JP2004271244A - Magnetometric sensor - Google Patents

Magnetometric sensor Download PDF

Info

Publication number
JP2004271244A
JP2004271244A JP2003059129A JP2003059129A JP2004271244A JP 2004271244 A JP2004271244 A JP 2004271244A JP 2003059129 A JP2003059129 A JP 2003059129A JP 2003059129 A JP2003059129 A JP 2003059129A JP 2004271244 A JP2004271244 A JP 2004271244A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
external
plate
saturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003059129A
Other languages
Japanese (ja)
Inventor
Toyohiko Kuno
豊彦 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2003059129A priority Critical patent/JP2004271244A/en
Publication of JP2004271244A publication Critical patent/JP2004271244A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetometric sensor comprising a magnetic focusing plate made of a ferromagnetic material and a magnetoelectric device for detecting a magnetic field leaking from the magnetic focusing plate, and having little characteristic dispersion. <P>SOLUTION: This sensor is constituted of the magnetic focusing plate made of the ferromagnetic material and Hall elements 4, 5 which are magnetoelectric devices for detecting the magnetic field leaking from the magnetic focusing plate. The magnetic focusing plate comprises regions A, B, C arranged continuously in the magnetic field direction to be measured and having three different saturation external magnetic field intensities, and is constituted of a first magnetic focusing plate 1 having the region A saturated by an external magnetic field intensity x, a second magnetic focusing plate 2 having the region B saturated by an external magnetic field intensity y, and a third magnetic focusing plate 3 having the region C saturated by an external magnetic field intensity z. The relation among the external magnetic field intensities x, y, z is x, z>y, and a continuous structure is formed, wherein the first magnetic focusing plate 1 is connected to the third magnetic focusing plate 3 through the second magnetic focusing plate 2. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、磁気センサに関し、より詳細には、強磁性材料からなる磁気収束板と、この磁気収束板から漏洩する磁場を検出する磁電変換素子とからなる磁気センサに関する。
【0002】
【従来の技術】
磁場を高精度に検知する磁気センサとしては、一般にホール素子がよく用いられるが、例えば、増幅回路等との集積化が容易なシリコンを用いた場合、磁気感度が十分ではないため、増幅回路の設計が困難となり、必ずしも使い勝手は良くない。このような問題に対して、高透磁率を有する材料で作成した磁気収束板をホール素子と組み合わせることで、磁場を高感度に検出することが可能になることが知られている。例えば、空隙を介して配置された2個の独立した磁気収束板からなる磁気収束板対と、この空隙の外側に配置され、磁気収束板対より漏洩する磁場を検知するホール素子とからなる構造によって、高感度を有する磁気センサを得ることができる(例えば、特許文献1参照)。
【0003】
【特許文献1】
米国特許第6,184,679号明細書
【0004】
【発明が解決しようとする課題】
しかしながら、磁気収束板対より漏洩する磁場は、磁気収束板対により形成される空隙の間隔に依存するため、磁気センサを製造するにあたっては、2個の独立した磁気収束板を、所定の位置に正確に配置する手段と、配置後に各々の位置が変動しないように固定するための手段が必要となっていた。すなわち、これらの手段を講じるにあたって、2個の磁気収束板の位置について、配置の際のバラツキや固定の際のバラツキが加算されることから、結果として特性バラツキの少ない実用的な磁気センサの実現は困難であった。
【0005】
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、強磁性材料からなる磁気収束板と、この磁気収束板から漏洩する磁場を検出する磁電変換素子とからなり、特性バラツキの少ない磁気センサを提供することにある。
【0006】
【課題を解決するための手段】
本発明は、このような目的を達成するために、請求項1に記載の発明は、強磁性材料からなる磁気収束板と、該磁気収束板から漏洩する磁場を検知する磁電変換素子とからなる磁気センサにおいて、前記磁気収束板が、被測定磁場方向に連続に配置された、少なくとも3つの異なる飽和外部磁場強度を有する磁気収束板群からなり、前記飽和外部磁場強度の関係が、前記磁気収束板群の端部以外の領域にて最小となるように構成され、前記磁電変換素子が、前記最小の飽和外部磁場強度を有する磁気収束板近傍から漏洩する磁場を検知できる位置に設けられていることを特徴とする。
【0007】
また、請求項2に記載の発明は、請求項1に記載の発明において、前記磁気収束板群が、単一の磁気収束板による一体化構造であることを特徴とする。
【0008】
また、請求項3に記載の発明は、請求項1又は2に記載の発明において、前記磁気収束板群が、外部磁場強度xで少なくとも第2の磁気収束板と接合する部分が飽和する領域を有する第1の磁気収束板と、外部磁場強度yで飽和する領域を有する第2の磁気収束板と、外部磁場強度zで少なくとも第2の磁気収束板と接合する部分が部分飽和する領域を有する第3の磁気収束板とからなり、飽和外部磁場強度の関係が、x、z>yになっており、飽和外部磁場強度yに対し、x及びzがそれぞれ100倍以上に設計されていることを特徴とする。
【0009】
また、請求項4に記載の発明は、請求項1,2又は3に記載の発明において、前記磁気収束板が軟磁性材料からなることを特徴とする。
【0010】
また、請求項5に記載の発明は、請求項1乃至4いずれかに記載の発明において、前記磁電変換素子がホール素子であることを特徴とする。
【0011】
このような構成により、被測定外部磁場の範囲において磁気飽和することなく磁気収束効果を得られる領域が、被測定外部磁場の範囲において直ちに磁気飽和して磁気収束効果が極めて小さい部分で接続されることにより、磁気収束板の相対位置バラツキの影響を減少させることができる。
【0012】
【発明の実施の形態】
以下、図面を参照して本発明の実施例について説明する。
[実施例1]
図1は、本発明に係る磁気センサの第1実施例を説明するための構成図で、図中符号1は外部磁場強度xで飽和する領域Aを有する第1の磁気収束板、2は外部磁場強度yで飽和する領域Bを有する第2の磁気収束板、3は外部磁場強度zで飽和する領域Cを有する第3の磁気収束板、4,5は磁電変換素子であるホール素子を示している。
【0013】
本発明の磁気センサは、強磁性材料からなる磁気収束板と、この磁気収束板から漏洩する磁場を検出する磁電変換素子であるホール素子4,5とから構成されている。磁気収束板は、被測定磁場方向に連続に配置された、3つの異なる飽和外部磁場強度を有する領域A,B,Cからなっており、外部磁場強度xで飽和する領域Aを有する第1の磁気収束板1と、外部磁場強度yで飽和する領域Bを有する第2の磁気収束板2と、外部磁場強度zで飽和する領域Cを有する第3の磁気収束板3とから構成されている。
【0014】
これらの外部磁場強度x,y,zの関係は、x,z>yであり、第1の磁気収束板1と第3の磁気収束板3が、第2の磁気収束板2を介して接続された連続構造をなしている。
【0015】
また、ホール素子4,5は、第2の磁気収束板の近傍に設けられ、しかも、第1の磁気収束板1又は第3の磁気収束板3から漏洩する磁場を検知できる位置に設けられている。
【0016】
また、連続構造は、単一の磁気収束板による一体化構造であることが望ましい。つまり、第1の磁気収束板1と、第3の磁気収束板3と、これらを接続する第2の磁気収束板2とが、同一の磁気特性を有する単一の磁気収束板による一体形成された構造であることが望ましい。
【0017】
磁気収束板の形状は、第1の磁気収束板1と第3の磁気収束板3が、図1に示されているように、棒状平板であることが好ましいが、この形状に限定されるものではない。例えば、台形平板とすることも可能であり、全体の形状を八角形とすることも可能であり、この他にも種々の形状が考えられる。
【0018】
磁気収束板を構成する材料としては、強磁性材料であれば良く、好ましくは、高透磁率材料を用いると良く、さらに好ましくは保磁力の小さい軟磁性材料を用いるとなお良い。
【0019】
磁電変換素子としては、磁気抵抗素子や磁気インダクタなどの様々な素子を用いることができるが、好ましくは、絶対磁場強度を得ることが容易なホール素子を用いると実用性が高くなる。
【0020】
図2は、図1に示した磁気センサにおいて、磁電変換素子としてホール素子を用いた場合(ただし、磁気収束板は、その外部磁場強度をx=zとして設計されている)の出力特性を示す図である。すなわち、図1に示した構成の場合、第1の磁気収束板1の外部磁場強度xと、第3の磁気収束板3の外部磁場強度zが、第2の磁気収束板2の外部磁場強度y以下の場合は、有意な出力を得ることができないが、y以上の場合で有意な出力を得ることができる。また、本実施例1では、外部磁場強度xとzは等しくなるように設計しているが、等しくない場合でも、各々が下記のような条件を満足していれば良い。
【0021】
すなわち、第1の磁気収束板1の外部磁場強度xで飽和する領域をA、第2の磁気収束板2の外部磁場強度yで飽和する領域をB、第3の磁気収束板3の外部磁場強度zで飽和する領域をCとした場合、外部磁場強度に対して線形出力を得る様に磁気センサを設計する場合には、領域Aの飽和外部磁場強度yに対し、領域Bの飽和外部磁場強度x及び領域Cの飽和外部磁場強度zが、それぞれ100倍以上に設計されていれば良い。
【0022】
一方、ある所定の外部磁場強度を以って動作するように設計された磁気スイッチ等の用途の場合には、領域Bの飽和外部磁場強度yは、設計外部磁場強度の1/2以下に設計すれば良く、x及びzは、設計外部磁場強度の2倍以上に設計されていれば良い。
【0023】
このような構成により、被測定外部磁場の範囲において磁気飽和することなく磁気収束効果を得られる領域が、被測定外部磁場の範囲において直ちに磁気飽和して磁気収束効果が極めて小さい部分で接続されることにより、磁気収束板の相対位置バラツキの影響を減少させることができる。
【0024】
[実施例2]
図3は、本発明に係る磁気センサの第2実施例を説明するための構成図で、図中符号11は外部磁場強度xで少なくとも第2の磁気収束板と接合する部分が飽和する領域Dを有する第1の磁気収束板、13は外部磁場強度zで少なくとも第2の磁気収束板と接合する部分が部分飽和する領域Eを有する第3の磁気収束板を示している。なお、図1と同じ機能を有する構成要素には同一の符号を付してある。
【0025】
上述した実施例1との相違は、感度の向上を図るために、第1の磁気収束板11と第3の磁気収束板13が、被測定磁場方向に連続に配置された2個以上の磁気収束板の連続構造体である点である。すなわち、磁気収束板の飽和外部磁場強度はその断面積に比例するため、厚みが一定の磁気収束板であれば、被測定磁場方向に直交する幅を変更することで、異なる飽和外部磁場強度を有する磁気収束板の連続構造を得ることは容易である。この場合、第1の磁気収束板11は外部磁場強度xで少なくとも第2の磁気収束板と接合する部分が飽和する領域Dを有し、第3の磁気収束板13は外部磁場強度zで少なくとも第2の磁気収束板と接合する部分が部分飽和する領域Eを有し、飽和外部磁場強度の関係が、x、z>yになっており、領域Bの飽和外部磁場強度yに対し、x及びzがそれぞれ100倍以上に設計されていれば良い。
【0026】
このような構成により、被測定外部磁場に対する磁気センサの感度を高めることができる。すなわち、被測定外部磁場に対する第1の磁気収束板11と第3の磁気収束板13の投影断面積を大きくすることで、被測定外部磁場の磁束収束効率が高まる一方、第2の磁気収束板との接合部で断面積を小さくすることで、収束された被測定外部磁場の磁束が効率良く漏洩するという効果を奏する。
【0027】
[実施例3]
図4は、本発明に係る磁気センサの第3実施例を説明するための構成図で、図中符号21は外部磁場強度xで少なくとも第2の磁気収束板と接合する部分が飽和する領域Fを有する第1の磁気収束板、21aは第1の磁気収束板21の段差部、23は外部磁場強度zで少なくとも第2の磁気収束板と接合する部分が飽和する領域Gを有する第3の磁気収束板、23aは第3の磁気収束板23の段差部を示している。なお、図1と同じ機能を有する構成要素には同一の符号を付してある。
【0028】
上述した実施例2との相違点は、さらに感度の向上を図るために、第1の磁気収束板21と第3の磁気収束板23が、段差部21a、23aを有する構造体である点である。すなわち、磁気収束板の飽和外部磁場強度はその断面積に比例するため、厚みを変更することで、異なる飽和外部磁場強度を有する磁気収束板の連続構造を得ることは容易である。
【0029】
この場合、第1の磁気収束板21は外部磁場強度xで少なくとも第2の磁気収束板と接合する部分が飽和する領域Fを有し、第3の磁気収束板23は外部磁場強度zで少なくとも第2の磁気収束板と接合する部分が部分飽和する領域Gを有し、飽和外部磁場強度の関係が、x、z>yになっており、領域Bの飽和外部磁場強度yに対し、x及びzがそれぞれ100倍以上に設計されていれば良い。
【0030】
このような構成により、さらに被測定外部磁場に対する磁気センサの感度を高めることができる。すなわち、被測定外部磁場に対する第1の磁気収束板21と第3の磁気収束板23の投影断面積をさらに大きくすることで、被測定外部磁場の磁束収束効率が一段と高まる一方、第2の磁気収束板との接合部で断面積を小さくすることで、収束された被測定外部磁場の磁束が効率良く漏洩するという効果を奏する。
【0031】
以上のように、本発明における実施例を示したが、本発明は、さらに種々の形態で実現できることは明らかであり、上述した実施例に制約されるものではない。
【0032】
【発明の効果】
以上説明したように本発明によれば、強磁性材料からなる磁気収束板と、この磁気収束板から漏洩する磁場を検出する磁電変換素子とからなる磁気センサにおいて、磁気収束板が、被測定磁場方向に連続に配置された、少なくとも3つの異なる飽和外部磁場強度を有する磁気収束板群からなり、飽和外部磁場強度の関係が、磁気収束板群の端部以外の領域にて最小となるように構成され、磁電変換素子が、最小の飽和外部磁場強度を有する磁気収束板近傍から漏洩する磁場を検知できる位置に設けられているので、磁気収束板の相対位置バラツキの影響を減少させることができる。
【図面の簡単な説明】
【図1】本発明に係る磁気センサの第1実施例を説明するための構成図である。
【図2】図1に示した磁気センサにおいて、磁電変換素子としてホール素子を用いた場合(ただし、磁気収束板は、その外部磁場強度x=zとして設計されている)の出力特性を示す図である。
【図3】本発明に係る磁気センサの第2実施例を説明するための構成図である。
【図4】本発明に係る磁気センサの第3実施例を説明するための構成図である。
【符号の説明】
1 部磁場強度xで飽和する領域Aを有する第1の磁気収束板
2 部磁場強度yで飽和する領域Bを有する第2の磁気収束板
3 部磁場強度zで飽和する領域Cを有する第3の磁気収束板
4,5 ホール素子
11 外部磁場強度xで少なくとも第2の磁気収束板と接合する部分が飽和する領域Dを有する第1の磁気収束板
12 外部磁場強度zで少なくとも第2の磁気収束板と接合する部分が飽和する領域Eを有する第3の磁気収束板
21 外部磁場強度xで少なくとも第2の磁気収束板と接合する部分が飽和する領域Fを有する第1の磁気収束板
21a 第1の磁気収束板の段差部
22a 第3の磁気収束板の段差部
23 外部磁場強度zで少なくとも第2の磁気収束板と接合する部分が飽和する領域Gを有する第3の磁気収束板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic sensor, and more particularly, to a magnetic sensor including a magnetic focusing plate made of a ferromagnetic material and a magnetoelectric conversion element that detects a magnetic field leaking from the magnetic focusing plate.
[0002]
[Prior art]
As a magnetic sensor that detects a magnetic field with high accuracy, a Hall element is often used in general.For example, when silicon that can be easily integrated with an amplifier circuit is used, the magnetic sensitivity is not sufficient. Design becomes difficult, and the usability is not always good. In order to solve such a problem, it is known that a magnetic field can be detected with high sensitivity by combining a magnetic flux concentrator made of a material having high magnetic permeability with a Hall element. For example, a structure including a magnetic flux concentrator pair composed of two independent magnetic flux concentrators disposed via an air gap, and a Hall element disposed outside the air gap and detecting a magnetic field leaking from the magnetic flux convergent plate pair Thus, a magnetic sensor having high sensitivity can be obtained (for example, see Patent Document 1).
[0003]
[Patent Document 1]
US Pat. No. 6,184,679
[Problems to be solved by the invention]
However, the magnetic field leaking from the magnetic flux concentrator pair depends on the space between the air gaps formed by the magnetic flux concentrator pairs. Therefore, in manufacturing a magnetic sensor, two independent magnetic flux converging plates are placed at a predetermined position. Means for accurate placement and means for fixing each position so as not to fluctuate after placement are required. In other words, when these measures are taken, variations in arrangement and variations in fixing are added to the positions of the two magnetic focusing plates, and as a result, a practical magnetic sensor with less characteristic variations is realized. Was difficult.
[0005]
The present invention has been made in view of such a problem, and an object thereof is to provide a magnetic focusing plate made of a ferromagnetic material and a magnetoelectric conversion element that detects a magnetic field leaking from the magnetic focusing plate. Another object of the present invention is to provide a magnetic sensor having less characteristic variation.
[0006]
[Means for Solving the Problems]
In order to achieve such an object, the present invention according to claim 1 comprises a magnetic converging plate made of a ferromagnetic material and a magnetoelectric conversion element for detecting a magnetic field leaking from the magnetic converging plate. In the magnetic sensor, the magnetic convergence plate is composed of a group of magnetic convergence plates having at least three different saturated external magnetic field intensities arranged continuously in the direction of the magnetic field to be measured. It is configured to be minimized in a region other than the end of the plate group, and the magnetoelectric conversion element is provided at a position where a magnetic field leaking from near the magnetic converging plate having the minimum saturated external magnetic field strength can be detected. It is characterized by the following.
[0007]
According to a second aspect of the present invention, in the first aspect of the present invention, the magnetic converging plate group has an integrated structure of a single magnetic converging plate.
[0008]
According to a third aspect of the present invention, in the first or second aspect, the magnetic flux concentrator group includes a region where at least a portion of the magnetic flux concentrator that is joined to the second magnetic flux concentrator is saturated with the external magnetic field intensity x. A first magnetic converging plate, a second magnetic converging plate having a region saturated with the external magnetic field strength y, and a region where at least a portion joined to the second magnetic converging plate with the external magnetic field strength z is partially saturated A third magnetic converging plate, wherein the relation of the saturation external magnetic field strength is x, z> y, and x and z are each designed to be 100 times or more the saturation external magnetic field strength y. It is characterized by.
[0009]
According to a fourth aspect of the present invention, in the first, second or third aspect, the magnetic converging plate is made of a soft magnetic material.
[0010]
The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein the magnetoelectric conversion element is a Hall element.
[0011]
With such a configuration, the region where the magnetic convergence effect can be obtained without magnetic saturation in the range of the external magnetic field to be measured is immediately connected to the portion where the magnetic convergence effect is extremely small due to the magnetic saturation in the range of the external magnetic field to be measured. This can reduce the influence of the relative position variation of the magnetic flux concentrator.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Example 1]
FIG. 1 is a block diagram for explaining a first embodiment of a magnetic sensor according to the present invention. In FIG. 1, reference numeral 1 denotes a first magnetic converging plate having a region A saturated with an external magnetic field intensity x, and 2 denotes an external magnetic convergent plate. A second magnetic focusing plate having a region B saturated with a magnetic field strength y, 3 is a third magnetic focusing plate having a region C saturated with an external magnetic field strength z, and 4, 5 are Hall elements which are magnetoelectric conversion elements. ing.
[0013]
The magnetic sensor according to the present invention includes a magnetic converging plate made of a ferromagnetic material, and Hall elements 4 and 5, which are magnetoelectric conversion elements for detecting a magnetic field leaking from the magnetic converging plate. The magnetic flux concentrator comprises regions A, B, and C having three different saturated external magnetic field strengths arranged continuously in the direction of the magnetic field to be measured, and a first region having a region A saturated with the external magnetic field strength x. It is composed of a magnetic converging plate 1, a second magnetic converging plate 2 having a region B saturated with the external magnetic field strength y, and a third magnetic converging plate 3 having a region C saturated with the external magnetic field strength z. .
[0014]
The relationship among these external magnetic field strengths x, y, z is x, z> y, and the first magnetic converging plate 1 and the third magnetic converging plate 3 are connected via the second magnetic converging plate 2. It has a continuous structure.
[0015]
The Hall elements 4 and 5 are provided in the vicinity of the second magnetic converging plate, and are provided at positions where the magnetic field leaking from the first magnetic converging plate 1 or the third magnetic converging plate 3 can be detected. I have.
[0016]
Further, the continuous structure is desirably an integrated structure using a single magnetic converging plate. That is, the first magnetic converging plate 1, the third magnetic converging plate 3, and the second magnetic converging plate 2 connecting them are integrally formed by a single magnetic converging plate having the same magnetic characteristics. It is desirable that the structure is appropriate.
[0017]
The shape of the magnetic converging plate is preferably such that the first magnetic converging plate 1 and the third magnetic converging plate 3 are rod-shaped flat plates as shown in FIG. 1, but are not limited to this shape. is not. For example, a trapezoidal flat plate can be used, the entire shape can be an octagon, and various other shapes can be considered.
[0018]
The material constituting the magnetic flux concentrator may be a ferromagnetic material, preferably a high magnetic permeability material, and more preferably a soft magnetic material having a small coercive force.
[0019]
Various elements such as a magnetoresistive element and a magnetic inductor can be used as the magnetoelectric conversion element. However, it is preferable to use a Hall element that can easily obtain the absolute magnetic field strength, thereby increasing the practicality.
[0020]
FIG. 2 shows output characteristics when a Hall element is used as a magnetoelectric conversion element in the magnetic sensor shown in FIG. 1 (however, the magnetic converging plate is designed such that the external magnetic field strength is x = z). FIG. That is, in the case of the configuration shown in FIG. 1, the external magnetic field intensity x of the first magnetic converging plate 1 and the external magnetic field intensity z of the third magnetic converging plate 3 are equal to the external magnetic field intensity of the second magnetic converging plate 2. If it is less than y, a significant output cannot be obtained, but if it is more than y, a significant output can be obtained. In the first embodiment, the external magnetic field strengths x and z are designed to be equal. However, even when the external magnetic field strengths are not equal, it is only necessary that each of them satisfies the following conditions.
[0021]
That is, the area of the first magnetic flux concentrator 1 that is saturated with the external magnetic field strength x is A, the area of the second magnetic flux concentrator 2 that is saturated with the external magnetic field strength y is B, and the external magnetic field of the third magnetic flux concentrator 3 is If the region saturated with the intensity z is C, and if the magnetic sensor is designed to obtain a linear output with respect to the external magnetic field intensity, the saturation external magnetic field of the region B is compared with the saturated external magnetic field intensity y of the region A. The intensity x and the saturation external magnetic field intensity z of the region C may be designed to be 100 times or more, respectively.
[0022]
On the other hand, in the case of an application such as a magnetic switch designed to operate with a certain external magnetic field strength, the saturation external magnetic field strength y in the region B is designed to be equal to or less than 設計 of the design external magnetic field strength. X and z need only be designed to be at least twice the design external magnetic field strength.
[0023]
With such a configuration, the region where the magnetic convergence effect can be obtained without magnetic saturation in the range of the external magnetic field to be measured is immediately connected to the portion where the magnetic convergence effect is extremely small due to the magnetic saturation in the range of the external magnetic field to be measured. This can reduce the influence of the relative position variation of the magnetic flux concentrator.
[0024]
[Example 2]
FIG. 3 is a block diagram for explaining a second embodiment of the magnetic sensor according to the present invention. In the drawing, reference numeral 11 denotes a region D where at least a portion joined to the second magnetic flux concentrator is saturated with an external magnetic field intensity x. And 13 denotes a third magnetic flux concentrator having a region E in which at least a portion joined to the second magnetic flux convergent at the external magnetic field strength z is partially saturated. Note that components having the same functions as those in FIG. 1 are denoted by the same reference numerals.
[0025]
The difference from the above-described first embodiment is that in order to improve the sensitivity, the first magnetic converging plate 11 and the third magnetic converging plate 13 are two or more magnetic converging plates arranged continuously in the direction of the magnetic field to be measured. The point is that the converging plate is a continuous structure. That is, since the saturated external magnetic field strength of the magnetic concentrator is proportional to its cross-sectional area, if the magnetic concentrator has a constant thickness, changing the width orthogonal to the direction of the magnetic field to be measured will allow different saturated external magnetic field strengths. It is easy to obtain a continuous structure of a magnetic converging plate having the same. In this case, the first magnetic flux concentrator 11 has a region D in which at least a portion joined to the second magnetic flux convergent plate is saturated with the external magnetic field intensity x, and the third magnetic flux concentrator 13 has at least an external magnetic field strength z with the external magnetic field strength z. The portion joined to the second magnetic flux concentrator has a region E that is partially saturated, and the relationship of the saturated external magnetic field strength is x, z> y. And z need only be designed to be 100 times or more.
[0026]
With such a configuration, the sensitivity of the magnetic sensor to the external magnetic field to be measured can be increased. That is, by increasing the projected cross-sectional area of the first magnetic converging plate 11 and the third magnetic converging plate 13 with respect to the external magnetic field to be measured, the magnetic flux converging efficiency of the external magnetic field to be measured is increased, while the second magnetic converging plate is increased. By reducing the cross-sectional area at the junction with the above, there is an effect that the converged magnetic flux of the measured external magnetic field leaks efficiently.
[0027]
[Example 3]
FIG. 4 is a block diagram for explaining a third embodiment of the magnetic sensor according to the present invention. In the figure, reference numeral 21 denotes a region F where at least a portion joined to the second magnetic converging plate is saturated with an external magnetic field intensity x. A first magnetic flux concentrator having a first magnetic flux concentrator 21a, a stepped portion of the first magnetic flux convergent 21 and a third magnetic field G having an external magnetic field strength z in which at least a portion joined to the second magnetic flux convergent is saturated. The magnetic converging plate 23a indicates a step portion of the third magnetic converging plate 23. Note that components having the same functions as those in FIG. 1 are denoted by the same reference numerals.
[0028]
The difference from the second embodiment is that the first magnetic converging plate 21 and the third magnetic converging plate 23 are structures having steps 21a and 23a in order to further improve the sensitivity. is there. That is, since the saturation external magnetic field strength of the magnetic flux concentrator is proportional to its cross-sectional area, it is easy to obtain a continuous structure of the magnetic flux concentrator having different saturation external magnetic field strengths by changing the thickness.
[0029]
In this case, the first magnetic converging plate 21 has a region F where at least a portion joined to the second magnetic converging plate is saturated with the external magnetic field intensity x, and the third magnetic converging plate 23 has at least an external magnetic field intensity z. The portion joined to the second magnetic flux concentrator has a partially saturated region G, and the relationship of the saturated external magnetic field strength is x, z> y. And z need only be designed to be 100 times or more.
[0030]
With such a configuration, the sensitivity of the magnetic sensor to the external magnetic field to be measured can be further increased. That is, by further increasing the projected sectional area of the first magnetic converging plate 21 and the third magnetic converging plate 23 with respect to the external magnetic field to be measured, the magnetic flux converging efficiency of the external magnetic field to be measured is further increased, while the second magnetic By reducing the cross-sectional area at the junction with the converging plate, the converged magnetic flux of the external magnetic field to be measured is efficiently leaked.
[0031]
As described above, the embodiments of the present invention have been described. However, it is clear that the present invention can be realized in various forms, and the present invention is not limited to the above-described embodiments.
[0032]
【The invention's effect】
As described above, according to the present invention, in a magnetic sensor including a magnetic focusing plate made of a ferromagnetic material and a magnetoelectric conversion element that detects a magnetic field leaking from the magnetic focusing plate, the magnetic focusing plate has a magnetic field to be measured. A magnetic flux concentrator group having at least three different saturation external magnetic field strengths arranged continuously in the direction, such that the relationship between the saturation external magnetic field strengths is minimized in a region other than the end of the magnetic flux concentrator group. Since the magneto-electric conversion element is provided at a position where the magnetic field leaking from the vicinity of the magnetic converging plate having the minimum saturated external magnetic field strength can be detected, the influence of the relative position variation of the magnetic converging plate can be reduced. .
[Brief description of the drawings]
FIG. 1 is a configuration diagram for explaining a first embodiment of a magnetic sensor according to the present invention.
FIG. 2 is a diagram showing output characteristics when a Hall element is used as a magnetoelectric conversion element in the magnetic sensor shown in FIG. 1 (however, the magnetic converging plate is designed with its external magnetic field strength x = z). It is.
FIG. 3 is a configuration diagram illustrating a second embodiment of the magnetic sensor according to the present invention.
FIG. 4 is a configuration diagram for explaining a third embodiment of the magnetic sensor according to the present invention.
[Explanation of symbols]
1 A first magnetic converging plate having a region A saturated with a partial magnetic field intensity x 2 A second magnetic converging plate 3 having a region B saturated with a partial magnetic field intensity y 3 A third having a region C saturated with a partial magnetic field intensity z Magnetic converging plates 4 and 5 Hall element 11 First magnetic converging plate 12 having a region D where at least a portion joined to the second magnetic converging plate is saturated with external magnetic field intensity x At least second magnetic field with external magnetic field strength z Third magnetic converging plate 21 having a region E where the portion joined to the converging plate is saturated First magnetic converging plate 21a having a region F where at least a portion joined to the second magnetic converging plate is saturated with external magnetic field intensity x Step portion 22a of first magnetic converging plate Step portion 23 of third magnetic converging plate Third magnetic converging plate having region G where at least a portion joined to the second magnetic converging plate is saturated with external magnetic field strength z

Claims (5)

強磁性材料からなる磁気収束板と、該磁気収束板から漏洩する磁場を検知する磁電変換素子とからなる磁気センサにおいて、
前記磁気収束板が、被測定磁場方向に連続に配置された、少なくとも3つの異なる飽和外部磁場強度を有する磁気収束板群からなり、
前記飽和外部磁場強度の関係が、前記磁気収束板群の端部以外の領域にて最小となるように構成され、
前記磁電変換素子が、前記最小の飽和外部磁場強度を有する磁気収束板近傍から漏洩する磁場を検知できる位置に設けられている
ことを特徴とする磁気センサ。
In a magnetic sensor comprising a magnetic focusing plate made of a ferromagnetic material and a magnetoelectric conversion element for detecting a magnetic field leaking from the magnetic focusing plate,
The magnetic convergence plate comprises a group of magnetic convergence plates having at least three different saturation external magnetic field strengths arranged continuously in a measured magnetic field direction,
The relationship of the saturation external magnetic field strength is configured to be minimized in a region other than the end of the magnetic converging plate group,
A magnetic sensor, wherein the magnetoelectric conversion element is provided at a position capable of detecting a magnetic field leaking from near a magnetic converging plate having the minimum saturated external magnetic field strength.
前記磁気収束板群が、単一の磁気収束板による一体化構造であることを特徴とする請求項1に記載の磁気センサ。The magnetic sensor according to claim 1, wherein the magnetic converging plate group has an integrated structure including a single magnetic converging plate. 前記磁気収束板群が、外部磁場強度xで少なくとも第2の磁気収束板と接合する部分が飽和する領域を有する第1の磁気収束板と、外部磁場強度yで飽和する領域を有する第2の磁気収束板と、外部磁場強度zで少なくとも第2の磁気収束板と接合する部分が部分飽和する領域を有する第3の磁気収束板とからなり、飽和外部磁場強度の関係が、x、z>yになっており、飽和外部磁場強度yに対し、x及びzがそれぞれ100倍以上に設計されていることを特徴とする請求項1又は2に記載の磁気センサ。The magnetic flux concentrator group includes a first magnetic flux concentrator having a region where at least a portion joined to the second magnetic flux concentrator at the external magnetic field intensity x is saturated, and a second magnetic convergent plate having a region saturated with the external magnetic field intensity y. A magnetic converging plate, and a third magnetic converging plate having a region where at least a portion joined to the second magnetic converging plate at the external magnetic field strength z is partially saturated, and the relation of the saturated external magnetic field strength is x, z> 3. The magnetic sensor according to claim 1, wherein x and z are each designed to be 100 times or more the saturation external magnetic field strength y. 4. 前記磁気収束板が軟磁性材料からなることを特徴とする請求項1,2又は3に記載の磁気センサ。4. The magnetic sensor according to claim 1, wherein the magnetic converging plate is made of a soft magnetic material. 前記磁電変換素子がホール素子であることを特徴とする請求項1乃至4いずれかに記載の磁気センサ。The magnetic sensor according to any one of claims 1 to 4, wherein the magnetoelectric conversion element is a Hall element.
JP2003059129A 2003-03-05 2003-03-05 Magnetometric sensor Withdrawn JP2004271244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003059129A JP2004271244A (en) 2003-03-05 2003-03-05 Magnetometric sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003059129A JP2004271244A (en) 2003-03-05 2003-03-05 Magnetometric sensor

Publications (1)

Publication Number Publication Date
JP2004271244A true JP2004271244A (en) 2004-09-30

Family

ID=33122052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003059129A Withdrawn JP2004271244A (en) 2003-03-05 2003-03-05 Magnetometric sensor

Country Status (1)

Country Link
JP (1) JP2004271244A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027418A (en) * 2009-07-21 2011-02-10 Asahi Kasei Electronics Co Ltd Hall element
JP2014178310A (en) * 2013-02-12 2014-09-25 Asahi Kasei Electronics Co Ltd Rotation angle measuring apparatus
JP2015094732A (en) * 2013-11-14 2015-05-18 アルプス電気株式会社 Magnetism detection device
JP2016170167A (en) * 2015-03-12 2016-09-23 Tdk株式会社 Magnetic sensor
US9523589B2 (en) 2013-02-12 2016-12-20 Asahi Kasei Microdevices Corporation Rotation angle measurement apparatus
KR101768254B1 (en) * 2013-06-12 2017-08-16 매그나칩 반도체 유한회사 Semiconductor-based magnetic sensor and method of manufacturing thereof
JP2020071096A (en) * 2018-10-30 2020-05-07 Tdk株式会社 Magnetic sensor
JP2020071095A (en) * 2018-10-30 2020-05-07 Tdk株式会社 Magnetic sensor
CN116552598A (en) * 2023-07-10 2023-08-08 西南交通大学 Permanent magnet track irregularity detection device and method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027418A (en) * 2009-07-21 2011-02-10 Asahi Kasei Electronics Co Ltd Hall element
JP2014178310A (en) * 2013-02-12 2014-09-25 Asahi Kasei Electronics Co Ltd Rotation angle measuring apparatus
JP2016048259A (en) * 2013-02-12 2016-04-07 旭化成エレクトロニクス株式会社 Rotation angle measuring apparatus
US9523589B2 (en) 2013-02-12 2016-12-20 Asahi Kasei Microdevices Corporation Rotation angle measurement apparatus
US9625278B2 (en) 2013-02-12 2017-04-18 Asahi Kasei Microdevices Corporation Rotation angle measurement apparatus
KR101768254B1 (en) * 2013-06-12 2017-08-16 매그나칩 반도체 유한회사 Semiconductor-based magnetic sensor and method of manufacturing thereof
JP2015094732A (en) * 2013-11-14 2015-05-18 アルプス電気株式会社 Magnetism detection device
JP2016170167A (en) * 2015-03-12 2016-09-23 Tdk株式会社 Magnetic sensor
JP2020071096A (en) * 2018-10-30 2020-05-07 Tdk株式会社 Magnetic sensor
JP2020071095A (en) * 2018-10-30 2020-05-07 Tdk株式会社 Magnetic sensor
CN116552598A (en) * 2023-07-10 2023-08-08 西南交通大学 Permanent magnet track irregularity detection device and method
CN116552598B (en) * 2023-07-10 2023-11-07 西南交通大学 Permanent magnet track irregularity detection device and method

Similar Documents

Publication Publication Date Title
WO2006113459A3 (en) Current sensor
JP2001013231A (en) Magnetic sensor formed on semiconductor substrate
JP5143765B2 (en) Current sensor
TW200533928A (en) High sensitivity magnetic built-in current sensor
JP2004271244A (en) Magnetometric sensor
JP3559225B2 (en) Dielectric type position detector
US11169225B2 (en) TMR high-sensitivity single-chip push-pull bridge magnetic field sensor
JP2013096847A (en) Position detection apparatus
TW201520574A (en) Magnetic field sensing module, measurement method, and manufacturing method of a magnetic field sensing module
CN104919328A (en) Magnetic sensor and production method therefor
JP2013145165A (en) Current sensor mechanism
JP2009288158A (en) Rotation angle detecting device
JP2010112936A (en) Current sensor and magnetic detection method
JP5121679B2 (en) Fluxgate magnetic sensor
US9823315B2 (en) Magnetic sensor
JP2013054016A (en) Shape of magnetic core in current sensor
JP2009204415A (en) Current sensor and watt-hour meter
WO2016010120A1 (en) Magnetic sensor
WO2017199787A1 (en) Magnetic sensor
JPH09292202A (en) Linear displacement detecting device
JP2012058150A (en) Current sensor
JPS6344730Y2 (en)
JP2011047942A (en) Magnetic flux detector and method of manufacturing the same
JP2020112448A (en) Magnetic sensor
JP2024000752A (en) Current measurement device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509