバルトおよび金属元素Mの化合物の製造方法に依存する。本発明では、SO4イオンの存在量が重要であり、そのSO4イオンの残存方法は特に指定しないが、そのほとんどがリチウム金属複合酸化物粒子表面に存在することが好ましい。SO4イオン量は、以下の実施例に示すような方法で、ニッケル、コバルトおよび金属元素Mの化合物中の残存SO4イオン量を制御することで、リチウム金属複合酸化物中のSO4イオン量を制御することができる。 SO 4 ions in the lithium-metal composite oxide are mostly a SO 4 ions is a nickel, in the compounds of cobalt and the metal element M raw material, manufacturing method of the abundance of nickel, the compounds of cobalt and the metal element M Depends on. In the present invention, the amount of SO 4 ions present is important, and the method of remaining SO 4 ions is not particularly specified, but most of them are preferably present on the surface of the lithium metal composite oxide particles. SO 4 ion amount, a method as shown in the following examples, nickel, by controlling the residual SO 4 ion content in the compounds of cobalt and the metal element M, SO 4 ion content of the lithium metal composite oxide Can be controlled.

(実施例1)
反応槽中に、硫酸ニッケルと硫酸コバルトの混合溶液(ニッケル濃度1.45モル/リットル、コバルト濃度0.27モル/リットル)、150g/リットル苛性ソーダ溶液、および25%アンモニア水溶液を、撹拌しつつ同時に滴下し、複合水酸化ニッケルを作成した。この複合水酸化ニッケルを吸引濾過後、水酸化物質量1kgに対して0.5kgの苛性ソーダを加え、5時間、撹拌し、アルカリ洗浄を行い、その後、吸引濾過して、掛水洗浄により、濾過水pHが9.0以下になるまで、洗浄して、サンプルAを得た。また、苛性ソーダを0.2kgにして、サンプルBを得、苛性ソーダを0.1kgにして、サンプルCを得た。
(Example 1)
In the reaction vessel, a mixed solution of nickel sulfate and cobalt sulfate (nickel concentration: 1.45 mol / liter, cobalt concentration: 0.27 mol / liter), 150 g / liter caustic soda solution, and 25% aqueous ammonia solution were stirred simultaneously. It was dripped and composite nickel hydroxide was created. After filtering this composite nickel hydroxide, 0.5 kg of caustic soda is added to 1 kg of the hydroxide substance, and the mixture is stirred for 5 hours, washed with alkali, then filtered with suction, and filtered by washing with water. Sample A was obtained by washing until the water pH was 9.0 or less. Sample B was obtained with 0.2 kg of caustic soda and 0.1 kg of caustic soda.

さらに、サンプルA、B、Cのそれぞれに、水酸化ニッケル質量の4質量%のアルミン酸ソーダと純水を加えて、0.5kg/リットルのスラリーにした後、希硫酸にてpH=9.5まで中和して、水酸化アルミニウムを水酸化ニッケル表面に被覆せしめた。その後、100℃で48時間乾燥させ、リチウム金属複合酸化物原料となる複合水酸化ニッケルを作成した。   Further, to each of Samples A, B, and C, sodium aluminate having a mass of 4% by mass of nickel hydroxide and pure water were added to make a slurry of 0.5 kg / liter, and then pH = 9. The surface was neutralized to 5 and aluminum hydroxide was coated on the nickel hydroxide surface. Then, it was made to dry at 100 degreeC for 48 hours, and the composite nickel hydroxide used as a lithium metal complex oxide raw material was created.

作成した複合水酸化ニッケルの化学組成は、表1に示すようなものであった。   The chemical composition of the prepared composite nickel hydroxide was as shown in Table 1.

Figure 2004273451
Figure 2004273451

それぞれの複合水酸化ニッケル170gに、市販の水酸化リチウム一水塩の粉末80gを混合し、酸素気流中にて250℃で4時間、450℃で9時間、および730℃で22時間焼成したのち、室温まで冷却した。   After mixing 80 g of commercially available lithium hydroxide monohydrate powder with 170 g of each composite nickel hydroxide and firing in an oxygen stream for 4 hours at 250 ° C., 9 hours at 450 ° C., and 22 hours at 730 ° C. And cooled to room temperature.

得られた焼成物を、窒素雰囲気下でピンミル粉砕し、100℃で24時間の真空乾燥を行い、リチウムニッケル複合リチウム金属複合酸化物を得た。得られたリチウムニッケル複合酸化物をX線回折で分析したところ、六方晶系の層状構造を有する所望の正極活物質であることを確認した。またX線回折チャートからリートベルト解析を用いて求められるリチウム席占有率は、98.2〜98.9%であった。   The obtained fired product was pin milled in a nitrogen atmosphere and vacuum dried at 100 ° C. for 24 hours to obtain a lithium nickel composite lithium metal composite oxide. When the obtained lithium nickel composite oxide was analyzed by X-ray diffraction, it was confirmed to be a desired positive electrode active material having a hexagonal layered structure. Moreover, the lithium seat occupation rate calculated | required using the Rietveld analysis from the X-ray-diffraction chart was 98.2-98.9%.

リチウム金属複合酸化物に付着したC付着量は、高周波燃焼−赤外吸収法にて測定した。また、180℃加熱によるカールフィッシャー水分率は、カールフィッシャー法によって水分率を測定した。   The amount of C attached to the lithium metal composite oxide was measured by a high frequency combustion-infrared absorption method. Further, the Karl Fischer moisture content by heating at 180 ° C. was measured by the Karl Fischer method.

得られたそれぞれの活物質を用いて、以下のように電池を作成し、充放電容量および−30℃での出力を測定した。活物質粉末90質量%に、アセチレンブラック5質量%およびPVDF(ポリ沸化ビニリデン)5質量%を混合し、NMP(n−メチルピロリドン)を加え、ペースト化した。   Using each of the obtained active materials, a battery was prepared as follows, and the charge / discharge capacity and the output at −30 ° C. were measured. 90% by mass of the active material powder was mixed with 5% by mass of acetylene black and 5% by mass of PVDF (polyvinylidene fluoride), and NMP (n-methylpyrrolidone) was added to form a paste.

前記ペーストを、20μm厚のアルミニウム箔に、乾燥後の活物質質量が0.05g/cm2になるように塗布し、120℃で真空乾燥を行い、1cmφの円板状に打ち抜いて正極とした。 The paste was applied to an aluminum foil having a thickness of 20 μm so that the mass of the active material after drying was 0.05 g / cm 2 , vacuum-dried at 120 ° C., and punched into a disk shape of 1 cmφ to obtain a positive electrode. .

負極としてLi金属を用いて、電解液には、1MのLiClO4を支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液を用いた。露点が−80℃以下に管理されたAr雰囲気のグローブボックス中で、2032型のコイン電池を作製した。 Li metal was used as the negative electrode, and an equivalent mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) using 1M LiClO 4 as a supporting salt was used as the electrolyte. A 2032 type coin battery was produced in a glove box in an Ar atmosphere in which the dew point was controlled to −80 ° C. or lower.

作製した電池は24時間程度放置し、OCVが安定した後、正極に対する電流密度を0.5mA/cm2とし、カットオフ電圧4.3−3.0Vで、25℃および−30℃で充放電試験を行った。不可逆容量およびクーロン効率は、以下のように算出した。また、低温出力は、−30℃での1回目の放電曲線の積分により算出した。 The produced battery is left for about 24 hours, and after OCV is stabilized, the current density with respect to the positive electrode is set to 0.5 mA / cm 2 , the cutoff voltage is 4.3 to 3.0 V, and the battery is charged and discharged at 25 ° C. and −30 ° C. A test was conducted. The irreversible capacity and Coulomb efficiency were calculated as follows. The low temperature output was calculated by integrating the first discharge curve at −30 ° C.

不可逆容量=1回目の充電容量−1回目の放電容量 (mAh/g)
クーロン効率=1回目の放電容量/1回目の充電容量×100 (%)
実施例1の電池特性測定結果を表3に示す。
Irreversible capacity = 1st charge capacity-1st discharge capacity (mAh / g)
Coulomb efficiency = first discharge capacity / first charge capacity x 100 (%)
Table 3 shows the battery characteristic measurement results of Example 1.

(比較例1)
アルカリ洗浄時の苛性ソーダ添加量を、水酸化物質量1kgに対して2.0kgとした以外は、実施例1と同様の方法で、サンプルDの複合水酸化ニッケルを作製した。
(Comparative Example 1)
Sample D composite nickel hydroxide was prepared in the same manner as in Example 1 except that the amount of caustic soda added during alkali cleaning was 2.0 kg relative to 1 kg of the hydroxide substance.

また、アルカリ洗浄時に、苛性ソーダを添加しなかった以外は、実施例1と同様の方法で、サンプルEの複合水酸化ニッケルを作製した。   Further, Sample E composite nickel hydroxide was prepared in the same manner as in Example 1 except that caustic soda was not added during alkali cleaning.

作製した複合水酸化ニッケルの化学組成は、表2に示すようなものであった。   The chemical composition of the produced composite nickel hydroxide was as shown in Table 2.

Figure 2004273451
Figure 2004273451

この複合水酸化ニッケルを用いて、実施例1と同様の方法で、リチウムニッケル複合酸化物を製造した。得られたリチウムニッケル複合酸化物をX線回折で分析したところ、六方晶系の層状構造を有する所望の正極活物質であることを確認した。またX線回折チャートからリートベルト解析を用いて求められるリチウム席占有率は、97.8〜98.7%であった。   Using this composite nickel hydroxide, a lithium nickel composite oxide was produced in the same manner as in Example 1. When the obtained lithium nickel composite oxide was analyzed by X-ray diffraction, it was confirmed to be a desired positive electrode active material having a hexagonal layered structure. Moreover, the lithium seat occupation rate calculated | required using the Rietveld analysis from the X-ray diffraction chart was 97.8-98.7%.

リチウム金属複合酸化物に付着したC付着量を、高周波燃焼−赤外吸収法にて測定した。また、180℃加熱によるカールフィッシャー水分率は、カールフィッシャー法によって水分率を測定した。   The amount of C deposited on the lithium metal composite oxide was measured by a high frequency combustion-infrared absorption method. Further, the Karl Fischer moisture content by heating at 180 ° C. was measured by the Karl Fischer method.

実施例1と同様の方法で充放電容量および−30℃での出力を測定した。電池特性測定結果を表3に示す。   The charge / discharge capacity and the output at −30 ° C. were measured in the same manner as in Example 1. The battery characteristic measurement results are shown in Table 3.

(比較例2)
実施例1および比較例1で用いたサンプルA、B、C、D、Eの複合水酸化ニッケルを用いて、水酸化リチウム一水塩の粉末の混合量を75gとした以外は、実施例1と同様の方法で、リチウムニッケル複合酸化物を製造して、サンプルF、G、H、I、Jを得た。
(Comparative Example 2)
Example 1 except that the mixed nickel hydroxide of samples A, B, C, D, and E used in Example 1 and Comparative Example 1 was used and the amount of lithium hydroxide monohydrate powder was 75 g. Samples F, G, H, I, and J were obtained by manufacturing lithium nickel composite oxides in the same manner as described above.

得られたリチウムニッケル複合酸化物を、X線回折で分析したところ、六方晶系の層状構造を有する所望の正極活物質であることを確認した。またX線回折チャートからリートベルト解析を用いて求められるリチウム席占有率は、97.2〜97.9%であった。   When the obtained lithium nickel composite oxide was analyzed by X-ray diffraction, it was confirmed to be a desired positive electrode active material having a hexagonal layered structure. Moreover, the lithium seat occupation rate calculated | required using the Rietveld analysis from the X-ray-diffraction chart was 97.2-97.9%.

リチウム金属複合酸化物に付着したC付着量は、高周波燃焼−赤外吸収法にて測定した。また、180℃加熱によるカールフィッシャー水分率は、カールフィッシャー法によって水分率を測定した。   The amount of C attached to the lithium metal composite oxide was measured by a high frequency combustion-infrared absorption method. Further, the Karl Fischer moisture content by heating at 180 ° C. was measured by the Karl Fischer method.

実施例1と同様の方法で、充放電容量および−30℃での出力を測定した。電池特性測定結果を表3に示す。   The charge / discharge capacity and the output at −30 ° C. were measured in the same manner as in Example 1. The battery characteristic measurement results are shown in Table 3.

(実施例2)
実施例1で得たサンプルA、B、Cの複合水酸化ニッケルを用いて、焼成後のピンミル粉砕を大気中で行い、真空乾燥を行わなかった以外は、実施例1と同様の方法で、サンプルK、L、Mのリチウムニッケル複合酸化物を得た。
(Example 2)
Using the composite nickel hydroxide of Samples A, B, and C obtained in Example 1, pin mill pulverization after firing was performed in the air, and vacuum drying was not performed, in the same manner as in Example 1, Samples K, L and M of lithium nickel composite oxide were obtained.

得られたリチウムニッケル複合酸化物を、X線回折で分析したところ、六方晶系の層状構造を有する所望の正極活物質であることを確認した。またX線回折チャートからリートベルト解析を用いて求められるリチウム席占有率は、98.3〜98.6%であった。   When the obtained lithium nickel composite oxide was analyzed by X-ray diffraction, it was confirmed to be a desired positive electrode active material having a hexagonal layered structure. Moreover, the lithium seat occupation rate calculated | required using the Rietveld analysis from the X-ray diffraction chart was 98.3 to 98.6%.

実施例1と同様の方法で、充放電容量および−30℃での出力を測定した。電池特性測定結果を表3に示す。   The charge / discharge capacity and the output at −30 ° C. were measured in the same manner as in Example 1. The battery characteristic measurement results are shown in Table 3.

Figure 2004273451
Figure 2004273451

表3から、リチウムニッケル複合酸化物のSO4イオンが0.3%以下の場合には、初期容量、低温出力共に低く、SO4イオンが2.6%以上の時には、低温出力は高くとも、X線回折チャートからリートベルト解析を用いて求められるリチウム席占有率が低く、初期容量が低いことがわかる。 From Table 3, when the SO 4 ion of the lithium nickel composite oxide is 0.3% or less, both the initial capacity and the low temperature output are low, and when the SO 4 ion is 2.6% or more, the low temperature output is high, It can be seen from the X-ray diffraction chart that the lithium seat occupancy obtained by using Rietveld analysis is low and the initial capacity is low.

また、サンプルF〜Jの結果から、SO4イオンに関わらず、X線回折チャートからリートベルト解析を用いて求められるリチウム席占有率が98%以下の場合には、初期容量は160mAh/g以下であることがわかる。 In addition, from the results of samples F to J, the initial capacity is 160 mAh / g or less when the lithium seat occupancy obtained from the X-ray diffraction chart using the Rietveld analysis is 98% or less regardless of the SO 4 ions. It can be seen that it is.

一方、サンプルK〜Mの結果から、SO4イオンが0.4〜2.5%、かつX線回折チャートからリートベルト解析を用いて求められるリチウム席占有率が98%以上とすることにより、初期容量の向上が図られる。ただし、C付着量および水分率が高いと、より良好な初期容量や十分な低温出力を発現できない。 On the other hand, from the results of samples K to M, SO 4 ions are 0.4 to 2.5%, and the lithium seat occupancy obtained from the X-ray diffraction chart using Rietveld analysis is 98% or more. The initial capacity can be improved. However, if the C adhesion amount and the moisture content are high, a better initial capacity and sufficient low-temperature output cannot be expressed.

サンプルA〜Cの結果より、良好な初期容量、および低温出力を発現するためには、リチウムニッケル複合酸化物のSO4イオンは0.4〜2.5質量%、X線回折チャートからリートベルト解析を用いて求められるリチウム席占有率は98%以上とし、かつ、C付着量および水分率を低くすることが望ましいことがわかる。 From the results of samples A to C, in order to develop a good initial capacity and low-temperature output, the SO 4 ion of the lithium nickel composite oxide is 0.4 to 2.5% by mass, from the X-ray diffraction chart to the Rietveld It can be seen that it is desirable that the lithium seat occupancy obtained by analysis is 98% or more, and that the C adhesion amount and the moisture content are lowered.

Claims (3)

一般式Lix(Ni1-yCoy1-zz2(0.98≦x≦1.10、0.05≦y≦0.4、0.01≦z≦0.2、但し、MはAl、Mg、Mn、Ti、Fe、Cu、ZnおよびGaからなる群から選ばれた1種以上の金属元素)で表されるリチウム金属複合酸化物であって、SO4イオンを0.4質量%以上、2.5質量%以下含有し、X線回折チャートからリートベルト解析を用いて求められるリチウム席占有率が、98%以上であることを特徴とする非水系電解質二次電池用正極活物質。 Formula Li x (Ni 1-y Co y) 1-z M z O 2 (0.98 ≦ x ≦ 1.10,0.05 ≦ y ≦ 0.4,0.01 ≦ z ≦ 0.2, However, M is Al, Mg, Mn, Ti, Fe, Cu, a lithium-metal composite oxide represented by Zn and one or more metal elements selected from the group consisting of Ga), the SO 4 ions A non-aqueous electrolyte secondary characterized by containing 0.4 mass% or more and 2.5 mass% or less, and having a lithium seat occupancy of 98% or more determined from the X-ray diffraction chart using a Rietveld analysis Positive electrode active material for batteries. C付着量が0.12質量%以下であり、180℃加熱によるカールフィッシャー水分率が0.2質量%以下であることを特徴とする請求項1に記載の非水系電解質二次電池用正極活物質。   2. The positive electrode active for a non-aqueous electrolyte secondary battery according to claim 1, wherein the C adhesion amount is 0.12 mass% or less, and the Karl Fischer moisture content by heating at 180 ° C. is 0.2 mass% or less. material. 請求項1または2に記載の非水系電解質二次電池用正極活物質を用いて製造されたことを特徴とする非水系電解質二次電池。   A non-aqueous electrolyte secondary battery manufactured using the positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1.
JP2004045258A 2003-02-21 2004-02-20 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery Expired - Lifetime JP4427351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004045258A JP4427351B2 (en) 2003-02-21 2004-02-20 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003044614 2003-02-21
JP2004045258A JP4427351B2 (en) 2003-02-21 2004-02-20 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2004273451A true JP2004273451A (en) 2004-09-30
JP4427351B2 JP4427351B2 (en) 2010-03-03

Family

ID=33134242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004045258A Expired - Lifetime JP4427351B2 (en) 2003-02-21 2004-02-20 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4427351B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107845A (en) * 2004-10-01 2006-04-20 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using this, and its manufacturing method
JP2006172753A (en) * 2004-12-13 2006-06-29 Mitsubishi Chemicals Corp Lithium-nickel-manganese-based composite oxide powder for lithium secondary battery positive electrode material, its manufacturing method, positive electrode for lithium secondary battery using it, and lithium secondary battery
JP2006262107A (en) * 2005-03-17 2006-09-28 Matsushita Electric Ind Co Ltd Remote charge system, charger, and remote charge method
JP2008218122A (en) * 2007-03-02 2008-09-18 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2010505732A (en) * 2006-10-13 2010-02-25 トダ・コウギョウ・ヨーロッパ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Compound powder, its production method and its use in lithium secondary battery
US7927741B2 (en) 2007-01-26 2011-04-19 Mitsui Mining & Smelting Co., Ltd. Lithium transition metal oxide having layered structure
JP2011518102A (en) * 2008-04-03 2011-06-23 エルジー・ケム・リミテッド Precursors for the production of lithium transition metal oxides
WO2013111379A1 (en) * 2012-01-26 2013-08-01 Jx日鉱日石金属株式会社 Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
WO2013111378A1 (en) * 2012-01-26 2013-08-01 Jx日鉱日石金属株式会社 Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
WO2014010448A1 (en) * 2012-07-12 2014-01-16 住友金属鉱山株式会社 Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing same, and nonaqueous electrolyte secondary cell using positive electrode active substance
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
JP2016210674A (en) * 2015-04-28 2016-12-15 日亜化学工業株式会社 Nickel cobalt complex hydroxide particles and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
WO2018181465A1 (en) * 2017-03-31 2018-10-04 住友化学株式会社 Lithium composite metal oxide production method
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
JP2018172257A (en) * 2017-03-31 2018-11-08 住友化学株式会社 Method for producing lithium metal composite oxide

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107845A (en) * 2004-10-01 2006-04-20 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using this, and its manufacturing method
JP4595475B2 (en) * 2004-10-01 2010-12-08 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP2006172753A (en) * 2004-12-13 2006-06-29 Mitsubishi Chemicals Corp Lithium-nickel-manganese-based composite oxide powder for lithium secondary battery positive electrode material, its manufacturing method, positive electrode for lithium secondary battery using it, and lithium secondary battery
JP4684692B2 (en) * 2005-03-17 2011-05-18 パナソニック株式会社 Remote charge system, charger, and remote charge method
JP2006262107A (en) * 2005-03-17 2006-09-28 Matsushita Electric Ind Co Ltd Remote charge system, charger, and remote charge method
JP2010505732A (en) * 2006-10-13 2010-02-25 トダ・コウギョウ・ヨーロッパ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Compound powder, its production method and its use in lithium secondary battery
US7927741B2 (en) 2007-01-26 2011-04-19 Mitsui Mining & Smelting Co., Ltd. Lithium transition metal oxide having layered structure
JP2008218122A (en) * 2007-03-02 2008-09-18 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2011518102A (en) * 2008-04-03 2011-06-23 エルジー・ケム・リミテッド Precursors for the production of lithium transition metal oxides
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
WO2013111378A1 (en) * 2012-01-26 2013-08-01 Jx日鉱日石金属株式会社 Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
WO2013111379A1 (en) * 2012-01-26 2013-08-01 Jx日鉱日石金属株式会社 Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US10084188B2 (en) 2012-07-12 2018-09-25 Sumitomo Metal Mining Co., Ltd. Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing same, and nonaqueous electrolyte secondary cell using positive electrode active substance
WO2014010448A1 (en) * 2012-07-12 2014-01-16 住友金属鉱山株式会社 Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing same, and nonaqueous electrolyte secondary cell using positive electrode active substance
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
JP2016210674A (en) * 2015-04-28 2016-12-15 日亜化学工業株式会社 Nickel cobalt complex hydroxide particles and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery
WO2018181465A1 (en) * 2017-03-31 2018-10-04 住友化学株式会社 Lithium composite metal oxide production method
JP2018172257A (en) * 2017-03-31 2018-11-08 住友化学株式会社 Method for producing lithium metal composite oxide
JP2018172256A (en) * 2017-03-31 2018-11-08 住友化学株式会社 Method for producing lithium composite metal oxide

Also Published As

Publication number Publication date
JP4427351B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
JP4427351B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US20210265628A1 (en) Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
US7645542B2 (en) Active material for positive electrode in non-aqueous electrolyte secondary battery having SO4 ions
JP3614670B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
KR101762980B1 (en) Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery
JP4807467B1 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP4427314B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, non-aqueous electrolyte secondary battery using the same, and method for producing the same
US8574765B2 (en) Li-Ni composite oxide particles for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery
CA2672072C (en) Li-ni composite oxide particles for non-aqueous electrolyte secondary cell, process for producing the same, and non-aqueous electrolyte secondary cell
KR100309773B1 (en) Positive active material for lithium secondary battery and method of preparing the same
CN108155357B (en) Nickel-based active material for lithium secondary battery, method for preparing same, and lithium secondary battery including positive electrode including same
WO2011122448A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material
US20110297876A1 (en) Positive electrode active material for secondary batteries with nonaqueous electrolytic solution, process for the production of the active material, and secondary batteries with nonaqueous electrolytic solution
JP5610178B2 (en) Lithium composite compound particle powder and method for producing the same, non-aqueous electrolyte secondary battery
JP6008134B2 (en) Lithium secondary battery positive electrode active material and lithium secondary battery using the positive electrode active material
JP2003168428A (en) Nonaqueous electrolyte secondary battery
JP2010064944A (en) Lithium-nickel composite oxide and nonaqueous electrolyte secondary battery using the lithium-nickel composite oxide as positive electrode active material
JP2004292264A (en) Trimanganese tetroxide particle, its production method, nonaqueous electrolyte secondary battery, positive electrode active substance therefor and its preparation method
JP7118129B2 (en) METHOD FOR PRODUCING POSITIVE ACTIVE MATERIAL FOR LITHIUM-ION BATTERY
WO2019168160A1 (en) Li-ni composite oxide particle powder and nonaqueous electrolyte secondary battery
EP2819224B1 (en) Positive electrode active material powder for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell
JP2008257992A (en) Positive-electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP3835235B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
US20180241072A1 (en) Nonaqueous electrolyte secondary battery positive electrode active material and method for manufacturing same, and nonaqueous electrolyte secondary battery
JP4479874B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R150 Certificate of patent or registration of utility model

Ref document number: 4427351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term