JP2004271066A - Method for controlling degree of superheat - Google Patents

Method for controlling degree of superheat Download PDF

Info

Publication number
JP2004271066A
JP2004271066A JP2003063177A JP2003063177A JP2004271066A JP 2004271066 A JP2004271066 A JP 2004271066A JP 2003063177 A JP2003063177 A JP 2003063177A JP 2003063177 A JP2003063177 A JP 2003063177A JP 2004271066 A JP2004271066 A JP 2004271066A
Authority
JP
Japan
Prior art keywords
evaporator
refrigerant
pressure
temperature
superheat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003063177A
Other languages
Japanese (ja)
Other versions
JP4259891B2 (en
Inventor
Hisatoshi Hirota
久寿 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TGK Co Ltd
Original Assignee
TGK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TGK Co Ltd filed Critical TGK Co Ltd
Priority to JP2003063177A priority Critical patent/JP4259891B2/en
Publication of JP2004271066A publication Critical patent/JP2004271066A/en
Application granted granted Critical
Publication of JP4259891B2 publication Critical patent/JP4259891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air-Conditioning For Vehicles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling a degree of superheat while accurately calculating it. <P>SOLUTION: As a expansion device for a refrigerating cycle, a flow control valve is used for controlling fore and aft differential pressure between an inlet and an outlet of an evaporator to be almost constant differential pressure ΔP which depends on a current i to be supplied to a solenoid. At the inlet and the outlet of the evaporator, temperature sensors are provided for measuring their temperatures. A temperature T(Pe) equivalent to evaporation pressure Pe of the evaporator is found from an inlet temperature Tx of the evaporator and the differential pressure ΔP depending on the current i in accordance with the temperature-pressure characteristics of refrigerant. It is subtracted from an outlet temperature Te to calculate the degree of superheat SH. The calculation includes no estimated items, and so the degree of superheat can be accurately calculated for highly accurate control of the refrigerating cycle as well as the inexpensive temperature sensors can be used for detecting elements, resulting in the construction of a low-cost automobile air-conditioning device. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は過熱度制御方法に関し、特に自動車用空調装置などの冷凍サイクルにて膨張装置がエバポレータの出口温度を所定の過熱度になるように制御する過熱度制御方法に関する。
【0002】
【従来の技術】
たとえば自動車用空調装置では、一般に、循環する冷媒を圧縮するコンプレッサと、圧縮された冷媒を凝縮するコンデンサと、冷凍サイクル内の冷媒を溜めるとともに凝縮された冷媒を気液に分離するレシーバと、分離された液冷媒を絞り膨張させる膨張弁と、膨張弁で膨張された冷媒を蒸発させるエバポレータとで冷凍サイクルが構成されている。膨張弁としては、エバポレータの出口における冷媒の温度および圧力を感知して、エバポレータに送り出す冷媒の流量を制御するようにした温度式膨張弁が用いられている。温度式膨張弁では、エバポレータ出口の冷媒温度を冷媒流量の制御のためにフィードバックしなければならないことと、コンプレッサに戻される冷媒に液分が含まれないようエバポレータで冷媒を完全に蒸発させたいということから、エバポレータ出口における冷媒に所定の過熱度を持たせるようにしている。
【0003】
温度式膨張弁は、ダイヤフラムで仕切られて冷媒と同様の作動ガスが封入された感温部と冷媒を絞り膨張させる弁部とからなり、そのダイヤフラムにエバポレータ出口の冷媒を曝すことで、感温部内のエバポレータ出口の冷媒温度に対応した作動ガスの飽和圧力とエバポレータ出口の冷媒の飽和圧力との間に過熱度に相当する圧力差が生じ、その圧力差とスプリング力との釣り合いで弁部の開度が決定され、エバポレータへ送り出す冷媒の流量を制御している。
【0004】
このような温度式膨張弁に対し、ソレノイド作動の電子制御弁が膨張弁として使用されている(たとえば、特許文献1参照。)。このような電子膨張弁は、ソレノイドに供給する電流を換えることによって弁部の開度を自由に変更することができるので、きめ細かな制御が可能になり、エバポレータ出口の冷媒の過熱度も制御が可能になる。
【0005】
電子膨張弁を用いて、過熱度を制御するには、過熱度を知る必要がある。過熱度は、エバポレータ出口の冷媒温度とエバポレータの蒸発圧力に対応する冷媒温度との差であるため、エバポレータ出口の冷媒温度とエバポレータの蒸発圧力とを計測すれば求めることができる。
【0006】
しかし、圧力を検出する圧力センサは、温度を検出する温度センサに比べて非常に高価であるため、自動車用空調装置のコストを上げる要因になる。そこで、従来では、エバポレータの蒸発圧力をエバポレータ入口の温度から推定する方法が採られている。
【0007】
すなわち、エバポレータ入口の冷媒温度を計測し、使用冷媒の飽和蒸気圧力−温度特性を参照することにより、その温度に対応するエバポレータ入口の圧力を求めることができる。また、エバポレータを冷媒が通過するときに圧力損失が生じるが、その圧力差は、ここでは、概ね一定であるとする。その圧力差を先に求めたエバポレータ入口の圧力から差し引くことでエバポレータの蒸発圧力を算出することができるので、その算出した蒸発圧力に対応する温度を使用冷媒の飽和蒸気圧力−温度特性を参照することにより求めることができる。このようにして求めたエバポレータの蒸発圧力に対応する冷媒温度を、温度センサで計測したエバポレータ入口の冷媒温度から差し引くことで、過熱度を求めることができる。
このようにして、エバポレータの入口および出口で計測した冷媒温度から制御目標値である過熱度を推定している。
【0008】
【特許文献1】
特開2001−153495号公報(段落番号〔0010〕〜〔0022〕,図1、図2)
【0009】
【発明が解決しようとする課題】
しかしながら、従来では、計測した2つの冷媒温度から、エバポレータの圧力損失による差圧が一定であるとの仮定の元におおよその過熱度を推定しているが、実際には、その差圧は冷媒の流量によって変化しているので、正確な過熱度が求められているわけではない。したがって、エバポレータを流れる冷媒の流量が変化したときには、計算上の過熱度と実際の過熱度とに差が生じることによって、過熱度の正確な制御はできていないという問題点があった。
【0010】
本発明はこのような点に鑑みてなされたものであり、加熱度を正確に算出して制御する過熱度制御方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明では上記問題を解決するために、冷凍サイクルにおける膨張装置がエバポレータの出口の冷媒状態が所定の過熱度になるように制御する過熱度制御方法において、前記膨張装置に前記エバポレータの入口と出口との前後差圧をソレノイドに供給する電流によって決まる差圧になるよう制御する流量制御弁を用い、前記エバポレータの入口および出口で測定した入口冷媒温度および出口冷媒温度と前記ソレノイドに供給する電流値によって決まる差圧とから前記過熱度を算出し、前記過熱度が所定の値になるよう前記電流値を制御する、ことを特徴とする過熱度制御方法が提供される。
【0012】
このような過熱度制御方法によれば、従来推定していたエバポレータの差圧を、この差圧を制御する流量制御弁のソレノイドに供給する電流値から直接知ることができるので、正確な過熱度を算出することができ、これによって、より正確に冷凍サイクルを制御することができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して詳細に説明する。
図1は本発明による過熱度制御方法を説明するための冷媒の飽和蒸気温度−圧力線図である。
【0014】
冷媒の温度と圧力との間には一定の関係があることが知られており、その関係を示したのが図1に示した冷媒の飽和蒸気温度−圧力線図である。この図において、横軸はエバポレータ出口温度Teを表し、縦軸はエバポレータ出口圧力Peを表している。曲線は、冷媒の温度に対する圧力の変化を示すT−P曲線である。このT−P曲線の変化は、冷媒の種類によって決まっており、冷媒の種類と温度が分かれば、そのときの圧力を知ることができるのである。
【0015】
さて、本発明では、実際に計測するのは、従来と同様に、エバポレータの入口温度Txと出口温度Teである。過熱度SHは、エバポレータの出口温度Teとエバポレータの蒸発圧力Peに相当する温度T(Pe)との差であるので、
【0016】
【数1】
SH=Te−T(Pe)・・・(1)
で表すことができる。したがって、これらの実測値から蒸発圧力Peに相当する温度T(Pe)を求めることができれば、過熱度SHを求めることができる。
【0017】
蒸発圧力Peに相当する温度T(Pe)は、このT−P曲線から、差圧ΔPの分だけ低い圧力Peに相当する温度であることから、
【0018】
【数2】
T(Pe)=Tx−ΔT(ΔP,Tx)・・・(2)
で表される。つまり、蒸発圧力Peに相当する温度T(Pe)は、入口温度Txから差圧ΔPおよび入口温度Txを関数とする温度差ΔT(ΔP,Tx)を差し引くことにより求められる。
【0019】
ここで、差圧ΔPは、エバポレータの入口圧力Pxと出口圧力Peとの差圧であり、これを正確に求めることができれば、最終的に正確な過熱度SHを求めることが可能になる。
【0020】
本発明では、膨張弁として、エバポレータの入口と出口との前後差圧をソレノイドに供給する電流によって決まる所定の差圧になるよう制御する流量制御弁を用いることにより、差圧ΔPをソレノイドに供給する電流値から直接読み取るようにしている。この電流値は、流量制御弁が制御しようとする差圧の目標値であるため、エバポレータの入口圧力Pxと出口圧力Peとの差圧ΔPを直接、かつ正確に知ることができるのである。
【0021】
このように、この差圧ΔPは、ソレノイドに供給する電流iの関数になっているため、
【0022】
【数3】
ΔP=ΔP(i)・・・(3)
で表すこととができ、上記の式1および式2から、過熱度SHは、
【0023】
【数4】
SH=Te−Tx+ΔT(ΔP(i),Tx)・・・(4)
となり、正確に求めることができる。
【0024】
図2は本発明を適用した冷凍サイクルを示した図である。
冷凍サイクルは、循環する冷媒を圧縮するコンプレッサ1と、圧縮された冷媒を凝縮するコンデンサ2と、冷凍サイクル内の冷媒を溜めるとともに凝縮された冷媒を気液に分離するレシーバ3と、液冷媒を絞り膨張させる流量制御弁4と、この流量制御弁4で膨張された冷媒を蒸発させてコンプレッサ1に戻すエバポレータ5とを備えている。エバポレータ5には、その入口に冷媒の入口温度Txを検出する温度センサ6と出口に冷媒の出口温度Teを検出する温度センサ7とが設けられており、これら温度センサ6,7の検出出力は、制御装置8に入力される。この制御装置8は、流量制御弁4を制御する電流iを出力する。
【0025】
図3は流量制御弁の一例を示す中央縦断面図である。
この流量制御弁4は、本体ブロック11に、レシーバ3から圧力Poの冷媒が送られてくる高圧冷媒入口12と、冷媒が膨張しながらエバポレータ5に送り出される低圧冷媒出口13と、エバポレータ5から冷媒が戻ってくる戻り冷媒入口14と、戻ってきた冷媒をコンプレッサ1に送り出す戻り冷媒出口15とが設けられている。高圧冷媒入口12には、その通路を塞ぐようにストレーナ16が配置されている。
【0026】
本体ブロック11の上部には、大径の穴が形成され、中央部には、その大径の穴と同心のシリンダが図の上下方向に形成され、下部には、中央部のシリンダと連通する穴が形成されている。その下部の穴は、戻り冷媒入口14および戻り冷媒出口15と戻り通路17によって連通され、さらに、本体ブロック11の下端面に開口している。この開口部は、パッキンおよびパッキン押さえ18を介してねじ19を本体ブロック11に螺入することで閉塞されている。
【0027】
中央部のシリンダは、その上端縁部が弁座20を構成し、その弁座20に図の上方から対向して接離自在に弁体21が配置されている。この弁体21は、シリンダ内をその軸線方向に進退自在に配置された感圧部材としてのピストン22と小径シャフトによって連結された形で一体に形成されている。シリンダは、その小径シャフトが位置する部分に高圧冷媒入口12と連通する冷媒通路が開口されている。本体ブロック11の上部に形成された大径の穴からなるシリンダ上部の部屋も、冷媒通路を介して低圧冷媒出口13と連通されている。
【0028】
本体ブロック11の上部には、ソレノイドが配置されている。このソレノイドは、弁体21と一体に形成されたプランジャ23と、このプランジャ23と同心上に配置されたコア24と、これらの周りに配置された電磁コイル25と、プランジャ23とコア24との間に配置されたスプリング26と、電磁コイル25を囲繞するヨーク27とを備えている。コア24は中空形状を有し、その内部には、スプリング26の荷重を調節するアジャストねじ28が螺着されている。このアジャストねじ28も、中空形状を有していて、下端部がプランジャ23に固定されたシャフト29を軸線方向に進退自在に支持する軸受を構成している。コア24の上部開口端は、ボール30および固定ねじ31によって気密に閉止されている。このソレノイドは、連結部32によって本体ブロック11の上部に形成された大径の穴に螺着されている。
【0029】
ここで、ソレノイドが通電されていないとき、プランジャ23は、スプリング26によってコア24から離れる方向に付勢されているため、弁体21が弁座20に着座し、この流量制御弁4は、全閉状態になっている。
【0030】
ソレノイドの電磁コイル25に所定の電流iが供給されると、プランジャ23はスプリング26の付勢力に抗してコア24に吸引されるので、弁体21が弁座20からリフトされ、流量制御弁4は、ソレノイドの電流iに応じたソレノイド力とスプリング26の荷重とのバランスによって決まる開度に設定される。このとき、高圧冷媒入口12に導入された冷媒は、弁体21と弁座20との間の隙間を通過するときに絞られて膨張し、低圧冷媒出口13からエバポレータ5に送り出される。
【0031】
弁座20の有効径とピストン22の有効径とはほぼ等しいので、弁体21とピストン22との間の空間に供給される冷媒の圧力Poは、弁体21を押し上げる方向とピストン22を押し下げる方向とに働く力がほぼ等しくてキャンセルされるので、圧力Poがこれら弁体21およびピストン22の動きに影響を与えることはない。
【0032】
また、これら弁体21およびピストン22は、弁体21にその下流側の圧力である流量制御弁4の出口圧力、すなわちエバポレータ5の入口圧力Pxがかかり、ピストン22の下面には、冷媒の戻り通路17を介してエバポレータ5の出口圧力Peがかかっている。したがって、弁体21およびピストン22は、エバポレータ5の入口圧力Pxと出口圧力Peとの差圧を受け、ソレノイドの電流iによって設定された差圧ΔPに対応する位置から差圧の変化にしたがって軸線方向に動くことになる。たとえば、エバポレータ5の入口圧力Pxと出口圧力Peとの差圧が大きくなると、エバポレータ5の出口圧力Peがピストン22を押し下げようとするため、弁体21は閉じる方向に動き、これにより冷媒の流量が減って、差圧が小さくなるよう作用する。逆に、差圧が小さくなると、差圧が大きくなる方向に作用する。したがって、この流量制御弁4は、エバポレータ5を固定オリフィスとみなし、エバポレータ5の入口圧力Txと出口圧力Peとの差圧を所定の差圧ΔPになるようほぼ一定に制御する定差圧弁として機能し、この結果、エバポレータ5に送り込まれる冷媒は、ソレノイドの通電電流iによって決まるほぼ一定の流量に制御することになる。このような流量制御の膨張弁は、コンプレッサ1が吐出圧力と吸入圧力との差圧をほぼ一定に制御する差圧制御の場合に有用であり、冷凍サイクルの中で行われる2つの制御を競合なしで行うことができる。
【0033】
なお、流量制御弁4は、その低圧冷媒出口13に、エバポレータ入口の冷媒温度を検出する温度センサ6を配置し、戻り冷媒入口14に、エバポレータ出口の冷媒温度を検出する温度センサ7を配置して一体に構成してもよい。
【0034】
また、本発明による過熱度制御は、自動車用空調装置の冷凍サイクルに限定されるものではなく、家庭用、産業用などで用いられている他の冷凍サイクルにおいても適用することができる。
【0035】
【発明の効果】
以上説明したように、本発明では、安価な2つの温度センサとエバポレータの前後差圧をほぼ一定に制御する流量制御弁の制御電流とから、エバポレータ出口における冷媒の過熱度を算出する構成にした。これにより、過熱度の算出に推定項目がないため、過熱度を正確に算出でき、精度よく制御できる低コストの自動車用空調装置を提供することができる。
【図面の簡単な説明】
【図1】本発明による過熱度制御方法を説明するための冷媒の飽和蒸気温度−圧力線図である。
【図2】本発明を適用した冷凍サイクルを示した図である。
【図3】流量制御弁の一例を示す中央縦断面図である。
【符号の説明】
1 コンプレッサ
2 コンデンサ
3 レシーバ
4 流量制御弁
5 エバポレータ
6,7 温度センサ
8 制御装置
11 本体ブロック
12 高圧冷媒入口
13 低圧冷媒出口
14 戻り冷媒入口
15 戻り冷媒出口
16 ストレーナ
17 戻り通路
18 パッキン押さえ
19 ねじ
20 弁座
21 弁体
22 ピストン
23 プランジャ
24 コア
25 電磁コイル
26 スプリング
27 ヨーク
28 アジャストねじ
29 シャフト
30 ボール
31 固定ねじ
32 連結部
Pe エバポレータの出口圧力(蒸発圧力)
Px エバポレータの入口圧力
SH 過熱度
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a superheat control method, and more particularly to a superheat control method in which an expansion device controls an outlet temperature of an evaporator to a predetermined superheat in a refrigeration cycle such as an air conditioner for a vehicle.
[0002]
[Prior art]
For example, in an automotive air conditioner, for example, a compressor that compresses a circulating refrigerant, a condenser that condenses the compressed refrigerant, a receiver that stores the refrigerant in the refrigeration cycle and separates the condensed refrigerant into gas and liquid, and a separation device are generally used. A refrigeration cycle is composed of an expansion valve that throttles and expands the expanded liquid refrigerant and an evaporator that evaporates the refrigerant expanded by the expansion valve. As the expansion valve, a temperature-type expansion valve that senses the temperature and pressure of the refrigerant at the outlet of the evaporator and controls the flow rate of the refrigerant sent to the evaporator is used. With a temperature-type expansion valve, the refrigerant temperature at the evaporator outlet must be fed back for controlling the refrigerant flow rate, and the evaporator wants to completely evaporate the refrigerant so that the refrigerant returned to the compressor does not contain liquid components. For this reason, the refrigerant at the outlet of the evaporator has a predetermined degree of superheat.
[0003]
The temperature-type expansion valve is composed of a temperature-sensitive part, which is partitioned by a diaphragm and is filled with the same working gas as the refrigerant, and a valve part for restricting and expanding the refrigerant, and by exposing the refrigerant at the evaporator outlet to the diaphragm, the temperature-sensitive expansion valve is heated. A pressure difference corresponding to the degree of superheat occurs between the saturation pressure of the working gas corresponding to the refrigerant temperature at the evaporator outlet in the section and the saturation pressure of the refrigerant at the evaporator outlet, and the valve section is balanced by the pressure difference and the spring force. The opening degree is determined, and the flow rate of the refrigerant sent to the evaporator is controlled.
[0004]
In contrast to such a temperature-type expansion valve, a solenoid-operated electronic control valve is used as an expansion valve (for example, see Patent Document 1). Such an electronic expansion valve can freely change the opening degree of the valve section by changing the current supplied to the solenoid, so that fine control is possible, and the degree of superheat of the refrigerant at the evaporator outlet is also controlled. Will be possible.
[0005]
To control the degree of superheat using an electronic expansion valve, it is necessary to know the degree of superheat. Since the degree of superheat is the difference between the refrigerant temperature at the evaporator outlet and the refrigerant temperature corresponding to the evaporator evaporating pressure, it can be determined by measuring the evaporator outlet refrigerant temperature and the evaporator evaporating pressure.
[0006]
However, a pressure sensor for detecting pressure is very expensive as compared with a temperature sensor for detecting temperature, and thus increases the cost of an automotive air conditioner. Therefore, a method of estimating the evaporation pressure of the evaporator from the temperature at the evaporator inlet has conventionally been adopted.
[0007]
That is, the refrigerant temperature at the evaporator inlet is measured, and the pressure at the evaporator inlet corresponding to that temperature can be obtained by referring to the saturated vapor pressure-temperature characteristic of the refrigerant used. Further, a pressure loss occurs when the refrigerant passes through the evaporator, and the pressure difference is assumed to be substantially constant here. The evaporation pressure of the evaporator can be calculated by subtracting the pressure difference from the pressure at the evaporator inlet obtained earlier, and the temperature corresponding to the calculated evaporation pressure is referred to the saturated vapor pressure-temperature characteristic of the used refrigerant. Can be obtained by The superheat degree can be obtained by subtracting the refrigerant temperature corresponding to the evaporation pressure of the evaporator obtained in this way from the refrigerant temperature at the evaporator inlet measured by the temperature sensor.
In this way, the degree of superheat, which is a control target value, is estimated from the refrigerant temperatures measured at the inlet and outlet of the evaporator.
[0008]
[Patent Document 1]
JP 2001-153495 A (paragraph numbers [0010] to [0022], FIGS. 1 and 2)
[0009]
[Problems to be solved by the invention]
However, in the past, the approximate degree of superheat was estimated based on the assumption that the differential pressure due to the pressure loss of the evaporator was constant from the two measured refrigerant temperatures. , The exact degree of superheat is not required. Therefore, when the flow rate of the refrigerant flowing through the evaporator changes, there is a problem that a difference between the calculated superheat degree and the actual superheat degree makes accurate control of the superheat degree impossible.
[0010]
The present invention has been made in view of such a point, and an object of the present invention is to provide a superheat degree control method for accurately calculating and controlling the degree of heating.
[0011]
[Means for Solving the Problems]
In the present invention, in order to solve the above problem, in a superheat degree control method in which an expansion device in a refrigeration cycle controls a refrigerant state at an outlet of an evaporator to a predetermined superheat degree, an inlet and an outlet of the evaporator are provided to the expansion device. Using a flow control valve to control the pressure difference between before and after the current to be supplied to the solenoid, and the inlet refrigerant temperature and the outlet refrigerant temperature measured at the inlet and the outlet of the evaporator and the current value supplied to the solenoid And calculating the superheat degree from the differential pressure determined by the control method and controlling the current value so that the superheat degree becomes a predetermined value.
[0012]
According to such a superheat control method, the differential pressure of the evaporator, which has been conventionally estimated, can be directly known from the current value supplied to the solenoid of the flow control valve that controls this differential pressure. Can be calculated, whereby the refrigeration cycle can be controlled more accurately.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a refrigerant saturated vapor temperature-pressure diagram for explaining a superheat control method according to the present invention.
[0014]
It is known that there is a certain relationship between the temperature and the pressure of the refrigerant, and the relationship is shown in the saturated vapor temperature-pressure diagram of the refrigerant shown in FIG. In this figure, the horizontal axis represents the evaporator outlet temperature Te, and the vertical axis represents the evaporator outlet pressure Pe. The curve is a TP curve showing a change in pressure with respect to the temperature of the refrigerant. This change in the TP curve is determined by the type of refrigerant, and if the type and temperature of the refrigerant are known, the pressure at that time can be known.
[0015]
In the present invention, what is actually measured is the inlet temperature Tx and the outlet temperature Te of the evaporator as in the conventional case. The superheat degree SH is the difference between the outlet temperature Te of the evaporator and the temperature T (Pe) corresponding to the evaporation pressure Pe of the evaporator.
[0016]
(Equation 1)
SH = Te−T (Pe) (1)
Can be represented by Therefore, if the temperature T (Pe) corresponding to the evaporation pressure Pe can be obtained from these actually measured values, the degree of superheat SH can be obtained.
[0017]
From the TP curve, the temperature T (Pe) corresponding to the evaporation pressure Pe is a temperature corresponding to the pressure Pe lower by the differential pressure ΔP.
[0018]
(Equation 2)
T (Pe) = Tx−ΔT (ΔP, Tx) (2)
Is represented by That is, the temperature T (Pe) corresponding to the evaporation pressure Pe is obtained by subtracting the differential pressure ΔP and the temperature difference ΔT (ΔP, Tx) which is a function of the inlet temperature Tx from the inlet temperature Tx.
[0019]
Here, the differential pressure ΔP is a differential pressure between the inlet pressure Px and the outlet pressure Pe of the evaporator, and if it can be obtained accurately, it is possible to finally obtain an accurate superheat degree SH.
[0020]
In the present invention, the differential pressure ΔP is supplied to the solenoid by using, as the expansion valve, a flow control valve for controlling the differential pressure between the inlet and the outlet of the evaporator to a predetermined differential pressure determined by the current supplied to the solenoid. Directly from the current value. Since this current value is the target value of the differential pressure to be controlled by the flow control valve, the differential pressure ΔP between the inlet pressure Px and the outlet pressure Pe of the evaporator can be directly and accurately known.
[0021]
As described above, since this differential pressure ΔP is a function of the current i supplied to the solenoid,
[0022]
[Equation 3]
ΔP = ΔP (i) (3)
And from the above equations 1 and 2, the degree of superheat SH is
[0023]
(Equation 4)
SH = Te−Tx + ΔT (ΔP (i), Tx) (4)
And can be obtained accurately.
[0024]
FIG. 2 is a diagram showing a refrigeration cycle to which the present invention is applied.
The refrigeration cycle includes a compressor 1 for compressing the circulating refrigerant, a condenser 2 for condensing the compressed refrigerant, a receiver 3 for storing the refrigerant in the refrigeration cycle and separating the condensed refrigerant into gas and liquid, and a liquid refrigerant. A flow control valve 4 for restricting expansion is provided, and an evaporator 5 for evaporating the refrigerant expanded by the flow control valve 4 and returning the refrigerant to the compressor 1. The evaporator 5 is provided with a temperature sensor 6 for detecting a refrigerant inlet temperature Tx at an inlet thereof and a temperature sensor 7 for detecting a refrigerant outlet temperature Te at an outlet thereof. Are input to the control device 8. The control device 8 outputs a current i for controlling the flow control valve 4.
[0025]
FIG. 3 is a central longitudinal sectional view showing an example of the flow control valve.
The flow control valve 4 includes a high-pressure refrigerant inlet 12 through which a refrigerant having a pressure Po is sent from the receiver 3 to the main body block 11, a low-pressure refrigerant outlet 13 through which the refrigerant expands and is sent out to the evaporator 5, and a refrigerant from the evaporator 5. A return refrigerant inlet 14 for returning the refrigerant and a return refrigerant outlet 15 for sending the returned refrigerant to the compressor 1 are provided. A strainer 16 is arranged at the high-pressure refrigerant inlet 12 so as to close the passage.
[0026]
A large-diameter hole is formed in the upper part of the main body block 11, a cylinder concentric with the large-diameter hole is formed in the vertical direction in the figure, and a lower part communicates with the central cylinder in the lower part. A hole is formed. The lower hole is communicated with the return refrigerant inlet 14 and the return refrigerant outlet 15 by a return passage 17, and further opens at the lower end surface of the main body block 11. This opening is closed by screwing a screw 19 into the main body block 11 via a packing and a packing retainer 18.
[0027]
The upper end edge of the cylinder at the center constitutes a valve seat 20, and a valve body 21 is disposed on the valve seat 20 so as to be able to freely contact and separate from the upper side of the figure. The valve element 21 is integrally formed with a piston 22 as a pressure-sensitive member, which is disposed in the cylinder so as to be able to advance and retreat in the axial direction, by a small-diameter shaft. The cylinder is provided with a refrigerant passage communicating with the high-pressure refrigerant inlet 12 at a portion where the small-diameter shaft is located. The upper chamber of the cylinder formed of a large-diameter hole formed in the upper part of the main body block 11 is also connected to the low-pressure refrigerant outlet 13 via the refrigerant passage.
[0028]
On the upper part of the main body block 11, a solenoid is arranged. The solenoid includes a plunger 23 formed integrally with the valve body 21, a core 24 arranged concentrically with the plunger 23, an electromagnetic coil 25 arranged around the plunger 23, and the plunger 23 and the core 24. The spring 26 includes a spring 26 disposed therebetween and a yoke 27 surrounding the electromagnetic coil 25. The core 24 has a hollow shape, and an adjust screw 28 for adjusting the load of the spring 26 is screwed inside the core 24. The adjusting screw 28 also has a hollow shape, and constitutes a bearing that supports a shaft 29 whose lower end is fixed to the plunger 23 so as to be able to advance and retreat in the axial direction. The upper open end of the core 24 is hermetically closed by a ball 30 and a fixing screw 31. This solenoid is screwed into a large-diameter hole formed in the upper part of the main body block 11 by a connecting portion 32.
[0029]
Here, when the solenoid is not energized, the plunger 23 is urged away from the core 24 by the spring 26, so that the valve element 21 is seated on the valve seat 20, and the flow control valve 4 It is closed.
[0030]
When a predetermined current i is supplied to the solenoid coil 25 of the solenoid, the plunger 23 is attracted to the core 24 against the urging force of the spring 26, so that the valve element 21 is lifted from the valve seat 20 and the flow control valve 4 is set to an opening determined by the balance between the solenoid force corresponding to the solenoid current i and the load of the spring 26. At this time, the refrigerant introduced into the high-pressure refrigerant inlet 12 is throttled and expanded when passing through the gap between the valve body 21 and the valve seat 20, and is sent out from the low-pressure refrigerant outlet 13 to the evaporator 5.
[0031]
Since the effective diameter of the valve seat 20 and the effective diameter of the piston 22 are substantially equal, the pressure Po of the refrigerant supplied to the space between the valve element 21 and the piston 22 causes the direction in which the valve element 21 is pushed up and the piston 22 to be pushed down. Since the forces acting on the directions are almost equal and canceled, the pressure Po does not affect the movements of the valve element 21 and the piston 22.
[0032]
In addition, the valve body 21 and the piston 22 are subjected to the outlet pressure of the flow control valve 4 which is the downstream pressure, that is, the inlet pressure Px of the evaporator 5, on the valve body 21. The outlet pressure Pe of the evaporator 5 is applied via the passage 17. Therefore, the valve element 21 and the piston 22 receive a differential pressure between the inlet pressure Px and the outlet pressure Pe of the evaporator 5, and follow the change in the differential pressure from a position corresponding to the differential pressure ΔP set by the current i of the solenoid. It will move in the direction. For example, when the differential pressure between the inlet pressure Px and the outlet pressure Pe of the evaporator 5 increases, the outlet pressure Pe of the evaporator 5 tends to push down the piston 22, so that the valve element 21 moves in the closing direction, thereby causing the flow rate of the refrigerant. And acts to reduce the differential pressure. Conversely, when the differential pressure decreases, it acts in a direction to increase the differential pressure. Accordingly, the flow control valve 4 functions as a constant differential pressure valve that regards the evaporator 5 as a fixed orifice and controls the differential pressure between the inlet pressure Tx and the outlet pressure Pe of the evaporator 5 to be substantially constant so as to be a predetermined differential pressure ΔP. As a result, the refrigerant fed into the evaporator 5 is controlled to a substantially constant flow rate determined by the current i flowing through the solenoid. Such a flow control expansion valve is useful in the case of differential pressure control in which the compressor 1 controls the differential pressure between the discharge pressure and the suction pressure to be substantially constant, and competes two controls performed in the refrigeration cycle. Can be done without.
[0033]
The flow control valve 4 has a low-pressure refrigerant outlet 13 provided with a temperature sensor 6 for detecting the refrigerant temperature at the evaporator inlet, and a return refrigerant inlet 14 provided with a temperature sensor 7 for detecting the refrigerant temperature at the evaporator outlet. And may be integrally configured.
[0034]
Further, the superheat degree control according to the present invention is not limited to the refrigeration cycle of an air conditioner for a vehicle, but can be applied to other refrigeration cycles used for home use, industrial use, and the like.
[0035]
【The invention's effect】
As described above, in the present invention, the superheat degree of the refrigerant at the evaporator outlet is calculated from two inexpensive temperature sensors and the control current of the flow control valve that controls the differential pressure across the evaporator to be substantially constant. . As a result, since there is no estimation item in the calculation of the degree of superheat, it is possible to provide a low-cost automotive air conditioner that can accurately calculate the degree of superheat and control accurately.
[Brief description of the drawings]
FIG. 1 is a refrigerant saturated steam temperature-pressure diagram for explaining a superheat degree control method according to the present invention.
FIG. 2 is a diagram showing a refrigeration cycle to which the present invention is applied.
FIG. 3 is a central longitudinal sectional view showing an example of a flow control valve.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Receiver 4 Flow control valve 5 Evaporator 6,7 Temperature sensor 8 Control device 11 Main block 12 High pressure refrigerant inlet 13 Low pressure refrigerant outlet 14 Return refrigerant inlet 15 Return refrigerant outlet 16 Strainer 17 Return passage 18 Packing holder 19 Screw 20 Valve seat 21 Valve element 22 Piston 23 Plunger 24 Core 25 Electromagnetic coil 26 Spring 27 Yoke 28 Adjust screw 29 Shaft 30 Ball 31 Fixing screw 32 Connecting part Pe Outlet pressure of evaporator (evaporation pressure)
Px Evaporator inlet pressure SH Superheat

Claims (3)

冷凍サイクルにおける膨張装置がエバポレータの出口の冷媒状態が所定の過熱度になるように制御する過熱度制御方法において、
前記膨張装置に前記エバポレータの入口と出口との前後差圧をソレノイドに供給する電流によって決まる差圧になるよう制御する流量制御弁を用い、
前記エバポレータの入口および出口で測定した入口冷媒温度および出口冷媒温度と前記ソレノイドに供給する電流値によって決まる差圧とから前記過熱度を算出し、
前記過熱度が所定の値になるよう前記電流値を制御する、ことを特徴とする過熱度制御方法。
In a superheat degree control method in which an expansion device in a refrigeration cycle controls a refrigerant state at an outlet of an evaporator to have a predetermined degree of superheat,
Using a flow control valve to control the differential pressure between the inlet and the outlet of the evaporator in the expansion device to a differential pressure determined by a current supplied to a solenoid,
Calculating the degree of superheat from the inlet refrigerant temperature and the outlet refrigerant temperature measured at the inlet and outlet of the evaporator and the differential pressure determined by the current value supplied to the solenoid,
A superheat degree control method, wherein the current value is controlled so that the superheat degree becomes a predetermined value.
前記過熱度は、測定した前記出口冷媒温度から前記エバポレータ内の蒸発圧力に相当する温度を差し引くことにより算出したことを特徴とする請求項1記載の過熱度制御方法。The superheat degree control method according to claim 1, wherein the superheat degree is calculated by subtracting a temperature corresponding to an evaporation pressure in the evaporator from the measured outlet refrigerant temperature. 前記蒸発圧力に相当する温度は、冷媒の飽和蒸気圧力−温度特性を参照して前記入口冷媒温度に相当する圧力から前記電流値によって決まる前記差圧の分だけ低い圧力に相当する温度を、前記入口冷媒温度から差し引くことにより算出したことを特徴とする請求項2記載の過熱度制御方法。The temperature corresponding to the evaporation pressure refers to a saturated vapor pressure-temperature characteristic of the refrigerant, and refers to a temperature corresponding to a pressure lower than the pressure corresponding to the inlet refrigerant temperature by the differential pressure determined by the current value, 3. The superheat control method according to claim 2, wherein the superheat degree is calculated by subtracting from the inlet refrigerant temperature.
JP2003063177A 2003-03-10 2003-03-10 Superheat control method Expired - Fee Related JP4259891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003063177A JP4259891B2 (en) 2003-03-10 2003-03-10 Superheat control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003063177A JP4259891B2 (en) 2003-03-10 2003-03-10 Superheat control method

Publications (2)

Publication Number Publication Date
JP2004271066A true JP2004271066A (en) 2004-09-30
JP4259891B2 JP4259891B2 (en) 2009-04-30

Family

ID=33124824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003063177A Expired - Fee Related JP4259891B2 (en) 2003-03-10 2003-03-10 Superheat control method

Country Status (1)

Country Link
JP (1) JP4259891B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126138A (en) * 2008-12-01 2010-06-10 Denso Corp Refrigeration cycle device for vehicle
JP2013104574A (en) * 2011-11-10 2013-05-30 Mayekawa Mfg Co Ltd Refrigeration device for fishing boat
WO2013099898A1 (en) 2011-12-28 2013-07-04 ダイキン工業株式会社 Refrigeration device
US20150068231A1 (en) * 2013-09-07 2015-03-12 Trane International Inc. HVAC System with Electronically Controlled Expansion Valve
EP3023276A4 (en) * 2013-07-18 2017-04-12 Hangzhou Sanhua Research Institute Co., Ltd. Method for controlling degree of superheat of vehicle air-conditioning system, and vehicle air-conditioning system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126138A (en) * 2008-12-01 2010-06-10 Denso Corp Refrigeration cycle device for vehicle
JP2013104574A (en) * 2011-11-10 2013-05-30 Mayekawa Mfg Co Ltd Refrigeration device for fishing boat
WO2013099898A1 (en) 2011-12-28 2013-07-04 ダイキン工業株式会社 Refrigeration device
EP3023276A4 (en) * 2013-07-18 2017-04-12 Hangzhou Sanhua Research Institute Co., Ltd. Method for controlling degree of superheat of vehicle air-conditioning system, and vehicle air-conditioning system
US10391833B2 (en) 2013-07-18 2019-08-27 Hangzhou Sanhua Research Institute Co., Ltd. Method for controlling degree of superheat of vehicle air-conditioning system, and vehicle air-conditioning system
US20150068231A1 (en) * 2013-09-07 2015-03-12 Trane International Inc. HVAC System with Electronically Controlled Expansion Valve
US10852041B2 (en) * 2013-09-07 2020-12-01 Trane International Inc. HVAC system with electronically controlled expansion valve

Also Published As

Publication number Publication date
JP4259891B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP3794100B2 (en) Expansion valve with integrated solenoid valve
US6053417A (en) Expansion valve integrated with electromagnetic valve
US10309702B2 (en) Control valve
JP3949417B2 (en) Expansion valve
JP4259891B2 (en) Superheat control method
EP1265041B1 (en) Refrigerating cycle
JP2001501296A (en) Control of mass flow of working fluid
US9766001B2 (en) Control valve
JP2000310461A (en) Thermostatic refrigerant expansion valve
JP2009063233A (en) Control method of refrigerating cycle
EP1388719A2 (en) Air conditioning system
JP5369259B2 (en) Expansion valve
JP3920059B2 (en) Expansion valve
EP0874202B1 (en) Expansion valve integrated with electromagnetic valve and refrigeration cycle employing the same
JP2002310539A (en) Expansion valve
JP4043195B2 (en) Expansion valve
JP3661280B2 (en) Thermal expansion valve
JP2005201484A (en) Refrigerating cycle
JPH05118711A (en) Expansion valve
JP5260918B2 (en) Capacity control system for variable capacity compressor
JP2005265385A (en) Decompression device
JP2002089979A (en) Refrigerating cycle and expansion valve employed therefor
JPH11223426A (en) Expansion valve for automotive air conditioner
JPS601485A (en) Electromagnetic valve for control of refrigerant flow
JP2000065430A (en) Vapor compression refrigeration cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees